Articles | Volume 21, issue 21
https://doi.org/10.5194/bg-21-4875-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-21-4875-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Controls on the composition of hydroxylated isoprenoidal glycerol dialkyl glycerol tetraethers (isoGDGTs) in cultivated ammonia-oxidizing Thaumarchaeota
Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, the Netherlands
Laura Villanueva
Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, the Netherlands
Department of Earth Sciences, Utrecht University, Utrecht, the Netherlands
Nicole J. Bale
Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, the Netherlands
Pierre Offre
Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, the Netherlands
Gert-Jan Reichart
Department of Earth Sciences, Utrecht University, Utrecht, the Netherlands
Department of Ocean Systems, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, the Netherlands
Stefan Schouten
Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, the Netherlands
Department of Earth Sciences, Utrecht University, Utrecht, the Netherlands
Related authors
Peter K. Bijl, Kasia K. Sliwinska, Bella Duncan, Arnaud Huguet, Sebastian Naeher, Ronnakrit Rattanasriampaipong, Claudia Sosa-Montes de Oca, Alexandra Auderset, Melissa Berke, Bum Soo Kim, Nina Davtian, Tom Dunkley Jones, Desmond Eefting, Felix Elling, Lauren O'Connor, Richard D. Pancost, Francien Peterse, Pierrick Fenies, Addison Rice, Appy Sluijs, Devika Varma, Wenjie Xiao, and Yige Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1467, https://doi.org/10.5194/egusphere-2025-1467, 2025
Short summary
Short summary
Many academic laboratories worldwide process environmental samples for analysis of membrane lipid molecules of archaea, for the reconstruction of past environmental conditions. However, the sample workup scheme involves many steps, each of which has a risk of contamination or bias, affecting the results. This paper reviews steps involved in sampling, extraction and analysis of lipids, interpretation and archiving of the data. This ensures reproducable, reusable, comparable and consistent data.
Katrin Hättig, Devika Varma, Stefan Schouten, and Marcel T. J. van der Meer
Clim. Past, 19, 1919–1930, https://doi.org/10.5194/cp-19-1919-2023, https://doi.org/10.5194/cp-19-1919-2023, 2023
Short summary
Short summary
Water isotopes, both hydrogen and oxygen, correlate with the salinity of the sea. Here we reconstruct the surface seawater isotopic composition during the last deglaciation based on the measured hydrogen isotopic composition of alkenones, organic compounds derived from haptophyte algae, and compared it to oxygen isotopes of calcite shells produced in the bottom water. Our results suggest that surface seawater experienced more freshening during the last 20 000 years than the bottom seawater.
Evert de Froe, Christian Mohn, Karline Soetaert, Anna-Selma van der Kaaden, Gert-Jan Reichart, Laurence H. De Clippele, Sandra R. Maier, and Dick van Oevelen
EGUsphere, https://doi.org/10.5194/egusphere-2025-3385, https://doi.org/10.5194/egusphere-2025-3385, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
Cold-water corals are important reef-building animals in the deep sea, and are found all over the world. So far, researchers have been mapping and predicting where cold-water corals can be found using video transects and statistics. This study provides the first process-based model in which corals are predicted based on ocean currents and food particle movement. The renewal of food by tidal currents close to the seafloor and corals proved essential in predicting where they can grow or not.
Anna Cutmore, Nicole Bale, Rick Hennekam, Bingjie Yang, Darci Rush, Gert-Jan Reichart, Ellen C. Hopmans, and Stefan Schouten
Clim. Past, 21, 957–971, https://doi.org/10.5194/cp-21-957-2025, https://doi.org/10.5194/cp-21-957-2025, 2025
Short summary
Short summary
As human activities lower marine oxygen levels, understanding the impact on the marine nitrogen cycle is vital. The Black Sea, which became oxygen-deprived 9600 years ago, offers key insights. By studying organic compounds linked to nitrogen cycle processes, we found that, 7200 years ago, the Black Sea's nitrogen cycle significantly altered due to severe deoxygenation. This suggests that continued marine oxygen decline could similarly alter the marine nitrogen cycle, affecting vital ecosystems.
Anna Cutmore, Nora Richter, Nicole Bale, Stefan Schouten, and Darci Rush
EGUsphere, https://doi.org/10.5194/egusphere-2025-1796, https://doi.org/10.5194/egusphere-2025-1796, 2025
Short summary
Short summary
This study uses bacterial compounds, bacteriohopanepolyols (BHPs), preserved in Black Sea sediments to trace major environmental changes over the past 20,000 years. As the basin shifted from a freshwater lake to a permanently oxygen-poor marine environment, we observe clear changes in bacterial communities and environmental conditions. These findings offer new insight into how microbes responded to significant hydrological changes during the last deglaciation and Holocene.
Peter Kraal, Kristin A. Ungerhofer, Darci Rush, and Gert-Jan Reichart
EGUsphere, https://doi.org/10.5194/egusphere-2025-1870, https://doi.org/10.5194/egusphere-2025-1870, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Element cycles in oxygen-depleted areas such as upwelling areas inform future deoxygenation scenarios. The Benguela upwelling system shows strong decoupling of nitrogen and phosphorus cycling due to seasonal shelf anoxia. Anaerobic processes result in pelagic nitrogen loss as N2. At the same time, sediments are rich in fish-derived and bacterial phosphorus, with high fluxes of excess phosphate, altering deep-water nitrogen:phosphorus ratios. Such alterations can affect ocean functioning.
Yannick F. Bats, Klaas G. J. Nierop, Alice Stuart-Lee, Joost Frieling, Linda van Roij, Gert-Jan Reichart, and Appy Sluijs
EGUsphere, https://doi.org/10.5194/egusphere-2025-1678, https://doi.org/10.5194/egusphere-2025-1678, 2025
Short summary
Short summary
In this study we analyzed the molecular and stable carbon isotopic composition (δ13C) of pollen and spores (sporomorphs) that underwent chemical treatments that simulate diagenesis during fossilization. We show that the successive removal of sugars and lipids results in 13C depletion of the residual sporomorph, leaving it rich aromatic compounds. This residual aromatic-rich structure likely represents diagenetically resistant sporopollenin, implying diagenesis results in 13C depletion of pollen.
Peter K. Bijl, Kasia K. Sliwinska, Bella Duncan, Arnaud Huguet, Sebastian Naeher, Ronnakrit Rattanasriampaipong, Claudia Sosa-Montes de Oca, Alexandra Auderset, Melissa Berke, Bum Soo Kim, Nina Davtian, Tom Dunkley Jones, Desmond Eefting, Felix Elling, Lauren O'Connor, Richard D. Pancost, Francien Peterse, Pierrick Fenies, Addison Rice, Appy Sluijs, Devika Varma, Wenjie Xiao, and Yige Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1467, https://doi.org/10.5194/egusphere-2025-1467, 2025
Short summary
Short summary
Many academic laboratories worldwide process environmental samples for analysis of membrane lipid molecules of archaea, for the reconstruction of past environmental conditions. However, the sample workup scheme involves many steps, each of which has a risk of contamination or bias, affecting the results. This paper reviews steps involved in sampling, extraction and analysis of lipids, interpretation and archiving of the data. This ensures reproducable, reusable, comparable and consistent data.
Szabina Karancz, Lennart J. de Nooijer, Bas van der Wagt, Marcel T. J. van der Meer, Sambuddha Misra, Rick Hennekam, Zeynep Erdem, Julie Lattaud, Negar Haghipour, Stefan Schouten, and Gert-Jan Reichart
Clim. Past, 21, 679–704, https://doi.org/10.5194/cp-21-679-2025, https://doi.org/10.5194/cp-21-679-2025, 2025
Short summary
Short summary
Changes in upwelling intensity of the Benguela upwelling region during the last glacial motivated us to investigate the local CO2 history during the last glacial-to-interglacial transition. Using various geochemical tracers on archives from both subsurface and surface waters reveals enhanced storage of carbon at depth during the Last Glacial Maximum. An efficient biological pump likely prevented outgassing of CO2 from intermediate depth to the atmosphere.
Louise Delaigue, Gert-Jan Reichart, Chris Galley, Yasmina Ourradi, and Matthew Paul Humphreys
EGUsphere, https://doi.org/10.5194/egusphere-2024-2853, https://doi.org/10.5194/egusphere-2024-2853, 2024
Short summary
Short summary
Our study analyzed pH in ocean surface waters to understand how they fluctuate with changes in temperature, salinity, and biological activities. We found that temperature mainly controls daily pH variations, but biological processes also play a role, especially in affecting CO2 levels between the ocean and atmosphere. Our research shows how these factors together maintain the balance of ocean chemistry, which is crucial for predicting changes in marine environments.
Charlotte Eich, Mathijs van Manen, J. Scott P. McCain, Loay J. Jabre, Willem H. van de Poll, Jinyoung Jung, Sven B. E. H. Pont, Hung-An Tian, Indah Ardiningsih, Gert-Jan Reichart, Erin M. Bertrand, Corina P. D. Brussaard, and Rob Middag
Biogeosciences, 21, 4637–4663, https://doi.org/10.5194/bg-21-4637-2024, https://doi.org/10.5194/bg-21-4637-2024, 2024
Short summary
Short summary
Phytoplankton growth in the Southern Ocean (SO) is often limited by low iron (Fe) concentrations. Sea surface warming impacts Fe availability and can affect phytoplankton growth. We used shipboard Fe clean incubations to test how changes in Fe and temperature affect SO phytoplankton. Their abundances usually increased with Fe addition and temperature increase, with Fe being the major factor. These findings imply potential shifts in ecosystem structure, impacting food webs and elemental cycling.
Guangnan Wu, Klaas G. J. Nierop, Bingjie Yang, Stefan Schouten, Gert-Jan Reichart, and Peter Kraal
EGUsphere, https://doi.org/10.5194/egusphere-2024-3192, https://doi.org/10.5194/egusphere-2024-3192, 2024
Short summary
Short summary
Estuaries store and process large amounts of carbon, making them vital to the global carbon cycle. In the Port of Rotterdam, we studied the source of organic matter (OM) in sediments and how it influences OM breakdown. We found that marine OM degrades faster than land OM, and human activities like dredging can accelerate this by exposing sediments to oxygen. Our findings highlight the impact of human activities on carbon storage in estuaries, which is key for managing estuarine carbon dynamics.
Vera Dorothee Meyer, Jürgen Pätzold, Gesine Mollenhauer, Isla S. Castañeda, Stefan Schouten, and Enno Schefuß
Clim. Past, 20, 523–546, https://doi.org/10.5194/cp-20-523-2024, https://doi.org/10.5194/cp-20-523-2024, 2024
Short summary
Short summary
The climatic factors sustaining vegetation in the Sahara during the African humid period (AHP) are still not fully understood. Using biomarkers in a marine sediment core from the eastern Mediterranean, we infer variations in Mediterranean (winter) and monsoonal (summer) rainfall in the Nile river watershed around the AHP. We find that winter and summer rain enhanced during the AHP, suggesting that Mediterranean moisture supported the monsoon in sustaining the “green Sahara”.
Joost Frieling, Linda van Roij, Iris Kleij, Gert-Jan Reichart, and Appy Sluijs
Biogeosciences, 20, 4651–4668, https://doi.org/10.5194/bg-20-4651-2023, https://doi.org/10.5194/bg-20-4651-2023, 2023
Short summary
Short summary
We present a first species-specific evaluation of marine core-top dinoflagellate cyst carbon isotope fractionation (εp) to assess natural pCO2 dependency on εp and explore its geological deep-time paleo-pCO2 proxy potential. We find that εp differs between genera and species and that in Operculodinium centrocarpum, εp is controlled by pCO2 and nutrients. Our results highlight the added value of δ13C analyses of individual micrometer-scale sedimentary organic carbon particles.
Katrin Hättig, Devika Varma, Stefan Schouten, and Marcel T. J. van der Meer
Clim. Past, 19, 1919–1930, https://doi.org/10.5194/cp-19-1919-2023, https://doi.org/10.5194/cp-19-1919-2023, 2023
Short summary
Short summary
Water isotopes, both hydrogen and oxygen, correlate with the salinity of the sea. Here we reconstruct the surface seawater isotopic composition during the last deglaciation based on the measured hydrogen isotopic composition of alkenones, organic compounds derived from haptophyte algae, and compared it to oxygen isotopes of calcite shells produced in the bottom water. Our results suggest that surface seawater experienced more freshening during the last 20 000 years than the bottom seawater.
Laura Pacho, Lennart de Nooijer, and Gert-Jan Reichart
Biogeosciences, 20, 4043–4056, https://doi.org/10.5194/bg-20-4043-2023, https://doi.org/10.5194/bg-20-4043-2023, 2023
Short summary
Short summary
We analyzed Mg / Ca and other El / Ca (Na / Ca, B / Ca, Sr / Ca and Ba / Ca) in Nodosariata. Their calcite chemistry is markedly different to that of the other calcifying orders of foraminifera. We show a relation between the species average Mg / Ca and its sensitivity to changes in temperature. Differences were reflected in both the Mg incorporation and the sensitivities of Mg / Ca to temperature.
Niels J. de Winter, Daniel Killam, Lukas Fröhlich, Lennart de Nooijer, Wim Boer, Bernd R. Schöne, Julien Thébault, and Gert-Jan Reichart
Biogeosciences, 20, 3027–3052, https://doi.org/10.5194/bg-20-3027-2023, https://doi.org/10.5194/bg-20-3027-2023, 2023
Short summary
Short summary
Mollusk shells are valuable recorders of climate and environmental changes of the past down to a daily resolution. To explore this potential, we measured changes in the composition of shells of two types of bivalves recorded at the hourly scale: the king scallop Pecten maximus and giant clams (Tridacna) that engaged in photosymbiosis. We find that photosymbiosis produces more day–night fluctuation in shell chemistry but that most of the variation is not periodic, perhaps recording weather.
Nora Richter, Ellen C. Hopmans, Danica Mitrović, Pedro M. Raposeiro, Vítor Gonçalves, Ana C. Costa, Linda A. Amaral-Zettler, Laura Villanueva, and Darci Rush
Biogeosciences, 20, 2065–2098, https://doi.org/10.5194/bg-20-2065-2023, https://doi.org/10.5194/bg-20-2065-2023, 2023
Short summary
Short summary
Bacteriohopanepolyols (BHPs) are a diverse class of lipids produced by bacteria across a wide range of environments. This study characterizes the diversity of BHPs in lakes and coastal lagoons in the Azores Archipelago, as well as a co-culture enriched for methanotrophs. We highlight the potential of BHPs as taxonomic markers for bacteria associated with certain ecological niches, which can be preserved in sedimentary records.
Kasia K. Śliwińska, Helen K. Coxall, David K. Hutchinson, Diederik Liebrand, Stefan Schouten, and Agatha M. de Boer
Clim. Past, 19, 123–140, https://doi.org/10.5194/cp-19-123-2023, https://doi.org/10.5194/cp-19-123-2023, 2023
Short summary
Short summary
We provide a sea surface temperature record from the Labrador Sea (ODP Site 647) based on organic geochemical proxies across the late Eocene and early Oligocene. Our study reveals heterogenic cooling of the Atlantic. The cooling of the North Atlantic is difficult to reconcile with the active Atlantic Meridional Overturning Circulation (AMOC). We discuss possible explanations like uncertainty in the data, paleogeography and atmospheric CO2 boundary conditions, model weaknesses, and AMOC activity.
Rick Hennekam, Katharine M. Grant, Eelco J. Rohling, Rik Tjallingii, David Heslop, Andrew P. Roberts, Lucas J. Lourens, and Gert-Jan Reichart
Clim. Past, 18, 2509–2521, https://doi.org/10.5194/cp-18-2509-2022, https://doi.org/10.5194/cp-18-2509-2022, 2022
Short summary
Short summary
The ratio of titanium to aluminum (Ti/Al) is an established way to reconstruct North African climate in eastern Mediterranean Sea sediments. We demonstrate here how to obtain reliable Ti/Al data using an efficient scanning method that allows rapid acquisition of long climate records at low expense. Using this method, we reconstruct a 3-million-year North African climate record. African environmental variability was paced predominantly by low-latitude insolation from 3–1.2 million years ago.
Carolien M. H. van der Weijst, Koen J. van der Laan, Francien Peterse, Gert-Jan Reichart, Francesca Sangiorgi, Stefan Schouten, Tjerk J. T. Veenstra, and Appy Sluijs
Clim. Past, 18, 1947–1962, https://doi.org/10.5194/cp-18-1947-2022, https://doi.org/10.5194/cp-18-1947-2022, 2022
Short summary
Short summary
The TEX86 proxy is often used by paleoceanographers to reconstruct past sea-surface temperatures. However, the origin of the TEX86 signal in marine sediments has been debated since the proxy was first proposed. In our paper, we show that TEX86 carries a mixed sea-surface and subsurface temperature signal and should be calibrated accordingly. Using our 15-million-year record, we subsequently show how a TEX86 subsurface temperature record can be used to inform us on past sea-surface temperatures.
Carolien M. H. van der Weijst, Josse Winkelhorst, Wesley de Nooijer, Anna von der Heydt, Gert-Jan Reichart, Francesca Sangiorgi, and Appy Sluijs
Clim. Past, 18, 961–973, https://doi.org/10.5194/cp-18-961-2022, https://doi.org/10.5194/cp-18-961-2022, 2022
Short summary
Short summary
A hypothesized link between Pliocene (5.3–2.5 million years ago) global climate and tropical thermocline depth is currently only backed up by data from the Pacific Ocean. In our paper, we present temperature, salinity, and thermocline records from the tropical Atlantic Ocean. Surprisingly, the Pliocene thermocline evolution was remarkably different in the Atlantic and Pacific. We need to reevaluate the mechanisms that drive thermocline depth, and how these are tied to global climate change.
Zoë R. van Kemenade, Laura Villanueva, Ellen C. Hopmans, Peter Kraal, Harry J. Witte, Jaap S. Sinninghe Damsté, and Darci Rush
Biogeosciences, 19, 201–221, https://doi.org/10.5194/bg-19-201-2022, https://doi.org/10.5194/bg-19-201-2022, 2022
Short summary
Short summary
Anaerobic ammonium oxidation (anammox) is an important nitrogen-removal process in the ocean. We assess the distribution of bacteriohopanetetrol-x (BHT-x), used to trace past anammox, along a redox gradient in the water column of the Benguela upwelling system. BHT-x / BHT ratios of >0.18 correspond to the presence of living anammox bacteria and oxygen levels <50 μmol L−1. This allows for a more robust application of BHT-x to trace past marine anammox and deoxygenation in dynamic marine systems.
Alice E. Webb, Didier M. de Bakker, Karline Soetaert, Tamara da Costa, Steven M. A. C. van Heuven, Fleur C. van Duyl, Gert-Jan Reichart, and Lennart J. de Nooijer
Biogeosciences, 18, 6501–6516, https://doi.org/10.5194/bg-18-6501-2021, https://doi.org/10.5194/bg-18-6501-2021, 2021
Short summary
Short summary
The biogeochemical behaviour of shallow reef communities is quantified to better understand the impact of habitat degradation and species composition shifts on reef functioning. The reef communities investigated barely support reef functions that are usually ascribed to conventional coral reefs, and the overall biogeochemical behaviour is found to be similar regardless of substrate type. This suggests a decrease in functional diversity which may therefore limit services provided by this reef.
Indah Ardiningsih, Kyyas Seyitmuhammedov, Sylvia G. Sander, Claudine H. Stirling, Gert-Jan Reichart, Kevin R. Arrigo, Loes J. A. Gerringa, and Rob Middag
Biogeosciences, 18, 4587–4601, https://doi.org/10.5194/bg-18-4587-2021, https://doi.org/10.5194/bg-18-4587-2021, 2021
Short summary
Short summary
Organic Fe speciation is investigated along a natural gradient of the western Antarctic Peninsula from an ice-covered shelf to the open ocean. The two major fronts in the region affect the distribution of ligands. The excess ligands not bound to dissolved Fe (DFe) comprised up to 80 % of the total ligand concentrations, implying the potential to solubilize additional Fe input. The ligands on the shelf can increase the DFe residence time and fuel local primary production upon ice melt.
Charlotte L. Spencer-Jones, Erin L. McClymont, Nicole J. Bale, Ellen C. Hopmans, Stefan Schouten, Juliane Müller, E. Povl Abrahamsen, Claire Allen, Torsten Bickert, Claus-Dieter Hillenbrand, Elaine Mawbey, Victoria Peck, Aleksandra Svalova, and James A. Smith
Biogeosciences, 18, 3485–3504, https://doi.org/10.5194/bg-18-3485-2021, https://doi.org/10.5194/bg-18-3485-2021, 2021
Short summary
Short summary
Long-term ocean temperature records are needed to fully understand the impact of West Antarctic Ice Sheet collapse. Glycerol dialkyl glycerol tetraethers (GDGTs) are powerful tools for reconstructing ocean temperature but can be difficult to apply to the Southern Ocean. Our results show active GDGT synthesis in relatively warm depths of the ocean. This research improves the application of GDGT palaeoceanographic proxies in the Southern Ocean.
Cécile L. Blanchet, Rik Tjallingii, Anja M. Schleicher, Stefan Schouten, Martin Frank, and Achim Brauer
Clim. Past, 17, 1025–1050, https://doi.org/10.5194/cp-17-1025-2021, https://doi.org/10.5194/cp-17-1025-2021, 2021
Short summary
Short summary
The Mediterranean Sea turned repeatedly into an oxygen-deprived basin during the geological past, as evidenced by distinct sediment layers called sapropels. We use here records of the last sapropel S1 retrieved in front of the Nile River to explore the relationships between riverine input and seawater oxygenation. We decipher the seasonal cycle of fluvial input and seawater chemistry as well as the decisive influence of primary productivity on deoxygenation at millennial timescales.
Ove H. Meisel, Joshua F. Dean, Jorien E. Vonk, Lukas Wacker, Gert-Jan Reichart, and Han Dolman
Biogeosciences, 18, 2241–2258, https://doi.org/10.5194/bg-18-2241-2021, https://doi.org/10.5194/bg-18-2241-2021, 2021
Short summary
Short summary
Arctic permafrost lakes form thaw bulbs of unfrozen soil (taliks) beneath them where carbon degradation and greenhouse gas production are increased. We analyzed the stable carbon isotopes of Alaskan talik sediments and their porewater dissolved organic carbon and found that the top layers of these taliks are likely more actively degraded than the deeper layers. This in turn implies that these top layers are likely also more potent greenhouse gas producers than the underlying deeper layers.
Nadine T. Smit, Laura Villanueva, Darci Rush, Fausto Grassa, Caitlyn R. Witkowski, Mira Holzheimer, Adriaan J. Minnaard, Jaap S. Sinninghe Damsté, and Stefan Schouten
Biogeosciences, 18, 1463–1479, https://doi.org/10.5194/bg-18-1463-2021, https://doi.org/10.5194/bg-18-1463-2021, 2021
Short summary
Short summary
Soils from an everlasting fire (gas seep) in Sicily, Italy, reveal high relative abundances of novel uncultivated mycobacteria and unique 13C-depleted mycocerosic acids (multi-methyl branched fatty acids) close to the main gas seep. Our results imply that mycocerosic acids in combination with their depleted δ13C values offer a new biomarker tool to study the role of soil mycobacteria as hydrocarbon consumers in the modern and past global carbon cycle.
Delphine Dissard, Gert Jan Reichart, Christophe Menkes, Morgan Mangeas, Stephan Frickenhaus, and Jelle Bijma
Biogeosciences, 18, 423–439, https://doi.org/10.5194/bg-18-423-2021, https://doi.org/10.5194/bg-18-423-2021, 2021
Short summary
Short summary
Results from a data set acquired from living foraminifera T. sacculifer collected from surface waters are presented, allowing us to establish a new Mg/Ca–Sr/Ca–temperature equation improving temperature reconstructions. When combining equations, δ18Ow can be reconstructed with a precision of ± 0.5 ‰, while successive reconstructions involving Mg/Ca and δ18Oc preclude salinity reconstruction with a precision better than ± 1.69. A new direct linear fit to reconstruct salinity could be established.
Siham de Goeyse, Alice E. Webb, Gert-Jan Reichart, and Lennart J. de Nooijer
Biogeosciences, 18, 393–401, https://doi.org/10.5194/bg-18-393-2021, https://doi.org/10.5194/bg-18-393-2021, 2021
Short summary
Short summary
Foraminifera are calcifying organisms that play a role in the marine inorganic-carbon cycle and are widely used to reconstruct paleoclimates. However, the fundamental process by which they calcify remains essentially unknown. Here we use inhibitors to show that an enzyme is speeding up the conversion between bicarbonate and CO2. This helps the foraminifera acquire sufficient carbon for calcification and might aid their tolerance to elevated CO2 level.
Linda K. Dämmer, Lennart de Nooijer, Erik van Sebille, Jan G. Haak, and Gert-Jan Reichart
Clim. Past, 16, 2401–2414, https://doi.org/10.5194/cp-16-2401-2020, https://doi.org/10.5194/cp-16-2401-2020, 2020
Short summary
Short summary
The compositions of foraminifera shells often vary with environmental parameters such as temperature or salinity; thus, they can be used as proxies for these environmental variables. Often a single proxy is influenced by more than one parameter. Here, we show that while salinity impacts shell Na / Ca, temperature has no effect. We also show that the combination of different proxies (Mg / Ca and δ18O) to reconstruct salinity does not seem to work as previously thought.
Appy Sluijs, Joost Frieling, Gordon N. Inglis, Klaas G. J. Nierop, Francien Peterse, Francesca Sangiorgi, and Stefan Schouten
Clim. Past, 16, 2381–2400, https://doi.org/10.5194/cp-16-2381-2020, https://doi.org/10.5194/cp-16-2381-2020, 2020
Short summary
Short summary
We revisit 15-year-old reconstructions of sea surface temperatures in the Arctic Ocean for the late Paleocene and early Eocene epochs (∼ 57–53 million years ago) based on the distribution of fossil membrane lipids of archaea preserved in Arctic Ocean sediments. We find that improvements in the methods over the past 15 years do not lead to different results. However, data quality is now higher and potential biases better characterized. Results confirm remarkable Arctic warmth during this time.
Loes G. J. van Bree, Francien Peterse, Allix J. Baxter, Wannes De Crop, Sigrid van Grinsven, Laura Villanueva, Dirk Verschuren, and Jaap S. Sinninghe Damsté
Biogeosciences, 17, 5443–5463, https://doi.org/10.5194/bg-17-5443-2020, https://doi.org/10.5194/bg-17-5443-2020, 2020
Short summary
Short summary
Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are used as a paleothermometer based on their temperature dependence in global soils, but aquatic production complicates their use in lakes. BrGDGTs in the water column of Lake Chala, East Africa, respond to oxygen conditions and mixing. Changes in their signal can be linked to bacterial community composition rather than membrane adaptation to changing conditions. Their integrated signal in the sediment reflects mean air temperature.
Anne Roepert, Lubos Polerecky, Esmee Geerken, Gert-Jan Reichart, and Jack J. Middelburg
Biogeosciences, 17, 4727–4743, https://doi.org/10.5194/bg-17-4727-2020, https://doi.org/10.5194/bg-17-4727-2020, 2020
Short summary
Short summary
We investigated, for the first time, the spatial distribution of chlorine and fluorine in the shell walls of four benthic foraminifera species: Ammonia tepida, Amphistegina lessonii, Archaias angulatus, and Sorites marginalis. Cross sections of specimens were imaged using nanoSIMS. The distribution of Cl and F was co-located with organics in the rotaliids and rather homogeneously distributed in miliolids. We suggest that the incorporation is governed by the biomineralization pathway.
Cited articles
Bale, N. J., Palatinszky, M., Rijpstra, W. I. C., Herbold, C. W., Wagner, M., and Sinninghe Damsté, J. S.: Membrane lipid composition of the moderately thermophilic ammonia-oxidizing archaeon “Candidatus Nitrosotenuis uzonensis” at different growth temperatures, Appl. Environ. Microb., 85, e01332-19, https://doi.org/10.1128/AEM.01332-19, 2019.
Bale, N. J., Ding, S., Hopmans, E. C., Arts, M. G. I., Villanueva, L., Boschman, C., Haas, A. F., Schouten, S., and Sinninghe Damsté, J. S.: Lipidomics of environmental microbial communities. I: Visualization of component distributions using untargeted analysis of high-resolution mass spectrometry data, Front. Microbiol., 12, 659302, https://doi.org/10.3389/FMICB.2021.659302, 2021.
Basse, A., Zhu, C., Versteegh, G. J. M., Fischer, G., Hinrichs, K. U., and Mollenhauer, G.: Distribution of intact and core tetraether lipids in water column profiles of suspended particulate matter off Cape Blanc, NW Africa, Org. Geochem., 72, 1–13, https://doi.org/10.1016/J.ORGGEOCHEM.2014.04.007, 2014.
Bayer, B., Vojvoda, J., Offre, P., Alves, R. J. E., Elisabeth, N. H., Garcia, J. A. L., Volland, J. M., Srivastava, A., Schleper, C., and Herndl, G. J.: Physiological and genomic characterization of two novel marine thaumarchaeal strains indicates niche differentiation, ISME J., 10, 1051–1063, https://doi.org/10.1038/ismej.2015.200, 2016.
Bayer, B., Vojvoda, J., Reinthaler, T., Reyes, C., Pinto, M., and Herndl, G. J.: Nitrosopumilus adriaticus sp. nov. and Nitrosopumilus piranensis sp. nov., two ammonia-oxidizing archaea from the adriatic sea and members of the class nitrososphaeria, Int. J. Syst. Evol. Micr., 69, 1892–1902, https://doi.org/10.1099/ijsem.0.003360, 2019a.
Bayer, B., Pelikan, C., Bittner, M. J., Reinthaler, T., Könneke, M., Herndl, G. J., and Offre, P.: Proteomic response of three marine ammonia-oxidizing archaea to hydrogen peroxide and their metabolic interactions with a heterotrophic alphaproteobacterium, mSystems, 4, 15 pp., https://doi.org/10.1128/msystems.00181-19, 2019b.
Besseling, M. A., Hopmans, E. C., Koenen, M., van der Meer, M. T. J., Vreugdenhil, S., Schouten, S., Sinninghe Damsté, J. S., and Villanueva, L.: Depth-related differences in archaeal populations impact the isoprenoid tetraether lipid composition of the Mediterranean Sea water column, Org. Geochem., 135, 16–31, https://doi.org/10.1016/j.orggeochem.2019.06.008, 2019.
Blaga, C. I., Reichart, G. J., Heiri, O., and Sinninghe Damsté, J. S.: Tetraether membrane lipid distributions in water-column particulate matter and sediments: A study of 47 European lakes along a north-south transect, J. Paleolimnol., 41, 523–540, https://doi.org/10.1007/s10933-008-9242-2, 2009.
Bligh, E. G. and Dyer, W. J.: A rapid method of total lipid extraction and purification, Can. J. Biochem. Phys., 37, 911–917, https://doi.org/10.1139/O59-099, 1959.
Davtian, N. and Bard, E.: A new view on abrupt climate changes and the bipolar seesaw based on paleotemperatures from Iberian Margin sediments, P. Natl. Acad. Sci. USA, 120, e2209558120, https://doi.org/10.1073/PNAS.2209558120, 2023.
Davtian, N., Ménot, G., Fagault, Y., and Bard, E.: Western Mediterranean Sea paleothermometry over the Last Glacial Cycle based on the novel RI-OH index, Paleoceanogr. Paleoclimatology, 34, 616–634, https://doi.org/10.1029/2018PA003452, 2019.
Davtian, N., Bard, E., Darfeuil, S., Ménot, G., and Rostek, F.: The novel hydroxylated tetraether index RI-OH' as a sea surface temperature proxy for the 160–45 ka BP period off the Iberian margin, Paleoceanogr. Paleoclimatology, 36, 1–34, https://doi.org/10.1029/2020PA004077, 2021.
Elling, F. J., Könneke, M., Lipp, J. S., Becker, K. W., Gagen, E. J., and Hinrichs, K. U.: Effects of growth phase on the membrane lipid composition of the thaumarchaeon Nitrosopumilus maritimus and their implications for archaeal lipid distributions in the marine environment, Geochim. Cosmochim. Ac., 141, 579–597, https://doi.org/10.1016/j.gca.2014.07.005, 2014.
Elling, F. J., Könneke, M., Mußmann, M., Greve, A., and Hinrichs, K. U.: Influence of temperature, pH, and salinity on membrane lipid composition and TEX86 of marine planktonic thaumarchaeal isolates, Geochim. Cosmochim. Ac., 171, 238–255, https://doi.org/10.1016/j.gca.2015.09.004, 2015.
Elling, F. J., Könneke, M., Nicol, G. W., Stieglmeier, M., Bayer, B., Spieck, E., de la Torre, J. R., Becker, K. W., Thomm, M., Prosser, J. I., Herndl, G. J., Schleper, C., and Hinrichs, K. U.: Chemotaxonomic characterisation of the thaumarchaeal lipidome, Environ. Microbiol., 19, 2681–2700, https://doi.org/10.1111/1462-2920.13759, 2017.
Fietz, S., Ho, S. L., and Huguet, C.: Archaeal membrane lipid-based paleothermometry for applications in polar oceans, Oceanography, 33, 105–114, https://doi.org/10.5670/oceanog.2020.207, 2020.
Griess, P.: Bemerkungen zu der Abhandlung der HH. Weselsky und Benedikt “Ueber einige Azoverbindungen”?, Ber. Dtsch. Chem. Ges., 12, 426–428, https://doi.org/10.1002/CBER.187901201117, 1879.
Huguet, C., Fietz, S., and Rosell-Melé, A.: Global distribution patterns of hydroxy glycerol dialkyl glycerol tetraethers, Org. Geochem., 57, 107–118, https://doi.org/10.1016/j.orggeochem.2013.01.010, 2013.
Huguet, C., Fietz, S., Rosell-Melé, A., Daura, X., and Costenaro, L.: Molecular dynamics simulation study of the effect of glycerol dialkyl glycerol tetraether hydroxylation on membrane thermostability, BBA-Biomembranes, 1859, 966–974, https://doi.org/10.1016/j.bbamem.2017.02.009, 2017.
Hurley, S. J., Elling, F. J., Könneke, M., Buchwald, C., Wankel, S. D., Santoro, A. E., Lipp, J. S., Hinrichs, K. U., and Pearson, A.: Influence of ammonia oxidation rate on thaumarchaeal lipid composition and the TEX86 temperature proxy, P. Natl. Acad. Sci. USA, 113, 7762–7767, https://doi.org/10.1073/pnas.1518534113, 2016.
Hurley, S. J., Lipp, J. S., Close, H. G., Hinrichs, K. U., and Pearson, A.: Distribution and export of isoprenoid tetraether lipids in suspended particulate matter from the water column of the Western Atlantic Ocean, Org. Geochem., 116, 90–102, https://doi.org/10.1016/j.orggeochem.2017.11.010, 2018.
Inglis, G. N., Farnsworth, A., Lunt, D., Foster, G. L., Hollis, C. J., Pagani, M., Jardine, P. E., Pearson, P. N., Markwick, P., Galsworthy, A. M. J., Raynham, L., Taylor, K. W. R., and Pancost, R. D.: Descent toward the Icehouse: Eocene sea surface cooling inferred from GDGT distributions, Paleoceanography, 30, 1000–1020, https://doi.org/10.1002/2014PA002723, 2015.
Kim, J. H., Huguet, C., Zonneveld, K. A. F., Versteegh, G. J. M., Roeder, W., Sinninghe Damsté, J. S., and Schouten, S.: An experimental field study to test the stability of lipids used for the TEX86 and palaeothermometers, Geochim. Cosmochim. Ac., 73, 2888–2898, https://doi.org/10.1016/J.GCA.2009.02.030, 2009.
Kim, J. H., van der Meer, J., Schouten, S., Helmke, P., Willmott, V., Sangiorgi, F., Koç, N., Hopmans, E. C., and Sinninghe Damsté, J. S.: New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: Implications for past sea surface temperature reconstructions, Geochim. Cosmochim. Ac., 74, 4639–4654, https://doi.org/10.1016/j.gca.2010.05.027, 2010.
Lengger, S. K., Hopmans, E. C., Reichart, G. J., Nierop, K. G. J., Sinninghe Damsté, J. S., and Schouten, S.: Intact polar and core glycerol dibiphytanyl glycerol tetraether lipids in the Arabian Sea oxygen minimum zone. Part II: Selective preservation and degradation in sediments and consequences for the TEX86, Geochim. Cosmochim. Ac., 98, 244–258, https://doi.org/10.1016/J.GCA.2012.05.003, 2012.
Lengger, S. K., Hopmans, E. C., Sinninghe Damsté, J. S., and Schouten, S.: Impact of sedimentary degradation and deep water column production on GDGT abundance and distribution in surface sediments in the Arabian Sea: Implications for the TEX86 paleothermometer, Geochim. Cosmochim. Ac., 142, 386–399, https://doi.org/10.1016/j.gca.2014.07.013, 2014.
Liu, L., Guan, H., Xu, L., Sun, Z., and Wu, N.: Paleoclimate Records of the Middle Okinawa Trough Since the Middle Holocene: Modulation of the Low-Latitude Climate, Front. Earth Sci., 10, 1–13, https://doi.org/10.3389/feart.2022.799280, 2022.
Liu, X.-L., Summons, R. E., and Hinrichs, K. U.: Extending the known range of glycerol ether lipids in the environment: Structural assignments based on tandem mass spectral fragmentation patterns, Rapid Commun. Mass Spe., 26, 2295–2302, https://doi.org/10.1002/rcm.6355, 2012a.
Liu, X.-L., Lipp, J. S., Simpson, J. H., Lin, Y. S., Summons, R. E., and Hinrichs, K. U.: Mono- and dihydroxyl glycerol dibiphytanyl glycerol tetraethers in marine sediments: Identification of both core and intact polar lipid forms, Geochim. Cosmochim. Ac., 89, 102–115, https://doi.org/10.1016/j.gca.2012.04.053, 2012b.
Lü, X., Liu, X. L., Elling, F. J., Yang, H., Xie, S., Song, J., Li, X., Yuan, H., Li, N., and Hinrichs, K. U.: Hydroxylated isoprenoid GDGTs in Chinese coastal seas and their potential as a paleotemperature proxy for mid-to-low latitude marginal seas, Org. Geochem., 89–90, 31–43, https://doi.org/10.1016/j.orggeochem.2015.10.004, 2015.
Lü, X., Chen, J., Han, T., Yang, H., Wu, W., Ding, W., and Hinrichs, K. U.: Origin of hydroxyl GDGTs and regular isoprenoid GDGTs in suspended particulate matter of Yangtze River Estuary, Org. Geochem., 128, 78–85, https://doi.org/10.1016/j.orggeochem.2018.12.010, 2019.
Martens-Habbena, W., Berube, P. M., Urakawa, H., De La Torre, J. R., and Stahl, D. A.: Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria, Nature, 461, 976–979, https://doi.org/10.1038/nature08465, 2009.
Morcillo-Montalbá, L., Rodrigo-Gámiz, M., Martínez-Ruiz, F., Ortega-Huertas, M., Schouten, S., and Sinninghe Damsté, J. S.: Rapid climate changes in the westernmost Mediterranean (Alboran Sea) over the last 35 kyr: New insights from four lipid paleothermometers ( , , RI-OH′, and LDI), Paleoceanogr. Paleocl., 36, e2020PA004171, https://doi.org/10.1029/2020PA004171, 2021.
O'Brien, C. L., Robinson, S. A., Pancost, R. D., Sinninghe Damsté, J. S., Schouten, S., Lunt, D. J., Alsenz, H., Bornemann, A., Bottini, C., Brassell, S. C., Farnsworth, A., Forster, A., Huber, B. T., Inglis, G. N., Jenkyns, H. C., Linnert, C., Littler, K., Markwick, P., McAnena, A., Mutterlose, J., Naafs, B. D. A., Püttmann, W., Sluijs, A., van Helmond, N. A. G. M., Vellekoop, J., Wagner, T., and Wrobel, N. E.: Cretaceous sea-surface temperature evolution: Constraints from TEX86 and planktonic foraminiferal oxygen isotopes, Earth-Sci. Rev., 172, 224–247, https://doi.org/10.1016/J.EARSCIREV.2017.07.012, 2017.
Pearson, A., Huang, Z., Ingalls, A. E., Romanek, C. S., Wiegel, J., Freeman, K. H., Smittenberg, R. H., and Zhang, C. L.: Nonmarine crenarchaeol in Nevada hot springs, Appl. Environ. Microb., 70, 5229–5237, https://doi.org/10.1128/AEM.70.9.5229-5237.2004, 2004.
Pitcher, A., Hopmans, E. C., Mosier, A. C., Park, S. J., Rhee, S. K., Francis, C. A., Schouten, S., and Sinninghe Damsté, J. S.: Core and intact polar glycerol dibiphytanyl glycerol tetraether lipids of ammonia-oxidizing Archaea enriched from marine and estuarine sediments, Appl. Environ. Microb., 77, 3468–3477, https://doi.org/10.1128/AEM.02758-10, 2011.
Polik, C. A., Elling, F. J., and Pearson, A.: Impacts of paleoecology on the TEX86 sea surface temperature proxy in the Pliocene-Pleistocene Mediterranean Sea, Paleoceanogr. Paleoclimatology, 33, 1472–1489, https://doi.org/10.1029/2018PA003494, 2018.
Qin, W., Carlson, L. T., Armbrust, E. V., Devol, A. H., Moffett, J. W., Stahl, D. A., and Ingalls, A. E.: Confounding effects of oxygen and temperature on the TEX86 signature of marine Thaumarchaeota, P. Natl. Acad. Sci. USA, 112, 10979–10984, https://doi.org/10.1073/pnas.1501568112, 2015.
Rattanasriampaipong, R., Zhang, Y. G., Pearson, A., Hedlund, B. P., and Zhang, S.: Archaeal lipids trace ecology and evolution of marine ammonia-oxidizing archaea, P. Natl. Acad. Sci. USA, 119, 1–10, https://doi.org/10.1073/pnas.2123193119, 2022.
Rinke, C., Chuvochina, M., Mussig, A. J., Chaumeil, P. A., Davín, A. A., Waite, D. W., Whitman, W. B., Parks, D. H., and Hugenholtz, P.: A standardized archaeal taxonomy for the Genome Taxonomy Database, Nat. Microbiol., 6, 946–959, https://doi.org/10.1038/s41564-021-00918-8, 2021.
Schouten, S., Hopmans, E. C., Schefuß, E., and Sinninghe Damsté, J. S.: Distributional variations in marine crenarchaeotal membrane lipids: A new tool for reconstructing ancient sea water temperatures?, Earth Planet. Sc. Lett., 204, 265–274, https://doi.org/10.1016/S0012-821X(02)00979-2, 2002.
Schouten, S., Hopmans, E. C., and Sinninghe Damsté, J. S.: The effect of maturity and depositional redox conditions on archaeal tetraether lipid palaeothermometry, Org. Geochem., 35, 567–571, https://doi.org/10.1016/J.ORGGEOCHEM.2004.01.012, 2004.
Schouten, S., Forster, A., Panoto, F. E., and Sinninghe Damsté, J. S.: Towards calibration of the TEX86 palaeothermometer for tropical sea surface temperatures in ancient greenhouse worlds, Org. Geochem., 38, 1537–1546, https://doi.org/10.1016/J.ORGGEOCHEM.2007.05.014, 2007.
Schouten, S., Hopmans, E. C., Baas, M., Boumann, H., Standfest, S., Könneke, M., Stahl, D. A., and Sinninghe Damsté, J. S.: Intact membrane lipids of “Candidatus Nitrosopumilus maritimus,” a cultivated representative of the cosmopolitan mesophilic group I crenarchaeota, Appl. Environ. Microb., 74, 2433–2440, https://doi.org/10.1128/aem.01709-07, 2008.
Schouten, S., Middelburg, J. J., Hopmans, E. C., and Sinninghe Damsté, J. S.: Fossilization and degradation of intact polar lipids in deep subsurface sediments: A theoretical approach, Geochim. Cosmochim. Ac., 74, 3806–3814, https://doi.org/10.1016/J.GCA.2010.03.029, 2010.
Schouten, S., Pitcher, A., Hopmans, E. C., Villanueva, L., van Bleijswijk, J., and Sinninghe Damsté, J. S.: Intact polar and core glycerol dibiphytanyl glycerol tetraether lipids in the Arabian Sea oxygen minimum zone: I. Selective preservation and degradation in the water column and consequences for the TEX86, Geochim. Cosmochim. Ac., 98, 228–243, https://doi.org/10.1016/j.gca.2012.05.002, 2012.
Schouten, S., Hopmans, E. C., and Sinninghe Damsté, J. S.: The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: A review, Org. Geochem., 54, 19–61, https://doi.org/10.1016/j.orggeochem.2012.09.006, 2013.
Sinninghe Damsté, J. S., Schouten, S., Hopmans, E. C., Van Duin, A. C. T., and Geenevasen, J. A. J.: Crenarchaeol: The characteristic core glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic crenarchaeota, J. Lipid Res., 43, 1641–1651, https://doi.org/10.1194/jlr.M200148-JLR200, 2002.
Sinninghe Damsté, J. S., Rijpstra, W. I. C., Hopmans, E. C., Jung, M. Y., Kim, J. G., Rhee, S. K., Stieglmeier, M., and Schleper, C.: Intact polar and core glycerol dibiphytanyl glycerol tetraether lipids of group I.1a and I.1b Thaumarchaeota in soil, Appl. Environ. Microb., 78, 6866–6874, https://doi.org/10.1128/AEM.01681-12, 2012.
Sinninghe Damsté, J. S., Warden, L. A., Berg, C., Jürgens, K., and Moros, M.: Evaluation of the distributions of hydroxylated glycerol dibiphytanyl glycerol tetraethers (GDGTs) in Holocene Baltic Sea sediments for reconstruction of sea surface temperature: the effect of changing salinity, Clim. Past, 18, 2271–2288, https://doi.org/10.5194/cp-18-2271-2022, 2022.
Sollai, M., Villanueva, L., Hopmans, E. C., Keil, R. G., and Sinninghe Damsté, J. S.: Archaeal sources of intact membrane lipid biomarkers in the oxygen deficient zone of the eastern tropical south Pacific, Front. Microbiol., 10, 765, https://doi.org/10.3389/FMICB.2019.00765, 2019.
Sturt, H. F., Summons, R. E., Smith, K., Elvert, M., and Hinrichs, K. U.: Intact polar membrane lipids in prokaryotes and sediments deciphered by high-performance liquid chromatography/electrospray ionization multistage mass spectrometry–new biomarkers for biogeochemistry and microbial ecology, Rapid Commun. Mass Spe., 18, 617–628, https://doi.org/10.1002/RCM.1378, 2004.
Taylor, K. W. R., Huber, M., Hollis, C. J., Hernandez-Sanchez, M. T., and Pancost, R. D.: Re-evaluating modern and Palaeogene GDGT distributions: Implications for SST reconstructions, Global Planet. Change, 108, 158–174, https://doi.org/10.1016/j.gloplacha.2013.06.011, 2013.
Tierney, J. E.: Biomarker-based inferences of past climate: the TEX86 paleotemperature Proxy, 2nd ed., Elsevier Ltd., 379–393, https://doi.org/10.1016/B978-0-08-095975-7.01032-9, 2013.
Trommer, G., Siccha, M., van der Meer, M. T. J., Schouten, S., Sinninghe Damsté, J. S., Schulz, H., Hemleben, C., and Kucera, M.: Distribution of Crenarchaeota tetraether membrane lipids in surface sediments from the Red Sea, Org. Geochem., 40, 724–731, https://doi.org/10.1016/j.orggeochem.2009.03.001, 2009.
Varma, D., Hättig, K., Meer, M. T. J. Van Der, and Reichart, G.: Constraining water depth influence on organic paleotemperature proxies using sedimentary archives, Paleoceanogr. Paleocl., 38, e2022PA004533, https://doi.org/10.1029/2022PA004533, 2023.
Varma, D., Hopmans, E. C., van Kemenade, Z. R., Kusch, S., Berg, S., Bale, N. J., Sangiorgi, F., Reichart, G. J., Sinninghe Damsté, J. S., and Schouten, S.: Evaluating isoprenoidal hydroxylated GDGT-based temperature proxies in surface sediments from the global ocean, Geochim. Cosmochim. Ac., 370, 113–127, https://doi.org/10.1016/J.GCA.2023.12.019, 2024a.
Varma, D., Villanueva, L., Bale, N., Offre, P., Reichart, G.-J., and Schouten, S.: Thaumarchaeotal culture data_NF5_D3C, NIOZ [data set], https://doi.org/10.25850/nioz/7b.b.kh, 2024b.
Weijers, J. W. H., Lim, K. L. H., Aquilina, A., Sinninghe Damsté, J. S., and Pancost, R. D.: Biogeochemical controls on glycerol dialkyl glycerol tetraether lipid distributions in sediments characterized by diffusive methane flux, Geochem. Geophy.. Geosy., 12, 1–15, https://doi.org/10.1029/2011GC003724, 2011.
Wörmer, L., Lipp, J. S., Schröder, J. M., and Hinrichs, K. U.: Application of two new LC–ESI–MS methods for improved detection of intact polar lipids (IPLs) in environmental samples, Org. Geochem., 59, 10–21, https://doi.org/10.1016/J.ORGGEOCHEM.2013.03.004, 2013.
Wuchter, C., Schouten, S., Coolen, M. J. L., and Sinninghe Damsté, J. S.: Temperature-dependent variation in the distribution of tetraether membrane lipids of marine Crenarchaeota: Implications for TEX86 paleothermometry, Paleoceanography, 19, 1–10, https://doi.org/10.1029/2004PA001041, 2004.
Xie, S., Liu, X. L., Schubotz, F., Wakeham, S. G., and Hinrichs, K. U.: Distribution of glycerol ether lipids in the oxygen minimum zone of the Eastern Tropical North Pacific Ocean, Org. Geochem., 71, 60–71, https://doi.org/10.1016/j.orggeochem.2014.04.006, 2014.
Zeng, Z., Liu, X.-L., Farley, K. R., Wei, J. H., Metcalf, W. W., Summons, R. E., and Welander, P. V: GDGT cyclization proteins identify the dominant archaeal sources of tetraether lipids in the ocean., P. Natl. Acad. Sci. USA, 116, 22505–22511, https://doi.org/10.1073/pnas.1909306116, 2019.
Zhang, T., He, W., Liang, Q., Zheng, F., Xiao, X., Zeng, Z., Zhou, J., Yao, W., Chen, H., Zhu, Y., Zhao, J., Zheng, Y., and Zhang, C.: Lipidomic diversity and proxy implications of archaea from cold seep sediments of the South China Sea, Front. Microbiol., 14, 1241958, https://doi.org/10.3389/FMICB.2023.1241958, 2023.
Zhang, Y. G., Zhang, C. L., Liu, X. L., Li, L., Hinrichs, K. U., and Noakes, J. E.: Methane Index: A tetraether archaeal lipid biomarker indicator for detecting the instability of marine gas hydrates, Earth Planet. Sc. Lett., 307, 525–534, https://doi.org/10.1016/j.epsl.2011.05.031, 2011.
Zhang, Y. G., Pagani, M., and Wang, Z.: Ring Index: A new strategy to evaluate the integrity of TEX86 paleothermometry, Paleoceanography, 31, 220–232, https://doi.org/10.1002/2015PA002848, 2016.
Zheng, Y., Wang, B., Gao, P., Yang, Y., Xu, B., Su, X., Ning, D., Tao, Q., Li, Q., and Zhao, F.: Novel order-level lineage of ammonia-oxidizing archaea, ISME J., 18, wrad002, https://doi.org/10.1093/ismejo/wrad002, 2024.
Short summary
Archaeal hydroxylated tetraether lipids are increasingly used as temperature indicators in marine settings, but the factors influencing their distribution are still unclear. Analyzing membrane lipids of two thaumarchaeotal strains showed that the growth phase of the cultures does not affect the lipid distribution, but growth temperature profoundly affects the degree of cyclization of these lipids. Also, the abundance of these lipids is species-specific and is not influenced by temperature.
Archaeal hydroxylated tetraether lipids are increasingly used as temperature indicators in...
Altmetrics
Final-revised paper
Preprint