Articles | Volume 21, issue 13
https://doi.org/10.5194/bg-21-3143-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-21-3143-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reviews and syntheses: A scoping review evaluating the potential application of ecohydrological models for northern peatland restoration
Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40, Dublin, Ireland
Mark G. Healy
Ryan Institute and Civil Engineering, University of Galway, H91 TK33, Galway, Ireland
Laurence Gill
Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40, Dublin, Ireland
Related authors
No articles found.
Dave O'Leary, Patrick Tuohy, Owen Fenton, Mark G. Healy, Hilary Pierce, Asaf Shnel, and Eve Daly
EGUsphere, https://doi.org/10.5194/egusphere-2025-1966, https://doi.org/10.5194/egusphere-2025-1966, 2025
Short summary
Short summary
We assess the impact of open drain damming to help restore drained peat soils. We measured how water levels and soil moisture changed over time and space using field sensors and geophysical mapping tools. Our results show that the impact of damming is limited to < 20 m on our site. This approach could support efforts to reduce carbon loss and improve the health of peatland landscapes in a practical, scalable way
This article is included in the Encyclopedia of Geosciences
Saheba Bhatnagar, Mahesh Kumar Sha, Laurence Gill, Bavo Langerock, and Bidisha Ghosh
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-88, https://doi.org/10.5194/bg-2022-88, 2022
Revised manuscript not accepted
Short summary
Short summary
Different land types emit a different quantity of methane, with wetlands being one of the largest sources of methane emissions, contributing to climate change. This study finds variations in land types using the methane total column data from Sentinel 5-precursor satellite with a machine learning algorithm. The variations in land types were identified with high confidence, demonstrating that the methane emissions from the wetland and other land types substantially affect the total column.
This article is included in the Encyclopedia of Geosciences
Jan Knappe, Celia Somlai, and Laurence W. Gill
Biogeosciences, 19, 1067–1085, https://doi.org/10.5194/bg-19-1067-2022, https://doi.org/10.5194/bg-19-1067-2022, 2022
Short summary
Short summary
Two domestic on-site wastewater treatment systems have been monitored for greenhouse gas (carbon dioxide, methane and nitrous oxide) emissions coming from the process units, soil and vent pipes. This has enabled the net greenhouse gas per person to be quantified for the first time, as well as the impact of pre-treatment on the effluent before being discharged to soil. These decentralised wastewater treatment systems serve approx. 20 % of the population in both Europe and the United States.
This article is included in the Encyclopedia of Geosciences
Patrick Morrissey, Paul Nolan, Ted McCormack, Paul Johnston, Owen Naughton, Saheba Bhatnagar, and Laurence Gill
Hydrol. Earth Syst. Sci., 25, 1923–1941, https://doi.org/10.5194/hess-25-1923-2021, https://doi.org/10.5194/hess-25-1923-2021, 2021
Short summary
Short summary
Lowland karst aquifers provide important wetland habitat resulting from seasonal flooding on the land surface. This flooding is controlled by surcharging of the karst system, which is very sensitive to changes in rainfall. This study investigates the predicted impacts of climate change on a lowland karst catchment in Ireland and highlights the relative vulnerability to future changing climate conditions of karst systems and any associated wetland habitats.
This article is included in the Encyclopedia of Geosciences
Cited articles
Acharya, S., Kaplan, D. A., Jawitz, J. W., and Cohen, M. J.: Doing ecohydrology backward: Inferring wetland flow and hydroperiod from landscape patterns, Water Resour. Res., 53, 5742–5755, https://doi.org/10.1002/2017WR020516, 2017.
Apori, S. O., Mcmillan, D., Giltrap, M., and Tian, F.: Mapping the restoration of degraded peatland as a research area: A scientometric review, Front. Environ. Sci., 10, 942788, https://doi.org/10.3389/fenvs.2022.942788, 2022.
Bacon, K. L., Baird, A. J., Blundell, A., Bourgault, M.-A., Chapman, P. J., Dargie, G., Dooling, G. P., Gee, C., Holden, J., Kelly, T., McKendrick-Smith, K. A., Morris, P. J., Noble, A., Palmer, S. M., Quillet, A., Swindles, G. T., Watson, E. J., and Young, D. M.: Questioning ten common assumptions about peatlands, Mires Peat, 19, 1–23, https://doi.org/10.19189/MaP.2016.OMB.253, 2017.
Baird, A. J., Morris, P. J., and Belyea, L. R.: The DigiBog peatland development model 1: rationale, conceptual model, and hydrological basis, Ecohydrology, 5, 242–255, https://doi.org/10.1002/eco.230, 2012.
Ball, J., Gimona, A., Cowie, N., Hancock, M., Klein, D., Donaldson-Selby, G., and Artz, R. R. E.: Assessing the Potential of using Sentinel-1 and 2 or high-resolution aerial imagery data with Machine Learning and Data Science Techniques to Model Peatland Restoration Progress – a Northern Scotland case study, Int. J. Remote Sens., 44, 2885–2911, https://doi.org/10.1080/01431161.2023.2209916, 2023.
Bechtold, M., De Lannoy, G. J. M., Reichle, R. H., Roose, D., Balliston, N., Burdun, I., Devito, K., Kurbatova, J., Strack, M., and Zarov, E. A.: Improved groundwater table and L-band brightness temperature estimates for Northern Hemisphere peatlands using new model physics and SMOS observations in a global data assimilation framework, Remote Sens. Environ., 246, 111805, https://doi.org/10.1016/j.rse.2020.111805, 2020.
Belyea, L. R. and Baird, A. J.: Beyond “the limits to peat bog growth”: Cross-scale feedback in peatland development, Ecol. Monogr., 76, 299–322, https://doi.org/10.1890/0012-9615(2006)076[0299:BTLTPB]2.0.CO;2, 2006.
Bernard-Jannin, L., Binet, S., Gogo, S., Leroy, F., Défarge, C., Jozja, N., Zocatelli, R., Perdereau, L., and Laggoun-Défarge, F.: Hydrological control of dissolved organic carbon dynamics in a rehabilitated Sphagnum-dominated peatland: a water-table based modelling approach, Hydrol. Earth Syst. Sci., 22, 4907–4920, https://doi.org/10.5194/hess-22-4907-2018, 2018.
Beven, K. J., Kirkby, M. J., Freer, J. E., and Lamb, R.: A history of TOPMODEL, Hydrol. Earth Syst. Sci., 25, 527–549, https://doi.org/10.5194/hess-25-527-2021, 2021.
Booth, E. G., Loheide, S. P., and Bart, D.: Fen ecohydrologic trajectories in response to groundwater drawdown with an edaphic feedback, Ecohydrology, 15, e2471, https://doi.org/10.1002/eco.2471, 2022.
Brandyk, A., Majewski, G., Kiczko, A., Boczon, A., Wrobel, M., and Porretta-Tomaszewska, P.: Ground Water Modelling for the Restoration of Carex Communities on a Sandy River Terrace, Sustainability, 8, 1324, https://doi.org/10.3390/su8121324, 2016.
Brust, K., Krebs, M., Wahren, A., Gaudig, G., and Joosten, H.: The water balance of a Sphagnum farming site in north-west Germany, Mires Peat, 20, 1–12, https://doi.org/10.19189/MaP.2017.OMB.301, 2017.
Clymo, R. S.: A Model of Peat Bog Growth, in: Production Ecology of British Moors and Montane Grasslands, vol. 27, edited by: Heal, O. W. and Perkins, D. F., Springer-Verlag, Berlin, Heidelberg, 187–223, https://doi.org/10.1007/978-3-642-66760-2_9, 1978.
Couwenberg, J.: A simulation model of mire patterning – revisited, Ecography, 28, 653–661, https://doi.org/10.1111/j.2005.0906-7590.04265.x, 2005.
Cresto Aleina, F., Runkle, B. R. K., Kleinen, T., Kutzbach, L., Schneider, J., and Brovkin, V.: Modeling micro-topographic controls on boreal peatland hydrology and methane fluxes, Biogeosciences, 12, 5689–5704, https://doi.org/10.5194/bg-12-5689-2015, 2015.
Cresto Aleina, F., Runkle, B. R. K., Brücher, T., Kleinen, T., and Brovkin, V.: Upscaling methane emission hotspots in boreal peatlands, Geosci. Model Dev., 9, 915–926, https://doi.org/10.5194/gmd-9-915-2016, 2016.
Dabrowska-Zielinska, K., Misiura, K., Malinska, A., Gurdak, R., Grzybowski, P., Bartold, M., and Kluczek, M.: Spatiotemporal estimation of gross primary production for terrestrial wetlands using satellite and field data, Remote Sensing Applications-Society and Environment, 27, 100786, https://doi.org/10.1016/j.rsase.2022.100786, 2022.
Dadap, N. C., Cobb, A. R., Hoyt, A. M., Harvey, C. F., Feldman, A. F., Im, E.-S., and Konings, A. G.: Climate change-induced peatland drying in Southeast Asia, Environ. Res. Lett., 17, 074026, https://doi.org/10.1088/1748-9326/ac7969, 2022.
de Wit, H. A., Ledesma, J. L. J., and Futter, M. N.: Aquatic DOC export from subarctic Atlantic blanket bog in Norway is controlled by seasalt deposition, temperature and precipitation, Biogeochemistry, 127, 305–321, https://doi.org/10.1007/s10533-016-0182-z, 2016.
Dettmann, U., Bechtold, M., Frahm, E., and Tiemeyer, B.: On the applicability of unimodal and bimodal van Genuchten–Mualem based models to peat and other organic soils under evaporation conditions, J. Hydrol., 515, 103–115, https://doi.org/10.1016/j.jhydrol.2014.04.047, 2014.
Dimitrov, D. D., Grant, R. F., Lafleur, P. M., and Humphreys, E. R.: Modeling the effects of hydrology on ecosystem respiration at Mer Bleue bog, J. Geophys. Res.-Biogeo., 115, G04043, https://doi.org/10.1029/2010JG001312, 2010.
Dimitrov, D. D., Bhatti, J. S., and Grant, R. F.: The transition zones (ecotone) between boreal forests and peatlands: Modelling water table along a transition zone between upland black spruce forest and poor forested fen in central Saskatchewan, Ecol. Model., 274, 57–70, https://doi.org/10.1016/j.ecolmodel.2013.11.030, 2014.
Eppinga, M. B., de Ruiter, P. C., Wassen, M. J., and Rietkerk, M.: Nutrients and Hydrology Indicate the Driving Mechanisms of Peatland Surface Patterning, Am. Nat., 173, 803–818, https://doi.org/10.1086/598487, 2009.
Futter, M. N., Erlandsson, M. A., Butterfield, D., Whitehead, P. G., Oni, S. K., and Wade, A. J.: PERSiST: a flexible rainfall-runoff modelling toolkit for use with the INCA family of models, Hydrol. Earth Syst. Sci., 18, 855–873, https://doi.org/10.5194/hess-18-855-2014, 2014.
Gauthier, T. J., McCarter, C. P. R., and Price, J. S.: The effect of compression on Sphagnum hydrophysical properties: Implications for increasing hydrological connectivity in restored cutover peatlands, Ecohydrology, 11, e2020, https://doi.org/10.1002/eco.2020, 2018.
Gilhespy, S. L., Anthony, S., Cardenas, L., Chadwick, D., Del Prado, A., Li, C., Misselbrook, T., Rees, R. M., Salas, W., Sanz-Cobena, A., Smith, P., Tilston, E. L., Topp, C. F. E., Vetter, S., and Yeluripati, J. B.: First 20 years of DNDC (DeNitrification DeComposition): Model evolution, Ecol. Model., 292, 51–62, https://doi.org/10.1016/j.ecolmodel.2014.09.004, 2014.
Glenk, K., Faccioli, M., Martin-Ortega, J., Schulze, C., and Potts, J.: The opportunity cost of delaying climate action: Peatland restoration and resilience to climate change, Global Environ. Chang., 70, 102323, https://doi.org/10.1016/j.gloenvcha.2021.102323, 2021.
Goudarzi, S., Milledge, D. G., Holden, J., Evans, M. G., Allott, T. E. H., Shuttleworth, E. L., Pilkington, M., and Walker, J.: Blanket Peat Restoration: Numerical Study of the Underlying Processes Delivering Natural Flood Management Benefits, Water Resour. Res., 57, e2020WR029209, https://doi.org/10.1029/2020WR029209, 2021.
Grant, R. F.: Modelling changes in nitrogen cycling to sustain increases in forest productivity under elevated atmospheric CO2 and contrasting site conditions, Biogeosciences, 10, 7703–7721, https://doi.org/10.5194/bg-10-7703-2013, 2013.
Grant, R. F., Mekonnen, Z. A., Riley, W. J., Arora, B., and Torn, M. S.: Mathematical Modelling of Arctic Polygonal Tundra with Ecosys: 2. Microtopography Determines How CO2 and CH4 Exchange Responds to Changes in Temperature and Precipitation, J. Geophys. Res.-Biogeo., 122, 3174–3187, https://doi.org/10.1002/2017JG004037, 2017.
Haahti, K., Warsta, L., Kokkonen, T., Younis, B. A., and Koivusalo, H.: Distributed hydrological modeling with channel network flow of a forestry drained peatland site, Water Resour. Res., 52, 246–263, https://doi.org/10.1002/2015WR018038, 2016.
He, H., Clark, L., Lai, O. Y., Kendall, R., Strachan, I., and Roulet, N. T.: Simulating Soil Atmosphere Exchanges and CO2 Fluxes for an Ongoing Peat Extraction Site, Ecosystems, 26, 1335–1348, https://doi.org/10.1007/s10021-023-00836-2, 2023a.
He, H., Moore, T., Humphreys, E. R., Lafleur, P. M., and Roulet, N. T.: Water level variation at a beaver pond significantly impacts net CO2 uptake of a continental bog, Hydrol. Earth Syst. Sci., 27, 213–227, https://doi.org/10.5194/hess-27-213-2023, 2023b.
Heffernan, J. B., Watts, D. L., and Cohen, M. J.: Discharge Competence and Pattern Formation in Peatlands: A Meta-Ecosystem Model of the Everglades Ridge-Slough Landscape, PLOS ONE, 8, e64174, https://doi.org/10.1371/journal.pone.0064174, 2013.
Helbig, M., Živković, T., Alekseychik, P., Aurela, M., El-Madany, T. S., Euskirchen, E. S., Flanagan, L. B., Griffis, T. J., Hanson, P. J., Hattakka, J., Helfter, C., Hirano, T., Humphreys, E. R., Kiely, G., Kolka, R. K., Laurila, T., Leahy, P. G., Lohila, A., Mammarella, I., Nilsson, M. B., Panov, A., Parmentier, F. J. W., Peichl, M., Rinne, J., Roman, D. T., Sonnentag, O., Tuittila, E.-S., Ueyama, M., Vesala, T., Vestin, P., Weldon, S., Weslien, P., and Zaehle, S.: Warming response of peatland CO2 sink is sensitive to seasonality in warming trends, Nat. Clim. Change, 12, 743–749, https://doi.org/10.1038/s41558-022-01428-z, 2022.
Hokanson, K. J., Thompson, C., Devito, K., and Mendoza, C. A.: Hummock-scale controls on groundwater recharge rates and the potential for developing local groundwater flow systems in water-limited environments, J. Hydrol., 603, 126894, https://doi.org/10.1016/j.jhydrol.2021.126894, 2021.
Horton, A. J., Lehtinen, J., and Kummu, M.: Targeted land management strategies could halve peatland fire occurrences in Central Kalimantan, Indonesia, Commun. Earth Environ., 3, 204, https://doi.org/10.1038/s43247-022-00534-2, 2022.
Huang, R., Chen, X., Hu, Q., Jiang, S., and Dong, J.: Impacts of altitudinal ecohydrological dynamic changes on water balance under warming climate in a watershed of the Qilian Mountains, China, Sci. Total Environ., 908, 168070, https://doi.org/10.1016/j.scitotenv.2023.168070, 2024.
Ikkala, L., Ronkanen, A.-K., Ilmonen, J., Simila, M., Rehell, S., Kumpula, T., Pakkila, L., Klove, B., and Marttila, H.: Unmanned Aircraft System (UAS) Structure-From-Motion (SfM) for Monitoring the Changed Flow Paths and Wetness in Minerotrophic Peatland Restoration, Remote Sens.-Basel, 14, 3169, https://doi.org/10.3390/rs14133169, 2022.
Jaenicke, J., Wosten, H., Budiman, A., and Siegert, F.: Planning hydrological restoration of peatlands in Indonesia to mitigate carbon dioxide emissions, Mitig. Adapt. Strat. Gl., 15, 223–239, https://doi.org/10.1007/s11027-010-9214-5, 2010.
Jaros, A., Rossi, P. M., Ronkanen, A.-K., and Klove, B.: Parameterisation of an integrated groundwater-surface water model for hydrological analysis of boreal aapa mire wetlands, J. Hydrol., 575, 175–191, https://doi.org/10.1016/j.jhydrol.2019.04.094, 2019.
Ju, W., Chen, J., Black, T., Barr, A., Mccaughey, H., and Roulet, N.: Hydrological effects on carbon cycles of Canada's forests and wetlands, Tellus B, 58, 16–30, https://doi.org/10.1111/j.1600-0889.2005.00168.x, 2006.
Jussila, T., Heikkinen, R. K., Anttila, S., Aapala, K., Kervinen, M., Aalto, J., and Vihervaara, P.: Quantifying wetness variability in aapa mires with Sentinel-2: towards improved monitoring of an EU priority habitat, Remote Sens. Ecol. Conserv., 10, 172–187, https://doi.org/10.1002/rse2.363, 2023.
Kalcic, M. M., Chaubey, I., and Frankenberger, J.: Defining Soil and Water Assessment Tool (SWAT) hydrologic response units (HRUs) by field boundaries, Int. J. Agr. Biol. Eng., 8, 69–80, https://doi.org/10.3965/j.ijabe.20150803.951, 2015.
Kaplan, D. A., Paudel, R., Cohen, M. J., and Jawitz, J. W.: Orientation matters: Patch anisotropy controls discharge competence and hydroperiod in a patterned peatland, Geophys. Res. Lett., 39, L17401, https://doi.org/10.1029/2012GL052754, 2012.
Kasimir, A., He, H., Coria, J., and Norden, A.: Land use of drained peatlands: Greenhouse gas fluxes, plant production, and economics, Global Change Biol., 24, 3302–3316, https://doi.org/10.1111/gcb.13931, 2018.
Kennedy, G. and Price, J.: Simulating soil water dynamics in a cutover bog, Water Resour. Res., 40, W12410, https://doi.org/10.1029/2004WR003099, 2004.
Kim, Y., Roulet, N. T., Li, C., Frolking, S., Strachan, I. B., Peng, C., Teodoru, C. R., Prairie, Y. T., and Tremblay, A.: Simulating carbon dioxide exchange in boreal ecosystems flooded by reservoirs, Ecol. Model., 327, 1–17, https://doi.org/10.1016/j.ecolmodel.2016.01.006, 2016.
Koch, J., Elsgaard, L., Greve, M. H., Gyldenkærne, S., Hermansen, C., Levin, G., Wu, S., and Stisen, S.: Water-table-driven greenhouse gas emission estimates guide peatland restoration at national scale, Biogeosciences, 20, 2387–2403, https://doi.org/10.5194/bg-20-2387-2023, 2023.
Kottek, M., Grieser, J., Beck, C., Rudolf, B., and Rubel, F.: World map of the Köppen-Geiger climate classification updated, Metz, 15, 259–263, https://doi.org/10.1127/0941-2948/2006/0130, 2006.
Kou, D., Virtanen, T., Treat, C. C., Tuovinen, J.-P., Rasanen, A., Juutinen, S., Mikola, J., Aurela, M., Heiskanen, L., Heikkila, M., Weckstrom, J., Juselius, T., Piilo, S. R., Deng, J., Zhang, Y., Chaudhary, N., Huang, C., Valiranta, M., Biasi, C., Liu, X., Guo, M., Zhuang, Q., Korhola, A., and Shurpali, N. J.: Peatland Heterogeneity Impacts on Regional Carbon Flux and Its Radiative Effect Within a Boreal Landscape, J. Geophys. Res.-Biogeo., 127, e2021JG006774, https://doi.org/10.1029/2021JG006774, 2022.
Kwon, M. J., Ballantyne, A., Ciais, P., Qiu, C., Salmon, E., Raoult, N., Guenet, B., Gockede, M., Euskirchen, E. S., Nykanen, H., Schuur, E. A. G., Turetsky, M. R., Dieleman, C. M., Kane, E. S., and Zona, D.: Lowering water table reduces carbon sink strength and carbon stocks in northern peatlands, Global Change Biol., 28, 6752–6770, https://doi.org/10.1111/gcb.16394, 2022.
Lana-Renault, N., Morán-Tejeda, E., Moreno de las Heras, M., Lorenzo-Lacruz, J., and López-Moreno, N.: Land-use change and impacts, in: Water Resources in the Mediterranean Region, Elsevier, 257–296, https://doi.org/10.1016/B978-0-12-818086-0.00010-8, 2020.
Largeron, C., Krinner, G., Ciais, P., and Brutel-Vuilmet, C.: Implementing northern peatlands in a global land surface model: description and evaluation in the ORCHIDEE high-latitude version model (ORC-HL-PEAT), Geosci. Model Dev., 11, 3279–3297, https://doi.org/10.5194/gmd-11-3279-2018, 2018.
Lehan, K., McCarter, C. P. R., Moore, P. A., and Waddington, J. M.: Effect of stockpiling time on donor-peat hydrophysical properties: Implications for peatland restoration, Ecol. Eng., 182, 106701, https://doi.org/10.1016/j.ecoleng.2022.106701, 2022.
Lhosmot, A., Collin, L., Magnon, G., Steinmann, M., Bertrand, C., Stefani, V., Toussaint, M., and Bertrand, G.: Restoration and meteorological variability highlight nested water supplies in middle altitude/latitude peatlands: Towards a hydrological conceptual model of the Frasne peatland, Jura Mountains, France, Ecohydrology, 14, e2315, https://doi.org/10.1002/eco.2315, 2021.
Lippmann, T. J. R., van der Velde, Y., Heijmans, M. M. P. D., Dolman, H., Hendriks, D. M. D., and van Huissteden, K.: Peatland-VU-NUCOM (PVN 1.0): using dynamic plant functional types to model peatland vegetation, CH4, and CO2 emissions, Geosci. Model Dev., 16, 6773–6804, https://doi.org/10.5194/gmd-16-6773-2023, 2023.
Liu, X., Chen, H., Zhu, Q., Wu, J., Frolking, S., Zhu, D., Wang, M., Wu, N., Peng, C., and He, Y.: Holocene peatland development and carbon stock of Zoige peatlands, Tibetan Plateau: a modeling approach, J. Soil. Sediment., 18, 2032–2043, https://doi.org/10.1007/s11368-018-1960-0, 2018.
Loisel, J. and Bunsen, M.: Abrupt Fen-Bog Transition Across Southern Patagonia: Timing, Causes, and Impacts on Carbon Sequestration, Frontiers in Ecology and Evolution, 8, 273, https://doi.org/10.3389/fevo.2020.00273, 2020.
Luscombe, D. J., Anderson, K., Grand-Clement, E., Gatis, N., Ashe, J., Benaud, P., Smith, D., and Brazier, R. E.: How does drainage alter the hydrology of shallow degraded peatlands across multiple spatial scales?, J. Hydrol., 541, 1329–1339, https://doi.org/10.1016/j.jhydrol.2016.08.037, 2016.
Mahdiyasa, A. W., Large, D. J., Muljadi, B. P., Icardi, M., and Triantafyllou, S.: MPeat-A fully coupled mechanical-ecohydrological model of peatland development, Ecohydrology, 15, e2361, https://doi.org/10.1002/eco.2361, 2022.
Mahdiyasa, A. W., Large, D. J., Icardi, M., and Muljadi, B. P.: MPeat2D – A fully coupled mechanical-ecohydrological model of peatland development in two dimensions, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-2535, 2023.
Malloy, S. and Price, J. S.: Fen restoration on a bog harvested down to sedge peat: A hydrological assessment, Ecol. Eng., 64, 151–160, https://doi.org/10.1016/j.ecoleng.2013.12.015, 2014.
McDonnell, J. J., Sivapalan, M., Vaché, K., Dunn, S., Grant, G., Haggerty, R., Hinz, C., Hooper, R., Kirchner, J., Roderick, M. L., Selker, J., and Weiler, M.: Moving beyond heterogeneity and process complexity: A new vision for watershed hydrology, Water Resour. Res., 43, 2006WR005467, https://doi.org/10.1029/2006WR005467, 2007.
Melaku, N. D., Wang, J., and Meshesha, T. W.: Modeling the Dynamics of Carbon Dioxide Emission and Ecosystem Exchange Using a Modified SWAT Hydrologic Model in Cold Wetlands, Water, 14, 1458, https://doi.org/10.3390/w14091458, 2022.
Mezbahuddin, M., Grant, R. F., and Flanagan, L. B.: Coupled eco-hydrology and biogeochemistry algorithms enable the simulation of water table depth effects on boreal peatland net CO2 exchange, Biogeosciences, 14, 5507–5531, https://doi.org/10.5194/bg-14-5507-2017, 2017.
Mikhalchuk, A., Borilo, L., Burnashova, E., Kharanzhevskaya, Y., Akerman, E., Chistyakova, N., Kirpotin, S. N., Pokrovsky, O. S., and Vorobyev, S.: Assessment of Greenhouse Gas Emissions into the Atmosphere from the Northern Peatlands Using the Wetland-DNDC Simulation Model: A Case Study of the Great Vasyugan Mire, Western Siberia, Atmosphere, 13, 2053, https://doi.org/10.3390/atmos13122053, 2022.
Morris, P. J., Waddington, J. M., Benscoter, B. W., and Turetsky, M. R.: Conceptual frameworks in peatland ecohydrology: looking beyond the two-layered (acrotelm-catotelm) model, Ecohydrology, 4, 1–11, https://doi.org/10.1002/eco.191, 2011.
Morris, P. J., Baird, A. J., and Belyea, L. R.: The DigiBog peatland development model 2: ecohydrological simulations in 2D, Ecohydrology, 5, 256–268, https://doi.org/10.1002/eco.229, 2012.
Mozafari, B., Bruen, M., Donohue, S., Renou-Wilson, F., and O'Loughlin, F.: Peatland dynamics: A review of process-based models and approaches, Sci. Total Environ., 877, 162890, https://doi.org/10.1016/j.scitotenv.2023.162890, 2023.
Nieminen, M., Palviainen, M., Sarkkola, S., Lauren, A., Marttila, H., and Finer, L.: A synthesis of the impacts of ditch network maintenance on the quantity and quality of runoff from drained boreal peatland forests, Ambio, 47, 523–534, https://doi.org/10.1007/s13280-017-0966-y, 2018.
Nungesser, M.: Modelling microtopography in boreal peatlands: hummocks and hollows, Ecol. Model., 165, 175–207, https://doi.org/10.1016/S0304-3800(03)00067-X, 2003.
Povilaitis, A. and Querner, E. P.: Possibilities to Restore Natural Water Regime in the Zuvintas Lake and Surrounding Wetlands – Modelling Analysis Approach, J. Environ. Eng. Landsc., 16, 105–112, https://doi.org/10.3846/1648-6897.2008.16.105-112, 2008.
Puertas Orozco, O. L., Paz Cardenas, M., Barria Meneses, J., Lizama Sanchez, T., and Jimenez Nunez, H.: Detection of long-term changes by multispectral analysis in the high-altitude Andean wetlands vegetation's: Michincha case study, 1985–2019, Rev. Geogr. Norte Gd., 84, 177–200, https://doi.org/10.4067/S0718-34022023000100177, 2023.
Putra, S. S., Baird, A. J., and Holden, J.: Modelling the performance of bunds and ditch dams in the hydrological restoration of tropical peatlands, Hydrol. Process., 36, e14470, https://doi.org/10.1002/hyp.14470, 2022.
Qiu, C., Zhu, D., Ciais, P., Guenet, B., Krinner, G., Peng, S., Aurela, M., Bernhofer, C., Brümmer, C., Bret-Harte, S., Chu, H., Chen, J., Desai, A. R., Dušek, J., Euskirchen, E. S., Fortuniak, K., Flanagan, L. B., Friborg, T., Grygoruk, M., Gogo, S., Grünwald, T., Hansen, B. U., Holl, D., Humphreys, E., Hurkuck, M., Kiely, G., Klatt, J., Kutzbach, L., Largeron, C., Laggoun-Défarge, F., Lund, M., Lafleur, P. M., Li, X., Mammarella, I., Merbold, L., Nilsson, M. B., Olejnik, J., Ottosson-Löfvenius, M., Oechel, W., Parmentier, F.-J. W., Peichl, M., Pirk, N., Peltola, O., Pawlak, W., Rasse, D., Rinne, J., Shaver, G., Schmid, H. P., Sottocornola, M., Steinbrecher, R., Sachs, T., Urbaniak, M., Zona, D., and Ziemblinska, K.: ORCHIDEE-PEAT (revision 4596), a model for northern peatland CO2, water, and energy fluxes on daily to annual scales, Geosci. Model Dev., 11, 497–519, https://doi.org/10.5194/gmd-11-497-2018, 2018.
Qiu, C., Zhu, D., Ciais, P., Guenet, B., Peng, S., Krinner, G., Tootchi, A., Ducharne, A., and Hastie, A.: Modelling northern peatland area and carbon dynamics since the Holocene with the ORCHIDEE-PEAT land surface model (SVN r5488), Geosci. Model Dev., 12, 2961–2982, https://doi.org/10.5194/gmd-12-2961-2019, 2019.
Quillet, A., Garneau, M., and Frolking, S.: Sobol' sensitivity analysis of the Holocene Peat Model: What drives carbon accumulation in peatlands?, J. Geophys. Res.-Biogeos., 118, 203–214, https://doi.org/10.1029/2012JG002092, 2013.
Reeve, A., Siegel, D., and Glaser, P.: Simulating vertical flow in large peatlands, J. Hydrol., 227, 207–217, https://doi.org/10.1016/S0022-1694(99)00183-3, 2000.
Reeve, A., Siegel, D., and Glaser, P.: Simulating dispersive mixing in large peatlands, J. Hydrol., 242, 103–114, https://doi.org/10.1016/S0022-1694(00)00386-3, 2001a.
Reeve, A., Warzocha, J., Glaser, P., and Siegel, D.: Regional ground-water flow modeling of the Glacial Lake Agassiz Peatlands, Minnesota, J. Hydrol., 243, 91–100, https://doi.org/10.1016/S0022-1694(00)00402-9, 2001b.
Reeve, A. S. and Gracz, M.: Simulating the hydrogeologic setting of peatlands in the Kenai Peninsula Lowlands, Alaska, Wetlands, 28, 92–106, https://doi.org/10.1672/07-71.1, 2008.
Reeve, A. S., Tyczka, Z. D., Comas, X., and Slater, L. D.: The Influence of Permeable Mineral Lenses on Peatland Hydrology, in: Carbon Cycling in Northern Peatlands, Vol. 184, edited by: Baird, A., Belyea, L., Comas, X., Reeve, A., and Slater, L., 289–297, https://doi.org/10.1029/2008GM000825, 2009.
Ricciuto, D. M., Xu, X., Shi, X., Wang, Y., Song, X., Schadt, C. W., Griffiths, N. A., Mao, J., Warren, J. M., Thornton, P. E., Chanton, J., Keller, J. K., Bridgham, S. D., Gutknecht, J., Sebestyen, S. D., Finzi, A., Kolka, R., and Hanson, P. J.: An Integrative Model for Soil Biogeochemistry and Methane Processes: I. Model Structure and Sensitivity Analysis, J. Geophys. Res.-Biogeo., 126, e2019JG005468, https://doi.org/10.1029/2019JG005468, 2021.
Rissanen, A. J., Ojanen, P., Stenberg, L., Larmola, T., Anttila, J., Tuominen, S., Minkkinen, K., Koskinen, M., and Mäkipää, R.: Vegetation impacts ditch methane emissions from boreal forestry-drained peatlands – Moss-free ditches have an order-of-magnitude higher emissions than moss-covered ditches, Front. Environ. Sci., 11, 1121969, https://doi.org/10.3389/fenvs.2023.1121969, 2023.
Ross, A. C., Mendoza, M. M., Drenkhan, F., Montoya, N., Baiker, J. R., Mackay, J. D., Hannah, D. M., and Buytaert, W.: Seasonal water storage and release dynamics of bofedal wetlands in the Central Andes, Hydrol. Process., 37, e14940, https://doi.org/10.1002/hyp.14940, 2023.
Rubel, F., Brugger, K., Haslinger, K., and Auer, I.: The climate of the European Alps: Shift of very high resolution Köppen-Geiger climate zones 1800–2100, Meteorol. Z., 26, 115–125, https://doi.org/10.1127/metz/2016/0816, 2017.
Shao, S., Wu, J., He, H., Moore, T. R., Bubier, J., Larmola, T., Juutinen, S., and Roulet, N. T.: Ericoid mycorrhizal fungi mediate the response of ombrotrophic peatlands to fertilization: a modeling study, New Phytol., 238, 80–95, https://doi.org/10.1111/nph.18555, 2022a.
Shao, S., Wu, J., He, H., and Roulet, N.: Integrating McGill Wetland Model (MWM) with peat cohort tracking and microbial controls, Sci. Total Environ., 806, 151223, https://doi.org/10.1016/j.scitotenv.2021.151223, 2022b.
Shen, C., Chen, X., and Laloy, E.: Editorial: Broadening the Use of Machine Learning in Hydrology, Front. Water, 3, 681023, https://doi.org/10.3389/frwa.2021.681023, 2021.
Šimůnek, J., Brunetti, G., Jacques, D., Van Genuchten, M. Th., and Šejna, M.: Developments and applications of the HYDRUS computer software packages since 2016, Vadose Zone J., e20310, https://doi.org/10.1002/vzj2.20310, 2024.
Smith, B., Prentice, I. C., and Sykes, M. T.: Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space, Global Ecol. Biogeogr., 10, 621–637, https://doi.org/10.1046/j.1466-822X.2001.t01-1-00256.x, 2001.
St-Hilaire, F., Wu, J., Roulet, N. T., Frolking, S., Lafleur, P. M., Humphreys, E. R., and Arora, V.: McGill wetland model: evaluation of a peatland carbon simulator developed for global assessments, Biogeosciences, 7, 3517–3530, https://doi.org/10.5194/bg-7-3517-2010, 2010.
Strack, M., Davidson, S. J., Hirano, T., and Dunn, C.: The Potential of Peatlands as Nature-Based Climate Solutions, Curr. Clim. Change Rep., 8, 71–82, https://doi.org/10.1007/s40641-022-00183-9, 2022.
Sulman, B. N., Desai, A. R., Schroeder, N. M., Ricciuto, D., Barr, A., Richardson, A. D., Flanagan, L. B., Lafleur, P. M., Tian, H., Chen, G., Grant, R. F., Poulter, B., Verbeeck, H., Ciais, P., Ringeval, B., Baker, I. T., Schaefer, K., Luo, Y., and Weng, E.: Impact of hydrological variations on modeling of peatland CO2 fluxes: Results from the North American Carbon Program site synthesis, J. Geophys. Res.-Biogeo., 117, G01031, https://doi.org/10.1029/2011JG001862, 2012.
Sun, G. and Mu, M.: Role of hydrological parameters in the uncertainty in modeled soil organic carbon using a coupled water-carbon cycle model, Ecol. Complex., 50, 100986, https://doi.org/10.1016/j.ecocom.2022.100986, 2022.
Sun, G., Mu, M., and You, Q.: Identification of Key Physical Processes and Improvements for Simulating and Predicting Net Primary Production Over the Tibetan Plateau, J. Geophys. Res.-Atmos., 125, e2020JD033128, https://doi.org/10.1029/2020JD033128, 2020.
Sutton, O. F. and Price, J. S.: Projecting the hydrochemical trajectory of a constructed fen watershed: Implications for long-term wetland function, Sci. Total Environ., 847, 157543–157543, https://doi.org/10.1016/j.scitotenv.2022.157543, 2022.
Swails, E. E., Ardón, M., Krauss, K. W., Peralta, A. L., Emanuel, R. E., Helton, A. M., Morse, J. L., Gutenberg, L., Cormier, N., Shoch, D., Settlemyer, S., Soderholm, E., Boutin, B. P., Peoples, C., and Ward, S.: Response of soil respiration to changes in soil temperature and water table level in drained and restored peatlands of the southeastern United States, Carbon Balance Manage., 17, 18, https://doi.org/10.1186/s13021-022-00219-5, 2022.
Tang, J., Yurova, A. Y., Schurgers, G., Miller, P. A., Olin, S., Smith, B., Siewert, M. B., Olefeldt, D., Pilesjo, P., and Poska, A.: Drivers of dissolved organic carbon export in a subarctic catchment: Importance of microbial decomposition, sorption-desorption, peatland and lateral flow, Sci. Total Environ., 622, 260–274, https://doi.org/10.1016/j.scitotenv.2017.11.252, 2018.
Tarnocai, C. and Stolbovoy, V.: Chapter 2 Northern Peatlands: their characteristics, development and sensitivity to climate change, in: Developments in Earth Surface Processes, vol. 9, Elsevier, 17–51, https://doi.org/10.1016/S0928-2025(06)09002-X, 2006.
Treat, C. C., Jones, M. C., Alder, J., Sannel, A. B. K., Camill, P., and Frolking, S.: Predicted Vulnerability of Carbon in Permafrost Peatlands With Future Climate Change and Permafrost Thaw in Western Canada, J. Geophys. Res.-Biogeo., 126, e2020JG005872, https://doi.org/10.1029/2020JG005872, 2021.
van der Snoek, M., André, L., and Field, C.: Report on model and tool comparison and improvements, Interreg Care-Peat, Mechelen, Belgium, https://vb.nweurope.eu/media/20125/d414_deliverable_report_interreg_care-peat.pdf (last access: 24 June 2024), 2023.
Waddington, J. M., Morris, P. J., Kettridge, N., Granath, G., and Thompson, D. K.: Hydrological feedbacks in northern peatlands, Ecohydrology, 8, 113–127, https://doi.org/10.1002/eco.1493, 2014.
Walter, B., Heimann, M., Shannon, R., and White, J.: A process-based model to derive methane emissions from natural wetlands, Geophys. Res. Lett., 23, 3731–3734, https://doi.org/10.1029/96GL03577, 1996.
Wania, R., Ross, I., and Prentice, I. C.: Implementation and evaluation of a new methane model within a dynamic global vegetation model: LPJ-WHyMe v1.3.1, Geosci. Model Dev., 3, 565–584, https://doi.org/10.5194/gmd-3-565-2010, 2010.
Webster, K. L., McLaughlin, J. W., Kim, Y., Packalen, M. S., and Li, C. S.: Modelling carbon dynamics and response to environmental change along a boreal fen nutrient gradient, Ecol. Model., 248, 148–164, https://doi.org/10.1016/j.ecolmodel.2012.10.004, 2013.
Wilson, D., Mackin, F., Tuovinen, J.-P., Moser, G., Farrell, C., and Renou-Wilson, F.: Carbon and climate implications of rewetting a raised bog in Ireland, Global Change Biol., 28, 6349–6365, https://doi.org/10.1111/gcb.16359, 2022.
Wu, J. and Roulet, N. T.: Climate change reduces the capacity of northern peatlands to absorb the atmospheric carbon dioxide: The different responses of bogs and fens, Global Biogeochem. Cy., 28, 1005–1024, https://doi.org/10.1002/2014GB004845, 2014.
Xu, J., Morris, P. J., Liu, J., Ledesma, J. L. J., and Holden, J.: Increased Dissolved Organic Carbon Concentrations in Peat-Fed UK Water Supplies Under Future Climate and Sulfate Deposition Scenarios, Water Resour. Res., 56, e2019WR025592, https://doi.org/10.1029/2019WR025592, 2020.
Yang, H., Chae, J., Yang, A.-R., Suwignyo, R. A., and Choi, E.: Trends of Peatland Research Based on Topic Modeling: Toward Sustainable Management under Climate Change, Forests, 14, 1818, https://doi.org/10.3390/f14091818, 2023.
Yao, Y., Joetzjer, E., Ciais, P., Viovy, N., Cresto Aleina, F., Chave, J., Sack, L., Bartlett, M., Meir, P., Fisher, R., and Luyssaert, S.: Forest fluxes and mortality response to drought: model description (ORCHIDEE-CAN-NHA r7236) and evaluation at the Caxiuanã drought experiment, Geosci. Model Dev., 15, 7809–7833, https://doi.org/10.5194/gmd-15-7809-2022, 2022.
Young, D. M., Baird, A. J., Morris, P. J., and Holden, J.: Simulating the long-term impacts of drainage and restoration on the ecohydrology of peatlands, Water Resour. Res., 53, 6510–6522, https://doi.org/10.1002/2016WR019898, 2017.
Young, D. M., Baird, A. J., Charman, D. J., Evans, C. D., Gallego-Sala, A. V., Gill, P. J., Hughes, P. D. M., Morris, P. J., and Swindles, G. T.: Misinterpreting carbon accumulation rates in records from near-surface peat, Sci. Rep.-UK, 9, 17939, https://doi.org/10.1038/s41598-019-53879-8, 2019.
Yuan, F., Wang, Y., Ricciuto, D., Shi, X., Yuan, F., Brehme, T., Bridgham, S., Keller, J., Warren, J., Griffiths, N., Sebestyen, S., Hanson, P., Thornton, P., and Xu, X.: Hydrological feedbacks on peatland CH4 emission under warming and elevated CO2: A modeling study, J. Hydrol., 603, 127137, https://doi.org/10.1016/j.jhydrol.2021.127137, 2021.
Zak, D. and McInnes, R. J.: A call for refining the peatland restoration strategy in Europe, J. Appl. Ecol., 59, 2698–2704, https://doi.org/10.1111/1365-2664.14261, 2022.
Zi, T., Kumar, M., Kiely, G., Lewis, C., and Albertson, J.: Simulating the spatio-temporal dynamics of soil erosion, deposition, and yield using a coupled sediment dynamics and 3D distributed hydrologic model, Environ. Modell. Softw., 83, 310–325, https://doi.org/10.1016/j.envsoft.2016.06.004, 2016.
Download
- Article
(2408 KB) - Full-text XML
Short summary
Peatland restoration combats climate change and protects ecosystem health in many northern regions. This review gathers data about models used on northern peatlands to further envision their application in the specific scenario of restoration. A total of 211 papers were included in the review: location trends for peatland modelling were catalogued, and key themes in model outputs were highlighted. Valuable context is provided for future efforts in modelling the peatland restoration process.
Peatland restoration combats climate change and protects ecosystem health in many northern...
Altmetrics
Final-revised paper
Preprint