Articles | Volume 20, issue 19
https://doi.org/10.5194/bg-20-4043-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-4043-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Element ∕ Ca ratios in Nodosariida (Foraminifera) and their potential application for paleoenvironmental reconstructions
Laura Pacho
CORRESPONDING AUTHOR
Department of Ocean Systems (OCS), Royal Netherlands Institute for Sea Research (NIOZ) and Utrecht
University, Texel, the Netherlands
Lennart de Nooijer
Department of Ocean Systems (OCS), Royal Netherlands Institute for Sea Research (NIOZ) and Utrecht
University, Texel, the Netherlands
Gert-Jan Reichart
Department of Ocean Systems (OCS), Royal Netherlands Institute for Sea Research (NIOZ) and Utrecht
University, Texel, the Netherlands
Department of Geosciences, Utrecht University, Utrecht, the Netherlands
Related authors
No articles found.
Evert de Froe, Christian Mohn, Karline Soetaert, Anna-Selma van der Kaaden, Gert-Jan Reichart, Laurence H. De Clippele, Sandra R. Maier, and Dick van Oevelen
EGUsphere, https://doi.org/10.5194/egusphere-2025-3385, https://doi.org/10.5194/egusphere-2025-3385, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
Cold-water corals are important reef-building animals in the deep sea, and are found all over the world. So far, researchers have been mapping and predicting where cold-water corals can be found using video transects and statistics. This study provides the first process-based model in which corals are predicted based on ocean currents and food particle movement. The renewal of food by tidal currents close to the seafloor and corals proved essential in predicting where they can grow or not.
Anna Cutmore, Nicole Bale, Rick Hennekam, Bingjie Yang, Darci Rush, Gert-Jan Reichart, Ellen C. Hopmans, and Stefan Schouten
Clim. Past, 21, 957–971, https://doi.org/10.5194/cp-21-957-2025, https://doi.org/10.5194/cp-21-957-2025, 2025
Short summary
Short summary
As human activities lower marine oxygen levels, understanding the impact on the marine nitrogen cycle is vital. The Black Sea, which became oxygen-deprived 9600 years ago, offers key insights. By studying organic compounds linked to nitrogen cycle processes, we found that, 7200 years ago, the Black Sea's nitrogen cycle significantly altered due to severe deoxygenation. This suggests that continued marine oxygen decline could similarly alter the marine nitrogen cycle, affecting vital ecosystems.
Peter Kraal, Kristin A. Ungerhofer, Darci Rush, and Gert-Jan Reichart
EGUsphere, https://doi.org/10.5194/egusphere-2025-1870, https://doi.org/10.5194/egusphere-2025-1870, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Element cycles in oxygen-depleted areas such as upwelling areas inform future deoxygenation scenarios. The Benguela upwelling system shows strong decoupling of nitrogen and phosphorus cycling due to seasonal shelf anoxia. Anaerobic processes result in pelagic nitrogen loss as N2. At the same time, sediments are rich in fish-derived and bacterial phosphorus, with high fluxes of excess phosphate, altering deep-water nitrogen:phosphorus ratios. Such alterations can affect ocean functioning.
Yannick F. Bats, Klaas G. J. Nierop, Alice Stuart-Lee, Joost Frieling, Linda van Roij, Gert-Jan Reichart, and Appy Sluijs
EGUsphere, https://doi.org/10.5194/egusphere-2025-1678, https://doi.org/10.5194/egusphere-2025-1678, 2025
Short summary
Short summary
In this study we analyzed the molecular and stable carbon isotopic composition (δ13C) of pollen and spores (sporomorphs) that underwent chemical treatments that simulate diagenesis during fossilization. We show that the successive removal of sugars and lipids results in 13C depletion of the residual sporomorph, leaving it rich aromatic compounds. This residual aromatic-rich structure likely represents diagenetically resistant sporopollenin, implying diagenesis results in 13C depletion of pollen.
Szabina Karancz, Lennart J. de Nooijer, Bas van der Wagt, Marcel T. J. van der Meer, Sambuddha Misra, Rick Hennekam, Zeynep Erdem, Julie Lattaud, Negar Haghipour, Stefan Schouten, and Gert-Jan Reichart
Clim. Past, 21, 679–704, https://doi.org/10.5194/cp-21-679-2025, https://doi.org/10.5194/cp-21-679-2025, 2025
Short summary
Short summary
Changes in upwelling intensity of the Benguela upwelling region during the last glacial motivated us to investigate the local CO2 history during the last glacial-to-interglacial transition. Using various geochemical tracers on archives from both subsurface and surface waters reveals enhanced storage of carbon at depth during the Last Glacial Maximum. An efficient biological pump likely prevented outgassing of CO2 from intermediate depth to the atmosphere.
Devika Varma, Laura Villanueva, Nicole J. Bale, Pierre Offre, Gert-Jan Reichart, and Stefan Schouten
Biogeosciences, 21, 4875–4888, https://doi.org/10.5194/bg-21-4875-2024, https://doi.org/10.5194/bg-21-4875-2024, 2024
Short summary
Short summary
Archaeal hydroxylated tetraether lipids are increasingly used as temperature indicators in marine settings, but the factors influencing their distribution are still unclear. Analyzing membrane lipids of two thaumarchaeotal strains showed that the growth phase of the cultures does not affect the lipid distribution, but growth temperature profoundly affects the degree of cyclization of these lipids. Also, the abundance of these lipids is species-specific and is not influenced by temperature.
Louise Delaigue, Gert-Jan Reichart, Chris Galley, Yasmina Ourradi, and Matthew Paul Humphreys
EGUsphere, https://doi.org/10.5194/egusphere-2024-2853, https://doi.org/10.5194/egusphere-2024-2853, 2024
Short summary
Short summary
Our study analyzed pH in ocean surface waters to understand how they fluctuate with changes in temperature, salinity, and biological activities. We found that temperature mainly controls daily pH variations, but biological processes also play a role, especially in affecting CO2 levels between the ocean and atmosphere. Our research shows how these factors together maintain the balance of ocean chemistry, which is crucial for predicting changes in marine environments.
Charlotte Eich, Mathijs van Manen, J. Scott P. McCain, Loay J. Jabre, Willem H. van de Poll, Jinyoung Jung, Sven B. E. H. Pont, Hung-An Tian, Indah Ardiningsih, Gert-Jan Reichart, Erin M. Bertrand, Corina P. D. Brussaard, and Rob Middag
Biogeosciences, 21, 4637–4663, https://doi.org/10.5194/bg-21-4637-2024, https://doi.org/10.5194/bg-21-4637-2024, 2024
Short summary
Short summary
Phytoplankton growth in the Southern Ocean (SO) is often limited by low iron (Fe) concentrations. Sea surface warming impacts Fe availability and can affect phytoplankton growth. We used shipboard Fe clean incubations to test how changes in Fe and temperature affect SO phytoplankton. Their abundances usually increased with Fe addition and temperature increase, with Fe being the major factor. These findings imply potential shifts in ecosystem structure, impacting food webs and elemental cycling.
Guangnan Wu, Klaas G. J. Nierop, Bingjie Yang, Stefan Schouten, Gert-Jan Reichart, and Peter Kraal
EGUsphere, https://doi.org/10.5194/egusphere-2024-3192, https://doi.org/10.5194/egusphere-2024-3192, 2024
Short summary
Short summary
Estuaries store and process large amounts of carbon, making them vital to the global carbon cycle. In the Port of Rotterdam, we studied the source of organic matter (OM) in sediments and how it influences OM breakdown. We found that marine OM degrades faster than land OM, and human activities like dredging can accelerate this by exposing sediments to oxygen. Our findings highlight the impact of human activities on carbon storage in estuaries, which is key for managing estuarine carbon dynamics.
Joost Frieling, Linda van Roij, Iris Kleij, Gert-Jan Reichart, and Appy Sluijs
Biogeosciences, 20, 4651–4668, https://doi.org/10.5194/bg-20-4651-2023, https://doi.org/10.5194/bg-20-4651-2023, 2023
Short summary
Short summary
We present a first species-specific evaluation of marine core-top dinoflagellate cyst carbon isotope fractionation (εp) to assess natural pCO2 dependency on εp and explore its geological deep-time paleo-pCO2 proxy potential. We find that εp differs between genera and species and that in Operculodinium centrocarpum, εp is controlled by pCO2 and nutrients. Our results highlight the added value of δ13C analyses of individual micrometer-scale sedimentary organic carbon particles.
Niels J. de Winter, Daniel Killam, Lukas Fröhlich, Lennart de Nooijer, Wim Boer, Bernd R. Schöne, Julien Thébault, and Gert-Jan Reichart
Biogeosciences, 20, 3027–3052, https://doi.org/10.5194/bg-20-3027-2023, https://doi.org/10.5194/bg-20-3027-2023, 2023
Short summary
Short summary
Mollusk shells are valuable recorders of climate and environmental changes of the past down to a daily resolution. To explore this potential, we measured changes in the composition of shells of two types of bivalves recorded at the hourly scale: the king scallop Pecten maximus and giant clams (Tridacna) that engaged in photosymbiosis. We find that photosymbiosis produces more day–night fluctuation in shell chemistry but that most of the variation is not periodic, perhaps recording weather.
Rick Hennekam, Katharine M. Grant, Eelco J. Rohling, Rik Tjallingii, David Heslop, Andrew P. Roberts, Lucas J. Lourens, and Gert-Jan Reichart
Clim. Past, 18, 2509–2521, https://doi.org/10.5194/cp-18-2509-2022, https://doi.org/10.5194/cp-18-2509-2022, 2022
Short summary
Short summary
The ratio of titanium to aluminum (Ti/Al) is an established way to reconstruct North African climate in eastern Mediterranean Sea sediments. We demonstrate here how to obtain reliable Ti/Al data using an efficient scanning method that allows rapid acquisition of long climate records at low expense. Using this method, we reconstruct a 3-million-year North African climate record. African environmental variability was paced predominantly by low-latitude insolation from 3–1.2 million years ago.
Carolien M. H. van der Weijst, Koen J. van der Laan, Francien Peterse, Gert-Jan Reichart, Francesca Sangiorgi, Stefan Schouten, Tjerk J. T. Veenstra, and Appy Sluijs
Clim. Past, 18, 1947–1962, https://doi.org/10.5194/cp-18-1947-2022, https://doi.org/10.5194/cp-18-1947-2022, 2022
Short summary
Short summary
The TEX86 proxy is often used by paleoceanographers to reconstruct past sea-surface temperatures. However, the origin of the TEX86 signal in marine sediments has been debated since the proxy was first proposed. In our paper, we show that TEX86 carries a mixed sea-surface and subsurface temperature signal and should be calibrated accordingly. Using our 15-million-year record, we subsequently show how a TEX86 subsurface temperature record can be used to inform us on past sea-surface temperatures.
Carolien M. H. van der Weijst, Josse Winkelhorst, Wesley de Nooijer, Anna von der Heydt, Gert-Jan Reichart, Francesca Sangiorgi, and Appy Sluijs
Clim. Past, 18, 961–973, https://doi.org/10.5194/cp-18-961-2022, https://doi.org/10.5194/cp-18-961-2022, 2022
Short summary
Short summary
A hypothesized link between Pliocene (5.3–2.5 million years ago) global climate and tropical thermocline depth is currently only backed up by data from the Pacific Ocean. In our paper, we present temperature, salinity, and thermocline records from the tropical Atlantic Ocean. Surprisingly, the Pliocene thermocline evolution was remarkably different in the Atlantic and Pacific. We need to reevaluate the mechanisms that drive thermocline depth, and how these are tied to global climate change.
Alice E. Webb, Didier M. de Bakker, Karline Soetaert, Tamara da Costa, Steven M. A. C. van Heuven, Fleur C. van Duyl, Gert-Jan Reichart, and Lennart J. de Nooijer
Biogeosciences, 18, 6501–6516, https://doi.org/10.5194/bg-18-6501-2021, https://doi.org/10.5194/bg-18-6501-2021, 2021
Short summary
Short summary
The biogeochemical behaviour of shallow reef communities is quantified to better understand the impact of habitat degradation and species composition shifts on reef functioning. The reef communities investigated barely support reef functions that are usually ascribed to conventional coral reefs, and the overall biogeochemical behaviour is found to be similar regardless of substrate type. This suggests a decrease in functional diversity which may therefore limit services provided by this reef.
Indah Ardiningsih, Kyyas Seyitmuhammedov, Sylvia G. Sander, Claudine H. Stirling, Gert-Jan Reichart, Kevin R. Arrigo, Loes J. A. Gerringa, and Rob Middag
Biogeosciences, 18, 4587–4601, https://doi.org/10.5194/bg-18-4587-2021, https://doi.org/10.5194/bg-18-4587-2021, 2021
Short summary
Short summary
Organic Fe speciation is investigated along a natural gradient of the western Antarctic Peninsula from an ice-covered shelf to the open ocean. The two major fronts in the region affect the distribution of ligands. The excess ligands not bound to dissolved Fe (DFe) comprised up to 80 % of the total ligand concentrations, implying the potential to solubilize additional Fe input. The ligands on the shelf can increase the DFe residence time and fuel local primary production upon ice melt.
Ove H. Meisel, Joshua F. Dean, Jorien E. Vonk, Lukas Wacker, Gert-Jan Reichart, and Han Dolman
Biogeosciences, 18, 2241–2258, https://doi.org/10.5194/bg-18-2241-2021, https://doi.org/10.5194/bg-18-2241-2021, 2021
Short summary
Short summary
Arctic permafrost lakes form thaw bulbs of unfrozen soil (taliks) beneath them where carbon degradation and greenhouse gas production are increased. We analyzed the stable carbon isotopes of Alaskan talik sediments and their porewater dissolved organic carbon and found that the top layers of these taliks are likely more actively degraded than the deeper layers. This in turn implies that these top layers are likely also more potent greenhouse gas producers than the underlying deeper layers.
Delphine Dissard, Gert Jan Reichart, Christophe Menkes, Morgan Mangeas, Stephan Frickenhaus, and Jelle Bijma
Biogeosciences, 18, 423–439, https://doi.org/10.5194/bg-18-423-2021, https://doi.org/10.5194/bg-18-423-2021, 2021
Short summary
Short summary
Results from a data set acquired from living foraminifera T. sacculifer collected from surface waters are presented, allowing us to establish a new Mg/Ca–Sr/Ca–temperature equation improving temperature reconstructions. When combining equations, δ18Ow can be reconstructed with a precision of ± 0.5 ‰, while successive reconstructions involving Mg/Ca and δ18Oc preclude salinity reconstruction with a precision better than ± 1.69. A new direct linear fit to reconstruct salinity could be established.
Siham de Goeyse, Alice E. Webb, Gert-Jan Reichart, and Lennart J. de Nooijer
Biogeosciences, 18, 393–401, https://doi.org/10.5194/bg-18-393-2021, https://doi.org/10.5194/bg-18-393-2021, 2021
Short summary
Short summary
Foraminifera are calcifying organisms that play a role in the marine inorganic-carbon cycle and are widely used to reconstruct paleoclimates. However, the fundamental process by which they calcify remains essentially unknown. Here we use inhibitors to show that an enzyme is speeding up the conversion between bicarbonate and CO2. This helps the foraminifera acquire sufficient carbon for calcification and might aid their tolerance to elevated CO2 level.
Linda K. Dämmer, Lennart de Nooijer, Erik van Sebille, Jan G. Haak, and Gert-Jan Reichart
Clim. Past, 16, 2401–2414, https://doi.org/10.5194/cp-16-2401-2020, https://doi.org/10.5194/cp-16-2401-2020, 2020
Short summary
Short summary
The compositions of foraminifera shells often vary with environmental parameters such as temperature or salinity; thus, they can be used as proxies for these environmental variables. Often a single proxy is influenced by more than one parameter. Here, we show that while salinity impacts shell Na / Ca, temperature has no effect. We also show that the combination of different proxies (Mg / Ca and δ18O) to reconstruct salinity does not seem to work as previously thought.
Anne Roepert, Lubos Polerecky, Esmee Geerken, Gert-Jan Reichart, and Jack J. Middelburg
Biogeosciences, 17, 4727–4743, https://doi.org/10.5194/bg-17-4727-2020, https://doi.org/10.5194/bg-17-4727-2020, 2020
Short summary
Short summary
We investigated, for the first time, the spatial distribution of chlorine and fluorine in the shell walls of four benthic foraminifera species: Ammonia tepida, Amphistegina lessonii, Archaias angulatus, and Sorites marginalis. Cross sections of specimens were imaged using nanoSIMS. The distribution of Cl and F was co-located with organics in the rotaliids and rather homogeneously distributed in miliolids. We suggest that the incorporation is governed by the biomineralization pathway.
Cited articles
Allen, K. A. and Hönisch, B.: The planktic foraminiferal B Ca proxy for
seawater carbonate chemistry: A critical evaluation, Earth Planet. Sc.
Lett., 345–348, 203–211, https://doi.org/10.1016/j.epsl.2012.06.012, 2012.
Allen, K. A., Hönisch, B., Eggins, S. M., Haynes, L. L., Rosenthal, Y.,
and Yu, J.: Trace element proxies for surface ocean conditions: A synthesis
of culture calibrations with planktic foraminifera, Geochim. Cosmochim.
Ac., 193, 197–221, https://doi.org/10.1016/j.gca.2016.08.015, 2016.
Anand, P., Elderfield, H., and Conte, M. H.: Calibration of Mg Ca
thermometry in planktonic foraminifera from a sediment trap time series,
Paleoceanography, 18, 1050, https://doi.org/10.1029/2002pa000846, 2003.
Bahr, A., Schönfeld, J., Hoffmann, J., Voigt, S., Aurahs, R., Kucera,
M., Flögel, S., Jentzen, A., and Gerdes, A.: Comparison of Ba Ca and
δ18OWATER as freshwater proxies: A multi-species core-top study on
planktonic foraminifera from the vicinity of the Orinoco River mouth, Earth
Planet. Sc. Lett., 383, 45–57, https://doi.org/10.1016/j.epsl.2013.09.036,
2013.
Barker, S., Cacho, I., Benway, H., and Tachikawa, K.: Planktonic
foraminiferal Mg Ca as a proxy for past oceanic temperatures: A
methodological overview and data compilation for the Last Glacial Maximum,
Quaternary Sci. Rev., 24, 821–834,
https://doi.org/10.1016/j.quascirev.2004.07.016, 2005.
Barrientos, N., Lear, C. H., Jakobsson, M., Stranne, C., O'Regan, M.,
Cronin, T. M., Gukov, A. Y., and Coxall, H. K.: Arctic Ocean benthic
foraminifera Mg Ca ratios and global Mg Ca-temperature calibrations: New
constraints at low temperatures, Geochim. Cosmochim. Ac., 236, 240–259,
https://doi.org/10.1016/j.gca.2018.02.036, 2018.
Bentov, S. and Erez, J.: Impact of biomineralization processes on the Mg
content of foraminiferal shells: A biological perspective, Geochem.
Geophy. Geosy., 7, Q01P08, https://doi.org/10.1029/2005GC001015, 2006.
Bertlich, J., Nürnberg, D., Hathorne, E. C., de Nooijer, L. J., Mezger,
E. M., Kienast, M., Nordhausen, S., Reichart, G. J., Schönfeld, J., and
Bijma, J.: Salinity control on Na incorporation into calcite tests of the
planktonic foraminifera Trilobatus sacculifer – Evidence from culture
experiments and surface sediments, Biogeosciences, 15, 5991–6018,
https://doi.org/10.5194/bg-15-5991-2018, 2018.
Boer, W., Nordstad, S., Weber, M., Mertz-Kraus, R., Hönisch, B., Bijma,
J., Raitzsch, M., Wilhelms-Dick, D., Foster, G. L., Goring-Harford, H.,
Nürnberg, D., Hauff, F., Kuhnert, H., Lugli, F., Spero, H., Rosner, M.,
van Gaever, P., de Nooijer, L. J., and Reichart, G.-J.: New Calcium
Carbonate Nano-particulate Pressed Powder Pellet (NFHS-2-NP) for LA-ICP-OES,
LA-(MC)-ICP-MS and μXRF, Geostand. Geoanal. Res., 46, 411–432,
https://doi.org/10.1111/ggr.12425, 2022.
Branson, O., Redfern, S. A. T., Elmore, A. C., Read, E., Valencia, S., and
Elderfield, H.: The distribution and coordination of trace elements in
Krithe ostracods and their implications for paleothermometry, Geochim.
Cosmochim. Ac., 236, 230–239, https://doi.org/10.1016/j.gca.2017.12.005,
2018.
Cléroux, C., Cortijo, E., Anand, P., Labeyrie, L., Bassinot, F.,
Caillon, N., and Duplessy, J. C.: Mg Ca and Sr Ca ratios in planktonic
foraminifera: Proxies for upper water column temperature reconstruction,
Paleoceanography, 23, 1–16, https://doi.org/10.1029/2007PA001505, 2008.
Cohen, A. L., Layne, G. D., Hart, S. R., and Lobel, P. S.: Implications for
the paleotemperature proxy a, Paleoceanography, 16, 20–26, 2001.
D'Arrigo, R., Wilson, R., and Jacoby, G.: On the long-term context for late
twentieth century warming, J. Geophys. Res.-Atmos., 111, 1–12,
https://doi.org/10.1029/2005JD006352, 2006.
Dämmer, L. K., de Nooijer, L., van Sebille, E., Haak, J. G., and
Reichart, G. J.: Evaluation of oxygen isotopes and trace elements in
planktonic foraminifera from the Mediterranean Sea as recorders of seawater
oxygen isotopes and salinity, Clim. Past, 16, 2401–2414,
https://doi.org/10.5194/cp-16-2401-2020, 2020.
Dämmer, L. K., van Dijk, I., de Nooijer, L., van der Wagt, B., Wilckens,
F. K., Zoetemelk, B., and Reichart, G. J.: Temperature Impact on Magnesium
Isotope Fractionation in Cultured Foraminifera, Front. Earth Sci., 9, 1–13,
https://doi.org/10.3389/feart.2021.642256, 2021.
Debenay, J.-P., Guillou, J.-J., Geslin, E., Lesourd, M., and Redois, F.: De
plaquettes rhomboedriques/k la surface d'un test porcelane de
foraminifere actuel, Geobios, 31, 295302, https://doi.org/10.1016/S0016-6995(98)80013-2, 1998.
de Nooijer, L. J., Toyofuku, T., and Kitazato, H.: Foraminifera promote
calcification by elevating their intracellular pH, P. Natl. Acad. Sci. USA, 106, 15374–15378, https://doi.org/10.1073/pnas.0904306106, 2009.
de Nooijer, L. J. De, Spero, H. J., Erez, J., Bijma, J., and Reichart, G. J.:
Earth-Science Reviews Biomineralization in perforate foraminifera, Earth
Sci. Rev., 135, 48–58, https://doi.org/10.1016/j.earscirev.2014.03.013,
2014.
de Nooijer, L. J., van Dijk, I., Toyofuku, T., and Reichart, G. J.: The
Impacts of Seawater Mg Ca and Temperature on Element Incorporation in
Benthic Foraminiferal Calcite, Geochem. Geophy. Geosy., 18,
3617–3630, https://doi.org/10.1002/2017GC007183, 2017.
Devriendt, L. S., Mezger, E. M., Olsen, E. K., Watkins, J. M., Kaczmarek,
K., Nehrke, G., Nooijer, L. J. De, and Reichart, G.: ScienceDirect Sodium
incorporation into inorganic CaCO3 and implications for biogenic
carbonates, Geochim. Cosmochim. Ac., 314, 294–312,
https://doi.org/10.1016/j.gca.2021.07.024, 2021.
Dissard, D., Nehrke, G., Reichart, G. J., and Bijma, J.: The impact of
salinity on the Mg Ca and Sr Ca ratio in the benthic foraminifera Ammonia
tepida: Results from culture experiments, Geochim. Cosmochim. Ac., 74,
928–940, https://doi.org/10.1016/j.gca.2009.10.040, 2010.
Douglas, R. and Staines-Urias, F.: Dimorphism, shell Mg Ca ratios and stable
isotope content in species of bolivina (Benthic Foraminifera) in the Gulf of
California, Mexico, J. Foraminifer. Res., 37, 189–203,
https://doi.org/10.2113/gsjfr.37.3.189, 2007.
Dubicka, Z. and Gorzelak, P.: Unlocking the biomineralization style and
affinity of Paleozoic fusulinid foraminifera, Sci. Rep., 7, 1–6,
https://doi.org/10.1038/s41598-017-15666-1, 2017.
Dubicka, Z. and Wierzbowski, H.: Can oxygen and carbon isotope ratios of
Jurassic foraminifera be used in palaeoenvironmental reconstructions?, Palaeogeogr. Pelaeocl., 577, 110554, ú
https://doi.org/10.1016/j.palaeo.2021.110554, 2021.
Dubicka, Z., Owocki, K., and Gloc, M.: Micro- and nanostructures of
calcareous foraminiferal tests: Insight from representatives of Miliolida,
Rotaliida and Lagenida, J. Foraminifer. Res., 48, 142–155,
https://doi.org/10.2113/gsjfr.48.2.142, 2018.
Elderfield, H., Bertram, C. J., and Erez, J.: A biomineralization model for
the incorporation of trace elements into foraminiferal calcium carbonate,
Earth Planet. Sc. Lett., 142, 409–423,
https://doi.org/10.1016/0012-821x(96)00105-7, 1996.
Elderfield, H., Yu, J., Anand, P., Kiefer, T., and Nyland, B.: Calibrations
for benthic foraminiferal Mg Ca paleothermometry and the carbonate ion
hypothesis, Earth Planet. Sc. Lett., 250, 633–649,
https://doi.org/10.1016/j.epsl.2006.07.041, 2006.
Erez, J.: The Source of Ions for Biomineralization in Foraminifera and Their
Implications for Paleoceanographic Proxies, Rev. Mineral. Geochem.
Search Dropdown Menu, 54, 115–149, 2003.
Evans, D. and Müller, W.: Deep time foraminifera Mg Ca paleothermometry:
Nonlinear correction for secular change in seawater Mg Ca, Paleoceanography,
27, 1–11, https://doi.org/10.1029/2012PA002315, 2012.
Evans, D., Müller, W., Oron, S., and Renema, W.: Eocene seasonality and
seawater alkaline earth reconstruction using shallow-dwelling large benthic
foraminifera, Earth Planet. Sc. Lett., 381, 104–115,
https://doi.org/10.1016/j.epsl.2013.08.035, 2013.
Evans, D., Wade, B. S., Henehan, M., Erez, J., and Müller, W.:
Revisiting carbonate chemistry controls on planktic foraminifera Mg Ca:
Implications for sea surface temperature and hydrology shifts over the
Paleocene-Eocene Thermal Maximum and Eocene-Oligocene transition, Clim.
Past, 12, 819–835, https://doi.org/10.5194/cp-12-819-2016, 2016.
Evans, D., Müller, W., and Erez, J.: Assessing foraminifera
biomineralisation models through trace element data of cultures under
variable seawater chemistry, Geochim. Cosmochim. Ac., 236, 198–217,
https://doi.org/10.1016/j.gca.2018.02.048, 2018.
Fantle, M. S. and DePaolo, D. J.: Variations in the marine Ca cycle over the
past 20 million years, Earth Planet. Sc. Lett., 237, 102–117,
https://doi.org/10.1016/j.epsl.2005.06.024, 2005.
Foster, G. L. and Rae, J. W. B.: Reconstructing Ocean pH with Boron Isotopes
in Foraminifera, Annu. Rev. Earth Pl. Sci., 44, 207–237,
https://doi.org/10.1146/annurev-earth-060115-012226, 2016.
GEBCO_2022 Grid: A continuous terrain model of the global
oceans and land,NERC EDS British Oceanographic Data Centre NOC, https://doi.org/10.5285/e0f0bb80-ab44-2739-e053-6c86abc0289c, 2022.
Geerken, E., de Nooijer, L. J., Roepert, A., Polerecky, L., King, H. E., and
Reichart, G. J.: Element banding and organic linings within chamber walls of
two benthic foraminifera, Sci. Rep., 9, 3598,
https://doi.org/10.1038/s41598-019-40298-y, 2019.
Geerken, E., de Nooijer, L., Toyofuku, T., Roepert, A., Middelburg, J. J.,
Kienhuis, M. V. M., Nagai, Y., Polerecky, L., and Reichart, G. J.: High
precipitation rates characterize biomineralization in the benthic
foraminifer Ammonia beccarii, Geochim. Cosmochim. Ac., 318, 70–82,
https://doi.org/10.1016/j.gca.2021.11.026, 2022.
Guillong, M., Latkoczy, C., Seo, J. H., Güntherb, D., and Heinricha, C. A.: Determination of sulfur in fluid inclusions by laser ablation ICP-MS, J.
Anal. At. Spectrom., 23, 1581–1589, https://doi.org/10.1039/B807383J, 2008.
Hastings, D. W., Russell, A. D., and Emerson, S. R.: Foraminiferal magnesium
in globeriginoides sacculifer as a paleotemperature proxy, Paleoceanography,
13, 161–169, https://doi.org/10.1029/97PA03147, 1998.
Hauzer, H., Evans, D., Müller, W., Rosenthal, Y., and Erez, J.:
Calibration of Na partitioning in the calcitic foraminifer Operculina
ammonoides under variable Ca concentration: Toward reconstructing past
seawater composition, Earth Planet. Sc. Lett., 497, 80–91,
https://doi.org/10.1016/j.epsl.2018.06.004, 2018.
Hauzer, H., Evans, D., Müller, W., Rosenthal, Y., and Erez, J.: Salinity
Effect on Trace Element Incorporation in Cultured Shells of the Large
Benthic Foraminifer Operculina ammonoides, Paleoceanogr. Paleocl.,
36, e2021PA004218, https://doi.org/10.1029/2021PA004218, 2021.
Haynes, J. R.: The Nodosariida BT – Foraminifera, edited by: Haynes, J. R.,
Palgrave Macmillan UK, London, 180–203,
https://doi.org/10.1007/978-1-349-05397-1_9, 1981a.
Haynes, J. R.: The Rotaliida (Smaller) BT – Foraminifera, edited by: Haynes,
J. R., Palgrave Macmillan UK, London, 236–273,
https://doi.org/10.1007/978-1-349-05397-1_12, 1981b.
Humphreys, M. P., Lewis, E. R., Sharp, J. D., and Pierrot, D.: PyCO2SYS
v1.8: Marine carbonate system calculations in Python, Geosci. Model Dev.,
15, 15–43, https://doi.org/10.5194/gmd-15-15-2022, 2022.
Knorr, P. O., Robbins, L. L., Harries, P. J., Hallock, P., and Wynn, J.:
Response of the miliolid Archaias angulatus to simulated ocean
acidification, J. Foraminifer. Res., 45, 109–127,
https://doi.org/10.2113/gsjfr.45.2.109, 2015.
Kristjánsdóttir, G. B., Lea, D. W., Jennings, A. E., Pak, D. K., and
Belanger, C.: New spatial Mg Ca-temperature calibrations for three Arctic,
benthic foraminifera and reconstruction of north Iceland shelf temperature
for the past 4000 years, Geochem. Geophy. Geosy., 8, Q03P21,
https://doi.org/10.1029/2006GC001425, 2007.
Lea, D. W., Mashiotta, T. A., and Spero, H. J.: Controls on magnesium and
strontium uptake in planktonic foraminifera determined by live culturing,
Geochim. Cosmochim. Ac., 63, 2369–2379,
https://doi.org/10.1016/S0016-7037(99)00197-0, 1999.
Lea, D. W., Pak, D. K., and Spero, H. J.: Climate impact of late quaternary
equatorial Pacific sea surface temperature variations, Science,
289, 1719–1724, https://doi.org/10.1126/science.289.5485.1719, 2000.
Lear, C. H., Rosenthal, Y., and Slowey, N.: Benthic foraminiferal
Mg Ca-paleothermometry: A revised core-top calibration, Geochim. Cosmochim.
Ac., 66, 3375–3387, https://doi.org/10.1016/S0016-7037(02)00941-9, 2002.
Lewis, E., Wallace, D., and Allison, L. J.: Program developed for CO2 system calculations. United States, doi10.2172/639712, 1998.
Lowenstein, T. K. and Hönisch, B.: The Use of Mg Ca as a Seawater
Temperature Proxy, Paleontol. Soc. Pap., 18, 85–100, https://doi.org/10.1017/S1089332600002564, 2012.
Maeda, A., Fujita, K., Horikawa, K., Suzuki, A., Yoshimura, T., Tamenori,
Y., and Kawahata, H.: Evaluation of oxygen isotope and Mg Ca ratios in
high-magnesium calcite from benthic foraminifera as a proxy for water
temperature, J. Geophys. Res.-Biogeo., 122, 185–199,
https://doi.org/10.1002/2016JG003587, 2017.
Mann, M. E., Bradley, R. S., and Hughes, M. K.: Global-scale temperature
patterns and climate forcing over the past six centuries, Nature, 392,
779–787, https://doi.org/10.1038/33859, 1998.
Mezger, E. M., de Nooijer, L. J., Boer, W., Brummer, G. J. A., and Reichart,
G. J.: Salinity controls on Na incorporation in Red Sea planktonic
foraminifera, Paleoceanography, 31, 1562–1582,
https://doi.org/10.1002/2016PA003052, 2016.
Morse, J. W., Arvidson, R. S., and Lüttge, A.: Calcium carbonate
formation and dissolution, Chem. Rev., 107, 342–381,
https://doi.org/10.1021/cr050358j, 2007.
Nambiar, R., Hauzer, H., Gray, W. R., Henehan, M. J., Cotton, L., Erez, J.,
Rosenthal, Y., Renema, W., Müller, W., and Evans, D.: Controls on
potassium incorporation in foraminifera and other marine calcifying
organisms, Geochim. Cosmochim. Ac., 351, 125–138,
https://doi.org/10.1016/j.gca.2023.04.020, 2023.
Nürnberg, D., Bijma, J., and Hemleben, C.: Assessing the reliability of
magnesium in foraminiferal calcite as a proxy for water mass temperatures,
Geochim. Cosmochim. Ac., 60, 803–814,
https://doi.org/10.1016/0016-7037(95)00446-7, 1996.
Pacho, L.: Nodosarids_dataset2023, NIOZ [data set], https://doi.org/10.25850/nioz/7b.b.lf, 2023.
Pawlowski, J., Holzmann, M., Berney, C., Fahrni, J., Gooday, A. J.,
Cedhagen, T., Habura, A., and Bowser, S. S.: The evolution of early
Foraminifera, P. Natl. Acad. Sci. USA, 100, 11494–11498,
https://doi.org/10.1073/pnas.2035132100, 2003.
Pogge Von Strandmann, P. A. E., Forshaw, J., and Schmidt, D. N.: Modern and
Cenozoic records of seawater magnesium from foraminiferal Mg isotopes,
Biogeosciences, 11, 5155–5168, https://doi.org/10.5194/bg-11-5155-2014,
2014.
Quillmann, U., Marchitto, T. M., Jennings, A. E., Andrews, J. T., and
Friestad, B. F.: Cooling and freshening at 8.2 ka on the NW Iceland Shelf
recorded in paired δ18O and Mg Ca measurements of the benthic
foraminifer Cibicides lobatulus, Quaternary Res., 78, 528–539,
https://doi.org/10.1016/j.yqres.2012.08.003, 2012.
Rae, J. W. B., Foster, G. L., Schmidt, D. N., and Elliott, T.: Boron
isotopes and B Ca in benthic foraminifera: Proxies for the deep ocean
carbonate system, Earth Planet. Sc. Lett., 302, 403–413,
https://doi.org/10.1016/j.epsl.2010.12.034, 2011.
Raitzsch, M., Kuhnert, H., Groeneveld, J., and Bickert, T.: Benthic
foraminifer Mg Ca anomalies in South Atlantic core top sediments and their
implications for paleothermometry, Geochem. Geophy. Geosy., 9, Q05010,
https://doi.org/10.1029/2007GC001788, 2008.
Raitzsch, M., Duenas-Bohórquez, A., Reichart, G. J., De Nooijer, L. J.,
and Bickert, T. T.: Incorporation of Mg and Sr in calcite of cultured
benthic foraminifera: Impact of calcium concentration and associated calcite
saturation state, Biogeosciences, 7, 869–881,
https://doi.org/10.5194/bg-7-869-2010, 2010.
Reichart, G. J., Jorissen, F., Anschutz, P., and Mason, P. R. D.:: Single foraminiferal test chemistry records the marine
environment, Geology, 31, 355–358, 2003.
Reiss, Z.: Occurrence of Nezzazata in Israel, Micropaleontology, 3,
259–262, 1957.
Reiss, Z.: Comments on Wall Structure of Foraminifera, Micropaleontology, 9,
50–52, https://doi.org/10.2307/1484605, 1963.
Reolid, M.: Stable isotopes on foraminifera and ostracods for interpreting
incidence of the Toarcian Oceanic Anoxic Event in Westernmost Tethys: Role
of water stagnation and productivity, Palaeogeogr. Palaeocl., 395, 77–91, https://doi.org/10.1016/j.palaeo.2013.12.012,
2014.
Reynaud, S., Ferrier-Pagès, C., Meibom, A., Mostefaoui, S., Mortlock,
R., Fairbanks, R., and Allemand, D.: Light and temperature effects on Sr Ca
and Mg Ca ratios in the scleractinian coral Acropora sp., Geochim.
Cosmochim. Ac., 71, 354–362, https://doi.org/10.1016/j.gca.2006.09.009,
2007.
Rosenthal, Y., Boyle, E. A., and Slowey, N.: Temperature control on the
incorporation of magnesium, strontium, fluorine, and cadmium into benthic
foraminiferal shells from Little Bahama Bank: Prospects for thermocline
paleoceanography, Geochim. Cosmochim. Ac., 61, 3633–3643,
https://doi.org/10.1016/S0016-7037(97)00181-6, 1997.
Rosenthal, Y., Morley, A., Barras, C., Katz, M. E., Jorissen, F., Reichart,
G. J., Oppo, D. W., and Linsley, B. K.: Temperature calibration of Mg Ca
ratios in the intermediate water benthic foraminifer Hyalinea balthica,
Geochem. Geophy. Geosy., 12, Q04003, https://doi.org/10.1029/2010GC003333,
2011.
Rosenthal, Y., Kalansky, J., Morley, A., and Linsley, B.: A
paleo-perspective on ocean heat content: Lessons from the Holocene and
Common Era, Quaternary Sci. Rev., 155, 1–12,
https://doi.org/10.1016/j.quascirev.2016.10.017, 2017.
Russell, A. D., Hönisch, B., Spero, H. J., and Lea, D. W.: Effects of
seawater carbonate ion concentration and temperature on shell U, Mg, and Sr
in cultured planktonic foraminifera, Geochim. Cosmochim. Ac., 68,
4347–4361, https://doi.org/10.1016/j.gca.2004.03.013, 2004.
Sadekov, A. Y., Bush, F., Kerr, J., Ganeshram, R., and Elderfield, H.: Mg Ca
composition of benthic foraminifera Miliolacea as a new tool of
paleoceanography, Paleoceanography, 29, 990–1001,
https://doi.org/10.1002/2014PA002654, 2014.
Sarazin, G., Michard, G., and Prevot, F.: A rapid and accurate spectroscopic
method for alkalinity measurements in sea water samples, Water Res., 33,
290–294, https://doi.org/10.1016/S0043-1354(98)00168-7, 1999.
Seabold, S. and Perktold, J.: Statsmodels: Econometric and Statistical
Modeling with Python, Proc. 9th Python Sci. Conf., 92–96,
https://doi.org/10.25080/majora-92bf1922-011, 2010.
Sirois, S.: RB 17-04 GOMECC-3: Gulf of Mexico Ecosystems and Carbon Cycle
Cruise, https://repository.library.noaa.gov/view/noaa/16758 (last access: 2020), 2017.
Spero, H. J., Eggins, S. M., Russell, A. D., Vetter, L., Kilburn, M. R., and
Hönisch, B.: Timing and mechanism for intratest Mg Ca variability in a
living planktic foraminifer, Earth Planet. Sc. Lett., 409, 32–42,
https://doi.org/10.1016/j.epsl.2014.10.030, 2015.
Spivack, A. J., You, C.-F., and Smith, H. J.: Foraminiferal boron isotope
ratios as a proxy for surface ocean pH over the past 21 Myr, Nature, 363,
149–151, https://doi.org/10.1038/363149a0, 1993.
Stainbank, S., Spezzaferri, S., De Boever, E., Bouvier, A. S., Chilcott, C.,
de Leau, E. S., Foubert, A., Kunkelova, T., Pichevin, L., Raddatz, J.,
Rüggeberg, A., Wright, J. D., Yu, S. M., Zhang, M., and Kroon, D.:
Assessing the impact of diagenesis on foraminiferal geochemistry from a low
latitude, shallow-water drift deposit, Earth Planet. Sc. Lett., 545,
116390, https://doi.org/10.1016/j.epsl.2020.116390, 2020.
Stoll, M. H. C., Bakker, K., Nobbe, G. H., and Haese, R. R.: Continuous-flow
analysis of dissolved inorganic carbon content in seawater, Anal. Chem., 73,
4111–4116, https://doi.org/10.1021/ac010303r, 2001.
Tanner, T., Hernández-Almeida, I., Drury, A. J., Guitián, J., and
Stoll, H.: Decreasing Atmospheric CO2 During the Late Miocene Cooling,
Paleoceanogr. Paleocl., 35, e2020PA003925,
https://doi.org/10.1029/2020PA003925, 2020.
ter Kuile, B., Erez, J., and Padan, E.: Mechanisms for the uptake of
inorganic carbon by two species of symbiont-bearing foraminifera, Mar.
Biol., 103, 241–251, https://doi.org/10.1007/BF00543354, 1989.
Toyofuku, T., Kitazato, H., Kawahata, H., Tsuchiya, M., and Nohara, M.: Evaluation of Mg / Ca thermometry in foraminifera: Comparison of experimental results and measurements in nature, Paleoceanography, 15, 456–464, https://doi.org/10.1029/1999PA000460, 2000.
Toyofuku, T., Suzuki, M., Suga, H., Sakai, S., Suzuki, A., Ishikawa, T., de
Nooijer, L. J., Schiebel, R., Kawahata, H., and Kitazato, H.: Mg Ca and
δ18O in the brackish shallow-water benthic foraminifer Ammonia
“beccarii”, Mar. Micropaleontol., 78, 113–120,
https://doi.org/10.1016/j.marmicro.2010.11.003, 2011.
Toyofuku, T., Matsuo, M. Y., De Nooijer, L. J., Nagai, Y., Kawada, S.,
Fujita, K., Reichart, G. J., Nomaki, H., Tsuchiya, M., Sakaguchi, H., and
Kitazato, H.: Proton pumping accompanies calcification in foraminifera, Nat.
Commun., 8, 1–6, https://doi.org/10.1038/ncomms14145, 2017.
van Dijk, I., de Nooijer, L. J., Hart, M. B., and Reichart, G.-J.: The
long-term impact of magnesium in seawater on foraminiferal mineralogy:
Mechanism and consequences, Global Biogeochem. Cy., 30, 438–446,
https://doi.org/10.1002/2015GB005241, 2016.
van Dijk, I., de Nooijer, L. J., Wolthers, M., and Reichart, G. J.: Impacts
of pH and [CO ] on the incorporation of Zn in foraminiferal calcite,
Geochim. Cosmochim. Ac., 197, 263–277,
https://doi.org/10.1016/j.gca.2016.10.031, 2017a.
van Dijk, I., Nooijer De, L. J., and Reichart, G. J.: Trends in element
incorporation in hyaline and porcelaneous foraminifera as a function of
pCO2, Biogeosciences, 14, 497–510, https://doi.org/10.5194/bg-14-497-2017,
2017b.
Wit, J. C., de Nooijer, L. J., Barras, C., Jorissen, F. J., and Reichart, G. J.: A reappraisal of the vital effect in cultured benthic foraminifer Bulimina marginata on Mg/Ca values: assessing temperature uncertainty relationships, Biogeosciences, 9, 3693–3704, https://doi.org/10.5194/bg-9-3693-2012, 2012.
Wit, J. C., De Nooijer, L. J., Wolthers, M., and Reichart, G. J.: A novel
salinity proxy based on na incorporation into foraminiferal calcite,
Biogeosciences, 10, 6375–6387, https://doi.org/10.5194/bg-10-6375-2013,
2013.
Wit, J. C., de Nooijer, L. J., Haig, J., Jorissen, F. J., Thomas, E., and
Reichart, G. J.: Towards reconstructing ancient seawater Mg Ca by combining
porcelaneous and hyaline foraminiferal Mg Ca-temperature calibrations,
Geochim. Cosmochim. Ac., 211, 341–354,
https://doi.org/10.1016/j.gca.2017.05.036, 2017.
Yu, J. and Elderfield, H.: Benthic foraminiferal B Ca ratios reflect deep
water carbonate saturation state, Earth Planet. Sc. Lett., 258, 73–86,
https://doi.org/10.1016/j.epsl.2007.03.025, 2007.
Yu, Z., Lei, Y., Li, T., Zhang, S., and Xiong, Z.: Mg and Sr uptake in
benthic foraminifera Ammonia aomoriensis based on culture and field studies,
Palaeogeogr. Palaeocl., 520, 229–239,
https://doi.org/10.1016/j.palaeo.2019.02.001, 2019.
Zeebe, R. E., Bijma, J., and Wolf-Gladrow, D. A.: A diffusion-reaction model
of carbon isotope fractionation in foraminifera, Mar. Chem., 64, 199–227,
https://doi.org/10.1016/S0304-4203(98)00075-9, 1999.
Co-editor-in-chief
This study presents element/Ca data collected on Nodosariata, a particular group of foraminifera. The results of this work can potentially expand the applicability of foraminiferal proxies to the Permian, with important implication for the pale oceanographic and modeling communities.
This study presents element/Ca data collected on Nodosariata, a particular group of...
Short summary
We analyzed Mg / Ca and other El / Ca (Na / Ca, B / Ca, Sr / Ca and Ba / Ca) in Nodosariata. Their calcite chemistry is markedly different to that of the other calcifying orders of foraminifera. We show a relation between the species average Mg / Ca and its sensitivity to changes in temperature. Differences were reflected in both the Mg incorporation and the sensitivities of Mg / Ca to temperature.
We analyzed Mg / Ca and other El / Ca (Na / Ca, B / Ca, Sr / Ca and Ba / Ca) in Nodosariata....
Altmetrics
Final-revised paper
Preprint