Articles | Volume 21, issue 13
https://doi.org/10.5194/bg-21-3093-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-21-3093-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The influence of burn severity on dissolved organic carbon concentrations across a stream network differs based on seasonal wetness conditions
Katie A. Wampler
CORRESPONDING AUTHOR
Department of Forest Engineering, Resources, and Management, Oregon State University, Corvallis, OR 97331, USA
Kevin D. Bladon
Department of Forest Engineering, Resources, and Management, Oregon State University, Corvallis, OR 97331, USA
Allison N. Myers-Pigg
Marine and Coastal Research Laboratory, Pacific Northwest National Laboratory, Sequim, WA 98382, USA
Department of Environmental Sciences, University of Toledo, Toledo, OH 43606, USA
Related authors
No articles found.
Morgan E. Barnes, J. Alan Roebuck Jr., Samantha Grieger, Paul J. Aronstein, Vanessa A. Garayburu-Caruso, Kathleen Munson, Robert P. Young, Kevin D. Bladon, John D. Bailey, Emily B. Graham, Lupita Renteria, Peggy A. O'Day, Timothy D. Scheibe, and Allison N. Myers-Pigg
Biogeosciences, 22, 4491–4505, https://doi.org/10.5194/bg-22-4491-2025, https://doi.org/10.5194/bg-22-4491-2025, 2025
Short summary
Short summary
Wildfires impact nutrient cycles on land and in water. We used burning experiments to understand the types of phosphorous (P), an essential nutrient, that might be released to the environment after different types of fires. We found the amount of P moving through the environment post-fire is dependent on the type of vegetation and degree of burning, which may influence when and where this material is processed or stored.
Maggi M. Laan, Stephanie G. Fulton, Vanessa A. Garayburu-Caruso, Morgan E. Barnes, Mikayla A. Borton, Xingyuan Chen, Yuliya Farris, Brieanne Forbes, Amy E. Goldman, Samantha Grieger, Robert O. Hall Jr., Matthew H. Kaufman, Xinming Lin, Erin L. M. Zionce, Sophia A. McKever, Allison Myers-Pigg, Opal Otenburg, Aaron C. Pelly, Huiying Ren, Lupita Renteria, Timothy D. Scheibe, Kyongho Son, Jerry Tagestad, Joshua M. Torgeson, and James C. Stegen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1109, https://doi.org/10.5194/egusphere-2025-1109, 2025
Short summary
Short summary
Respiration is a process that combines carbon and oxygen to generate energy for living organisms. Within a river, respiration in sediments and water have variable contributions to respiration of the whole river system. Contrary to conventional wisdom, we found that water column respiration did not increase systematically moving from small streams to big rivers. Instead, it was locally influenced by temperature, nutrients and suspended solids.
William Kew, Allison Myers-Pigg, Christine H. Chang, Sean M. Colby, Josie Eder, Malak M. Tfaily, Jeffrey Hawkes, Rosalie K. Chu, and James C. Stegen
Biogeosciences, 21, 4665–4679, https://doi.org/10.5194/bg-21-4665-2024, https://doi.org/10.5194/bg-21-4665-2024, 2024
Short summary
Short summary
Natural organic matter (NOM) is often studied via Fourier transform mass spectrometry (FTMS), which identifies organic molecules as mass spectra peaks. The intensity of peaks is data that is often discarded due to technical concerns. We review the theory behind these concerns and show they are supported empirically. However, simulations show that ecological analyses of NOM data that include FTMS peak intensities are often valid. This opens a path for robust use of FTMS peak intensities for NOM.
Christian Lønborg, Cátia Carreira, Gwenaël Abril, Susana Agustí, Valentina Amaral, Agneta Andersson, Javier Arístegui, Punyasloke Bhadury, Mariana B. Bif, Alberto V. Borges, Steven Bouillon, Maria Ll. Calleja, Luiz C. Cotovicz Jr., Stefano Cozzi, Maryló Doval, Carlos M. Duarte, Bradley Eyre, Cédric G. Fichot, E. Elena García-Martín, Alexandra Garzon-Garcia, Michele Giani, Rafael Gonçalves-Araujo, Renee Gruber, Dennis A. Hansell, Fuminori Hashihama, Ding He, Johnna M. Holding, William R. Hunter, J. Severino P. Ibánhez, Valeria Ibello, Shan Jiang, Guebuem Kim, Katja Klun, Piotr Kowalczuk, Atsushi Kubo, Choon-Weng Lee, Cláudia B. Lopes, Federica Maggioni, Paolo Magni, Celia Marrase, Patrick Martin, S. Leigh McCallister, Roisin McCallum, Patricia M. Medeiros, Xosé Anxelu G. Morán, Frank E. Muller-Karger, Allison Myers-Pigg, Marit Norli, Joanne M. Oakes, Helena Osterholz, Hyekyung Park, Maria Lund Paulsen, Judith A. Rosentreter, Jeff D. Ross, Digna Rueda-Roa, Chiara Santinelli, Yuan Shen, Eva Teira, Tinkara Tinta, Guenther Uher, Masahide Wakita, Nicholas Ward, Kenta Watanabe, Yu Xin, Youhei Yamashita, Liyang Yang, Jacob Yeo, Huamao Yuan, Qiang Zheng, and Xosé Antón Álvarez-Salgado
Earth Syst. Sci. Data, 16, 1107–1119, https://doi.org/10.5194/essd-16-1107-2024, https://doi.org/10.5194/essd-16-1107-2024, 2024
Short summary
Short summary
In this paper, we present the first edition of a global database compiling previously published and unpublished measurements of dissolved organic matter (DOM) collected in coastal waters (CoastDOM v1). Overall, the CoastDOM v1 dataset will be useful to identify global spatial and temporal patterns and to facilitate reuse in studies aimed at better characterizing local biogeochemical processes and identifying a baseline for modelling future changes in coastal waters.
Stephanie G. Fulton, Morgan Barnes, Mikayla A. Borton, Xingyuan Chen, Yuliya Farris, Brieanne Forbes, Vanessa A. Garayburu-Caruso, Amy E. Goldman, Samantha Grieger, Robert Hall Jr., Matthew H. Kaufman, Xinming Lin, Erin McCann, Sophia A. McKever, Allison Myers-Pigg, Opal C. Otenburg, Aaron C. Pelly, Huiying Ren, Lupita Renteria, Timothy D. Scheibe, Kyongho Son, Jerry Tagestad, Joshua M. Torgeson, and James C. Stegen
EGUsphere, https://doi.org/10.5194/egusphere-2023-3038, https://doi.org/10.5194/egusphere-2023-3038, 2024
Preprint archived
Short summary
Short summary
This research examines oxygen use in rivers, which is central to the carbon cycle and water quality. The study focused on an environmentally diverse river basin in the western United States and found that oxygen use in river water was very slow and influenced by factors like water temperature and concentrations of nutrients and carbon in the water. Results suggest that in the study system, most of the oxygen use occurs via mechanisms directly or indirectly associated with riverbed sediments.
Emily B. Graham, Hyun-Seob Song, Samantha Grieger, Vanessa A. Garayburu-Caruso, James C. Stegen, Kevin D. Bladon, and Allison N. Myers-Pigg
Biogeosciences, 20, 3449–3457, https://doi.org/10.5194/bg-20-3449-2023, https://doi.org/10.5194/bg-20-3449-2023, 2023
Short summary
Short summary
Intensifying wildfires are increasing pyrogenic organic matter (PyOM) production and its impact on water quality. Recent work indicates that PyOM may have a greater impact on aquatic biogeochemistry than previously assumed, driven by higher bioavailability. We provide a full assessment of the potential bioavailability of PyOM across its chemical spectrum. We indicate that PyOM can be actively transformed within the river corridor and, therefore, may be a growing source of riverine C emissions.
Cited articles
Abatzoglou, J. T., Williams, A. P., Boschetti, L., Zubkova, M., and Kolden, C. A.: Global patterns of interannual climate–fire relationships, Glob. Change Biol., 24, 5164–5175, https://doi.org/10.1111/gcb.14405, 2018.
Abatzoglou, J. T., Rupp, D. E., O'Neill, L. W., and Sadegh, M.: Compound Extremes Drive the Western Oregon Wildfires of September 2020, Geophys. Res. Lett., 48, e2021GL092520, https://doi.org/10.1029/2021GL092520, 2021.
Achat, D. L., Fortin, M., Landmann, G., Ringeval, B., and Augusto, L.: Forest soil carbon is threatened by intensive biomass harvesting, Sci. Rep., 5, 15991, https://doi.org/10.1038/srep15991, 2015.
Ågren, A., Buffam, I., Jansson, M., and Laudon, H.: Importance of seasonality and small streams for the landscape regulation of dissolved organic carbon export, J. Geophys. Res.-Biogeo., 112, G03003, https://doi.org/10.1029/2006JG000381, 2007.
Amiro, B. D., Cantin, A., Flannigan, M. D., and de Groot, W. J.: Future emissions from Canadian boreal forest fires, Can. J. Forest Res., 39, 383–395, https://doi.org/10.1139/X08-154, 2009.
Atwood, A., Hille, M., Clark, M. K., Rengers, F., Ntarlagiannis, D., Townsend, K., and West, A. J.: Importance of subsurface water for hydrological response during storms in a post-wildfire bedrock landscape, Nat. Commun., 14, 3814, https://doi.org/10.1038/s41467-023-39095-z, 2023.
Balfour, V. N., Doerr, S. H., Robichaud, P. R., Balfour, V. N., Doerr, S. H., and Robichaud, P. R.: The temporal evolution of wildfire ash and implications for post-fire infiltration, Int. J. Wildland Fire, 23, 733–745, https://doi.org/10.1071/WF13159, 2014.
Ball, G., Regier, P., González-Pinzón, R., Reale, J., and Van Horn, D.: Wildfires increasingly impact western US fluvial networks, Nat. Commun., 12, 2484, https://doi.org/10.1038/s41467-021-22747-3, 2021.
Barton, R., Richardson, C. M., Pae, E., Montalvo, M. S., Redmond, M., Zimmer, M. A., and Wagner, S.: Hydrology, rather than wildfire burn extent, determines post-fire organic and black carbon export from mountain rivers in central coastal California, Limnology and Oceanography Letters, 9, 70–80, https://doi.org/10.1002/lol2.10360, 2023.
Belloni, A., Chernozhukov, V., and Hansen, C.: Inference on Treatment Effects after Selection among High-Dimensional Controls, The Rev. Econ. Stud., 81, 608–650, https://doi.org/10.1093/restud/rdt044, 2014.
Bertuzzo, E., Helton, A. M., Hall, Robert O., and Battin, T. J.: Scaling of dissolved organic carbon removal in river networks, Adv. Water Resour., 110, 136–146, https://doi.org/10.1016/j.advwatres.2017.10.009, 2017.
Betts, E. F. and Jones, J. B.: Impact of Wildfire on Stream Nutrient Chemistry and Ecosystem Metabolism in Boreal Forest Catchments of Interior Alaska, Arct. Antarct. Alp. Res., 41, 407–417, 2009.
Bhattacharya, R. and Osburn, C. L.: Spatial patterns in dissolved organic matter composition controlled by watershed characteristics in a coastal river network: The Neuse River Basin, USA, Water Res., 169, 115248, https://doi.org/10.1016/j.watres.2019.115248, 2020.
Boer, M., Dios, V., and Bradstock, R.: Unprecedented burn area of Australian mega forest fires, Nat. Clim. Change, 10, 1–2, https://doi.org/10.1038/s41558-020-0716-1, 2020.
Borken, W., Ahrens, B., Schulz, C., and Zimmermann, L.: Site-to-site variability and temporal trends of DOC concentrations and fluxes in temperate forest soils, Glob. Change Biol., 17, 2428–2443, https://doi.org/10.1111/j.1365-2486.2011.02390.x, 2011.
Brando, P., Paolucci, L., Ummenhofer, C., Ordway, E., Hartmann, H., Cattau, M., Rattis, L., Medjibe, V., Coe, M., and Balch, J.: Droughts, Wildfires, and Forest Carbon Cycling: A Pantropical Synthesis, Annu. Rev. Earth Pl. Sc., 47, 555–581, https://doi.org/10.1146/annurev-earth-082517-010235, 2019.
Brooks, M. E., Kristensen, K., Benthem, K. J. van, Magnusson, A., Berg, C. W., Nielsen, A., Skaug, H. J., Mächler, M., and Bolker, B. M.: glmmTMB Balances Speed and Flexibility Among Packages for Zero-inflated Generalized Linear Mixed Modeling, R J., 9, 378–400, 2017.
Burton, C. A., Hoefen, T. M., Plumlee, G. S., Baumberger, K. L., Backlin, A. R., Gallegos, E., and Fisher, R. N.: Trace Elements in Stormflow, Ash, and Burned Soil following the 2009 Station Fire in Southern California, PLOS ONE, 11, e0153372, https://doi.org/10.1371/journal.pone.0153372, 2016.
Butturini, A. and Sabater, F.: Seasonal variability of dissolved organic carbon in a Mediterranean stream, Biogeochemistry, 51, 303–321, https://doi.org/10.1023/A:1006420229411, 2000.
Caldwell, P. V., Elliott, K. J., Liu, N., Vose, J. M., Zietlow, D. R., and Knoepp, J. D.: Watershed-scale vegetation, water quantity, and water quality responses to wildfire in the southern Appalachian mountain region, United States, Hydrol. Process., 34, 5188–5209, https://doi.org/10.1002/hyp.13922, 2020.
Carpenter, K. D., Kraus, T. E. C., Hansen, A. M., Downing, B. D., Goldman, J. H., Haynes, J., Donahue, D., and Morgenstern, K.: Sources and characteristics of dissolved organic carbon in the McKenzie River, Oregon, related to the formation of disinfection by-products in treated drinking water, Reston, VA, https://doi.org/10.3133/sir20225010, 2022.
Casas-Ruiz, J. P., Spencer, R. G. M., Guillemette, F., von Schiller, D., Obrador, B., Podgorski, D. C., Kellerman, A. M., Hartmann, J., Gómez-Gener, L., Sabater, S., and Marcé, R.: Delineating the Continuum of Dissolved Organic Matter in Temperate River Networks, Global Biogeochem. Cy., 34, e2019GB006495, https://doi.org/10.1029/2019GB006495, 2020.
Cavaiani, J., Regier, P., Roebuck, A., Barnes, M. E., Garayburu-Caruso, V. A., Gillespie, X., McKever, S., Renteria, L., and Allison N. Myers-Pigg: Catchment characteristics modulate the influence of wildfires on nitrate and dissolved organic carbon across space and time: A meta-analysis, ESS Open Archive [preprint], https://doi.org/10.22541/essoar.171052482.22663736/v1, 2024.
Certini, G., Nocentini, C., Knicker, H., Arfaioli, P., and Rumpel, C.: Wildfire effects on soil organic matter quantity and quality in two fire-prone Mediterranean pine forests, Geoderma, 167–168, 148–155, https://doi.org/10.1016/j.geoderma.2011.09.005, 2011.
Chambers, J. Q., Fisher, J. I., Zeng, H., Chapman, E. L., Baker, D. B., and Hurtt, G. C.: Hurricane Katrina's Carbon Footprint on U.S. Gulf Coast Forests, Science, 318, 1107–1107, https://doi.org/10.1126/science.1148913, 2007.
Chen, S., Du, Y., Das, P., Lamore, A. F., Dimova, N. T., Elliott, M., Broadbent, E. N., Roebuck., J. A., Jaffé, R., and Lu, Y.: Agricultural land use changes stream dissolved organic matter via altering soil inputs to streams, Sci. Total Environ., 796, 148968, https://doi.org/10.1016/j.scitotenv.2021.148968, 2021.
Chow, A. T., Tsai, K.-P., Fegel, T. S., Pierson, D. N., and Rhoades, C. C.: Lasting Effects of Wildfire on Disinfection By-Product Formation in Forest Catchments, J. Environ. Qual., 48, 1826–1834, https://doi.org/10.2134/jeq2019.04.0172, 2019.
Cicco, L. A. D., Lorenz, D., Hirsch, R. M., and Watkins, W.: dataRetrieval: R packages for discovering and retrieving water data available from U.S. federal hydrologic web services, CRAN [code], https://doi.org/10.5066/P9X4L3GE, 2018.
Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L. J., Striegl, R. G., Duarte, C. M., Kortelainen, P., Downing, J. A., Middelburg, J. J., and Melack, J.: Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget, Ecosystems, 10, 172–185, https://doi.org/10.1007/s10021-006-9013-8, 2007.
Crandall, T., Jones, E., Greenhalgh, M., Frei, R. J., Griffin, N., Severe, E., Maxwell, J., Patch, L., Clair, S. I. S., Bratsman, S., Merritt, M., Norris, A. J., Carling, G. T., Hansen, N., Clair, S. B. S., and Abbott, B. W.: Megafire affects stream sediment flux and dissolved organic matter reactivity, but land use dominates nutrient dynamics in semiarid watersheds, PLOS ONE, 16, e0257733, https://doi.org/10.1371/journal.pone.0257733, 2021.
Creed, I. F., McKnight, D. M., Pellerin, B. A., Green, M. B., Bergamaschi, B. A., Aiken, G. R., Burns, D. A., Findlay, S. E. G., Shanley, J. B., Striegl, R. G., Aulenbach, B. T., Clow, D. W., Laudon, H., McGlynn, B. L., McGuire, K. J., Smith, R. A., and Stackpoole, S. M.: The river as a chemostat: fresh perspectives on dissolved organic matter flowing down the river continuum, Can. J. Fish. Aquat. Sci., 72, 1272–1285, https://doi.org/10.1139/cjfas-2014-0400, 2015.
Daly, C.: Meteorological data from Primet (NOAHIV) at the Andrews Forest, HJ Andrews Data Portal [dataset], https://andrewsforest.oregonstate.edu/sites/default/files/lter/data/weather/portal/PRIMET/data/primet_or10_15min_2023.html (last access: 28 June 2024), 2023.
Davidson, S. J., Elmes, M. C., Rogers, H., van Beest, C., Petrone, R., Price, J. S., and Strack, M.: Hydrogeologic setting overrides any influence of wildfire on pore water dissolved organic carbon concentration and quality at a boreal fen, Ecohydrology, 12, e2141, https://doi.org/10.1002/eco.2141, 2019.
Dawson, J. J. C., Bakewell, C., and Billett, M. F.: Is in-stream processing an important control on spatial changes in carbon fluxes in headwater catchments?, Sci. Total Environ., 265, 153–167, https://doi.org/10.1016/S0048-9697(00)00656-2, 2001.
Dawson, J. J. C., Soulsby, C., Tetzlaff, D., Hrachowitz, M., Dunn, S. M., and Malcolm, I. A.: Influence of hydrology and seasonality on DOC exports from three contrasting upland catchments, Biogeochemistry, 90, 93–113, https://doi.org/10.1007/s10533-008-9234-3, 2008.
de la Barrera, F., Barraza, F., Favier, P., Ruiz, V., and Quense, J.: Megafires in Chile 2017: Monitoring multiscale environmental impacts of burned ecosystems, Sci. Total Environ., 637–638, 1526–1536, https://doi.org/10.1016/j.scitotenv.2018.05.119, 2018.
Dewitz, J.: National Land Cover Database (NLCD) 2019 Products, ScienceBase, https://doi.org/10.5066/P9KZCM54, 2021.
Dodd, W., Scott, P., Howard, C., Scott, C., Rose, C., Cunsolo, A., and Orbinski, J.: Lived experience of a record wildfire season in the Northwest Territories, Canada, Can. J. Public Health, 109, 327–337, https://doi.org/10.17269/s41997-018-0070-5, 2018.
Doerr, S. H., Woods, S. W., Martin, D. A., and Casimiro, M.: “Natural background” soil water repellency in conifer forests of the north-western USA: Its prediction and relationship to wildfire occurrence, J. Hydrol., 371, 12–21, https://doi.org/10.1016/j.jhydrol.2009.03.011, 2009.
Drake, T. W., Raymond, P. A., and Spencer, R. G. M.: Terrestrial carbon inputs to inland waters: A current synthesis of estimates and uncertainty, Limnology and Oceanography Letters, 3, 132–142, https://doi.org/10.1002/lol2.10055, 2018.
Duane, A., Castellnou, M., and Brotons, L.: Towards a comprehensive look at global drivers of novel extreme wildfire events, Clim. Change, 165, 43, https://doi.org/10.1007/s10584-021-03066-4, 2021.
Dupas, R., Causse, J., Jaffrezic, A., Aquilina, L., and Durand, P.: Flowpath controls on high-spatial-resolution water-chemistry profiles in headwater streams, Hydrol. Process., 35, e14247, https://doi.org/10.1002/hyp.14247, 2021.
Ebel, B. A. and Moody, J. A.: Synthesis of soil-hydraulic properties and infiltration timescales in wildfire-affected soils, Hydrol. Process., 31, 324–340, https://doi.org/10.1002/hyp.10998, 2017.
Egusa, T., Kumagai, T., Oda, T., and Ohte, N.: Effects of bedrock groundwater discharge on spatial variability of dissolved carbon, nitrogen, and phosphorous concentrations in stream water within a forest headwater catchment, Hydrol. Process., 35, e13993, https://doi.org/10.1002/hyp.13993, 2021.
Emelko, M. B., Silins, U., Bladon, K. D., and Stone, M.: Implications of land disturbance on drinking water treatability in a changing climate: Demonstrating the need for “source water supply and protection” strategies, Water Res., 45, 461–472, https://doi.org/10.1016/j.watres.2010.08.051, 2011.
Fan, Y. and Li, R.: Variable Selection in Linear Mixed Effects Models, Ann. Stat., 40, 2043–2068, https://doi.org/10.1214/12-AOS1028, 2012.
Fellman, J. B., D'Amore, D. V., and Hood, E.: An evaluation of freezing as a preservation technique for analyzing dissolved organic C, N and P in surface water samples, Sci. Total Environ., 392, 305–312, https://doi.org/10.1016/j.scitotenv.2007.11.027, 2008.
Forbes, M. S., Raison, R. J., and Skjemstad, J. O.: Formation, transformation and transport of black carbon (charcoal) in terrestrial and aquatic ecosystems, Sci. Total Environ., 370, 190–206, https://doi.org/10.1016/j.scitotenv.2006.06.007, 2006.
Futter, M. N., Butterfield, D., Cosby, B. J., Dillon, P. J., Wade, A. J., and Whitehead, P. G.: Modeling the mechanisms that control in-stream dissolved organic carbon dynamics in upland and forested catchments, Water Resour. Res., 43, W02424, https://doi.org/10.1029/2006WR004960, 2007.
Hampton, T. B., Lin, S., and Basu, N. B.: Forest fire effects on stream water quality at continental scales: a meta-analysis, Environ. Res. Lett., 17, 064003, https://doi.org/10.1088/1748-9326/ac6a6c, 2022.
Harris, H. E., Baxter, C. V., and Davis, J. M.: Debris flows amplify effects of wildfire on magnitude and composition of tributary subsidies to mainstem habitats, Freshw. Sci., 34, 1457–1467, https://doi.org/10.1086/684015, 2015.
Hohner, A. K., Cawley, K., Oropeza, J., Summers, R. S., and Rosario-Ortiz, F. L.: Drinking water treatment response following a Colorado wildfire, Water Res., 105, 187–198, https://doi.org/10.1016/j.watres.2016.08.034, 2016.
Hohner, A. K., Terry, L. G., Townsend, E. B., Summers, R. S., and Rosario-Ortiz, F. L.: Water treatment process evaluation of wildfire-affected sediment leachates, Environ. Sci.-Wat. Res., 3, 352–365, https://doi.org/10.1039/C6EW00247A, 2017.
Hornberger, G. M., Bencala, K. E., and McKnight, D. M.: Hydrological controls on dissolved organic carbon during snowmelt in the Snake River near Montezuma, Colorado, Biogeochemistry, 25, 147–165, https://doi.org/10.1007/BF00024390, 1994.
Humbert, G., Jaffrezic, A., Fovet, O., Gruau, G., and Durand, P.: Dry-season length and runoff control annual variability in stream DOC dynamics in a small, shallow groundwater-dominated agricultural watershed, Water Resour. Res., 51, 7860–7877, https://doi.org/10.1002/2015WR017336, 2015.
Hutchins, R., Tank, S., Olefeldt, D., Quinton, W., Spence, C., Dion, N., and Mengistu, S.: Influence of Wildfire on Downstream Transport of Dissolved Carbon, Nutrients, and Mercury in the Permafrost Zone of Boreal Western Canada, J. Geophys. Res.-Biogeo., 128, e2023JG007602, https://doi.org/10.1029/2023JG007602, 2023.
Jarecke, K. M., Bladon, K. D., and Wondzell, S. M.: The Influence of Local and Nonlocal Factors on Soil Water Content in a Steep Forested Catchment, Water Resour. Res., 57, e2020WR028343, https://doi.org/10.1029/2020WR028343, 2021.
Jefferson, A., Grant, G., and Rose, T.: Influence of volcanic history on groundwater patterns on the west slope of the Oregon High Cascades, Water Resour. Res., 42, W12411, https://doi.org/10.1029/2005WR004812, 2006.
Johnson, D., Murphy, J. D., Walker, R. F., Glass, D. W., and Miller, W. W.: Wildfire effects on forest carbon and nutrient budgets, Ecol. Eng., 31, 183–192, https://doi.org/10.1016/j.ecoleng.2007.03.003, 2007.
Jung, H. Y., Hogue, T. S., Rademacher, L. K., and Meixner, T.: Impact of wildfire on source water contributions in Devil Creek, CA: evidence from end-member mixing analysis, Hydrol. Process., 23, 183–200, https://doi.org/10.1002/hyp.7132, 2009.
Kaiser, K. and Kalbitz, K.: Cycling downwards – dissolved organic matter in soils, Soil Biol. Biochem., 52, 29–32, https://doi.org/10.1016/j.soilbio.2012.04.002, 2012.
Kalbitz, K., Solinger, S., Park, J.-H., Michalzik, B., and Matzner, E.: Controls on the Dynamics of Dissolved Organic Matter in Soils: A Review, Soil Sci., 165, 277–304, 2000.
Katz, S. M., Gavin, D., and Silva, L. C. R.: Mapping Soil Organic Carbon in Wildfire-Affected Areas of the McKenzie River Basin, Oregon, USA, ESS Open Archive [preprint], https://doi.org/10.22541/essoar.168695523.32925211/v1, 2023.
Kerins, D. and Li, L.: High Dissolved Carbon Concentration in Arid Rocky Mountain Streams, Environ. Sci. Technol., 57, 4656–4667, https://doi.org/10.1021/acs.est.2c06675, 2023.
Koehler, A.-K., Murphy, K., Kiely, G., and Sottocornola, M.: Seasonal variation of DOC concentration and annual loss of DOC from an Atlantic blanket bog in South Western Ireland, Biogeochemistry, 95, 231–242, https://doi.org/10.1007/s10533-009-9333-9, 2009.
Kottek, M., Grieser, J., Beck, C., Rudolf, B., and Rubel, F.: World Map of the Köppen-Geiger climate classification updated, Meteorol. Z., 15, 259–263, https://doi.org/10.1127/0941-2948/2006/0130, 2006.
Kraus, T. E. C., Anderson, C. A., Morgenstern, K., Downing, B. D., Pellerin, B. A., and Bergamaschi, B. A.: Determining sources of dissolved organic carbon and disinfection byproduct precursors to the McKenzie River, Oregon, J. Environ. Qual., 39, 2100–2112, https://doi.org/10.2134/jeq2010.0030, 2010.
Kurz, W. A., Dymond, C. C., Stinson, G., Rampley, G. J., Neilson, E. T., Carroll, A. L., Ebata, T., and Safranyik, L.: Mountain pine beetle and forest carbon feedback to climate change, Nature, 452, 987–990, https://doi.org/10.1038/nature06777, 2008.
Kusaka, S., Nakane, K., and Mitsudera, M.: Effect of fire on water and major nutrient budgets in forest ecosystems: I. Water Balance, Japanese Journal of Ecology, 33, 323–332, https://doi.org/10.18960/seitai.33.3_323, 1983.
Lagouvardos, K., Kotroni, V., Giannaros, T. M., and Dafis, S.: Meteorological Conditions Conducive to the Rapid Spread of the Deadly Wildfire in Eastern Attica, Greece, B. Am. Meteor. Soc., 100, 2137–2145, https://doi.org/10.1175/BAMS-D-18-0231.1, 2019.
Lambert, T., Pierson-Wickmann, A.-C., Gruau, G., Jaffrezic, A., Petitjean, P., Thibault, J.-N., and Jeanneau, L.: Hydrologically driven seasonal changes in the sources and production mechanisms of dissolved organic carbon in a small lowland catchment, Water Resour. Res., 49, 5792–5803, https://doi.org/10.1002/wrcr.20466, 2013.
Larouche, J. R., Abbott, B. W., Bowden, W. B., and Jones, J. B.: The role of watershed characteristics, permafrost thaw, and wildfire on dissolved organic carbon biodegradability and water chemistry in Arctic headwater streams, Biogeosciences, 12, 4221–4233, https://doi.org/10.5194/bg-12-4221-2015, 2015.
Larson-Nash, S. S., Robichaud, P. R., Pierson, F. B., Moffet, C. A., Williams, C. J., Spaeth, K. E., Brown, R. E., and Lewis, S. A.: Recovery of small-scale infiltration and erosion after wildfires, J. Hydrol. Hydromech., 66, 261–270, https://doi.org/10.1515/johh-2017-0056, 2018.
Leenheer, J. A., Malcolm, R. L., McKinley, P. W., and Eccles, L. A.: Occurrence of dissolved organic carbon in selected ground-water samples in the United States, J. Res. US Geol. Surv., 2, 361–369, 1974.
Lenth, R. V.: emmeans: Estimated Marginal Means, aka Least-Squares Means, CRAN [code], https://doi.org/10.32614/CRAN.package.emmeans, 2021.
Ma, Q., Bales, R. C., Rungee, J., Conklin, M. H., Collins, B. M., and Goulden, M. L.: Wildfire controls on evapotranspiration in California's Sierra Nevada, J. Hydrol., 590, 125364, https://doi.org/10.1016/j.jhydrol.2020.125364, 2020.
MacNeille, R. B., Lohse, K. A., Godsey, S. E., Perdrial, J. N., and Baxter, C. V.: Influence of Drying and Wildfire on Longitudinal Chemistry Patterns and Processes of Intermittent Streams, Frontiers in Water, 2, 563841, https://doi.org/10.3389/frwa.2020.563841, 2020.
Masiello, C. A.: New directions in black carbon organic geochemistry, Mar. Chem., 92, 201–213, https://doi.org/10.1016/j.marchem.2004.06.043, 2004.
Mast, M. A. and Clow, D. W.: Effects of 2003 wildfires on stream chemistry in Glacier National Park, Montana, Hydrol. Process., 22, 5013–5023, https://doi.org/10.1002/hyp.7121, 2008.
Miesel, J., Reiner, A., Ewell, C., Maestrini, B., and Dickinson, M.: Quantifying Changes in Total and Pyrogenic Carbon Stocks Across Fire Severity Gradients Using Active Wildfire Incidents, Front. Earth Sci., 6, 41, https://doi.org/10.3389/feart.2018.00041, 2018.
MTBS Project: MTBS Data Access: Fire Level Geospatial Data, http://mtbs.gov/direct-download (last access: 18 January 2023), 2021.
Mulholland, P. J.: Dissolved Organic Matter Concentration and Flux in Streams, J. N. Am. Benthol. Soc., 16, 131–141, https://doi.org/10.2307/1468246, 1997.
Nelson, P. N., Baldock, J. A., and Oades, J. M.: Concentration and composition of dissolved organic carbon in streams in relation to catchment soil properties, Biogeochemistry, 19, 27–50, https://doi.org/10.1007/BF00000573, 1992.
Nolan, R., Lane, P., Benyon, R., Bradstock, R., and Mitchell, P.: Changes in evapotranspiration following wildfire in resprouting eucalypt forests, Ecohydrology, 7, 1363–1377, https://doi.org/10.1002/eco.1463, 2014.
Olefeldt, D., Devito, K. J., and Turetsky, M. R.: Sources and fate of terrestrial dissolved organic carbon in lakes of a Boreal Plains region recently affected by wildfire, Biogeosciences, 10, 6247–6265, https://doi.org/10.5194/bg-10-6247-2013, 2013.
Oliver, A. A., Reuter, J. E., Heyvaert, A. C., and Dahlgren, R. A.: Water quality response to the Angora Fire, Lake Tahoe, California, Biogeochemistry, 111, 361–376, 2012.
Onda, Y., Dietrich, W. E., and Booker, F.: Evolution of overland flow after a severe forest fire, Point Reyes, California, Catena, 72, 13–20, https://doi.org/10.1016/j.catena.2007.02.003, 2008.
Parham, L. M., Prokushkin, A. S., Pokrovsky, Oleg. S., Titov, S. V., Grekova, E., Shirokova, L. S., and McDowell, W. H.: Permafrost and fire as regulators of stream chemistry in basins of the Central Siberian Plateau, Biogeochemistry, 116, 55–68, https://doi.org/10.1007/s10533-013-9922-5, 2013.
Paul, M. J., LeDuc, S. D., Lassiter, M. G., Moorhead, L. C., Noyes, P. D., and Leibowitz, S. G.: Wildfire Induces Changes in Receiving Waters: A Review With Considerations for Water Quality Management, Water Resour. Res., 58, e2021WR030699, https://doi.org/10.1029/2021WR030699, 2022.
Pausas, J. G. and Keeley, J. E.: Wildfires and global change, Front. Ecol. Environ., 19, 387–395, https://doi.org/10.1002/fee.2359, 2021.
Peralta-Tapia, A., Sponseller, R. A., Ågren, A., Tetzlaff, D., Soulsby, C., and Laudon, H.: Scale-dependent groundwater contributions influence patterns of winter baseflow stream chemistry in boreal catchments, J. Geophys. Res.-Biogeo., 120, 847–858, https://doi.org/10.1002/2014JG002878, 2015.
Peterson, E. and Ver Hoef, J. M.: STARS: An ArcGIS Toolset Used to Calculate the Spatial Information Needed to Fit Spatial Statistical Models to Stream Network Data, J. Stat. Softw., 56, 1–17, https://doi.org/10.18637/jss.v056.i02, 2014.
Piatek, K. B., Christopher, S. F., and Mitchell, M. J.: Spatial and temporal dynamics of stream chemistry in a forested watershed, Hydrol. Earth Syst. Sci., 13, 423–439, https://doi.org/10.5194/hess-13-423-2009, 2009.
Poon, P. K. and Kinoshita, A. M.: Spatial and temporal evapotranspiration trends after wildfire in semi-arid landscapes, J. Hydrol., 559, 71–83, https://doi.org/10.1016/j.jhydrol.2018.02.023, 2018.
Preston, C. M. and Schmidt, M. W. I.: Black (pyrogenic) carbon: a synthesis of current knowledge and uncertainties with special consideration of boreal regions, Biogeosciences, 3, 397–420, https://doi.org/10.5194/bg-3-397-2006, 2006.
PRISM Climate Group: 30-Year Normals, Prism Climate Group [dataset], https://www.prism.oregonstate.edu/normals/ (last access: 28 June 2024), 2012.
R Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing [code], https://www.R-project.org/ (last access: 28 June 2024), 2020.
Raoelison, O. D., Valenca, R., Lee, A., Karim, S., Webster, J. P., Poulin, B. A., and Mohanty, S. K.: Wildfire impacts on surface water quality parameters: Cause of data variability and reporting needs, Environ. Pollut., 317, 120713, https://doi.org/10.1016/j.envpol.2022.120713, 2023.
Raymond, P. A. and Saiers, J. E.: Event controlled DOC export from forested watersheds, Biogeochemistry, 100, 197–209, https://doi.org/10.1007/s10533-010-9416-7, 2010.
Revchuk, A. D. and Suffet, I. H.: Effect of Wildfires on Physicochemical Changes of Watershed Dissolved Organic Matter, Water Environ. Res., 86, 372–381, https://doi.org/10.2175/106143013X13736496909671, 2014.
Rey, D. M., Briggs, M. A., Walvoord, M. A., and Ebel, B. A.: Wildfire-induced shifts in groundwater discharge to streams identified with paired air and stream water temperature analyses, J. Hydrol., 619, 129272, https://doi.org/10.1016/j.jhydrol.2023.129272, 2023.
Rhoades, C. C., Chow, A. T., Covino, T. P., Fegel, T. S., Pierson, D. N., and Rhea, A. E.: The Legacy of a Severe Wildfire on Stream Nitrogen and Carbon in Headwater Catchments, Ecosystems, 22, 643–657, https://doi.org/10.1007/s10021-018-0293-6, 2019.
Rodríguez-Cardona, B. M., Coble, A. A., Wymore, A. S., Kolosov, R., Podgorski, D. C., Zito, P., Spencer, R. G. M., Prokushkin, A. S., and McDowell, W. H.: Wildfires lead to decreased carbon and increased nitrogen concentrations in upland arctic streams, Sci. Rep., 10, 8722, https://doi.org/10.1038/s41598-020-65520-0, 2020.
Rodríguez-Jeangros, N., Hering, A. S., and McCray, J. E.: Analysis of Anthropogenic, Climatological, and Morphological Influences on Dissolved Organic Matter in Rocky Mountain Streams, Water, 10, 534, https://doi.org/10.3390/w10040534, 2018.
Roebuck Jr., J. A., Bladon, K. D., Donahue, D., Graham, E. B., Grieger, S., Morgenstern, K., Norwood, M. J., Wampler, K. A., Erkert, L., Renteria, L., Danczak, R., Fricke, S., and Myers-Pigg, A. N.: Spatiotemporal Controls on the Delivery of Dissolved Organic Matter to Streams Following a Wildfire, Geophys. Res. Lett., 49, e2022GL099535, https://doi.org/10.1029/2022GL099535, 2022.
Roebuck Jr., J. A., Prestegaard Jr., K., Gaviria, C., Myers-Pigg, A., and Ziegler, S. E.: Hydrobiogeochemical Controls on the Delivery of Dissolved Organic Matter to Boreal Headwater Streams, Water Resour. Res., 59, e2022WR033358, https://doi.org/10.1029/2022WR033358, 2023.
Rüegg, J., Eichmiller, J. J., Mladenov, N., and Dodds, W. K.: Dissolved organic carbon concentration and flux in a grassland stream: spatial and temporal patterns and processes from long-term data, Biogeochemistry, 125, 393–408, https://doi.org/10.1007/s10533-015-0134-z, 2015.
Rust, A. J., Randell, J., Todd, A. S., and Hogue, T. S.: Wildfire impacts on water quality, macroinvertebrate, and trout populations in the Upper Rio Grande, Forest Ecol. Manage., 453, 117636, https://doi.org/10.1016/j.foreco.2019.117636, 2019.
Salinas, N., Malhi, Y., Meir, P., Silman, M., Roman Cuesta, R., Huaman, J., Salinas, D., Huaman, V., Gibaja, A., Mamani, M., and Farfan, F.: The sensitivity of tropical leaf litter decomposition to temperature: results from a large-scale leaf translocation experiment along an elevation gradient in Peruvian forests, New Phytol., 189, 967–977, https://doi.org/10.1111/j.1469-8137.2010.03521.x, 2011.
Sanderman, J., Baldock, J. A., and Amundson, R.: Dissolved organic carbon chemistry and dynamics in contrasting forest and grassland soils, Biogeochemistry, 89, 181–198, https://doi.org/10.1007/s10533-008-9211-x, 2008.
Santín, C., Doerr, S. H., Preston, C. M., and González-Rodríguez, G.: Pyrogenic organic matter production from wildfires: a missing sink in the global carbon cycle, Glob. Change Biol., 21, 1621–1633, https://doi.org/10.1111/gcb.12800, 2015.
Santos, F., Wymore, A. S., Jackson, B. K., Sullivan, S. M. P., McDowell, W. H., and Berhe, A. A.: Fire severity, time since fire, and site-level characteristics influence streamwater chemistry at baseflow conditions in catchments of the Sierra Nevada, California, USA, Fire Ecol., 15, 3, https://doi.org/10.1186/s42408-018-0022-8, 2019.
Shang, P., Lu, Y., Du, Y., Jaffé, R., Findlay, R. H., and Wynn, A.: Climatic and watershed controls of dissolved organic matter variation in streams across a gradient of agricultural land use, Sci. Total Environ., 612, 1442–1453, https://doi.org/10.1016/j.scitotenv.2017.08.322, 2018.
Sheridan, G. J., Lane, P. N. J., and Noske, P. J.: Quantification of hillslope runoff and erosion processes before and after wildfire in a wet Eucalyptus forest, J. Hydrol., 343, 12–28, https://doi.org/10.1016/j.jhydrol.2007.06.005, 2007.
Snyder, K., Sullivan, T., Raymond, R., Moore, D., and Gilbert, E.: North Santiam River Watershed Assessment, E&S Environmental Chemistry, Inc., 2002.
Stoof, C. R., Vervoort, R. W., Iwema, J., van den Elsen, E., Ferreira, A. J. D., and Ritsema, C. J.: Hydrological response of a small catchment burned by experimental fire, Hydrol. Earth Syst. Sci., 16, 267–285, https://doi.org/10.5194/hess-16-267-2012, 2012.
Stoof, C. R., Slingerland, E. C., Mol, W., van den Berg, J., Vermeulen, P. J., Ferreira, A. J. D., Ritsema, C. J., Parlange, J.-Y., and Steenhuis, T. S.: Preferential flow as a potential mechanism for fire-induced increase in streamflow, Water Resour. Res., 50, 1840–1845, https://doi.org/10.1002/2013WR014397, 2014.
Tague, C., Grant, G., Farrell, M., Choate, J., and Jefferson, A.: Deep groundwater mediates streamflow response to climate warming in the Oregon Cascades, Clim. Change, 86, 189–210, https://doi.org/10.1007/s10584-007-9294-8, 2008.
Tiwari, T., Laudon, H., Beven, K., and Ågren, A. M.: Downstream changes in DOC: Inferring contributions in the face of model uncertainties, Water Resour. Res., 50, 514–525, https://doi.org/10.1002/2013WR014275, 2014.
Trabucco, A. and Zomer, R.: Global Aridity Index and Potential Evapotranspiration (ET0) Climate Database v2, figshare [dataset], https://doi.org/10.6084/m9.figshare.7504448.v3, 2019.
Tupas, L. M., Popp, B. N., and Karl, D. M.: Dissolved organic carbon in oligotrophic waters: experiments on sample preservation, storage and analysis, Mar. Chem., 45, 207–216, https://doi.org/10.1016/0304-4203(94)90004-3, 1994.
Turco, M., Jerez, S., Augusto, S., Tarín-Carrasco, P., Ratola, N., Jiménez-Guerrero, P., and Trigo, R. M.: Climate drivers of the 2017 devastating fires in Portugal, Sci. Rep., 9, 13886, https://doi.org/10.1038/s41598-019-50281-2, 2019.
U.S. Geological Survey: Shuttle Radar Topography Mission (SRTM) 1 Arc-Second Global, U.S. Geological Survey [data set], https://doi.org/10.5066/F7PR7TFT, 2000.
U.S. Geological Survey: Base-flow index grid for the conterminous United States, U.S. Geological Survey [data set], https://doi.org/10.5066/P9MCTH3J, 2003.
U.S. Geological Survey: The StreamStats program, https://streamstats.usgs.gov/ss/ (last access: 23 June 2023), 2019.
U.S. Geological Survey: National Hydrography Dataset (NHD) – USGS National Map Downloadable Data Collection, U.S. Geological Survey [data set], https://www.usgs.gov/national-hydrography (last access: 28 June 2024), 2020.
U.S. Geological Survey: Water Data for the Nation, https://waterdata.usgs.gov/nwis, last access: 12 January 2024.
USDA NRCS: Oregon SSURGO STATSGO Soils Compilation, Oregon Spatial Library [data set], https://spatialdata.oregonexplorer.info/geoportal/details;id=668a7a8824e5456797bec858cc14ca74, 2016.
Uzun, H., Dahlgren, R. A., Olivares, C., Erdem, C. U., Karanfil, T., and Chow, A. T.: Two years of post-wildfire impacts on dissolved organic matter, nitrogen, and precursors of disinfection by-products in California stream waters, Water Res., 181, 115891, https://doi.org/10.1016/j.watres.2020.115891, 2020.
van den Berg, L. J. L., Shotbolt, L., and Ashmore, M. R.: Dissolved organic carbon (DOC) concentrations in UK soils and the influence of soil, vegetation type and seasonality, Sci. Total Environ., 427–428, 269–276, https://doi.org/10.1016/j.scitotenv.2012.03.069, 2012.
Ver Hoef, J. M. and Peterson, E. E.: A Moving Average Approach for Spatial Statistical Models of Stream Networks, J. Am. Stat. Assoc., 105, 6–18, https://doi.org/10.1198/jasa.2009.ap08248, 2010.
Ver Hoef, J. M., Peterson, E., Clifford, D., and Shah, R.: SSN: An R Package for Spatial Statistical Modeling on Stream Networks, J. Stat. Softw., 56, 1–45, https://doi.org/10.18637/jss.v056.i03, 2014.
van Verseveld, W. J., McDonnell, J. J., and Lajtha, K.: A mechanistic assessment of nutrient flushing at the catchment scale, J. Hydrol., 358, 268–287, https://doi.org/10.1016/j.jhydrol.2008.06.009, 2008.
Vidon, P., Carleton, W., and Mitchell, M. J.: Spatial and temporal variability in stream dissolved organic carbon quantity and quality in an Adirondack forested catchment, Appl. Geochem., 46, 10–18, https://doi.org/10.1016/j.apgeochem.2014.04.008, 2014.
Vila-Escalé, M., Vegas-Vilarrúbia, T., and Prat, N.: Release of polycyclic aromatic compounds into a Mediterranean creek (Catalonia, NE Spain) after a forest fire, Water Res., 41, 2171–2179, https://doi.org/10.1016/j.watres.2006.07.029, 2007.
Wagner, S., Cawley, K. M., Rosario-Ortiz, F. L., and Jaffé, R.: In-stream sources and links between particulate and dissolved black carbon following a wildfire, Biogeochemistry, 124, 145–161, https://doi.org/10.1007/s10533-015-0088-1, 2015.
Wagner, S., Jaffé, R., and Stubbins, A.: Dissolved black carbon in aquatic ecosystems, Limnology and Oceanography Letters, 3, 168–185, https://doi.org/10.1002/lol2.10076, 2018.
Wampler, K. A., Bladon, K. D., and Myers-Pigg, A. N.: Data and Scripts describing dissolved organic carbon concentrations across a stream network in Oregon following the 2020 Holiday Farm Wildfire, Oregon State University [data set], https://doi.org/10.7267/zc77sz60m, 2024.
Wei, X., Hayes, D. J., and Fernandez, I.: Fire reduces riverine DOC concentration draining a watershed and alters post-fire DOC recovery patterns, Environ. Res. Lett., 16, 024022, https://doi.org/10.1088/1748-9326/abd7ae, 2021.
Williams, C. H. S., Silins, U., Spencer, S. A., Wagner, M. J., Stone, M., and Emelko, M. B.: Net precipitation in burned and unburned subalpine forest stands after wildfire in the northern Rocky Mountains, Int. J. Wildland Fire, 28, 750–760, https://doi.org/10.1071/WF18181, 2019.
Wilson, H. F. and Xenopoulos, M. A.: Ecosystem and Seasonal Control of Stream Dissolved Organic Carbon Along a Gradient of Land Use, Ecosystems, 11, 555–568, https://doi.org/10.1007/s10021-008-9142-3, 2008.
Wollheim, W. M., Stewart, R. J., Aiken, G. R., Butler, K. D., Morse, N. B., and Salisbury, J.: Removal of terrestrial DOC in aquatic ecosystems of a temperate river network, Geophys. Res. Lett., 42, 6671–6679, https://doi.org/10.1002/2015GL064647, 2015.
Writer, J. H., McCleskey, R. B., and Murphy, S. F.: Effects of wildfire on source-water quality and aquatic ecosystems, Colorado Front Range, IAHS Red Book, 354, 117–122, 2012.
Zimmer, M. A., Bailey, S. W., McGuire, K. J., and Bullen, T. D.: Fine scale variations of surface water chemistry in an ephemeral to perennial drainage network, Hydrol. Process., 27, 3438–3451, https://doi.org/10.1002/hyp.9449, 2013.
Short summary
Following a high-severity wildfire, we sampled 129 sites during four different times of the year across a stream network to quantify dissolved organic carbon. The results from our study suggested that dissolved organic carbon may decrease with increasing burn severity. They also suggest that landscape characteristics can override wildfire impacts, with the seasonal timing of sampling influencing the observed response of dissolved organic carbon concentrations to wildfire.
Following a high-severity wildfire, we sampled 129 sites during four different times of the year...
Altmetrics
Final-revised paper
Preprint