Articles | Volume 21, issue 17
https://doi.org/10.5194/bg-21-3883-2024
https://doi.org/10.5194/bg-21-3883-2024
Research article
 | Highlight paper
 | 
03 Sep 2024
Research article | Highlight paper |  | 03 Sep 2024

Global and regional hydrological impacts of global forest expansion

James A. King, James Weber, Peter Lawrence, Stephanie Roe, Abigail L. S. Swann, and Maria Val Martin

Related authors

Updated isoprene and terpene emission factors for the Interactive BVOC (iBVOC) emission scheme in the United Kingdom Earth System Model (UKESM1.0)
James Weber, James A. King, Katerina Sindelarova, and Maria Val Martin
Geosci. Model Dev., 16, 3083–3101, https://doi.org/10.5194/gmd-16-3083-2023,https://doi.org/10.5194/gmd-16-3083-2023, 2023
Short summary

Related subject area

Earth System Science/Response to Global Change: Climate Change
Effects of pH/pCO2 fluctuations on photosynthesis and fatty acid composition of two marine diatoms, with reference to consequences of coastal acidification
Yu Shang, Jingmin Qiu, Yuxi Weng, Xin Wang, Di Zhang, Yuwei Zhou, Juntian Xu, and Futian Li
Biogeosciences, 22, 1203–1214, https://doi.org/10.5194/bg-22-1203-2025,https://doi.org/10.5194/bg-22-1203-2025, 2025
Short summary
Long-term impacts of global temperature stabilization and overshoot on exploited marine species
Anne L. Morée, Fabrice Lacroix, William W. L. Cheung, and Thomas L. Frölicher
Biogeosciences, 22, 1115–1133, https://doi.org/10.5194/bg-22-1115-2025,https://doi.org/10.5194/bg-22-1115-2025, 2025
Short summary
Modelling ozone-induced changes in wheat amino acids and protein quality using a process-based crop model
Jo Cook, Durgesh Singh Yadav, Felicity Hayes, Nathan Booth, Sam Bland, Pritha Pande, Samarthia Thankappan, and Lisa Emberson
Biogeosciences, 22, 1035–1056, https://doi.org/10.5194/bg-22-1035-2025,https://doi.org/10.5194/bg-22-1035-2025, 2025
Short summary
Toward more robust net primary production projections in the North Atlantic Ocean
Stéphane Doléac, Marina Lévy, Roy El Hourany, and Laurent Bopp
Biogeosciences, 22, 841–862, https://doi.org/10.5194/bg-22-841-2025,https://doi.org/10.5194/bg-22-841-2025, 2025
Short summary
Assessment framework to predict sensitivity of marine calcifiers to ocean alkalinity enhancement – identification of biological thresholds and importance of precautionary principle
Nina Bednaršek, Hanna van de Mortel, Greg Pelletier, Marisol García-Reyes, Richard A. Feely, and Andrew G. Dickson
Biogeosciences, 22, 473–498, https://doi.org/10.5194/bg-22-473-2025,https://doi.org/10.5194/bg-22-473-2025, 2025
Short summary

Cited articles

Abiodun, B. J., Salami, A. T., Matthew, O. J., and Odedokun, S.: Potential impacts of afforestation on climate change and extreme events in Nigeria, Clim. Dynam., 41, 277–293, https://doi.org/10.1007/S00382-012-1523-9, 2013. 
Alkama, R. and Cescatti, A.: Biophysical climate impacts of recent changes in global forest cover, Science, 351, 600–604, https://doi.org/10.1126/SCIENCE.AAC8083, 2016. 
Baker, J. C. A. and Spracklen, D. V.: Divergent Representation of Precipitation Recycling in the Amazon and the Congo in CMIP6 Models, Geophys. Res. Lett., 49, e2021GL095136, https://doi.org/10.1029/2021GL095136, 2022. 
Bala, G., Caldeira, K., Wickett, M., Phillips, T. J., Lobell, D. B., Delire, C., and Mirin, A.: Combined climate and carbon-cycle effects of large-scale deforestation, P. Natl. Acad. Sci. USA, 104, 6550–6555, https://doi.org/10.1073/PNAS.0608998104, 2007. 
Barnes, M. L., Zhang, Q., Robeson, S. M., Young, L., Burakowski, E. A., Oishi, A. C., Stoy, P. C., Katul, G., and Novick, K. A.: A Century of Reforestation Reduced Anthropogenic Warming in the Eastern United States, Earths Future, 12, e2023EF003663, https://doi.org/10.1029/2023EF003663, 2024. 
Download
Co-editor-in-chief
Large-scale afforestation and reforestation are today seen as an important global climate mitigation strategy. The study investigates the climate feedbacks from afforestation and reforestation with a focus on hydrodynamic processes. The study shows that feedbacks on precipitation and local temperature are more complex and that is important to look beyond carbon cycle feedbacks when it comes to the implementation of climate mitigation strategies.
Short summary
Tackling climate change by adding, restoring, or enhancing forests is gaining global support. However, it is important to investigate the broader implications of this. We used a computer model of the Earth to investigate a future where tree cover expanded as much as possible. We found that some tropical areas were cooler because of trees pumping water into the atmosphere, but this also led to soil and rivers drying. This is important because it might be harder to maintain forests as a result.
Share
Altmetrics
Final-revised paper
Preprint