Articles | Volume 20, issue 18
https://doi.org/10.5194/bg-20-3751-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-3751-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reviews and syntheses: Understanding the impacts of peatland catchment management on dissolved organic matter concentration and treatability
UK Centre for Ecology & Hydrology, Environment Centre Wales,
Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK
Chris Evans
UK Centre for Ecology & Hydrology, Environment Centre Wales,
Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK
Bryan Spears
UK Centre for Ecology & Hydrology, Bush Estate, Penicuik,
Midlothian, EH26 0QB, UK
Amy Pickard
UK Centre for Ecology & Hydrology, Bush Estate, Penicuik,
Midlothian, EH26 0QB, UK
Pippa J. Chapman
School of Geography, Faculty of Environment, University of Leeds,
Leeds, LS2 9JT, UK
Heidrun Feuchtmayr
UK Centre for Ecology & Hydrology, Lancaster Environment Centre,
Library Avenue, Bailrigg, Lancaster, LA1 4AP, UK
Fraser Leith
Scottish Water, 6 Castle Drive, Dunfermline, KY11 8GG, UK
Susan Waldron
School of Geographical and Earth Sciences, University of Glasgow,
Glasgow, G12 8QQ, UK
Don Monteith
UK Centre for Ecology & Hydrology, Lancaster Environment Centre,
Library Avenue, Bailrigg, Lancaster, LA1 4AP, UK
Related authors
Jennifer Williamson, Christopher Evans, Bryan Spears, Amy Pickard, Pippa J. Chapman, Heidrun Feuchtmayr, Fraser Leith, and Don Monteith
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-450, https://doi.org/10.5194/hess-2020-450, 2020
Manuscript not accepted for further review
Short summary
Short summary
Water companies in the UK have found that drinking water from upland reservoirs is becoming browner. This is costly to treat and if the dissolved organic matter that causes the colour isn't removed potentially harmful chemicals could be produced. Land management around reservoirs has been suggested as a way to reduce water colour. We reviewed the available literature to assess whether this would work. There is limited evidence available to date, although forestry appears to increase colour.
This article is included in the Encyclopedia of Geosciences
Thomas C. Parker, Chris Evans, Martin G. Evans, Miriam Glendell, Richard Grayson, Joseph Holden, Changjia Li, Pengfei Li, and Rebekka R. E. Artz
EGUsphere, https://doi.org/10.5194/egusphere-2025-287, https://doi.org/10.5194/egusphere-2025-287, 2025
Short summary
Short summary
Many peatlands around the world are eroding and causing carbon losses to the atmosphere and to freshwater systems. To accurately report emissions from peatlands we need to understand how much of the eroded peat is converted to CO2 once exposed to the atmosphere. We need more direct measurements of this process and a better understanding of the environmental conditions that peat is exposed to after it erodes. This information will help quantify the emissions savings from peatland restoration.
This article is included in the Encyclopedia of Geosciences
Viktoria Spaiser, Sirkku Juhola, Sara M. Constantino, Weisi Guo, Tabitha Watson, Jana Sillmann, Alessandro Craparo, Ashleigh Basel, John T. Bruun, Krishna Krishnamurthy, Jürgen Scheffran, Patricia Pinho, Uche T. Okpara, Jonathan F. Donges, Avit Bhowmik, Taha Yasseri, Ricardo Safra de Campos, Graeme S. Cumming, Hugues Chenet, Florian Krampe, Jesse F. Abrams, James G. Dyke, Stefanie Rynders, Yevgeny Aksenov, and Bryan M. Spears
Earth Syst. Dynam., 15, 1179–1206, https://doi.org/10.5194/esd-15-1179-2024, https://doi.org/10.5194/esd-15-1179-2024, 2024
Short summary
Short summary
In this paper, we identify potential negative social tipping points linked to Earth system destabilization and draw on related research to understand the drivers and likelihood of these negative social tipping dynamics, their potential effects on human societies and the Earth system, and the potential for cascading interactions and contribution to systemic risks.
This article is included in the Encyclopedia of Geosciences
Dag O. Hessen, Tom Andersen, David Armstrong McKay, Sarian Kosten, Mariana Meerhoff, Amy Pickard, and Bryan M. Spears
Earth Syst. Dynam., 15, 653–669, https://doi.org/10.5194/esd-15-653-2024, https://doi.org/10.5194/esd-15-653-2024, 2024
Short summary
Short summary
Lakes worldwide are changing and under threat due to stressors such as overload of nutrients, increased input of organic carbon (“browning”), and climate change, which may cause reduced water volume, salinization, or even loss of waterbodies. Some of these changes are abrupt to the extent that they can be characterized as tipping points for that particular system. Such changes may also cause increased release of greenhouse gases, and lakes are major players in the global climate in this context.
This article is included in the Encyclopedia of Geosciences
Amy E. Pickard, Marcella Branagan, Mike F. Billett, Roxane Andersen, and Kerry J. Dinsmore
Biogeosciences, 19, 1321–1334, https://doi.org/10.5194/bg-19-1321-2022, https://doi.org/10.5194/bg-19-1321-2022, 2022
Short summary
Short summary
Peatlands have been subject to a range of land management regimes over the past century. This has affected the amount of carbon that drains into surrounding streams and rivers. In our study, we measured carbon concentrations in streams draining from drained, non-drained, and restored areas of the Flow Country blanket bog in N Scotland. We found that drained peatland had higher concentrations and fluxes of carbon relative to non-drained areas. Restored peatland areas were highly variable.
This article is included in the Encyclopedia of Geosciences
Gustaf Granath, Christopher D. Evans, Joachim Strengbom, Jens Fölster, Achim Grelle, Johan Strömqvist, and Stephan J. Köhler
Biogeosciences, 18, 3243–3261, https://doi.org/10.5194/bg-18-3243-2021, https://doi.org/10.5194/bg-18-3243-2021, 2021
Short summary
Short summary
We measured element losses and impacts on water quality following a wildfire in Sweden. We observed the largest carbon and nitrogen losses during the fire and a strong pulse of elements 1–3 months after the fire that showed a fast (weeks) and a slow (months) release from the catchments. Total carbon export through water did not increase post-fire. Overall, we observed a rapid recovery of the biogeochemical cycling of elements within 3 years but still an annual net release of carbon dioxide.
This article is included in the Encyclopedia of Geosciences
Jennifer Williamson, Christopher Evans, Bryan Spears, Amy Pickard, Pippa J. Chapman, Heidrun Feuchtmayr, Fraser Leith, and Don Monteith
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-450, https://doi.org/10.5194/hess-2020-450, 2020
Manuscript not accepted for further review
Short summary
Short summary
Water companies in the UK have found that drinking water from upland reservoirs is becoming browner. This is costly to treat and if the dissolved organic matter that causes the colour isn't removed potentially harmful chemicals could be produced. Land management around reservoirs has been suggested as a way to reduce water colour. We reviewed the available literature to assess whether this would work. There is limited evidence available to date, although forestry appears to increase colour.
This article is included in the Encyclopedia of Geosciences
Cited articles
Alderson, D. M., Evans, M. G., Shuttleworth, E. L., Pilkington, M.,
Spencer, T., Walker, J., and Allott, T. E. H.: Trajectories of ecosystem
change in restored blanket peatlands, Sci. Total Environ., 665, 785–796,
https://doi.org/10.1016/j.scitotenv.2019.02.095, 2019.
Algesten, G., Sobek, S., Bergstrom, A. K., Agren, A., Tranvik, L. J., and
Jansson, M.: Role of lakes for organic carbon cycling in the boreal zone,
Glob. Change Biol., 10, 141–147, https://doi.org/10.1111/j.1365-2486.2003.00721.x, 2004.
Andersen, R., Farrell, C., Graf, M., Muller, F., Calvar, E., Frankard, P.,
Caporn, S., and Anderson, P.: An overview of the progress and challenges of
peatland restoration in Western Europe, Restor. Ecol., 25, 271–282,
https://doi.org/10.1111/rec.12415, 2017.
Anderson, P.: United Utilities sustainable catchment management programme
water quality monitoring results, Penny Anderson Associates Ltd., 2012.
Anderson, T. R., Rowe, E. C., Polimene, L., Tipping, E., Evans, C. D.,
Barry, C. D. G., Hansell, D. A., Kaiser, K., Kitidis, V., Lapworth, D. J.,
Mayor, D. J., Monteith, D. T., Pickard, A. E., Sanders, R. J., Spears, B.
M., Torres, R., Tye, A. M., Wade, A. J., and Waska, H.: Unified concepts for
understanding and modelling turnover of dissolved organic matter from
freshwaters to the ocean: the UniDOM model, Biogeochemistry, 146, 105–123, https://doi.org/10.1007/s10533-019-00621-1, 2019.
Armstrong, A., Holden, J., Luxton, K., and Quinton, J. N.: Multi-scale
relationship between peatland vegetation type and dissolved organic carbon
concentration, Ecol. Eng., 47, 182–188, https://doi.org/10.1016/j.ecoleng.2012.06.027, 2012.
Armstrong, A., Holden, J., Kay, P., Francis, B., Foulger, M., Gledhill, S.,
McDonald, A. T., and Walker, A.: The impact of peatland drain-blocking on
dissolved organic carbon loss and discolouration of water; results from a
national survey, J. Hydrol., 381, 112–120, https://doi.org/10.1016/j.jhydrol.2009.11.031,
2010.
Berggren, M. and del Giorgio, P. A.: Distinct patterns of microbial
metabolism associated to riverine dissolved organic carbon of different
source and quality, J. Geophys. Res.-Biogeo., 120, 989–999, https://doi.org/10.1002/2015jg002963, 2015.
Berggren, M., Klaus, M., Selvam, B. P., Strom, L., Laudon, H., Jansson, M.,
and Karlsson, J.: Quality transformation of dissolved organic carbon during
water transit through lakes: contrasting controls by photochemical and
biological processes, Biogeosciences, 15, 457–470, https://doi.org/10.5194/bg-15-457-2018,
2018.
Birk, S., Chapman, D., Carvalho, L., Spears, B. M., Andersen, H. E.,
Argillier, C., Auer, S., Baattrup-Pedersen, A., Banin, L., Beklioğlu,
M., Bondar-Kunze, E., Borja, A., Branco, P., Bucak, T., Buijse, A. D.,
Cardoso, A. C., Couture, R.-M., Cremona, F., de Zwart, D., Feld, C. K.,
Ferreira, M. T., Feuchtmayr, H., Gessner, M. O., Gieswein, A., Globevnik,
L., Graeber, D., Graf, W., Gutiérrez-Cánovas, C., Hanganu, J.,
Işkın, U., Järvinen, M., Jeppesen, E., Kotamäki, N., Kuijper,
M., Lemm, J. U., Lu, S., Solheim, A. L., Mischke, U., Moe, S. J., Nõges,
P., Nõges, T., Ormerod, S. J., Panagopoulos, Y., Phillips, G., Posthuma,
L., Pouso, S., Prudhomme, C., Rankinen, K., Rasmussen, J. J., Richardson,
J., Sagouis, A., Santos, J. M., Schäfer, R. B., Schinegger, R., Schmutz,
S., Schneider, S. C., Schülting, L., Segurado, P., Stefanidis, K.,
Sures, B., Thackeray, S. J., Turunen, J., Uyarra, M. C., Venohr, M., von der
Ohe, P. C., Willby, N., and Hering, D.: Impacts of multiple stressors on
freshwater biota across spatial scales and ecosystems, Nat. Ecol.
Evol., 4, 1060–1068, https://doi.org/10.1038/s41559-020-1216-4, 2020.
Brown, L. E., Holden, J., Palmer, S. M., Johnston, K., Ramchunder, S. J.,
and Grayson, R.: Effects of fire on the hydrology, biogeochemistry, and
ecology of peatland river systems, Freshw. Sci., 34, 1406–1425, https://doi.org/10.1086/683426, 2015.
Chapman, P. J., McDonald, A. T., Tyson, R., Palmer, S. M., Mitchell, G., and
Irvine, B.: Changes in water colour between 1986 and 2006 in the headwaters
of the River Nidd, Yorkshire, UK, Biogeochemistry, 101, 281–294, https://doi.org/10.1007/s10533-010-9474-x, 2010.
Chapman, P. J., Moody, C. S., Grayson, R., and Palmer, S. M.: Factors
controlling water colour on the North York Moors, Part 1, University of
Leeds, 2017.
Chimner, R. A., Cooper, D. J., Wurster, F. C., and Rochefort, L.: An
overview of peatland restoration in North America: where are we after 25
years?, Restor. Ecol., 25, 283–292,
https://doi.org/10.1111/rec.12434, 2017.
Clark, J. M., Ashley, D., Wagner, M., Chapman, P. J., Lane, S. N., Evans, C.
D., and Heathwaite, A. L.: Increased temperature sensitivity of net DOC
production from ombrotrophic peat due to water table draw-down, Glob.
Change Biol., 15, 794–807, https://doi.org/10.1111/j.1365-2486.2008.01683.x, 2009.
Clay, G. D., Worrall, F., and Fraser, E. D. G.: Effects of managed burning
upon dissolved organic carbon (DOC) in soil water and runoff water following
a managed burn of a UK blanket bog, J. Hydrol., 367, 41–51, https://doi.org/10.1016/j.jhydrol.2008.12.022, 2009.
Clay, G. D., Worrall, F., and Aebischer, N. J.: Does prescribed burning on
peat soils influence DOC concentrations in soil and runoff waters? Results
from a 10 year chronosequence, J. Hydrol., 448, 139–148, https://doi.org/10.1016/j.jhydrol.2012.04.048, 2012.
Clutterbuck, B. and Yallop, A. R.: Land management as a factor controlling
dissolved organic carbon release from upland peat soils 2 Changes in DOC
productivity over four decades, Sci. Total Environ., 408, 6179–6191, https://doi.org/10.1016/j.scitotenv.2010.08.038, 2010.
Cummins, T. and Farrell, E. P.: Biogeochemical impacts of clearfelling and
reforestation on blanket-peatland streams – II. major ions and dissolved
organic carbon, Forest Ecol. Manag., 180, 557–570, https://doi.org/10.1016/s0378-1127(02)00649-7, 2003.
Davies, G. M., Kettridge, N., Stoof, C. R., Gray, A., Ascoli, D., Fernandes,
P. M., Marrs, R., Allen, K. A., Doerr, S. H., Clay, G. D., McMorrow, J., and
Vandvik, V.: The role of fire in UK peatland and moorland management: the
need for informed, unbiased debate, Philos. T. R. Soc. B,
371, 20150342, https://doi.org/10.1098/rstb.2015.0342, 2016.
de Wit, H. A., Stoddard, J. L., Monteith, D. T., Sample, J. E., Austnes, K.,
Couture, S., Fölster, J., Higgins, S. N., Houle, D., Hruška, J.,
Krám, P., Kopáček, J., Paterson, A. M., Valinia, S., Van Dam,
H., Vuorenmaa, J., and Evans, C. D.: Cleaner air reveals growing influence
of climate on dissolved organic carbon trends in northern headwaters,
Environ. Res. Lett., 16, 104009, https://doi.org/10.1088/1748-9326/ac2526, 2021.
Ding, S. and Chu, W.: Recent advances in the analysis of nitrogenous
disinfection by-products, Trend. Environ. Anal. Chem., 14,
19–27, https://doi.org/10.1016/j.teac.2017.04.001, 2017.
Einola, E., Rantakari, M., Kankaala, P., Kortelainen, P., Ojala, A.,
Pajunen, H., Makela, S., and Arvola, L.: Carbon pools and fluxes in a chain
of five boreal lakes: A dry and wet year comparison, J. Geophys.
Res.-Biogeo., 116, G03009, https://doi.org/10.1029/2010jg001636, 2011.
Evans, C. D., Monteith, D. T., and Cooper, D. M.: Long-term increases in
surface water dissolved organic carbon: Observations, possible causes and
environmental impacts, Environ. Pollut., 137, 55–71, https://doi.org/10.1016/j.envpol.2004.12.031, 2005.
Evans, C. D., Jones, T. G., Burden, A., Ostle, N., Zielinski, P., Cooper, M.
D. A., Peacock, M., Clark, J. M., Oulehle, F., Cooper, D., and Freeman, C.:
Acidity controls on dissolved organic carbon mobility in organic soils,
Glob. Change Biol., 18, 3317–3331, https://doi.org/10.1111/j.1365-2486.2012.02794.x,
2012.
Evans, C. D., Page, S. E., Jones, T., Moore, S., Gauci, V., Laiho, R.,
Hruska, J., Allott, T. E. H., Billett, M. F., Tipping, E., Freeman, C., and
Garnett, M. H.: Contrasting vulnerability of drained tropical and
high-latitude peatlands to fluvial loss of stored carbon, Global
Biogeochem. Cy., 28, 1215–1234, https://doi.org/10.1002/2013gb004782, 2014.
Evans, C. D., Futter, M. N., Moldan, F., Valinia, S., Frogbrook, Z., and
Kothawala, D. N.: Variability in organic carbon reactivity across lake
residence time and trophic gradients, Nat. Geosci., 10, 832–835, https://doi.org/10.1038/ngeo3051, 2017a.
Evans, C. D., Malcolm, I. A., Shilland, E. M., Rose, N. L., Turner, S. D.,
Crilly, A., Norris, D., Granath, G., and Monteith, D. T.: Sustained
Biogeochemical Impacts of Wildfire in a Mountain Lake Catchment, Ecosystems,
20, 813–829, https://doi.org/10.1007/s10021-016-0064-1, 2017b.
Evans, C. D., Peacock, M., Green, S. M., Holden, J., Chapman, P. J., Lebron,
I., Callaghan, N., Grayson, R., and Baird, A.: The impact of ditch blocking
on fluvial carbon export from a UK blanket bog, Hydrol. Process., 32,
2141–2154, 2018.
Feuchtmayr, H., Pottinger, T. G., Moore, A., De Ville, M. M., Caillouet, L.,
Carter, H. T., Pereira, M. G., and Maberly, S. C.: Effects of brownification
and warming on algal blooms, metabolism and higher trophic levels in
productive shallow lake mesocosms, Sci. Total Environ., 678, 227–238,
https://doi.org/10.1016/j.scitotenv.2019.04.105, 2019.
Flynn, R., Mackin, F., McVeigh, C., and Renou-Wilson, F.: Impacts of a
mature forestry plantation on blanket peatland runoff regime and water
quality, Hydrol. Process., 36, e14494, https://doi.org/10.1002/hyp.14494, 2022.
Forestry Commission: The UK Forestry Standard, Edinburgh, Forestry Commission, ISBN: 978-0-85538-999-4, 2017.
Gaffney, P.: The effects of bog restoration in formerly afforested peatlands
on water quality and aquatic carbon fluxes, PhD thesis, Environmental Research
Institute, University of the Highlands and Islands, 2017.
Gaffney, P. P. J., Hancock, M. H., Taggart, M. A., and Andersen, R.:
Measuring restoration progress using pore- and surface-water chemistry
across a chronosequence of formerly afforested blanket bogs, J. Environ.
Manag., 219, 239–251, https://doi.org/10.1016/j.jenvman.2018.04.106, 2018.
Gaffney, P. P. J., Hancock, M. H., Taggart, M. A., and Andersen, R.:
Restoration of afforested peatland: Immediate effects on aquatic carbon
loss, Sci. Total Environ., 742, 140594, https://doi.org/10.1016/j.scitotenv.2020.140594, 2020.
Gibson, H. S., Worrall, F., Burt, T. P., and Adamson, J. K.: DOC budgets of
drained peat catchments: implications for DOC production in peat soils,
Hydrol. Process., 23, 1901–1911, https://doi.org/10.1002/hyp.7296, 2009.
Glatzel, S., Kalbitz, K., Dalva, M., and Moore, T.: Dissolved organic matter
properties and their relationship to carbon dioxide efflux from restored
peat bogs, Geoderma, 113, 397–411, https://doi.org/10.1016/S0016-7061(02)00372-5, 2003.
Glenk, K. and Martin-Ortega, J.: The economics of peatland restoration,
J. Environ. Econ. Policy, 7, 345–362, https://doi.org/10.1080/21606544.2018.1434562, 2018.
Gough, R., Holliman, P. J., Willis, N., Jones, T. G., and Freeman, C.:
Influence of habitat on the quantity and composition of leachable carbon in
the O2 horizon: Potential implications for potable water treatment, Lake
Reserv. Manag., 28, 282–292, https://doi.org/10.1080/07438141.2012.741187, 2012.
Gough, R., Holliman, P. J., Fenner, N., Peacock, M., and Freeman, C.:
Influence of Water Table Depth on Pore Water Chemistry and Trihalomethane
Formation Potential in Peatlands, Water Environ. Res., 88, 107–117, https://doi.org/10.2175/106143015x14362865227878, 2016.
Grau-Andres, R., Davies, G. M., Waldron, S., Scott, E. M., and Gray, A.:
Increased fire severity alters initial vegetation regeneration across
Calluna-dominated ecosystems, J. Environ. Manag., 231, 1004–1011, https://doi.org/10.1016/j.jenvman.2018.10.113, 2019.
Haapalehto, T., Kotiaho, J. S., Matilainen, R., and Tahvanainen, T.: The
effects of long-term drainage and subsequent restoration on water table
level and pore water chemistry in boreal peatlands, J. Hydrol., 519,
1493–1505, https://doi.org/10.1016/j.jhydrol.2014.09.013, 2014.
Harper, A. R., Doerr, S. H., Santin, C., Froyd, C. A., and Sinnadurai, P.:
Prescribed fire and its impacts on ecosystem services in the UK, Sci. Total
Environ., 624, 691–703, https://doi.org/10.1016/j.scitotenv.2017.12.161, 2018.
Harriman, R., Watt, A. W., Christie, A. E. G., Collen, P., Moore, D. W.,
McCartney, A. G., Taylor, E. M., and Watson, J.: Interpretation of trends in
acidic deposition and surface water chemistry in Scotland during the past
three decades, Hydrol. Earth Syst. Sci., 5, 407–420, https://doi.org/10.5194/hess-5-407-2001, 2001.
Holden, J., Kirkby, M. J., Lane, S. N., Milledge, D. G., Brookes, C. J.,
Holden, V., and McDonald, A. T.: Overland flow velocity and roughness
properties in peatlands, Water Resour. Res., 44, W06415, https://doi.org/10.1029/2007wr006052, 2008.
Holden, J., Wallage, Z. E., Lane, S. N., and McDonald, A. T.: Water table
dynamics in undisturbed, drained and restored blanket peat, J. Hydrol., 402,
103–114, https://doi.org/10.1016/j.jhydrol.2011.03.010, 2011.
Holden, J., Chapman, P. J., Palmer, S. M., Kay, P., and Grayson, R.: The
impacts of prescribed moorland burning on water colour and dissolved organic
carbon: A critical synthesis, J. Environ. Manag., 101, 92–103, https://doi.org/10.1016/j.jenvman.2012.02.002, 2012.
Holden, J., Green, S. M., Baird, A. J., Grayson, R. P., Dooling, G. P.,
Chapman, P. J., Evans, C. D., Peacock, M., and Swindles, G.: The impact of
ditch blocking on the hydrological functioning of blanket peatlands,
Hydrol. Process., 31, 525–539, https://doi.org/10.1002/hyp.11031, 2017.
Holl, B. S., Fiedler, S., Jungkunst, H. F., Kalbitz, K., Freibauer, A.,
Drosler, M., and Stahr, K.: Characteristics of dissolved organic matter
following 20 years of peatland restoration, Sci. Total Environ., 408, 78–83, https://doi.org/10.1016/j.scitotenv.2009.08.046, 2009.
Howson, T., Chapman, P. J., Shah, N., Anderson, R., and Holden, J.: A
comparison of porewater chemistry between intact, afforested and restored
raised and blanket bogs, Sci. Total Environ., 766, 144496, https://doi.org/10.1016/j.scitotenv.2020.144496, 2021.
Hudson, J. A., Gilman, K., and Calder, I. R.: Land use and water issues in
the uplands with reference to the Plynlimon study, Hydrol. Earth Syst. Sci.,
1, 389–397, https://doi.org/10.5194/hess-1-389-1997, 1997.
Imai, A., Fukushima, T., Matsushige, K., Kim, Y.-H., and Choi, K.:
Characterization of dissolved organic matter in effluents from wastewater
treatment plants, Water Res., 36, 859–870, https://doi.org/10.1016/S0043-1354(01)00283-4, 2002.
IUCN Peatland Programme: https://www.iucn-uk-peatlandprogramme.org/, last
access: 5 January 2022.
Jandl, R., Lindner, M., Vesterdal, L., Bauwens, B., Baritz, R., Hagedorn,
F., Johnson, D. W., Minkkinen, K., and Byrne, K. A.: How strongly can forest
management influence soil carbon sequestration?, Geoderma, 137, 253–268,
https://doi.org/10.1016/j.geoderma.2006.09.003, 2007.
Jones, T. G., Evans, C. D., and Freeman, C.: The greenhouse gas (GHG)
emissions associated with aquatic carbon removal during drinking water
treatment, Aquat. Sci., 78, 561–572, https://doi.org/10.1007/s00027-015-0458-8, 2016.
Koehler, B., von Wachenfeldt, E., Kothawala, D., and Tranvik, L. J.:
Reactivity continuum of dissolved organic carbon decomposition in lake
water, J. Geophys. Res.-Biogeo., 117, G01024, https://doi.org/10.1029/2011jg001793, 2012.
Koehler, B., Landelius, T., Weyhenmeyer, G. A., Machida, N., and Tranvik, L.
J.: Sunlight-induced carbon dioxide emissions from inland waters, Global
Biogeochem. Cy., 28, 696–711, https://doi.org/10.1002/2014gb004850, 2014.
Loisel, J. and Gallego-Sala, A.: Ecological resilience of restored peatlands
to climate change, Commun. Earth Environ., 3, 208–216, https://doi.org/10.1038/s43247-022-00547-x, 2022.
Lundin, L., Nilsson, T., Jordan, S., Lode, E., and Strömgren, M.:
Impacts of rewetting on peat, hydrology and water chemical composition over
15 years in two finished peat extraction areas in Sweden, Wetlands Ecol.
Manag., 25, 405–419, https://doi.org/10.1007/s11273-016-9524-9, 2017.
Matilainen, A., Vepsäläinen, M., and Sillanpää, M.: Natural
organic matter removal by coagulation during drinking water treatment: A
review, Adv. Colloid Interfac., 159, 189–197, https://doi.org/10.1016/j.cis.2010.06.007, 2010.
McKnight, D. M., Bencala, K. E., Zellweger, G. W., Aiken, G. R., Feder, G.
L., and Thorn, K. A.: Sorption of dissolved organic carbon by hydrous
aluminum and iron oxides occurring at the confluence of Deer Creek with the
Snake River, Summit County, Colorado, Environ. Sci. Technol.,
26, 1388–1396, https://doi.org/10.1021/es00031a017, 1992.
Menberu, M., Mattila, H., Tahvanainen, T., Kotiaho, J. S., Hokkanen, R.,
Klove, B., and Ronkanen, A.: Changes in pore water quality after peatland
restoration: assessment of a large scale replicated
before-after-control-impact study in Finland, Water Resour. Res., 53,
8327–8343, 2017.
Monteith, D. T., Stoddard, J. L., Evans, C. D., de Wit, H. A., Forsius, M.,
Hogasen, T., Wilander, A., Skjelkvale, B. L., Jeffries, D. S., Vuorenmaa,
J., Keller, B., Kopacek, J., and Vesely, J.: Dissolved organic carbon trends
resulting from changes in atmospheric deposition chemistry, Nature, 450,
537–539, https://doi.org/10.1038/nature06316, 2007.
Monteith, D., Pickard, A. E., Spears, B. M., and Feuchtmayr, H.: An
introduction to the FREEDOM-BCCR project: FREEDOM-BCCR briefing note 1 to
the water industry, https://www.ceh.ac.uk/sites/default/files/2021-09/FREEDOM_BCCR_Project_Introduction_01.pdf (last access: 11 September 2023), 2021.
Monteith, D. T., Henrys, P. A., Hruška, J., de Wit, H. A., Krám, P.,
Moldan, F., Posch, M., Räike, A., Stoddard, J. L., Shilland, E. M.,
Pereira, M. G., and Evans, C. D.: Long-term rise in riverine dissolved
organic carbon concentration is predicted by electrolyte solubility theory,
Sci. Adv., 9, eade3491, https://doi.org/10.1126/sciadv.ade3491, 2023.
Moody, C. S., Worrall, F., Evans, C. D., and Jones, T. G.: The rate of loss
of dissolved organic carbon (DOC) through a catchment, J. Hydrol., 492,
139–150, https://doi.org/10.1016/j.jhydrol.2013.03.016, 2013.
Muller, F. L. L. and Tankere-Muller, S. P. C.: Seasonal variations in
surface water chemistry at disturbed and pristine peatland sites in the Flow
Country of northern Scotland, Sci. Total Environ., 435, 351–362, https://doi.org/10.1016/j.scitotenv.2012.06.048, 2012.
Muller, F. L. L., Chang, K.-C., Lee, C.-L., and Chapman, S. J.: Effects of
temperature, rainfall and conifer felling practices on the surface water
chemistry of northern peatlands, Biogeochemistry, 126, 343–362, https://doi.org/10.1007/s10533-015-0162-8, 2015.
Naden, P. S. and McDonald, A. T.: Statistical modeling of water color in the
uplands – the Upper Nidd catchment 1979–1987, Environ. Pollut., 60,
141–163, https://doi.org/10.1016/0269-7491(89)90224-8, 1989.
Neal, C.: Nutrient concentrations and fluxes for podzolic and gley soils at
Plynlimon, mid-Wales: implications for modelling inorganic nitrogen and
phosphorus in upland UK environments, Hydrol. Earth Syst. Sci., 6, 403–420, https://doi.org/10.5194/hess-6-403-2002, 2002.
O'Brien, H. E., Labadz, J. C., Butcher, D. P., Billett, M. F., and Midgley,
N. G.: Impact of catchment management upon dissolved organic carbon and
stream flows in the Peak District, Derbyshire, UK, 10th BHS National
Hydrology Symposium, Exeter, 15–17 September 2008, Location Exeter, Publisher British Hydrological Society, ISBN: 1903741-16-5, 2008.
Parry, L. E., Chapman, P. J., Palmer, S. M., Wallage, Z. E., Wynne, H., and
Holden, J.: The influence of slope and peatland vegetation type on riverine
dissolved organic carbon and water colour at different scales, Sci. Total
Environ., 527, 530–539, https://doi.org/10.1016/j.scitotenv.2015.03.036, 2015.
Patterson, G. and Anderson, R.: Forests and Peatland Habitats, Forestry
Commission, Edinburgh, ISBN: 0-85538-528-6, 2000.
Peacock, M., Jones, T. G., Futter, M. N., Freeman, C., Gough, R., Baird, A.
J., Green, S. M., Chapman, P. J., Holden, J., and Evans, C. D.: Peatland
ditch blocking has no effect on dissolved organic matter (DOM) quality,
Hydrol. Process., 32, 3891–3906, https://doi.org/10.1002/hyp.13297, 2018.
Peter, S., Agstam, O., and Sobek, S.: Widespread release of dissolved
organic carbon from anoxic boreal lake sediments, Inland Waters, 7, 151–163, https://doi.org/10.1080/20442041.2017.1300226, 2017.
Pickard, A. E., Branagan, M., Billett, M. F., Andersen, R., and Dinsmore, K.
J.: Effects of peatland management on aquatic carbon concentrations and
fluxes, Biogeosciences, 19, 1321–1334, https://doi.org/10.5194/bg-19-1321-2022, 2022.
Pilkington, M., Walker, J., Maskill, R., Allott, T. E. H., and Evans, M.:
Restoration of blanket bogs; flood risk reduction and other ecosystem
benefits, Moors for the Future Partnership, Edale, 2015.
Prest, E. I., Hammes, F., van Loosdrecht, M. C. M., and Vrouwenvelder, J.
S.: Biological Stability of Drinking Water: Controlling Factors, Methods,
and Challenges, Front. Microbiol., 7, 45, https://doi.org/10.3389/fmicb.2016.00045,
2016.
Qassim, S. M., Dixon, S. D., Rowson, J. G., Worrall, F., Evans, M. G., and
Bonn, A.: A 5-year study of the impact of peatland revegetation upon DOC
concentrations, J. Hydrol., 519, 3578–3590, https://doi.org/10.1016/j.jhydrol.2014.11.014,
2014.
Ramchunder, S. J., Brown, L. E., and Holden, J.: Rotational vegetation
burning effects on peatland stream ecosystems, J. Appl. Ecol., 50, 636–648, https://doi.org/10.1111/1365-2664.12082, 2013.
Rask, M., Nyberg, K., Markkanen, S.-L., and Ojala, A.: Forestry in
catchments: effects on water quality, plankton, zoobenthos and fish in small
lakes, Boreal Environ. Res., 3, 75–86, 1998.
Ritson, J. P., Graham, N. J. D., Templeton, M. R., Clark, J. M., Gough, R.,
and Freeman, C.: The impact of climate change on the treatability of
dissolved organic matter (DOM) in upland water supplies: A UK perspective,
Sci. Total Environ., 473/474, 714–730, https://doi.org/10.1016/j.scitotenv.2013.12.095, 2014.
Ritson, J. P., Bell, M., Brazier, R. E., Grand-Clement, E., Graham, N. J.
D., Freeman, C., Smith, D., Templeton, M. R., and Clark, J. M.: Managing
peatland vegetation for drinking water treatment, Sci. Rep., 6, 36751, https://doi.org/10.1038/srep36751, 2016.
Robson, A. J. and Neal, C.: Water quality trends at an upland site in Wales,
UK, 1983–1993, Hydrol. Process., 10, 183–203, https://doi.org/10.1002/(sici)1099-1085(199602)10:2<183::Aid-hyp356>3.0.Co;2-8, 1996.
Schelker, J., Eklof, K., Bishop, K., and Laudon, H.: Effects of forestry
operations on dissolved organic carbon concentrations and export in boreal
first-order streams, J. Geophys. Res.-Biogeo., 117, G01011, https://doi.org/10.1029/2011jg001827,
2012.
Shah, N. and Nisbet, T.: The effects of forest clearance for peatland
restoration on water quality, Sci. Total Environ., 693, 133617, https://doi.org/10.1016/j.scitotenv.2019.133617, 2019.
Shah, N. W., Nisbet, T. R., and Broadmeadow, S. B.: The impacts of conifer
afforestation and climate on water quality and freshwater ecology in a
sensitive peaty catchment: A 25 year study in the upper River Halladale in
North Scotland, Forest Ecol. Manag., 502, 119616, https://doi.org/10.1016/j.foreco.2021.119616, 2021.
Skerlep, M., Steiner, E., Axelsson, A. L., and Kritzberg, E. S.:
Afforestation driving long-term surface water browning, Glob. Change
Biol., 26, 1390–1399, https://doi.org/10.1111/gcb.14891, 2019.
Spears, B. M. and May, L.: Long-term homeostasis of filterable un-reactive
phosphorus in a shallow eutrophic lake following a significant reduction in
catchment load, Geoderma, 257/258, 78–85, https://doi.org/10.1016/j.geoderma.2015.01.005, 2015.
Spears, B. M., Mackay, E. B., Yasseri, S., Gunn, I. D. M., Waters, K. E.,
Andrews, C., Cole, S., De Ville, M., Kelly, A., Meis, S., Moore, A. L.,
Nürnberg, G. K., van Oosterhout, F., Pitt, J.-A., Madgwick, G., Woods,
H. J., and Lürling, M.: A meta-analysis of water quality and aquatic
macrophyte responses in 18 lakes treated with lanthanum modified bentonite
(Phoslock®), Water Res., 97, 111–121, https://doi.org/10.1016/j.watres.2015.08.020, 2016.
Stets, E. G., Striegl, R. G., and Aiken, G. R.: Dissolved organic carbon
export and internal cycling in small, headwater lakes, Global Biogeochem.
Cy., 24, Gb4008, https://doi.org/10.1029/2010gb003815, 2010.
Stimson, A. G., Allott, T. E. H., Boult, S., and Evans, M. G.: Fluvial
organic carbon composition and concentration variability within a peatland
catchment-Implications for carbon cycling and water treatment, Hydrol.
Process., 31, 4183–4194, https://doi.org/10.1002/hyp.11352, 2017.
Strack, M., Zuback, Y., McCarter, C., and Price, J.: Changes in dissolved
organic carbon quality in soils and discharge 10 years after peatland
restoration, J. Hydrol., 527, 345–354, https://doi.org/10.1016/j.jhydrol.2015.04.061, 2015.
Stretton, C.: Water supply and forestry – a conflict of interests: Cray
reservoir, a case study, J. Inst. Water Eng. Sci., 38, 323–330, 1984.
Tranvik, L. J., Downing, J. A., Cotner, J. B., Loiselle, S. A., Striegl, R.
G., Ballatore, T. J., Dillon, P., Finlay, K., Fortino, K., Knoll, L. B.,
Kortelainen, P. L., Kutser, T., Larsen, S., Laurion, I., Leech, D. M.,
McCallister, S. L., McKnight, D. M., Melack, J. M., Overholt, E., Porter, J.
A., Prairie, Y., Renwick, W. H., Roland, F., Sherman, B. S., Schindler, D.
W., Sobek, S., Tremblay, A., Vanni, M. J., Verschoor, A. M., von
Wachenfeldt, E., and Weyhenmeyer, G. A.: Lakes and reservoirs as regulators
of carbon cycling and climate, Limnol. Oceanogr., 54, 2298–2314, 2009.
Turner, E. K., Worrall, F., and Burt, T. P.: The effect of drain blocking on
the dissolved organic carbon (DOC) budget of an upland peat catchment in the
UK, J. Hydrol., 479, 169–179, https://doi.org/10.1016/j.jhydrol.2012.11.059, 2013.
Urbanova, Z., Picek, T., and Barta, J.: Effect of peat re-wetting on carbon
and nutrient fluxes, greenhouse gas production and diversity of methanogenic
archaeal community, Ecol. Eng., 37, 1017–1026, https://doi.org/10.1016/j.ecoleng.2010.07.012, 2011.
von Wachenfeldt, E. and Tranvik, L. J.: Sedimentation in boreal lakes – The
role of flocculation of allochthonous dissolved organic matter in the water
column, Ecosystems, 11, 803–814, https://doi.org/10.1007/s10021-008-9162-z, 2008.
Wallage, Z. E., Holden, J., and McDonald, A. T.: Drain blocking: An
effective treatment for reducing dissolved organic carbon loss and water
discolouration in a drained peatland, Sci. Total Environ., 367, 811–821, https://doi.org/10.1016/j.scitotenv.2006.02.010, 2006.
Weishaar, J. L., Aiken, G. R., Bergamaschi, B. A., Fram, M. S., Fujii, R.,
and Mopper, K.: Evaluation of specific ultraviolet absorbance as an
indicator of the chemical composition and reactivity of dissolved organic
carbon, Environ. Sci. Technol., 37, 4702–4708, https://doi.org/10.1021/es030360x, 2003.
Williamson, J. L., Tye, A., Lapworth, D. J., Monteith, D., Sanders, R.,
Mayor, D. J., Barry, C., Bowes, M., Bowes, M., Burden, A., Callaghan, N.,
Farr, G., Felgate, S., Fitch, A., Gibb, S., Gilbert, P., Hargreaves, G.,
Keenan, P., Kitidis, V., Juergens, M., Martin, A., Mounteney, I.,
Nightingale, P. D., Pereira, M. G., Olszewska, J., Pickard, A., Rees, A. P.,
Spears, B., Stinchcombe, M., White, D., Williams, P., Worrall, F., and
Evans, C.: Landscape controls on riverine export of dissolved organic carbon
from Great Britain, Biogeochemistry, 163–184, https://doi.org/10.1007/s10533-021-00762-2, 2021.
Wilson, L., Wilson, J., Holden, J., Johnstone, I., Armstrong, A., and
Morris, M.: Ditch blocking, water chemistry and organic carbon flux:
Evidence that blanket bog restoration reduces erosion and fluvial carbon
loss, Sci. Total Environ., 409, 2010–2018, https://doi.org/10.1016/j.scitotenv.2011.02.036,
2011.
Worrall, F., Harriman, R., Evans, C. D., Watts, C. D., Adamson, J., Neal,
C., Tipping, E., Burt, T., Grieve, I., Monteith, D., Naden, P. S., Nisbet,
T., Reynolds, B., and Stevens, P.: Trends in dissolved organic carbon in UK
rivers and lakes, Biogeochemistry, 70, 369–402, https://doi.org/10.1007/s10533-004-8131-7,
2004.
Worrall, F., Armstrong, A., and Adamson, J. K.: The effects of burning and
sheep-grazing on water table depth and soil water quality in a upland peat,
J. Hydrol., 339, 1–14, https://doi.org/10.1016/j.jhydrol.2006.12.025, 2007a.
Worrall, F., Armstrong, A., and Holden, J.: Short-term impact of peat
drain-blocking on water colour, dissolved organic carbon concentration, and
water table depth, J. Hydrol., 337, 315–325, https://doi.org/10.1016/j.jhydrol.2007.01.046,
2007b.
Worrall, F., Clay, G. D., Marrs, R., and Reed, M.: Impacts of burning
management on peatlands, IUCN technical report, 2010.
Worrall, F., Rowson, J., and Dixon, S.: Effects of managed burning in
comparison with vegetation cutting on dissolved organic carbon
concentrations in peat soils, Hydrol. Process., 27, 3994–4003, https://doi.org/10.1002/hyp.9474, 2013.
Xu, J., Morris, P. J., Liu, J., and Holden, J.: Hotspots of peatland-derived
potable water use identified by global analysis, Nat. Sustain., 1,
246–253, https://doi.org/10.1038/s41893-018-0064-6, 2018.
Yallop, A. R., Clutterbuck, B., and Thacker, J.: Increases in humic
dissolved organic carbon export from upland peat catchments: the role of
temperature, declining sulphur deposition and changes in land management,
Clim. Res., 45, 43–56, https://doi.org/10.3354/cr00884, 2010.
Zheng, Y., Waldron, S., and Flowers, H.: Fluvial dissolved organic carbon
composition varies spatially and seasonally in a small catchment draining a
wind farm and felled forestry, Sci. Total Environ., 626, 785–794, https://doi.org/10.1016/j.scitotenv.2018.01.001, 2018.
Short summary
Managing drinking water catchments to minimise water colour could reduce costs for water companies and save their customers money. Brown-coloured water comes from peat soils, primarily around upland reservoirs. Management practices, including blocking drains, removing conifers, restoring peatland plants and reducing burning, have been used to try and reduce water colour. This work brings together published evidence of the effectiveness of these practices to aid water industry decision-making.
Managing drinking water catchments to minimise water colour could reduce costs for water...
Altmetrics
Final-revised paper
Preprint