Articles | Volume 21, issue 13
https://doi.org/10.5194/bg-21-3143-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-21-3143-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reviews and syntheses: A scoping review evaluating the potential application of ecohydrological models for northern peatland restoration
Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40, Dublin, Ireland
Mark G. Healy
Ryan Institute and Civil Engineering, University of Galway, H91 TK33, Galway, Ireland
Laurence Gill
Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40, Dublin, Ireland
Related authors
No articles found.
Saheba Bhatnagar, Mahesh Kumar Sha, Laurence Gill, Bavo Langerock, and Bidisha Ghosh
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-88, https://doi.org/10.5194/bg-2022-88, 2022
Revised manuscript not accepted
Short summary
Short summary
Different land types emit a different quantity of methane, with wetlands being one of the largest sources of methane emissions, contributing to climate change. This study finds variations in land types using the methane total column data from Sentinel 5-precursor satellite with a machine learning algorithm. The variations in land types were identified with high confidence, demonstrating that the methane emissions from the wetland and other land types substantially affect the total column.
This article is included in the Encyclopedia of Geosciences
Jan Knappe, Celia Somlai, and Laurence W. Gill
Biogeosciences, 19, 1067–1085, https://doi.org/10.5194/bg-19-1067-2022, https://doi.org/10.5194/bg-19-1067-2022, 2022
Short summary
Short summary
Two domestic on-site wastewater treatment systems have been monitored for greenhouse gas (carbon dioxide, methane and nitrous oxide) emissions coming from the process units, soil and vent pipes. This has enabled the net greenhouse gas per person to be quantified for the first time, as well as the impact of pre-treatment on the effluent before being discharged to soil. These decentralised wastewater treatment systems serve approx. 20 % of the population in both Europe and the United States.
This article is included in the Encyclopedia of Geosciences
Patrick Morrissey, Paul Nolan, Ted McCormack, Paul Johnston, Owen Naughton, Saheba Bhatnagar, and Laurence Gill
Hydrol. Earth Syst. Sci., 25, 1923–1941, https://doi.org/10.5194/hess-25-1923-2021, https://doi.org/10.5194/hess-25-1923-2021, 2021
Short summary
Short summary
Lowland karst aquifers provide important wetland habitat resulting from seasonal flooding on the land surface. This flooding is controlled by surcharging of the karst system, which is very sensitive to changes in rainfall. This study investigates the predicted impacts of climate change on a lowland karst catchment in Ireland and highlights the relative vulnerability to future changing climate conditions of karst systems and any associated wetland habitats.
This article is included in the Encyclopedia of Geosciences
Michael M. Swenson, Shane Regan, Dirk T. H. Bremmers, Jenna Lawless, Matthew Saunders, and Laurence W. Gill
Biogeosciences, 16, 713–731, https://doi.org/10.5194/bg-16-713-2019, https://doi.org/10.5194/bg-16-713-2019, 2019
Short summary
Short summary
Abbeyleix Bog in the Irish Midlands contains areas that were historically harvested for peat and then abandoned as well as areas that were never harvested. This study measured the carbon balance for both harvested locations and unharvested locations at Abbeyleix Bog. Measurements were conducted in the field over 2 years. This was carried out to understand how the historic harvesting and later abandonment of peat affect greenhouse gas emissions.
This article is included in the Encyclopedia of Geosciences
Saheba Bhatnagar, Bidisha Ghosh, Shane Regan, Owen Naughton, Paul Johnston, and Laurence Gill
Proc. IAHS, 380, 9–15, https://doi.org/10.5194/piahs-380-9-2018, https://doi.org/10.5194/piahs-380-9-2018, 2018
Related subject area
Biogeophysics: Ecohydrology
Drought and radiation explain fluctuations in Amazon rainforest greenness during the 2015–2016 drought
Inclusion of bedrock vadose zone in dynamic global vegetation models is key for simulating vegetation structure and function
The dynamics of marsh-channel slump blocks: an observational study using repeated drone imagery
Understanding the effects of revegetated shrubs on fluxes of energy, water, and gross primary productivity in a desert steppe ecosystem using the STEMMUS–SCOPE model
Imaging of the electrical activity in the root zone under limited-water-availability stress: a laboratory study for Vitis vinifera
Coordination of rooting, xylem, and stomatal strategies explains the response of conifer forest stands to multi-year drought in the southern Sierra Nevada of California
Historical variation in the normalized difference vegetation index compared with soil moisture in a taiga forest ecosystem in northeastern Siberia
A process-based model for quantifying the effects of canal blocking on water table and CO2 emissions in tropical peatlands
Continuous ground monitoring of vegetation optical depth and water content with GPS signals
Technical note: Common ambiguities in plant hydraulics
Consistent responses of vegetation gas exchange to elevated atmospheric CO2 emerge from heuristic and optimization models
Pioneer biocrust communities prevent soil erosion in temperate forests after disturbances
Modelling temporal variability of in situ soil water and vegetation isotopes reveals ecohydrological couplings in a riparian willow plot
Toward estimation of seasonal water dynamics of winter wheat from ground-based L-band radiometry: a concept study
Spatially varying relevance of hydrometeorological hazards for vegetation productivity extremes
Temporal dynamics of tree xylem water isotopes: in situ monitoring and modeling
Reviews and syntheses: Gaining insights into evapotranspiration partitioning with novel isotopic monitoring methods
What determines the sign of the evapotranspiration response to afforestation in European summer?
Predicting evapotranspiration from drone-based thermography – a method comparison in a tropical oil palm plantation
Patterns of plant rehydration and growth following pulses of soil moisture availability
Climatic traits on daily clearness and cloudiness indices
Estimates of tree root water uptake from soil moisture profile dynamics
Causes and consequences of pronounced variation in the isotope composition of plant xylem water
Risk of crop failure due to compound dry and hot extremes estimated with nested copulas
Canal blocking optimization in restoration of drained peatlands
Large-scale biospheric drought response intensifies linearly with drought duration in arid regions
Global biosphere–climate interaction: a causal appraisal of observations and models over multiple temporal scales
Examining the evidence for decoupling between photosynthesis and transpiration during heat extremes
Ideas and perspectives: Tracing terrestrial ecosystem water fluxes using hydrogen and oxygen stable isotopes – challenges and opportunities from an interdisciplinary perspective
Does predictability of fluxes vary between FLUXNET sites?
Community-specific hydraulic conductance potential of soil water decomposed for two Alpine grasslands by small-scale lysimetry
Ideas and perspectives: how coupled is the vegetation to the boundary layer?
Crop water stress maps for an entire growing season from visible and thermal UAV imagery
MODIS vegetation products as proxies of photosynthetic potential along a gradient of meteorologically and biologically driven ecosystem productivity
Proximate and ultimate controls on carbon and nutrient dynamics of small agricultural catchments
Transpiration in an oil palm landscape: effects of palm age
Does EO NDVI seasonal metrics capture variations in species composition and biomass due to grazing in semi-arid grassland savannas?
Assessing vegetation structure and ANPP dynamics in a grassland–shrubland Chihuahuan ecotone using NDVI–rainfall relationships
On the use of the post-closure methods uncertainty band to evaluate the performance of land surface models against eddy covariance flux data
Distribution and biophysical processes of beaded streams in Arctic permafrost landscapes
Continental-scale impacts of intra-seasonal rainfall variability on simulated ecosystem responses in Africa
Dew formation on the surface of biological soil crusts in central European sand ecosystems
Nonlinear controls on evapotranspiration in arctic coastal wetlands
Organic carbon efflux from a deciduous forest catchment in Korea
A simple ecohydrological model captures essentials of seasonal leaf dynamics in semi-arid tropical grasslands
Yi Y. Liu, Albert I. J. M. van Dijk, Patrick Meir, and Tim R. McVicar
Biogeosciences, 21, 2273–2295, https://doi.org/10.5194/bg-21-2273-2024, https://doi.org/10.5194/bg-21-2273-2024, 2024
Short summary
Short summary
Greenness of the Amazon forest fluctuated during the 2015–2016 drought, but no satisfactory explanation has been found. Based on water storage, temperature, and atmospheric moisture demand, we developed a method to delineate the regions where forests were under stress. These drought-affected regions were mainly identified at the beginning and end of the drought, resulting in below-average greenness. For the months in between, without stress, greenness responded positively to intense sunlight.
This article is included in the Encyclopedia of Geosciences
Dana A. Lapides, W. Jesse Hahm, Matthew Forrest, Daniella M. Rempe, Thomas Hickler, and David N. Dralle
Biogeosciences, 21, 1801–1826, https://doi.org/10.5194/bg-21-1801-2024, https://doi.org/10.5194/bg-21-1801-2024, 2024
Short summary
Short summary
Water stored in weathered bedrock is rarely incorporated into vegetation and Earth system models despite increasing recognition of its importance. Here, we add a weathered bedrock component to a widely used vegetation model. Using a case study of two sites in California and model runs across the United States, we show that more accurately representing subsurface water storage and hydrology increases summer plant water use so that it better matches patterns in distributed data products.
This article is included in the Encyclopedia of Geosciences
Zhicheng Yang, Clark Alexander, and Merryl Alber
Biogeosciences, 21, 1757–1772, https://doi.org/10.5194/bg-21-1757-2024, https://doi.org/10.5194/bg-21-1757-2024, 2024
Short summary
Short summary
We used repeat UAV imagery to study the spatial and temporal dynamics of slump blocks in a Georgia salt marsh. Although slump blocks are common in marshes, tracking them with the UAV provided novel insights. Blocks are highly dynamic, with new blocks appearing in each image while some are lost. Most blocks were lost by submergence, but we report for the first time their reconnection to the marsh platform. We also found that slump blocks can be an important contributor to creek widening.
This article is included in the Encyclopedia of Geosciences
Enting Tang, Yijian Zeng, Yunfei Wang, Zengjing Song, Danyang Yu, Hongyue Wu, Chenglong Qiao, Christiaan van der Tol, Lingtong Du, and Zhongbo Su
Biogeosciences, 21, 893–909, https://doi.org/10.5194/bg-21-893-2024, https://doi.org/10.5194/bg-21-893-2024, 2024
Short summary
Short summary
Our study shows that planting shrubs in a semiarid grassland reduced the soil moisture and increased plant water uptake and transpiration. Notably, the water used by the ecosystem exceeded the rainfall received during the growing seasons, indicating an imbalance in the water cycle. The findings demonstrate the effectiveness of the STEMMUS–SCOPE model as a tool to represent ecohydrological processes and highlight the need to consider energy and water budgets for future revegetation projects.
This article is included in the Encyclopedia of Geosciences
Benjamin Mary, Veronika Iván, Franco Meggio, Luca Peruzzo, Guillaume Blanchy, Chunwei Chou, Benedetto Ruperti, Yuxin Wu, and Giorgio Cassiani
Biogeosciences, 20, 4625–4650, https://doi.org/10.5194/bg-20-4625-2023, https://doi.org/10.5194/bg-20-4625-2023, 2023
Short summary
Short summary
The study explores the partial root zone drying method, an irrigation strategy aimed at improving water use efficiency. We imaged the root–soil interaction using non-destructive techniques consisting of soil and plant current stimulation. The study found that imaging the processes in time was effective in identifying spatial patterns associated with irrigation and root water uptake. The results will be useful for developing more efficient root detection methods in natural soil conditions.
This article is included in the Encyclopedia of Geosciences
Junyan Ding, Polly Buotte, Roger Bales, Bradley Christoffersen, Rosie A. Fisher, Michael Goulden, Ryan Knox, Lara Kueppers, Jacquelyn Shuman, Chonggang Xu, and Charles D. Koven
Biogeosciences, 20, 4491–4510, https://doi.org/10.5194/bg-20-4491-2023, https://doi.org/10.5194/bg-20-4491-2023, 2023
Short summary
Short summary
We used a vegetation model to investigate how the different combinations of plant rooting depths and the sensitivity of leaves and stems to drying lead to differential responses of a pine forest to drought conditions in California, USA. We found that rooting depths are the strongest control in that ecosystem. Deep roots allow trees to fully utilize the soil water during a normal year but result in prolonged depletion of soil moisture during a severe drought and hence a high tree mortality risk.
This article is included in the Encyclopedia of Geosciences
Aleksandr Nogovitcyn, Ruslan Shakhmatov, Tomoki Morozumi, Shunsuke Tei, Yumiko Miyamoto, Nagai Shin, Trofim C. Maximov, and Atsuko Sugimoto
Biogeosciences, 20, 3185–3201, https://doi.org/10.5194/bg-20-3185-2023, https://doi.org/10.5194/bg-20-3185-2023, 2023
Short summary
Short summary
The taiga ecosystem in northeastern Siberia changed during the extreme wet event in 2007. Before the wet event, the NDVI in a typical larch forest showed a positive correlation with soil moisture, and after the event it showed a negative correlation. For both periods, NDVI correlated negatively with foliar C/N. These results indicate that high soil moisture availability after the event decreased needle production, which may have resulted from lower N availability.
This article is included in the Encyclopedia of Geosciences
Iñaki Urzainki, Marjo Palviainen, Hannu Hökkä, Sebastian Persch, Jeffrey Chatellier, Ophelia Wang, Prasetya Mahardhitama, Rizaldy Yudhista, and Annamari Laurén
Biogeosciences, 20, 2099–2116, https://doi.org/10.5194/bg-20-2099-2023, https://doi.org/10.5194/bg-20-2099-2023, 2023
Short summary
Short summary
Drained peatlands (peat areas where ditches have been excavated to enhance crop productivity) are one of the main sources of carbon dioxide emissions globally. Blocking the ditches by building dams is a common strategy to raise the water table and to mitigate carbon dioxide emissions. But how effective is ditch blocking in raising the overall water table over a large area? Our work tackles this question by making use of the available data and physics-based hydrological modeling.
This article is included in the Encyclopedia of Geosciences
Vincent Humphrey and Christian Frankenberg
Biogeosciences, 20, 1789–1811, https://doi.org/10.5194/bg-20-1789-2023, https://doi.org/10.5194/bg-20-1789-2023, 2023
Short summary
Short summary
Microwave satellites can be used to monitor how vegetation biomass changes over time or how droughts affect the world's forests. However, such satellite data are still difficult to validate and interpret because of a lack of comparable field observations. Here, we present a remote sensing technique that uses the Global Navigation Satellite System (GNSS) as a makeshift radar, making it possible to observe canopy transmissivity at any existing environmental research site in a cost-efficient way.
This article is included in the Encyclopedia of Geosciences
Yujie Wang and Christian Frankenberg
Biogeosciences, 19, 4705–4714, https://doi.org/10.5194/bg-19-4705-2022, https://doi.org/10.5194/bg-19-4705-2022, 2022
Short summary
Short summary
Plant hydraulics is often misrepresented in topical research. We highlight the commonly seen ambiguities and/or mistakes, with equations and figures to help visualize the potential biases. We recommend careful thinking when using or modifying existing plant hydraulic terms, methods, and models.
This article is included in the Encyclopedia of Geosciences
Stefano Manzoni, Simone Fatichi, Xue Feng, Gabriel G. Katul, Danielle Way, and Giulia Vico
Biogeosciences, 19, 4387–4414, https://doi.org/10.5194/bg-19-4387-2022, https://doi.org/10.5194/bg-19-4387-2022, 2022
Short summary
Short summary
Increasing atmospheric carbon dioxide (CO2) causes leaves to close their stomata (through which water evaporates) but also promotes leaf growth. Even if individual leaves save water, how much will be consumed by a whole plant with possibly more leaves? Using different mathematical models, we show that plant stands that are not very dense and can grow more leaves will benefit from higher CO2 by photosynthesizing more while adjusting their stomata to consume similar amounts of water.
This article is included in the Encyclopedia of Geosciences
Corinna Gall, Martin Nebel, Dietmar Quandt, Thomas Scholten, and Steffen Seitz
Biogeosciences, 19, 3225–3245, https://doi.org/10.5194/bg-19-3225-2022, https://doi.org/10.5194/bg-19-3225-2022, 2022
Short summary
Short summary
Soil erosion is one of the most serious environmental challenges of our time, which also applies to forests when forest soil is disturbed. Biological soil crusts (biocrusts) can play a key role as erosion control. In this study, we combined soil erosion measurements with vegetation surveys in disturbed forest areas. We found that soil erosion was reduced primarily by pioneer bryophyte-dominated biocrusts and that bryophytes contributed more to soil erosion mitigation than vascular plants.
This article is included in the Encyclopedia of Geosciences
Aaron Smith, Doerthe Tetzlaff, Jessica Landgraf, Maren Dubbert, and Chris Soulsby
Biogeosciences, 19, 2465–2485, https://doi.org/10.5194/bg-19-2465-2022, https://doi.org/10.5194/bg-19-2465-2022, 2022
Short summary
Short summary
This research utilizes high-spatiotemporal-resolution soil and vegetation measurements, including water stable isotopes, within an ecohydrological model to partition water flux dynamics and identify flow paths and durations. Results showed high vegetation water use and high spatiotemporal dynamics of vegetation water source and vegetation isotopes. The evaluation of these dynamics further revealed relatively fast flow paths through both shallow soil and vegetation.
This article is included in the Encyclopedia of Geosciences
Thomas Jagdhuber, François Jonard, Anke Fluhrer, David Chaparro, Martin J. Baur, Thomas Meyer, and María Piles
Biogeosciences, 19, 2273–2294, https://doi.org/10.5194/bg-19-2273-2022, https://doi.org/10.5194/bg-19-2273-2022, 2022
Short summary
Short summary
This is a concept study of water dynamics across winter wheat starting from ground-based L-band radiometry in combination with on-site measurements of soil and atmosphere. We research the feasibility of estimating water potentials and seasonal flux rates of water (water uptake from soil and transpiration rates into the atmosphere) within the soil-plant-atmosphere system (SPAS) of a winter wheat field. The main finding is that L-band radiometry can be integrated into field-based SPAS assessment.
This article is included in the Encyclopedia of Geosciences
Josephin Kroll, Jasper M. C. Denissen, Mirco Migliavacca, Wantong Li, Anke Hildebrandt, and Rene Orth
Biogeosciences, 19, 477–489, https://doi.org/10.5194/bg-19-477-2022, https://doi.org/10.5194/bg-19-477-2022, 2022
Short summary
Short summary
Plant growth relies on having access to energy (solar radiation) and water (soil moisture). This energy and water availability is impacted by weather extremes, like heat waves and droughts, which will occur more frequently in response to climate change. In this context, we analysed global satellite data to detect in which regions extreme plant growth is controlled by energy or water. We find that extreme plant growth is associated with temperature- or soil-moisture-related extremes.
This article is included in the Encyclopedia of Geosciences
Stefan Seeger and Markus Weiler
Biogeosciences, 18, 4603–4627, https://doi.org/10.5194/bg-18-4603-2021, https://doi.org/10.5194/bg-18-4603-2021, 2021
Short summary
Short summary
We developed a setup for fully automated in situ measurements of stable water isotopes in soil and the stems of fully grown trees. We used this setup in a 12-week field campaign to monitor the propagation of a labelling pulse from the soil up to a stem height of 8 m.
We could observe trees shifting their main water uptake depths multiple times, depending on water availability.
The gained knowledge about the temporal dynamics can help to improve water uptake models and future study designs.
This article is included in the Encyclopedia of Geosciences
Youri Rothfuss, Maria Quade, Nicolas Brüggemann, Alexander Graf, Harry Vereecken, and Maren Dubbert
Biogeosciences, 18, 3701–3732, https://doi.org/10.5194/bg-18-3701-2021, https://doi.org/10.5194/bg-18-3701-2021, 2021
Short summary
Short summary
The partitioning of evapotranspiration into evaporation from soil and transpiration from plants is crucial for a wide range of parties, from farmers to policymakers. In this work, we focus on a particular partitioning method, based on the stable isotopic analysis of water. In particular, we aim at highlighting the challenges that this method is currently facing and, in light of recent methodological developments, propose ways forward for the isotopic-partitioning community.
This article is included in the Encyclopedia of Geosciences
Marcus Breil, Edouard L. Davin, and Diana Rechid
Biogeosciences, 18, 1499–1510, https://doi.org/10.5194/bg-18-1499-2021, https://doi.org/10.5194/bg-18-1499-2021, 2021
Short summary
Short summary
The physical processes behind varying evapotranspiration rates in forests and grasslands in Europe are investigated in a regional model study with idealized afforestation scenarios. The results show that the evapotranspiration response to afforestation depends on the interplay of two counteracting factors: the transpiration facilitating characteristics of a forest and the reduced saturation deficits of forests caused by an increased surface roughness and associated lower surface temperatures.
This article is included in the Encyclopedia of Geosciences
Florian Ellsäßer, Christian Stiegler, Alexander Röll, Tania June, Hendrayanto, Alexander Knohl, and Dirk Hölscher
Biogeosciences, 18, 861–872, https://doi.org/10.5194/bg-18-861-2021, https://doi.org/10.5194/bg-18-861-2021, 2021
Short summary
Short summary
Recording land surface temperatures using drones offers new options to predict evapotranspiration based on energy balance models. This study compares predictions from three energy balance models with the eddy covariance method. A model II Deming regression indicates interchangeability for latent heat flux estimates from certain modeling methods and eddy covariance measurements. This complements the available methods for evapotranspiration studies by fine grain and spatially explicit assessments.
This article is included in the Encyclopedia of Geosciences
Andrew F. Feldman, Daniel J. Short Gianotti, Alexandra G. Konings, Pierre Gentine, and Dara Entekhabi
Biogeosciences, 18, 831–847, https://doi.org/10.5194/bg-18-831-2021, https://doi.org/10.5194/bg-18-831-2021, 2021
Short summary
Short summary
We quantify global plant water uptake durations after rainfall using satellite-based plant water content measurements. In wetter regions, plant water uptake occurs within a day due to rapid coupling between soil and plant water content. Drylands show multi-day plant water uptake after rain pulses, providing widespread evidence for slow rehydration responses and pulse-driven growth responses. Our results suggest that drylands are sensitive to projected shifts in rainfall intensity and frequency.
This article is included in the Encyclopedia of Geosciences
Estefanía Muñoz and Andrés Ochoa
Biogeosciences, 18, 573–584, https://doi.org/10.5194/bg-18-573-2021, https://doi.org/10.5194/bg-18-573-2021, 2021
Short summary
Short summary
We inspect for climatic traits in the shape of the PDF of the clear-day (c) and the clearness (k) indices at 37 FLUXNET sites for the SW and the PAR spectral bands. We identified three types of PDF, unimodal with low dispersion, unimodal with high dispersion and bimodal, with no difference in the PDF type between c and k at each site. We found that latitude, global climate zone and Köppen climate type have a weak relation and the Holdridge life zone a stronger relation with c and k PDF types.
This article is included in the Encyclopedia of Geosciences
Conrad Jackisch, Samuel Knoblauch, Theresa Blume, Erwin Zehe, and Sibylle K. Hassler
Biogeosciences, 17, 5787–5808, https://doi.org/10.5194/bg-17-5787-2020, https://doi.org/10.5194/bg-17-5787-2020, 2020
Short summary
Short summary
We developed software to calculate the root water uptake (RWU) of beech tree roots from soil moisture dynamics. We present our approach and compare RWU to measured sap flow in the tree stem. The study relates to two sites that are similar in topography and weather but with contrasting soils. While sap flow is very similar between the two sites, the RWU is different. This suggests that soil characteristics have substantial influence. Our easy-to-implement RWU estimate may help further studies.
This article is included in the Encyclopedia of Geosciences
Hannes P. T. De Deurwaerder, Marco D. Visser, Matteo Detto, Pascal Boeckx, Félicien Meunier, Kathrin Kuehnhammer, Ruth-Kristina Magh, John D. Marshall, Lixin Wang, Liangju Zhao, and Hans Verbeeck
Biogeosciences, 17, 4853–4870, https://doi.org/10.5194/bg-17-4853-2020, https://doi.org/10.5194/bg-17-4853-2020, 2020
Short summary
Short summary
The depths at which plants take up water is challenging to observe directly. To do so, scientists have relied on measuring the isotopic composition of xylem water as this provides information on the water’s source. Our work shows that this isotopic composition changes throughout the day, which complicates the interpretation of the water’s source and has been currently overlooked. We build a model to help understand the origin of these composition changes and their consequences for science.
This article is included in the Encyclopedia of Geosciences
Andreia Filipa Silva Ribeiro, Ana Russo, Célia Marina Gouveia, Patrícia Páscoa, and Jakob Zscheischler
Biogeosciences, 17, 4815–4830, https://doi.org/10.5194/bg-17-4815-2020, https://doi.org/10.5194/bg-17-4815-2020, 2020
Short summary
Short summary
This study investigates the impacts of compound dry and hot extremes on crop yields, namely wheat and barley, over two regions in Spain dominated by rainfed agriculture. We provide estimates of the conditional probability of crop loss under compound dry and hot conditions, which could be an important tool for responsible authorities to mitigate the impacts magnified by the interactions between the different hazards.
This article is included in the Encyclopedia of Geosciences
Iñaki Urzainki, Ari Laurén, Marjo Palviainen, Kersti Haahti, Arif Budiman, Imam Basuki, Michael Netzer, and Hannu Hökkä
Biogeosciences, 17, 4769–4784, https://doi.org/10.5194/bg-17-4769-2020, https://doi.org/10.5194/bg-17-4769-2020, 2020
Short summary
Short summary
Drained peatlands (peat areas where ditches have been excavated to enhance plant production) are one of the main sources of carbon dioxide emissions globally. Blocking these ditches by building dams is a common strategy to restore the self-sustaining peat ecosystem and mitigate carbon dioxide emissions. Where should these dams be located in order to maximize the benefits? Our work tackles this question by making use of the available data, hydrological modeling and numerical optimization methods.
This article is included in the Encyclopedia of Geosciences
René Orth, Georgia Destouni, Martin Jung, and Markus Reichstein
Biogeosciences, 17, 2647–2656, https://doi.org/10.5194/bg-17-2647-2020, https://doi.org/10.5194/bg-17-2647-2020, 2020
Short summary
Short summary
Drought duration is a key control of the large-scale biospheric drought response.
Thereby, the vegetation responds linearly to drought duration at large spatial scales.
The slope of the linear relationship between the vegetation drought response and drought duration is steeper in drier climates.
This article is included in the Encyclopedia of Geosciences
Jeroen Claessen, Annalisa Molini, Brecht Martens, Matteo Detto, Matthias Demuzere, and Diego G. Miralles
Biogeosciences, 16, 4851–4874, https://doi.org/10.5194/bg-16-4851-2019, https://doi.org/10.5194/bg-16-4851-2019, 2019
Short summary
Short summary
Bidirectional interactions between vegetation and climate are unraveled over short (monthly) and long (inter-annual) temporal scales. Analyses use a novel causal inference method based on wavelet theory. The performance of climate models at representing these interactions is benchmarked against satellite data. Climate models can reproduce the overall climate controls on vegetation at all temporal scales, while their performance at representing biophysical feedbacks on climate is less adequate.
This article is included in the Encyclopedia of Geosciences
Martin G. De Kauwe, Belinda E. Medlyn, Andrew J. Pitman, John E. Drake, Anna Ukkola, Anne Griebel, Elise Pendall, Suzanne Prober, and Michael Roderick
Biogeosciences, 16, 903–916, https://doi.org/10.5194/bg-16-903-2019, https://doi.org/10.5194/bg-16-903-2019, 2019
Short summary
Short summary
Recent experimental evidence suggests that during heat extremes, trees may reduce photosynthesis to near zero but increase transpiration. Using eddy covariance data and examining the 3 days leading up to a temperature extreme, we found evidence of reduced photosynthesis and sustained or increased latent heat fluxes at Australian wooded flux sites. However, when focusing on heatwaves, we were unable to disentangle photosynthetic decoupling from the effect of increasing vapour pressure deficit.
This article is included in the Encyclopedia of Geosciences
Daniele Penna, Luisa Hopp, Francesca Scandellari, Scott T. Allen, Paolo Benettin, Matthias Beyer, Josie Geris, Julian Klaus, John D. Marshall, Luitgard Schwendenmann, Till H. M. Volkmann, Jana von Freyberg, Anam Amin, Natalie Ceperley, Michael Engel, Jay Frentress, Yamuna Giambastiani, Jeff J. McDonnell, Giulia Zuecco, Pilar Llorens, Rolf T. W. Siegwolf, Todd E. Dawson, and James W. Kirchner
Biogeosciences, 15, 6399–6415, https://doi.org/10.5194/bg-15-6399-2018, https://doi.org/10.5194/bg-15-6399-2018, 2018
Short summary
Short summary
Understanding how water flows through ecosystems is needed to provide society and policymakers with the scientific background to manage water resources sustainably. Stable isotopes of hydrogen and oxygen in water are a powerful tool for tracking water fluxes, although the heterogeneity of natural systems and practical methodological issues still limit their full application. Here, we examine the challenges in this research field and highlight new perspectives based on interdisciplinary research.
This article is included in the Encyclopedia of Geosciences
Ned Haughton, Gab Abramowitz, Martin G. De Kauwe, and Andy J. Pitman
Biogeosciences, 15, 4495–4513, https://doi.org/10.5194/bg-15-4495-2018, https://doi.org/10.5194/bg-15-4495-2018, 2018
Short summary
Short summary
This project explores predictability in energy, water, and carbon fluxes in the free-use Tier 1 of the FLUXNET 2015 dataset using a uniqueness metric based on comparison of locally and globally trained models. While there is broad spread in predictability between sites, we found strikingly few strong patterns. Nevertheless, these results can contribute to the standardisation of site selection for land surface model evaluation and help pinpoint regions that are ripe for further FLUXNET research.
This article is included in the Encyclopedia of Geosciences
Georg Frenck, Georg Leitinger, Nikolaus Obojes, Magdalena Hofmann, Christian Newesely, Mario Deutschmann, Ulrike Tappeiner, and Erich Tasser
Biogeosciences, 15, 1065–1078, https://doi.org/10.5194/bg-15-1065-2018, https://doi.org/10.5194/bg-15-1065-2018, 2018
Short summary
Short summary
For central Europe in addition to rising temperatures, an increasing variability in precipitation is predicted. In a replicated mesocosm experiment we compared evapotranspiration and the biomass productivity of two differently drought-adapted vegetation communities during two irrigation regimes (with and without drought periods). Significant differences between the different communities were found in the response to variations in the water supply and biomass production.
This article is included in the Encyclopedia of Geosciences
Martin G. De Kauwe, Belinda E. Medlyn, Jürgen Knauer, and Christopher A. Williams
Biogeosciences, 14, 4435–4453, https://doi.org/10.5194/bg-14-4435-2017, https://doi.org/10.5194/bg-14-4435-2017, 2017
Short summary
Short summary
Understanding the sensitivity of transpiration to stomatal conductance is critical to simulating the water cycle. This sensitivity is a function of the degree of coupling between the vegetation and the atmosphere. We combined an extensive literature summary with estimates of coupling derived from FLUXNET data. We found notable departures from the values previously reported. These data form a model benchmarking metric to test existing coupling assumptions.
This article is included in the Encyclopedia of Geosciences
Helene Hoffmann, Rasmus Jensen, Anton Thomsen, Hector Nieto, Jesper Rasmussen, and Thomas Friborg
Biogeosciences, 13, 6545–6563, https://doi.org/10.5194/bg-13-6545-2016, https://doi.org/10.5194/bg-13-6545-2016, 2016
Short summary
Short summary
This study investigates whether the UAV (drone) based WDI can determine crop water stress from fields with open canopies (land surface consisting of both soil and canopy) and from fields where canopies are starting to senesce. This utility could solve issues that arise when applying the commonly used CWSI stress index. The WDI succeeded in providing accurate, high-resolution estimates of crop water stress at different growth stages of barley.
This article is included in the Encyclopedia of Geosciences
Natalia Restrepo-Coupe, Alfredo Huete, Kevin Davies, James Cleverly, Jason Beringer, Derek Eamus, Eva van Gorsel, Lindsay B. Hutley, and Wayne S. Meyer
Biogeosciences, 13, 5587–5608, https://doi.org/10.5194/bg-13-5587-2016, https://doi.org/10.5194/bg-13-5587-2016, 2016
Short summary
Short summary
We re-evaluated the connection between satellite greenness products and C-flux tower data in four Australian ecosystems. We identify key mechanisms driving the carbon cycle, and provide an ecological basis for the interpretation of vegetation indices. We found relationships between productivity and greenness to be non-significant in meteorologically driven evergreen forests and sites where climate and vegetation phenology were asynchronous, and highly correlated in phenology-driven ecosystems.
This article is included in the Encyclopedia of Geosciences
Zahra Thomas, Benjamin W. Abbott, Olivier Troccaz, Jacques Baudry, and Gilles Pinay
Biogeosciences, 13, 1863–1875, https://doi.org/10.5194/bg-13-1863-2016, https://doi.org/10.5194/bg-13-1863-2016, 2016
Short summary
Short summary
Direct human impact on a catchment (fertilizer input, soil disturbance, urbanization) is asymmetrically linked with inherent catchment properties (geology, soil, topography), which together determine catchment vulnerability to human activity. To quantify the influence of physical, hydrologic, and anthropogenic controls on surface water quality, we used a 5-year high-frequency water chemistry data set from three contrasting headwater catchments in western France.
This article is included in the Encyclopedia of Geosciences
A. Röll, F. Niu, A. Meijide, A. Hardanto, Hendrayanto, A. Knohl, and D. Hölscher
Biogeosciences, 12, 5619–5633, https://doi.org/10.5194/bg-12-5619-2015, https://doi.org/10.5194/bg-12-5619-2015, 2015
Short summary
Short summary
The study provides first insight into eco-hydrological consequences of the continuing oil palm expansion in the tropics. Stand transpiration rates of some studied oil palm stands compared to or even exceeded values reported for tropical forests, indicating high water use of oil palms under certain conditions. Oil palm landscapes show some spatial variations in (evapo)transpiration rates, e.g. due to varying plantation age, but the day-to-day variability of oil palm transpiration is rather low.
This article is included in the Encyclopedia of Geosciences
J. L. Olsen, S. Miehe, P. Ceccato, and R. Fensholt
Biogeosciences, 12, 4407–4419, https://doi.org/10.5194/bg-12-4407-2015, https://doi.org/10.5194/bg-12-4407-2015, 2015
Short summary
Short summary
Limitations of satellite-based normalized difference vegetation index (NDVI) for monitoring vegetation trends are investigated using observations from the Widou Thiengoly test site in northern Senegal. NDVI do not reflect the large differences found in biomass production and species composition between grazed and ungrazed plots. This is problematic for vegetation trend analysis in the context of drastically increasing numbers of Sahelian livestock in recent decades.
This article is included in the Encyclopedia of Geosciences
M. Moreno-de las Heras, R. Díaz-Sierra, L. Turnbull, and J. Wainwright
Biogeosciences, 12, 2907–2925, https://doi.org/10.5194/bg-12-2907-2015, https://doi.org/10.5194/bg-12-2907-2015, 2015
Short summary
Short summary
Exploration of NDVI-rainfall relationships provided ready biophysically based criteria to study the spatial distribution and dynamics of ANPP for herbaceous and shrub vegetation across a grassland-shrubland Chihuahuan ecotone (Sevilleta NWR, New Mexico). Overall our results suggest that shrub encroachment has not been particularly active for 2000-2013 in the area, although future reductions in summer precipitation and/or increases in winter rainfall may intensify the shrub-encroachment process.
This article is included in the Encyclopedia of Geosciences
J. Ingwersen, K. Imukova, P. Högy, and T. Streck
Biogeosciences, 12, 2311–2326, https://doi.org/10.5194/bg-12-2311-2015, https://doi.org/10.5194/bg-12-2311-2015, 2015
Short summary
Short summary
The energy balance of eddy covariance (EC) flux data is normally not closed. Therefore, EC flux data are usually post-closed, i.e. the measured turbulent fluxes are adjusted so as to close the energy balance. We propose to use in model evaluation the post-closure method uncertainty band (PUB) to account for the uncertainty in EC data originating from lacking energy balance closure. Working with only a single post-closing method might result in severe misinterpretations in model-data comparison.
This article is included in the Encyclopedia of Geosciences
C. D. Arp, M. S. Whitman, B. M. Jones, G. Grosse, B. V. Gaglioti, and K. C. Heim
Biogeosciences, 12, 29–47, https://doi.org/10.5194/bg-12-29-2015, https://doi.org/10.5194/bg-12-29-2015, 2015
Short summary
Short summary
Beaded streams have deep elliptical pools connected by narrow runs that we show are common landforms in the continuous permafrost zone. These fluvial systems often initiate from lakes and occur predictably in headwater portions of moderately sloping watersheds. Snow capture along stream courses reduces ice thickness allowing thawed sediment to persist under most pools. Interpool thermal variability and hydrologic regimes provide important aquatic habitat and connectivity in Arctic landscapes.
This article is included in the Encyclopedia of Geosciences
K. Guan, S. P. Good, K. K. Caylor, H. Sato, E. F. Wood, and H. Li
Biogeosciences, 11, 6939–6954, https://doi.org/10.5194/bg-11-6939-2014, https://doi.org/10.5194/bg-11-6939-2014, 2014
Short summary
Short summary
Climate change is expected to modify the way that rainfall arrives, namely the frequency and intensity of rainfall events and rainy season length. Yet, the quantification of the impact of these possible rainfall changes across large biomes is lacking. Our study fills this gap by developing a new modeling framework, applying it to continental Africa. We show that African ecosystems are highly sensitive to these rainfall variabilities, with esp. large sensitivity to changes in rainy season length.
This article is included in the Encyclopedia of Geosciences
T. Fischer, M. Veste, O. Bens, and R. F. Hüttl
Biogeosciences, 9, 4621–4628, https://doi.org/10.5194/bg-9-4621-2012, https://doi.org/10.5194/bg-9-4621-2012, 2012
A. K. Liljedahl, L. D. Hinzman, Y. Harazono, D. Zona, C. E. Tweedie, R. D. Hollister, R. Engstrom, and W. C. Oechel
Biogeosciences, 8, 3375–3389, https://doi.org/10.5194/bg-8-3375-2011, https://doi.org/10.5194/bg-8-3375-2011, 2011
S. J. Kim, J. Kim, and K. Kim
Biogeosciences, 7, 1323–1334, https://doi.org/10.5194/bg-7-1323-2010, https://doi.org/10.5194/bg-7-1323-2010, 2010
P. Choler, W. Sea, P. Briggs, M. Raupach, and R. Leuning
Biogeosciences, 7, 907–920, https://doi.org/10.5194/bg-7-907-2010, https://doi.org/10.5194/bg-7-907-2010, 2010
Cited articles
Acharya, S., Kaplan, D. A., Jawitz, J. W., and Cohen, M. J.: Doing ecohydrology backward: Inferring wetland flow and hydroperiod from landscape patterns, Water Resour. Res., 53, 5742–5755, https://doi.org/10.1002/2017WR020516, 2017.
Apori, S. O., Mcmillan, D., Giltrap, M., and Tian, F.: Mapping the restoration of degraded peatland as a research area: A scientometric review, Front. Environ. Sci., 10, 942788, https://doi.org/10.3389/fenvs.2022.942788, 2022.
Bacon, K. L., Baird, A. J., Blundell, A., Bourgault, M.-A., Chapman, P. J., Dargie, G., Dooling, G. P., Gee, C., Holden, J., Kelly, T., McKendrick-Smith, K. A., Morris, P. J., Noble, A., Palmer, S. M., Quillet, A., Swindles, G. T., Watson, E. J., and Young, D. M.: Questioning ten common assumptions about peatlands, Mires Peat, 19, 1–23, https://doi.org/10.19189/MaP.2016.OMB.253, 2017.
Baird, A. J., Morris, P. J., and Belyea, L. R.: The DigiBog peatland development model 1: rationale, conceptual model, and hydrological basis, Ecohydrology, 5, 242–255, https://doi.org/10.1002/eco.230, 2012.
Ball, J., Gimona, A., Cowie, N., Hancock, M., Klein, D., Donaldson-Selby, G., and Artz, R. R. E.: Assessing the Potential of using Sentinel-1 and 2 or high-resolution aerial imagery data with Machine Learning and Data Science Techniques to Model Peatland Restoration Progress – a Northern Scotland case study, Int. J. Remote Sens., 44, 2885–2911, https://doi.org/10.1080/01431161.2023.2209916, 2023.
Bechtold, M., De Lannoy, G. J. M., Reichle, R. H., Roose, D., Balliston, N., Burdun, I., Devito, K., Kurbatova, J., Strack, M., and Zarov, E. A.: Improved groundwater table and L-band brightness temperature estimates for Northern Hemisphere peatlands using new model physics and SMOS observations in a global data assimilation framework, Remote Sens. Environ., 246, 111805, https://doi.org/10.1016/j.rse.2020.111805, 2020.
Belyea, L. R. and Baird, A. J.: Beyond “the limits to peat bog growth”: Cross-scale feedback in peatland development, Ecol. Monogr., 76, 299–322, https://doi.org/10.1890/0012-9615(2006)076[0299:BTLTPB]2.0.CO;2, 2006.
Bernard-Jannin, L., Binet, S., Gogo, S., Leroy, F., Défarge, C., Jozja, N., Zocatelli, R., Perdereau, L., and Laggoun-Défarge, F.: Hydrological control of dissolved organic carbon dynamics in a rehabilitated Sphagnum-dominated peatland: a water-table based modelling approach, Hydrol. Earth Syst. Sci., 22, 4907–4920, https://doi.org/10.5194/hess-22-4907-2018, 2018.
Beven, K. J., Kirkby, M. J., Freer, J. E., and Lamb, R.: A history of TOPMODEL, Hydrol. Earth Syst. Sci., 25, 527–549, https://doi.org/10.5194/hess-25-527-2021, 2021.
Booth, E. G., Loheide, S. P., and Bart, D.: Fen ecohydrologic trajectories in response to groundwater drawdown with an edaphic feedback, Ecohydrology, 15, e2471, https://doi.org/10.1002/eco.2471, 2022.
Brandyk, A., Majewski, G., Kiczko, A., Boczon, A., Wrobel, M., and Porretta-Tomaszewska, P.: Ground Water Modelling for the Restoration of Carex Communities on a Sandy River Terrace, Sustainability, 8, 1324, https://doi.org/10.3390/su8121324, 2016.
Brust, K., Krebs, M., Wahren, A., Gaudig, G., and Joosten, H.: The water balance of a Sphagnum farming site in north-west Germany, Mires Peat, 20, 1–12, https://doi.org/10.19189/MaP.2017.OMB.301, 2017.
Clymo, R. S.: A Model of Peat Bog Growth, in: Production Ecology of British Moors and Montane Grasslands, vol. 27, edited by: Heal, O. W. and Perkins, D. F., Springer-Verlag, Berlin, Heidelberg, 187–223, https://doi.org/10.1007/978-3-642-66760-2_9, 1978.
Couwenberg, J.: A simulation model of mire patterning – revisited, Ecography, 28, 653–661, https://doi.org/10.1111/j.2005.0906-7590.04265.x, 2005.
Cresto Aleina, F., Runkle, B. R. K., Kleinen, T., Kutzbach, L., Schneider, J., and Brovkin, V.: Modeling micro-topographic controls on boreal peatland hydrology and methane fluxes, Biogeosciences, 12, 5689–5704, https://doi.org/10.5194/bg-12-5689-2015, 2015.
Cresto Aleina, F., Runkle, B. R. K., Brücher, T., Kleinen, T., and Brovkin, V.: Upscaling methane emission hotspots in boreal peatlands, Geosci. Model Dev., 9, 915–926, https://doi.org/10.5194/gmd-9-915-2016, 2016.
Dabrowska-Zielinska, K., Misiura, K., Malinska, A., Gurdak, R., Grzybowski, P., Bartold, M., and Kluczek, M.: Spatiotemporal estimation of gross primary production for terrestrial wetlands using satellite and field data, Remote Sensing Applications-Society and Environment, 27, 100786, https://doi.org/10.1016/j.rsase.2022.100786, 2022.
Dadap, N. C., Cobb, A. R., Hoyt, A. M., Harvey, C. F., Feldman, A. F., Im, E.-S., and Konings, A. G.: Climate change-induced peatland drying in Southeast Asia, Environ. Res. Lett., 17, 074026, https://doi.org/10.1088/1748-9326/ac7969, 2022.
de Wit, H. A., Ledesma, J. L. J., and Futter, M. N.: Aquatic DOC export from subarctic Atlantic blanket bog in Norway is controlled by seasalt deposition, temperature and precipitation, Biogeochemistry, 127, 305–321, https://doi.org/10.1007/s10533-016-0182-z, 2016.
Dettmann, U., Bechtold, M., Frahm, E., and Tiemeyer, B.: On the applicability of unimodal and bimodal van Genuchten–Mualem based models to peat and other organic soils under evaporation conditions, J. Hydrol., 515, 103–115, https://doi.org/10.1016/j.jhydrol.2014.04.047, 2014.
Dimitrov, D. D., Grant, R. F., Lafleur, P. M., and Humphreys, E. R.: Modeling the effects of hydrology on ecosystem respiration at Mer Bleue bog, J. Geophys. Res.-Biogeo., 115, G04043, https://doi.org/10.1029/2010JG001312, 2010.
Dimitrov, D. D., Bhatti, J. S., and Grant, R. F.: The transition zones (ecotone) between boreal forests and peatlands: Modelling water table along a transition zone between upland black spruce forest and poor forested fen in central Saskatchewan, Ecol. Model., 274, 57–70, https://doi.org/10.1016/j.ecolmodel.2013.11.030, 2014.
Eppinga, M. B., de Ruiter, P. C., Wassen, M. J., and Rietkerk, M.: Nutrients and Hydrology Indicate the Driving Mechanisms of Peatland Surface Patterning, Am. Nat., 173, 803–818, https://doi.org/10.1086/598487, 2009.
Futter, M. N., Erlandsson, M. A., Butterfield, D., Whitehead, P. G., Oni, S. K., and Wade, A. J.: PERSiST: a flexible rainfall-runoff modelling toolkit for use with the INCA family of models, Hydrol. Earth Syst. Sci., 18, 855–873, https://doi.org/10.5194/hess-18-855-2014, 2014.
Gauthier, T. J., McCarter, C. P. R., and Price, J. S.: The effect of compression on Sphagnum hydrophysical properties: Implications for increasing hydrological connectivity in restored cutover peatlands, Ecohydrology, 11, e2020, https://doi.org/10.1002/eco.2020, 2018.
Gilhespy, S. L., Anthony, S., Cardenas, L., Chadwick, D., Del Prado, A., Li, C., Misselbrook, T., Rees, R. M., Salas, W., Sanz-Cobena, A., Smith, P., Tilston, E. L., Topp, C. F. E., Vetter, S., and Yeluripati, J. B.: First 20 years of DNDC (DeNitrification DeComposition): Model evolution, Ecol. Model., 292, 51–62, https://doi.org/10.1016/j.ecolmodel.2014.09.004, 2014.
Glenk, K., Faccioli, M., Martin-Ortega, J., Schulze, C., and Potts, J.: The opportunity cost of delaying climate action: Peatland restoration and resilience to climate change, Global Environ. Chang., 70, 102323, https://doi.org/10.1016/j.gloenvcha.2021.102323, 2021.
Goudarzi, S., Milledge, D. G., Holden, J., Evans, M. G., Allott, T. E. H., Shuttleworth, E. L., Pilkington, M., and Walker, J.: Blanket Peat Restoration: Numerical Study of the Underlying Processes Delivering Natural Flood Management Benefits, Water Resour. Res., 57, e2020WR029209, https://doi.org/10.1029/2020WR029209, 2021.
Grant, R. F.: Modelling changes in nitrogen cycling to sustain increases in forest productivity under elevated atmospheric CO2 and contrasting site conditions, Biogeosciences, 10, 7703–7721, https://doi.org/10.5194/bg-10-7703-2013, 2013.
Grant, R. F., Mekonnen, Z. A., Riley, W. J., Arora, B., and Torn, M. S.: Mathematical Modelling of Arctic Polygonal Tundra with Ecosys: 2. Microtopography Determines How CO2 and CH4 Exchange Responds to Changes in Temperature and Precipitation, J. Geophys. Res.-Biogeo., 122, 3174–3187, https://doi.org/10.1002/2017JG004037, 2017.
Haahti, K., Warsta, L., Kokkonen, T., Younis, B. A., and Koivusalo, H.: Distributed hydrological modeling with channel network flow of a forestry drained peatland site, Water Resour. Res., 52, 246–263, https://doi.org/10.1002/2015WR018038, 2016.
He, H., Clark, L., Lai, O. Y., Kendall, R., Strachan, I., and Roulet, N. T.: Simulating Soil Atmosphere Exchanges and CO2 Fluxes for an Ongoing Peat Extraction Site, Ecosystems, 26, 1335–1348, https://doi.org/10.1007/s10021-023-00836-2, 2023a.
He, H., Moore, T., Humphreys, E. R., Lafleur, P. M., and Roulet, N. T.: Water level variation at a beaver pond significantly impacts net CO2 uptake of a continental bog, Hydrol. Earth Syst. Sci., 27, 213–227, https://doi.org/10.5194/hess-27-213-2023, 2023b.
Heffernan, J. B., Watts, D. L., and Cohen, M. J.: Discharge Competence and Pattern Formation in Peatlands: A Meta-Ecosystem Model of the Everglades Ridge-Slough Landscape, PLOS ONE, 8, e64174, https://doi.org/10.1371/journal.pone.0064174, 2013.
Helbig, M., Živković, T., Alekseychik, P., Aurela, M., El-Madany, T. S., Euskirchen, E. S., Flanagan, L. B., Griffis, T. J., Hanson, P. J., Hattakka, J., Helfter, C., Hirano, T., Humphreys, E. R., Kiely, G., Kolka, R. K., Laurila, T., Leahy, P. G., Lohila, A., Mammarella, I., Nilsson, M. B., Panov, A., Parmentier, F. J. W., Peichl, M., Rinne, J., Roman, D. T., Sonnentag, O., Tuittila, E.-S., Ueyama, M., Vesala, T., Vestin, P., Weldon, S., Weslien, P., and Zaehle, S.: Warming response of peatland CO2 sink is sensitive to seasonality in warming trends, Nat. Clim. Change, 12, 743–749, https://doi.org/10.1038/s41558-022-01428-z, 2022.
Hokanson, K. J., Thompson, C., Devito, K., and Mendoza, C. A.: Hummock-scale controls on groundwater recharge rates and the potential for developing local groundwater flow systems in water-limited environments, J. Hydrol., 603, 126894, https://doi.org/10.1016/j.jhydrol.2021.126894, 2021.
Horton, A. J., Lehtinen, J., and Kummu, M.: Targeted land management strategies could halve peatland fire occurrences in Central Kalimantan, Indonesia, Commun. Earth Environ., 3, 204, https://doi.org/10.1038/s43247-022-00534-2, 2022.
Huang, R., Chen, X., Hu, Q., Jiang, S., and Dong, J.: Impacts of altitudinal ecohydrological dynamic changes on water balance under warming climate in a watershed of the Qilian Mountains, China, Sci. Total Environ., 908, 168070, https://doi.org/10.1016/j.scitotenv.2023.168070, 2024.
Ikkala, L., Ronkanen, A.-K., Ilmonen, J., Simila, M., Rehell, S., Kumpula, T., Pakkila, L., Klove, B., and Marttila, H.: Unmanned Aircraft System (UAS) Structure-From-Motion (SfM) for Monitoring the Changed Flow Paths and Wetness in Minerotrophic Peatland Restoration, Remote Sens.-Basel, 14, 3169, https://doi.org/10.3390/rs14133169, 2022.
Jaenicke, J., Wosten, H., Budiman, A., and Siegert, F.: Planning hydrological restoration of peatlands in Indonesia to mitigate carbon dioxide emissions, Mitig. Adapt. Strat. Gl., 15, 223–239, https://doi.org/10.1007/s11027-010-9214-5, 2010.
Jaros, A., Rossi, P. M., Ronkanen, A.-K., and Klove, B.: Parameterisation of an integrated groundwater-surface water model for hydrological analysis of boreal aapa mire wetlands, J. Hydrol., 575, 175–191, https://doi.org/10.1016/j.jhydrol.2019.04.094, 2019.
Ju, W., Chen, J., Black, T., Barr, A., Mccaughey, H., and Roulet, N.: Hydrological effects on carbon cycles of Canada's forests and wetlands, Tellus B, 58, 16–30, https://doi.org/10.1111/j.1600-0889.2005.00168.x, 2006.
Jussila, T., Heikkinen, R. K., Anttila, S., Aapala, K., Kervinen, M., Aalto, J., and Vihervaara, P.: Quantifying wetness variability in aapa mires with Sentinel-2: towards improved monitoring of an EU priority habitat, Remote Sens. Ecol. Conserv., 10, 172–187, https://doi.org/10.1002/rse2.363, 2023.
Kalcic, M. M., Chaubey, I., and Frankenberger, J.: Defining Soil and Water Assessment Tool (SWAT) hydrologic response units (HRUs) by field boundaries, Int. J. Agr. Biol. Eng., 8, 69–80, https://doi.org/10.3965/j.ijabe.20150803.951, 2015.
Kaplan, D. A., Paudel, R., Cohen, M. J., and Jawitz, J. W.: Orientation matters: Patch anisotropy controls discharge competence and hydroperiod in a patterned peatland, Geophys. Res. Lett., 39, L17401, https://doi.org/10.1029/2012GL052754, 2012.
Kasimir, A., He, H., Coria, J., and Norden, A.: Land use of drained peatlands: Greenhouse gas fluxes, plant production, and economics, Global Change Biol., 24, 3302–3316, https://doi.org/10.1111/gcb.13931, 2018.
Kennedy, G. and Price, J.: Simulating soil water dynamics in a cutover bog, Water Resour. Res., 40, W12410, https://doi.org/10.1029/2004WR003099, 2004.
Kim, Y., Roulet, N. T., Li, C., Frolking, S., Strachan, I. B., Peng, C., Teodoru, C. R., Prairie, Y. T., and Tremblay, A.: Simulating carbon dioxide exchange in boreal ecosystems flooded by reservoirs, Ecol. Model., 327, 1–17, https://doi.org/10.1016/j.ecolmodel.2016.01.006, 2016.
Koch, J., Elsgaard, L., Greve, M. H., Gyldenkærne, S., Hermansen, C., Levin, G., Wu, S., and Stisen, S.: Water-table-driven greenhouse gas emission estimates guide peatland restoration at national scale, Biogeosciences, 20, 2387–2403, https://doi.org/10.5194/bg-20-2387-2023, 2023.
Kottek, M., Grieser, J., Beck, C., Rudolf, B., and Rubel, F.: World map of the Köppen-Geiger climate classification updated, Metz, 15, 259–263, https://doi.org/10.1127/0941-2948/2006/0130, 2006.
Kou, D., Virtanen, T., Treat, C. C., Tuovinen, J.-P., Rasanen, A., Juutinen, S., Mikola, J., Aurela, M., Heiskanen, L., Heikkila, M., Weckstrom, J., Juselius, T., Piilo, S. R., Deng, J., Zhang, Y., Chaudhary, N., Huang, C., Valiranta, M., Biasi, C., Liu, X., Guo, M., Zhuang, Q., Korhola, A., and Shurpali, N. J.: Peatland Heterogeneity Impacts on Regional Carbon Flux and Its Radiative Effect Within a Boreal Landscape, J. Geophys. Res.-Biogeo., 127, e2021JG006774, https://doi.org/10.1029/2021JG006774, 2022.
Kwon, M. J., Ballantyne, A., Ciais, P., Qiu, C., Salmon, E., Raoult, N., Guenet, B., Gockede, M., Euskirchen, E. S., Nykanen, H., Schuur, E. A. G., Turetsky, M. R., Dieleman, C. M., Kane, E. S., and Zona, D.: Lowering water table reduces carbon sink strength and carbon stocks in northern peatlands, Global Change Biol., 28, 6752–6770, https://doi.org/10.1111/gcb.16394, 2022.
Lana-Renault, N., Morán-Tejeda, E., Moreno de las Heras, M., Lorenzo-Lacruz, J., and López-Moreno, N.: Land-use change and impacts, in: Water Resources in the Mediterranean Region, Elsevier, 257–296, https://doi.org/10.1016/B978-0-12-818086-0.00010-8, 2020.
Largeron, C., Krinner, G., Ciais, P., and Brutel-Vuilmet, C.: Implementing northern peatlands in a global land surface model: description and evaluation in the ORCHIDEE high-latitude version model (ORC-HL-PEAT), Geosci. Model Dev., 11, 3279–3297, https://doi.org/10.5194/gmd-11-3279-2018, 2018.
Lehan, K., McCarter, C. P. R., Moore, P. A., and Waddington, J. M.: Effect of stockpiling time on donor-peat hydrophysical properties: Implications for peatland restoration, Ecol. Eng., 182, 106701, https://doi.org/10.1016/j.ecoleng.2022.106701, 2022.
Lhosmot, A., Collin, L., Magnon, G., Steinmann, M., Bertrand, C., Stefani, V., Toussaint, M., and Bertrand, G.: Restoration and meteorological variability highlight nested water supplies in middle altitude/latitude peatlands: Towards a hydrological conceptual model of the Frasne peatland, Jura Mountains, France, Ecohydrology, 14, e2315, https://doi.org/10.1002/eco.2315, 2021.
Lippmann, T. J. R., van der Velde, Y., Heijmans, M. M. P. D., Dolman, H., Hendriks, D. M. D., and van Huissteden, K.: Peatland-VU-NUCOM (PVN 1.0): using dynamic plant functional types to model peatland vegetation, CH4, and CO2 emissions, Geosci. Model Dev., 16, 6773–6804, https://doi.org/10.5194/gmd-16-6773-2023, 2023.
Liu, X., Chen, H., Zhu, Q., Wu, J., Frolking, S., Zhu, D., Wang, M., Wu, N., Peng, C., and He, Y.: Holocene peatland development and carbon stock of Zoige peatlands, Tibetan Plateau: a modeling approach, J. Soil. Sediment., 18, 2032–2043, https://doi.org/10.1007/s11368-018-1960-0, 2018.
Loisel, J. and Bunsen, M.: Abrupt Fen-Bog Transition Across Southern Patagonia: Timing, Causes, and Impacts on Carbon Sequestration, Frontiers in Ecology and Evolution, 8, 273, https://doi.org/10.3389/fevo.2020.00273, 2020.
Luscombe, D. J., Anderson, K., Grand-Clement, E., Gatis, N., Ashe, J., Benaud, P., Smith, D., and Brazier, R. E.: How does drainage alter the hydrology of shallow degraded peatlands across multiple spatial scales?, J. Hydrol., 541, 1329–1339, https://doi.org/10.1016/j.jhydrol.2016.08.037, 2016.
Mahdiyasa, A. W., Large, D. J., Muljadi, B. P., Icardi, M., and Triantafyllou, S.: MPeat-A fully coupled mechanical-ecohydrological model of peatland development, Ecohydrology, 15, e2361, https://doi.org/10.1002/eco.2361, 2022.
Mahdiyasa, A. W., Large, D. J., Icardi, M., and Muljadi, B. P.: MPeat2D – A fully coupled mechanical-ecohydrological model of peatland development in two dimensions, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-2535, 2023.
Malloy, S. and Price, J. S.: Fen restoration on a bog harvested down to sedge peat: A hydrological assessment, Ecol. Eng., 64, 151–160, https://doi.org/10.1016/j.ecoleng.2013.12.015, 2014.
McDonnell, J. J., Sivapalan, M., Vaché, K., Dunn, S., Grant, G., Haggerty, R., Hinz, C., Hooper, R., Kirchner, J., Roderick, M. L., Selker, J., and Weiler, M.: Moving beyond heterogeneity and process complexity: A new vision for watershed hydrology, Water Resour. Res., 43, 2006WR005467, https://doi.org/10.1029/2006WR005467, 2007.
Melaku, N. D., Wang, J., and Meshesha, T. W.: Modeling the Dynamics of Carbon Dioxide Emission and Ecosystem Exchange Using a Modified SWAT Hydrologic Model in Cold Wetlands, Water, 14, 1458, https://doi.org/10.3390/w14091458, 2022.
Mezbahuddin, M., Grant, R. F., and Flanagan, L. B.: Coupled eco-hydrology and biogeochemistry algorithms enable the simulation of water table depth effects on boreal peatland net CO2 exchange, Biogeosciences, 14, 5507–5531, https://doi.org/10.5194/bg-14-5507-2017, 2017.
Mikhalchuk, A., Borilo, L., Burnashova, E., Kharanzhevskaya, Y., Akerman, E., Chistyakova, N., Kirpotin, S. N., Pokrovsky, O. S., and Vorobyev, S.: Assessment of Greenhouse Gas Emissions into the Atmosphere from the Northern Peatlands Using the Wetland-DNDC Simulation Model: A Case Study of the Great Vasyugan Mire, Western Siberia, Atmosphere, 13, 2053, https://doi.org/10.3390/atmos13122053, 2022.
Morris, P. J., Waddington, J. M., Benscoter, B. W., and Turetsky, M. R.: Conceptual frameworks in peatland ecohydrology: looking beyond the two-layered (acrotelm-catotelm) model, Ecohydrology, 4, 1–11, https://doi.org/10.1002/eco.191, 2011.
Morris, P. J., Baird, A. J., and Belyea, L. R.: The DigiBog peatland development model 2: ecohydrological simulations in 2D, Ecohydrology, 5, 256–268, https://doi.org/10.1002/eco.229, 2012.
Mozafari, B., Bruen, M., Donohue, S., Renou-Wilson, F., and O'Loughlin, F.: Peatland dynamics: A review of process-based models and approaches, Sci. Total Environ., 877, 162890, https://doi.org/10.1016/j.scitotenv.2023.162890, 2023.
Nieminen, M., Palviainen, M., Sarkkola, S., Lauren, A., Marttila, H., and Finer, L.: A synthesis of the impacts of ditch network maintenance on the quantity and quality of runoff from drained boreal peatland forests, Ambio, 47, 523–534, https://doi.org/10.1007/s13280-017-0966-y, 2018.
Nungesser, M.: Modelling microtopography in boreal peatlands: hummocks and hollows, Ecol. Model., 165, 175–207, https://doi.org/10.1016/S0304-3800(03)00067-X, 2003.
Povilaitis, A. and Querner, E. P.: Possibilities to Restore Natural Water Regime in the Zuvintas Lake and Surrounding Wetlands – Modelling Analysis Approach, J. Environ. Eng. Landsc., 16, 105–112, https://doi.org/10.3846/1648-6897.2008.16.105-112, 2008.
Puertas Orozco, O. L., Paz Cardenas, M., Barria Meneses, J., Lizama Sanchez, T., and Jimenez Nunez, H.: Detection of long-term changes by multispectral analysis in the high-altitude Andean wetlands vegetation's: Michincha case study, 1985–2019, Rev. Geogr. Norte Gd., 84, 177–200, https://doi.org/10.4067/S0718-34022023000100177, 2023.
Putra, S. S., Baird, A. J., and Holden, J.: Modelling the performance of bunds and ditch dams in the hydrological restoration of tropical peatlands, Hydrol. Process., 36, e14470, https://doi.org/10.1002/hyp.14470, 2022.
Qiu, C., Zhu, D., Ciais, P., Guenet, B., Krinner, G., Peng, S., Aurela, M., Bernhofer, C., Brümmer, C., Bret-Harte, S., Chu, H., Chen, J., Desai, A. R., Dušek, J., Euskirchen, E. S., Fortuniak, K., Flanagan, L. B., Friborg, T., Grygoruk, M., Gogo, S., Grünwald, T., Hansen, B. U., Holl, D., Humphreys, E., Hurkuck, M., Kiely, G., Klatt, J., Kutzbach, L., Largeron, C., Laggoun-Défarge, F., Lund, M., Lafleur, P. M., Li, X., Mammarella, I., Merbold, L., Nilsson, M. B., Olejnik, J., Ottosson-Löfvenius, M., Oechel, W., Parmentier, F.-J. W., Peichl, M., Pirk, N., Peltola, O., Pawlak, W., Rasse, D., Rinne, J., Shaver, G., Schmid, H. P., Sottocornola, M., Steinbrecher, R., Sachs, T., Urbaniak, M., Zona, D., and Ziemblinska, K.: ORCHIDEE-PEAT (revision 4596), a model for northern peatland CO2, water, and energy fluxes on daily to annual scales, Geosci. Model Dev., 11, 497–519, https://doi.org/10.5194/gmd-11-497-2018, 2018.
Qiu, C., Zhu, D., Ciais, P., Guenet, B., Peng, S., Krinner, G., Tootchi, A., Ducharne, A., and Hastie, A.: Modelling northern peatland area and carbon dynamics since the Holocene with the ORCHIDEE-PEAT land surface model (SVN r5488), Geosci. Model Dev., 12, 2961–2982, https://doi.org/10.5194/gmd-12-2961-2019, 2019.
Quillet, A., Garneau, M., and Frolking, S.: Sobol' sensitivity analysis of the Holocene Peat Model: What drives carbon accumulation in peatlands?, J. Geophys. Res.-Biogeos., 118, 203–214, https://doi.org/10.1029/2012JG002092, 2013.
Reeve, A., Siegel, D., and Glaser, P.: Simulating vertical flow in large peatlands, J. Hydrol., 227, 207–217, https://doi.org/10.1016/S0022-1694(99)00183-3, 2000.
Reeve, A., Siegel, D., and Glaser, P.: Simulating dispersive mixing in large peatlands, J. Hydrol., 242, 103–114, https://doi.org/10.1016/S0022-1694(00)00386-3, 2001a.
Reeve, A., Warzocha, J., Glaser, P., and Siegel, D.: Regional ground-water flow modeling of the Glacial Lake Agassiz Peatlands, Minnesota, J. Hydrol., 243, 91–100, https://doi.org/10.1016/S0022-1694(00)00402-9, 2001b.
Reeve, A. S. and Gracz, M.: Simulating the hydrogeologic setting of peatlands in the Kenai Peninsula Lowlands, Alaska, Wetlands, 28, 92–106, https://doi.org/10.1672/07-71.1, 2008.
Reeve, A. S., Tyczka, Z. D., Comas, X., and Slater, L. D.: The Influence of Permeable Mineral Lenses on Peatland Hydrology, in: Carbon Cycling in Northern Peatlands, Vol. 184, edited by: Baird, A., Belyea, L., Comas, X., Reeve, A., and Slater, L., 289–297, https://doi.org/10.1029/2008GM000825, 2009.
Ricciuto, D. M., Xu, X., Shi, X., Wang, Y., Song, X., Schadt, C. W., Griffiths, N. A., Mao, J., Warren, J. M., Thornton, P. E., Chanton, J., Keller, J. K., Bridgham, S. D., Gutknecht, J., Sebestyen, S. D., Finzi, A., Kolka, R., and Hanson, P. J.: An Integrative Model for Soil Biogeochemistry and Methane Processes: I. Model Structure and Sensitivity Analysis, J. Geophys. Res.-Biogeo., 126, e2019JG005468, https://doi.org/10.1029/2019JG005468, 2021.
Rissanen, A. J., Ojanen, P., Stenberg, L., Larmola, T., Anttila, J., Tuominen, S., Minkkinen, K., Koskinen, M., and Mäkipää, R.: Vegetation impacts ditch methane emissions from boreal forestry-drained peatlands – Moss-free ditches have an order-of-magnitude higher emissions than moss-covered ditches, Front. Environ. Sci., 11, 1121969, https://doi.org/10.3389/fenvs.2023.1121969, 2023.
Ross, A. C., Mendoza, M. M., Drenkhan, F., Montoya, N., Baiker, J. R., Mackay, J. D., Hannah, D. M., and Buytaert, W.: Seasonal water storage and release dynamics of bofedal wetlands in the Central Andes, Hydrol. Process., 37, e14940, https://doi.org/10.1002/hyp.14940, 2023.
Rubel, F., Brugger, K., Haslinger, K., and Auer, I.: The climate of the European Alps: Shift of very high resolution Köppen-Geiger climate zones 1800–2100, Meteorol. Z., 26, 115–125, https://doi.org/10.1127/metz/2016/0816, 2017.
Shao, S., Wu, J., He, H., Moore, T. R., Bubier, J., Larmola, T., Juutinen, S., and Roulet, N. T.: Ericoid mycorrhizal fungi mediate the response of ombrotrophic peatlands to fertilization: a modeling study, New Phytol., 238, 80–95, https://doi.org/10.1111/nph.18555, 2022a.
Shao, S., Wu, J., He, H., and Roulet, N.: Integrating McGill Wetland Model (MWM) with peat cohort tracking and microbial controls, Sci. Total Environ., 806, 151223, https://doi.org/10.1016/j.scitotenv.2021.151223, 2022b.
Shen, C., Chen, X., and Laloy, E.: Editorial: Broadening the Use of Machine Learning in Hydrology, Front. Water, 3, 681023, https://doi.org/10.3389/frwa.2021.681023, 2021.
Šimůnek, J., Brunetti, G., Jacques, D., Van Genuchten, M. Th., and Šejna, M.: Developments and applications of the HYDRUS computer software packages since 2016, Vadose Zone J., e20310, https://doi.org/10.1002/vzj2.20310, 2024.
Smith, B., Prentice, I. C., and Sykes, M. T.: Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space, Global Ecol. Biogeogr., 10, 621–637, https://doi.org/10.1046/j.1466-822X.2001.t01-1-00256.x, 2001.
St-Hilaire, F., Wu, J., Roulet, N. T., Frolking, S., Lafleur, P. M., Humphreys, E. R., and Arora, V.: McGill wetland model: evaluation of a peatland carbon simulator developed for global assessments, Biogeosciences, 7, 3517–3530, https://doi.org/10.5194/bg-7-3517-2010, 2010.
Strack, M., Davidson, S. J., Hirano, T., and Dunn, C.: The Potential of Peatlands as Nature-Based Climate Solutions, Curr. Clim. Change Rep., 8, 71–82, https://doi.org/10.1007/s40641-022-00183-9, 2022.
Sulman, B. N., Desai, A. R., Schroeder, N. M., Ricciuto, D., Barr, A., Richardson, A. D., Flanagan, L. B., Lafleur, P. M., Tian, H., Chen, G., Grant, R. F., Poulter, B., Verbeeck, H., Ciais, P., Ringeval, B., Baker, I. T., Schaefer, K., Luo, Y., and Weng, E.: Impact of hydrological variations on modeling of peatland CO2 fluxes: Results from the North American Carbon Program site synthesis, J. Geophys. Res.-Biogeo., 117, G01031, https://doi.org/10.1029/2011JG001862, 2012.
Sun, G. and Mu, M.: Role of hydrological parameters in the uncertainty in modeled soil organic carbon using a coupled water-carbon cycle model, Ecol. Complex., 50, 100986, https://doi.org/10.1016/j.ecocom.2022.100986, 2022.
Sun, G., Mu, M., and You, Q.: Identification of Key Physical Processes and Improvements for Simulating and Predicting Net Primary Production Over the Tibetan Plateau, J. Geophys. Res.-Atmos., 125, e2020JD033128, https://doi.org/10.1029/2020JD033128, 2020.
Sutton, O. F. and Price, J. S.: Projecting the hydrochemical trajectory of a constructed fen watershed: Implications for long-term wetland function, Sci. Total Environ., 847, 157543–157543, https://doi.org/10.1016/j.scitotenv.2022.157543, 2022.
Swails, E. E., Ardón, M., Krauss, K. W., Peralta, A. L., Emanuel, R. E., Helton, A. M., Morse, J. L., Gutenberg, L., Cormier, N., Shoch, D., Settlemyer, S., Soderholm, E., Boutin, B. P., Peoples, C., and Ward, S.: Response of soil respiration to changes in soil temperature and water table level in drained and restored peatlands of the southeastern United States, Carbon Balance Manage., 17, 18, https://doi.org/10.1186/s13021-022-00219-5, 2022.
Tang, J., Yurova, A. Y., Schurgers, G., Miller, P. A., Olin, S., Smith, B., Siewert, M. B., Olefeldt, D., Pilesjo, P., and Poska, A.: Drivers of dissolved organic carbon export in a subarctic catchment: Importance of microbial decomposition, sorption-desorption, peatland and lateral flow, Sci. Total Environ., 622, 260–274, https://doi.org/10.1016/j.scitotenv.2017.11.252, 2018.
Tarnocai, C. and Stolbovoy, V.: Chapter 2 Northern Peatlands: their characteristics, development and sensitivity to climate change, in: Developments in Earth Surface Processes, vol. 9, Elsevier, 17–51, https://doi.org/10.1016/S0928-2025(06)09002-X, 2006.
Treat, C. C., Jones, M. C., Alder, J., Sannel, A. B. K., Camill, P., and Frolking, S.: Predicted Vulnerability of Carbon in Permafrost Peatlands With Future Climate Change and Permafrost Thaw in Western Canada, J. Geophys. Res.-Biogeo., 126, e2020JG005872, https://doi.org/10.1029/2020JG005872, 2021.
van der Snoek, M., André, L., and Field, C.: Report on model and tool comparison and improvements, Interreg Care-Peat, Mechelen, Belgium, https://vb.nweurope.eu/media/20125/d414_deliverable_report_interreg_care-peat.pdf (last access: 24 June 2024), 2023.
Waddington, J. M., Morris, P. J., Kettridge, N., Granath, G., and Thompson, D. K.: Hydrological feedbacks in northern peatlands, Ecohydrology, 8, 113–127, https://doi.org/10.1002/eco.1493, 2014.
Walter, B., Heimann, M., Shannon, R., and White, J.: A process-based model to derive methane emissions from natural wetlands, Geophys. Res. Lett., 23, 3731–3734, https://doi.org/10.1029/96GL03577, 1996.
Wania, R., Ross, I., and Prentice, I. C.: Implementation and evaluation of a new methane model within a dynamic global vegetation model: LPJ-WHyMe v1.3.1, Geosci. Model Dev., 3, 565–584, https://doi.org/10.5194/gmd-3-565-2010, 2010.
Webster, K. L., McLaughlin, J. W., Kim, Y., Packalen, M. S., and Li, C. S.: Modelling carbon dynamics and response to environmental change along a boreal fen nutrient gradient, Ecol. Model., 248, 148–164, https://doi.org/10.1016/j.ecolmodel.2012.10.004, 2013.
Wilson, D., Mackin, F., Tuovinen, J.-P., Moser, G., Farrell, C., and Renou-Wilson, F.: Carbon and climate implications of rewetting a raised bog in Ireland, Global Change Biol., 28, 6349–6365, https://doi.org/10.1111/gcb.16359, 2022.
Wu, J. and Roulet, N. T.: Climate change reduces the capacity of northern peatlands to absorb the atmospheric carbon dioxide: The different responses of bogs and fens, Global Biogeochem. Cy., 28, 1005–1024, https://doi.org/10.1002/2014GB004845, 2014.
Xu, J., Morris, P. J., Liu, J., Ledesma, J. L. J., and Holden, J.: Increased Dissolved Organic Carbon Concentrations in Peat-Fed UK Water Supplies Under Future Climate and Sulfate Deposition Scenarios, Water Resour. Res., 56, e2019WR025592, https://doi.org/10.1029/2019WR025592, 2020.
Yang, H., Chae, J., Yang, A.-R., Suwignyo, R. A., and Choi, E.: Trends of Peatland Research Based on Topic Modeling: Toward Sustainable Management under Climate Change, Forests, 14, 1818, https://doi.org/10.3390/f14091818, 2023.
Yao, Y., Joetzjer, E., Ciais, P., Viovy, N., Cresto Aleina, F., Chave, J., Sack, L., Bartlett, M., Meir, P., Fisher, R., and Luyssaert, S.: Forest fluxes and mortality response to drought: model description (ORCHIDEE-CAN-NHA r7236) and evaluation at the Caxiuanã drought experiment, Geosci. Model Dev., 15, 7809–7833, https://doi.org/10.5194/gmd-15-7809-2022, 2022.
Young, D. M., Baird, A. J., Morris, P. J., and Holden, J.: Simulating the long-term impacts of drainage and restoration on the ecohydrology of peatlands, Water Resour. Res., 53, 6510–6522, https://doi.org/10.1002/2016WR019898, 2017.
Young, D. M., Baird, A. J., Charman, D. J., Evans, C. D., Gallego-Sala, A. V., Gill, P. J., Hughes, P. D. M., Morris, P. J., and Swindles, G. T.: Misinterpreting carbon accumulation rates in records from near-surface peat, Sci. Rep.-UK, 9, 17939, https://doi.org/10.1038/s41598-019-53879-8, 2019.
Yuan, F., Wang, Y., Ricciuto, D., Shi, X., Yuan, F., Brehme, T., Bridgham, S., Keller, J., Warren, J., Griffiths, N., Sebestyen, S., Hanson, P., Thornton, P., and Xu, X.: Hydrological feedbacks on peatland CH4 emission under warming and elevated CO2: A modeling study, J. Hydrol., 603, 127137, https://doi.org/10.1016/j.jhydrol.2021.127137, 2021.
Zak, D. and McInnes, R. J.: A call for refining the peatland restoration strategy in Europe, J. Appl. Ecol., 59, 2698–2704, https://doi.org/10.1111/1365-2664.14261, 2022.
Zi, T., Kumar, M., Kiely, G., Lewis, C., and Albertson, J.: Simulating the spatio-temporal dynamics of soil erosion, deposition, and yield using a coupled sediment dynamics and 3D distributed hydrologic model, Environ. Modell. Softw., 83, 310–325, https://doi.org/10.1016/j.envsoft.2016.06.004, 2016.
Download
- Article
(2408 KB) - Full-text XML
Short summary
Peatland restoration combats climate change and protects ecosystem health in many northern regions. This review gathers data about models used on northern peatlands to further envision their application in the specific scenario of restoration. A total of 211 papers were included in the review: location trends for peatland modelling were catalogued, and key themes in model outputs were highlighted. Valuable context is provided for future efforts in modelling the peatland restoration process.
Peatland restoration combats climate change and protects ecosystem health in many northern...
Altmetrics
Final-revised paper
Preprint