Articles | Volume 22, issue 1
https://doi.org/10.5194/bg-22-1-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-1-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Enhancing environmental models with a new downscaling method for global radiation in complex terrain
URFM, INRAE, Avignon, France
Julien Ruffault
URFM, INRAE, Avignon, France
Hendrik Davi
URFM, INRAE, Avignon, France
André Chanzy
UMR 1114 EMMAH, INRAE, Avignon University, Avignon, France
Olivier Marloie
URFM, INRAE, Avignon, France
Miquel De Cáceres
CREAF, Centre de Recerca Ecològica i Aplicacions Forestals, Bellaterra, Catalonia, Spain
Albert Olioso
URFM, INRAE, Avignon, France
Florent Mouillot
UMR 5175 CEFE, Montpellier University, CNRS, EPHE, IRD, Montpellier, France
Christophe François
UMR 8079 ESE, UPS, CNRS, AgroParisTech, Orsay, France
Kamel Soudani
UMR 8079 ESE, UPS, CNRS, AgroParisTech, Orsay, France
Nicolas K. Martin-StPaul
URFM, INRAE, Avignon, France
Related authors
Cécile Osy, Sophie Opfergelt, Arsène Druel, and François Massonnet
EGUsphere, https://doi.org/10.5194/egusphere-2025-3680, https://doi.org/10.5194/egusphere-2025-3680, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
The refreezing period of the active layer (the layer on top of the permafrost that freezes and thaws each year) is changing, with a delay of about five days over a large area in Siberia from 1950 to 2020 in the ERA5-Land reanalysis data. We investigate the drivers of this delay, and find that 2 m air temperature is the main driver of these changes at the large scale, which contrasts with field results in which snow cover is the main driver of changes in refreezing dynamics.
Arsène Druel, Simon Munier, Anthony Mucia, Clément Albergel, and Jean-Christophe Calvet
Geosci. Model Dev., 15, 8453–8471, https://doi.org/10.5194/gmd-15-8453-2022, https://doi.org/10.5194/gmd-15-8453-2022, 2022
Short summary
Short summary
Crop phenology and irrigation is implemented into a land surface model able to work at a global scale. A case study is presented over Nebraska (USA). Simulations with and without the new scheme are compared to different satellite-based observations. The model is able to produce a realistic yearly irrigation water amount. The irrigation scheme improves the simulated leaf area index, gross primary productivity, evapotransipiration, and land surface temperature.
Cécile Osy, Sophie Opfergelt, Arsène Druel, and François Massonnet
EGUsphere, https://doi.org/10.5194/egusphere-2025-3680, https://doi.org/10.5194/egusphere-2025-3680, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
The refreezing period of the active layer (the layer on top of the permafrost that freezes and thaws each year) is changing, with a delay of about five days over a large area in Siberia from 1950 to 2020 in the ERA5-Land reanalysis data. We investigate the drivers of this delay, and find that 2 m air temperature is the main driver of these changes at the large scale, which contrasts with field results in which snow cover is the main driver of changes in refreezing dynamics.
Rodrigo San Martin, Catherine Ottlé, Anna Sorenssön, Pradeebane Vattinada Ayar, Florent Mouillot, and Marielle Malfante
EGUsphere, https://doi.org/10.5194/egusphere-2025-3484, https://doi.org/10.5194/egusphere-2025-3484, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
We studied wildfires in the Gran Chaco, one of the world's largest dry forests, to understand why some fires grow larger than others. By analyzing fire size and weather conditions during burning, we found that strong winds and low humidity were key drivers of fire expansion. This work helps improve our understanding of extreme fire events and supports better fire risk management in dry ecosystems.
Zhixuan Guo, Wei Li, Philippe Ciais, Stephen Sitch, Guido R. van der Werf, Simon P. K. Bowring, Ana Bastos, Florent Mouillot, Jiaying He, Minxuan Sun, Lei Zhu, Xiaomeng Du, Nan Wang, and Xiaomeng Huang
Earth Syst. Sci. Data, 17, 3599–3618, https://doi.org/10.5194/essd-17-3599-2025, https://doi.org/10.5194/essd-17-3599-2025, 2025
Short summary
Short summary
To address the limitations of short time spans in satellite data and spatiotemporal discontinuity in site records, we reconstructed global monthly burned area maps at a 0.5° resolution for 1901–2020 using machine learning models. The global burned area is predicted at 3.46 × 106–4.58 × 106 km² per year, showing a decline from 1901 to 1978, an increase from 1978 to 2008 and a sharper decrease from 2008 to 2020. This dataset provides a benchmark for studies on fire ecology and the carbon cycle.
Kaiyan Hu, Bertille Loiseau, Simon D. Carrière, Nolwenn Lesparre, Cédric Champollion, Nicolas K. Martin-StPaul, Niklas Linde, and Damien Jougnot
Hydrol. Earth Syst. Sci., 29, 2997–3018, https://doi.org/10.5194/hess-29-2997-2025, https://doi.org/10.5194/hess-29-2997-2025, 2025
Short summary
Short summary
This study explores the potential of the electrical self-potential (SP) method, a passive geophysical technique, to provide additional insights into tree transpiration rates. We measured SP and sap velocity in three tree species over a year in a Mediterranean climate. Results indicate SP may characterize transpiration rates, especially during dry seasons. Additionally, the electrokinetic coupling coefficients of these trees align with values typically found in porous geological media.
Tanguy Postic, François de Coligny, Isabelle Chuine, Louis Devresse, Daniel Berveiller, Hervé Cochard, Matthias Cuntz, Nicolas Delpierre, Émilie Joetzjer, Jean-Marc Limousin, Jean-Marc Ourcival, François Pimont, Julien Ruffault, Guillaume Simioni, Nicolas K. Martin-StPaul, and Xavier Morin
EGUsphere, https://doi.org/10.5194/egusphere-2025-2110, https://doi.org/10.5194/egusphere-2025-2110, 2025
Short summary
Short summary
PHOREAU is a forest dynamic model that links plant traits with water use, growth, and climate responses to explore how species diversity affects productivity and resilience. Validated across European forests, PHOREAU simulates how tree communities function under drought and warming. Our findings support the use of trait-based modeling to guide forest adaptation strategies under future climate scenarios.
Lilian Vallet, Charbel Abdallah, Thomas Lauvaux, Lilian Joly, Michel Ramonet, Philippe Ciais, Morgan Lopez, Irène Xueref-Remy, and Florent Mouillot
Biogeosciences, 22, 213–242, https://doi.org/10.5194/bg-22-213-2025, https://doi.org/10.5194/bg-22-213-2025, 2025
Short summary
Short summary
The 2022 fire season had a huge impact on European temperate forest, with several large fires exhibiting prolonged soil combustion reported. We analyzed CO and CO2 concentration recorded at nearby atmospheric towers, revealing intense smoldering combustion. We refined a fire emission model to incorporate this process. We estimated 7.95 Mteq CO2 fire emission, twice the global estimate. Fires contributed to 1.97 % of France's annual carbon footprint, reducing forest carbon sink by 30 % this year.
Marco M. Lehmann, Josie Geris, Ilja van Meerveld, Daniele Penna, Youri Rothfuss, Matteo Verdone, Pertti Ala-Aho, Matyas Arvai, Alise Babre, Philippe Balandier, Fabian Bernhard, Lukrecija Butorac, Simon Damien Carrière, Natalie C. Ceperley, Zuosinan Chen, Alicia Correa, Haoyu Diao, David Dubbert, Maren Dubbert, Fabio Ercoli, Marius G. Floriancic, Teresa E. Gimeno, Damien Gounelle, Frank Hagedorn, Christophe Hissler, Frédéric Huneau, Alberto Iraheta, Tamara Jakovljević, Nerantzis Kazakis, Zoltan Kern, Karl Knaebel, Johannes Kobler, Jiří Kocum, Charlotte Koeber, Gerbrand Koren, Angelika Kübert, Dawid Kupka, Samuel Le Gall, Aleksi Lehtonen, Thomas Leydier, Philippe Malagoli, Francesca Sofia Manca di Villahermosa, Chiara Marchina, Núria Martínez-Carreras, Nicolas Martin-StPaul, Hannu Marttila, Aline Meyer Oliveira, Gaël Monvoisin, Natalie Orlowski, Kadi Palmik-Das, Aurel Persoiu, Andrei Popa, Egor Prikaziuk, Cécile Quantin, Katja T. Rinne-Garmston, Clara Rohde, Martin Sanda, Matthias Saurer, Daniel Schulz, Michael Paul Stockinger, Christine Stumpp, Jean-Stéphane Venisse, Lukas Vlcek, Stylianos Voudouris, Björn Weeser, Mark E. Wilkinson, Giulia Zuecco, and Katrin Meusburger
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-409, https://doi.org/10.5194/essd-2024-409, 2024
Revised manuscript under review for ESSD
Short summary
Short summary
This study describes a unique large-scale isotope dataset to study water dynamics in European forests. Researchers collected data from 40 beech and spruce forest sites in spring and summer 2023, using a standardized method to ensure consistency. The results show that water sources for trees change between seasons and vary by tree species. This large dataset offers valuable information for understanding plant water use, improving ecohydrological models, and mapping water cycles across Europe.
Hamadou Balde, Gabriel Hmimina, Yves Goulas, Gwendal Latouche, Abderrahmane Ounis, Daniel Berveiller, and Kamel Soudani
EGUsphere, https://doi.org/10.5194/egusphere-2024-657, https://doi.org/10.5194/egusphere-2024-657, 2024
Preprint archived
Short summary
Short summary
To understand the drivers of GPP and SIF changes and of their links, we examined how SIF and GPP changed at daily and seasonal scales considering canopy structure and abiotic conditions in a deciduous oak forest. The data show that leaf and canopy properties variations, seasonal cycle of PAR, and abiotic factors control not only SIF and GPP changes, but also their links. Further, during the heatwaves in 2022, we noticed that SIF was a proxy of GPP, while VIs were not.
Hamadou Balde, Gabriel Hmimina, Yves Goulas, Gwendal Latouche, Abderrahmane Ounis, and Kamel Soudani
Biogeosciences, 21, 1259–1276, https://doi.org/10.5194/bg-21-1259-2024, https://doi.org/10.5194/bg-21-1259-2024, 2024
Short summary
Short summary
We show that FyieldLIF was not correlated with SIFy at the diurnal timescale, and the diurnal patterns in SIF and PAR did not match under clear-sky conditions due to canopy structure. Φk was sensitive to canopy structure. RF models show that Φk can be predicted using reflectance in different bands. RF models also show that FyieldLIF was more sensitive to reflectance and radiation than SIF and SIFy, indicating that the combined effect of reflectance bands could hide the SIF physiological trait.
Jianhong Lin, Daniel Berveiller, Christophe François, Heikki Hänninen, Alexandre Morfin, Gaëlle Vincent, Rui Zhang, Cyrille Rathgeber, and Nicolas Delpierre
Geosci. Model Dev., 17, 865–879, https://doi.org/10.5194/gmd-17-865-2024, https://doi.org/10.5194/gmd-17-865-2024, 2024
Short summary
Short summary
Currently, the high variability of budburst between individual trees is overlooked. The consequences of this neglect when projecting the dynamics and functioning of tree communities are unknown. Here we develop the first process-oriented model to describe the difference in budburst dates between individual trees in plant populations. Beyond budburst, the model framework provides a basis for studying the dynamics of phenological traits under climate change, from the individual to the community.
Lilian Vallet, Martin Schwartz, Philippe Ciais, Dave van Wees, Aurelien de Truchis, and Florent Mouillot
Biogeosciences, 20, 3803–3825, https://doi.org/10.5194/bg-20-3803-2023, https://doi.org/10.5194/bg-20-3803-2023, 2023
Short summary
Short summary
This study analyzes the ecological impact of the 2022 summer fire season in France by using high-resolution satellite data. The total biomass loss was 2.553 Mt, equivalent to a 17 % increase of the average natural mortality of all French forests. While Mediterranean forests had a lower biomass loss, there was a drastic increase in burned area and biomass loss over the Atlantic pine forests and temperate forests. This result revisits the distinctiveness of the 2022 fire season.
Miquel De Cáceres, Roberto Molowny-Horas, Antoine Cabon, Jordi Martínez-Vilalta, Maurizio Mencuccini, Raúl García-Valdés, Daniel Nadal-Sala, Santiago Sabaté, Nicolas Martin-StPaul, Xavier Morin, Francesco D'Adamo, Enric Batllori, and Aitor Améztegui
Geosci. Model Dev., 16, 3165–3201, https://doi.org/10.5194/gmd-16-3165-2023, https://doi.org/10.5194/gmd-16-3165-2023, 2023
Short summary
Short summary
Regional-level applications of dynamic vegetation models are challenging because they need to accommodate the variation in plant functional diversity. This can be done by estimating parameters from available plant trait databases while adopting alternative solutions for missing data. Here we present the design, parameterization and evaluation of MEDFATE (version 2.9.3), a novel model of forest dynamics for its application over a region in the western Mediterranean Basin.
Hamadou Balde, Gabriel Hmimina, Yves Goulas, Gwendal Latouche, and Kamel Soudani
Biogeosciences, 20, 1473–1490, https://doi.org/10.5194/bg-20-1473-2023, https://doi.org/10.5194/bg-20-1473-2023, 2023
Short summary
Short summary
This study focuses on the relationship between sun-induced chlorophyll fluorescence (SIF) and ecosystem gross primary productivity (GPP) across the ICOS European flux tower network. It shows that SIF, coupled with reflectance observations, explains over 80 % of the GPP variability across diverse ecosystems but fails to bring new information compared to reflectance alone at coarse spatial scales (~5 km). These findings have applications in agriculture and ecophysiological studies.
Arsène Druel, Simon Munier, Anthony Mucia, Clément Albergel, and Jean-Christophe Calvet
Geosci. Model Dev., 15, 8453–8471, https://doi.org/10.5194/gmd-15-8453-2022, https://doi.org/10.5194/gmd-15-8453-2022, 2022
Short summary
Short summary
Crop phenology and irrigation is implemented into a land surface model able to work at a global scale. A case study is presented over Nebraska (USA). Simulations with and without the new scheme are compared to different satellite-based observations. The model is able to produce a realistic yearly irrigation water amount. The irrigation scheme improves the simulated leaf area index, gross primary productivity, evapotransipiration, and land surface temperature.
Julien Ruffault, François Pimont, Hervé Cochard, Jean-Luc Dupuy, and Nicolas Martin-StPaul
Geosci. Model Dev., 15, 5593–5626, https://doi.org/10.5194/gmd-15-5593-2022, https://doi.org/10.5194/gmd-15-5593-2022, 2022
Short summary
Short summary
A widespread increase in tree mortality has been observed around the globe, and this trend is likely to continue because of ongoing climate change. Here we present SurEau-Ecos, a trait-based plant hydraulic model to predict tree desiccation and mortality. SurEau-Ecos can help determine the areas and ecosystems that are most vulnerable to drying conditions.
Kamel Soudani, Nicolas Delpierre, Daniel Berveiller, Gabriel Hmimina, Jean-Yves Pontailler, Lou Seureau, Gaëlle Vincent, and Éric Dufrêne
Biogeosciences, 18, 3391–3408, https://doi.org/10.5194/bg-18-3391-2021, https://doi.org/10.5194/bg-18-3391-2021, 2021
Short summary
Short summary
We present an exhaustive comparative survey of eight proximal methods to estimate forest phenology. We focused on methodological aspects and thoroughly assessed deviations between predicted and observed phenological dates and pointed out their main causes. We show that proximal methods provide robust phenological metrics. They can be used to retrieve long-term phenological series at flux measurement sites and help interpret the interannual variability and trends of mass and energy exchanges.
Wei Min Hao, Matthew C. Reeves, L. Scott Baggett, Yves Balkanski, Philippe Ciais, Bryce L. Nordgren, Alexander Petkov, Rachel E. Corley, Florent Mouillot, Shawn P. Urbanski, and Chao Yue
Biogeosciences, 18, 2559–2572, https://doi.org/10.5194/bg-18-2559-2021, https://doi.org/10.5194/bg-18-2559-2021, 2021
Short summary
Short summary
We examined the trends in the spatial and temporal distribution of the area burned in northern Eurasia from 2002 to 2016. The annual area burned in this region declined by 53 % during the 15-year period under analysis. Grassland fires in Kazakhstan dominated the fire activity, comprising 47 % of the area burned but accounting for 84 % of the decline. A wetter climate and the increase in grazing livestock in Kazakhstan are the major factors contributing to the decline in the area burned.
Jan Pisek, Angela Erb, Lauri Korhonen, Tobias Biermann, Arnaud Carrara, Edoardo Cremonese, Matthias Cuntz, Silvano Fares, Giacomo Gerosa, Thomas Grünwald, Niklas Hase, Michal Heliasz, Andreas Ibrom, Alexander Knohl, Johannes Kobler, Bart Kruijt, Holger Lange, Leena Leppänen, Jean-Marc Limousin, Francisco Ramon Lopez Serrano, Denis Loustau, Petr Lukeš, Lars Lundin, Riccardo Marzuoli, Meelis Mölder, Leonardo Montagnani, Johan Neirynck, Matthias Peichl, Corinna Rebmann, Eva Rubio, Margarida Santos-Reis, Crystal Schaaf, Marius Schmidt, Guillaume Simioni, Kamel Soudani, and Caroline Vincke
Biogeosciences, 18, 621–635, https://doi.org/10.5194/bg-18-621-2021, https://doi.org/10.5194/bg-18-621-2021, 2021
Short summary
Short summary
Understory vegetation is the most diverse, least understood component of forests worldwide. Understory communities are important drivers of overstory succession and nutrient cycling. Multi-angle remote sensing enables us to describe surface properties by means that are not possible when using mono-angle data. Evaluated over an extensive set of forest ecosystem experimental sites in Europe, our reported method can deliver good retrievals, especially over different forest types with open canopies.
Cited articles
Austin, M. P., Nicholls, A. O., and Margules, C. R.: Measurement of the realised qualitative niche: Environmental niches of five Eucalyptus species, Ecol. Monogr., 60, 161–177, https://doi.org/10.2307/1943043, 1990.
Austin, M. P.: Spatial Prediction of Species Distribution: An Interface between Ecological Theory and Statistical Modelling, Ecol. Model., 157, 101–118, https://doi.org/10.1016/s0304-3800(02)00205-3, 2002.
Bailey, M. D., Nychka, D., Sengupta, M., Habte, A., Xie, Y., and Bandyopadhyay, S.: Regridding uncertainty for statistical downscaling of solar radiation, Adv. Stat. Clim. Meteorol. Oceanogr., 9, 103–120, https://doi.org/10.5194/ascmo-9-103-2023, 2023.
Bedia, J., Herrera, S., and Gutiérrez, J. M.: Dangers of Using Global Bioclimatic Datasets for Ecological Niche Modeling. Limitations for Future Climate Projections, Global Planet. Change, 107, 1–12, https://doi.org/10.1016/j.gloplacha.2013.04.005, 2013.
Bird, R. E. and Hulstrom, R. L.: A simplified clear sky model for direct and diffuse insolation on horizontal surfaces, Solar Energy Research Institute, TR-642-761, 1981.
Bojanowski, J. S., Vrieling, A., and Skidmore, A. K.: A comparison of data sources for creating a long-term time series of daily gridded solar radiation for Europe, Sol. Energy, 99, 152–171, https://doi.org/10.1016/j.solener.2013.11.007, 2014.
Bramer, I., Anderson, B. J., Bennie, J., Bladon, A. J., De Frenne, P., Hemming, D., Hill, R. A., Kearney, M. R., Körner, C., Korstjens, A. H., Lenoir, J., Maclean, I. M. D., Marsh, C. D., Morecroft, M. D., Ohlemüller, R., Slater, H. D., Suggitt, A. J., Zellweger, F., and Gillingham, P. K.: Advances in monitoring and modelling climate at ecologically relevant scales, Adv. Ecol. Res., 58, 101–161, https://doi.org/10.1016/bs.aecr.2017.12.005, 2018.
Brun, P., Zimmermann, N. E., Hari, C., Pellissier, L., and Karger, D. N.: CHELSA-BIOCLIM+ A novel set of global climate-related predictors at kilometre-resolution, EnviDat, https://doi.org/10.16904/envidat.332, 2022.
Buzzi, M.: Challenges in operational numerical weather prediction at high resolution in complex terrain, ETH Zürich, PhD thesis, Veröffentlichung MeteoSchweiz Nr. 80, https://doi.org/10.3929/ethz-a-005698833, 2008.
Cailleret, M. and Davi, H.: Effects of climate on diameter growth of co-occurring Fagus sylvatica and Abies alba along an altitudinal gradient, Trees, 25, 265–276, https://doi.org/10.1007/s00468-010-0503-0, 2011.
Cailleret, M., Nourtier, M., Amm, A., Durand-Gillmann, M., and Davi, H.: Drought-induced decline and mortality of silver fir differ among three sites in Southern France, Ann. For. Sci., 71, 643–657, 2013.
Carroll, C., Zielinski, W. J., and Noss, R. F.: Using presence-absence data to build and test spatial habitat models for the Fisher in the Klamath region, U.S.A., Conserv. Biol., 13, 1344–1359, https://doi.org/10.1046/j.1523-1739.1999.98364.x, 1999.
Choat, B., Brodribb, T. J., Brodersen, C. R., Duursma, R. A., López, R., and Medlyn, B. E.: Triggers of tree mortality under drought, Nature, 558, 531–539, https://doi.org/10.1038/s41586-018-0240-x, 2018.
Churkina, G. and Running, S. W.: Contrasting Climatic Controls on the Estimated Productivity of Global Terrestrial Biomes, Ecosystems, 1, 206–215, https://doi.org/10.1007/s100219900016, 1998.
Clark, D. B., Palmer, M. W., and Clark, D. A.: Edaphic factors and the landscape-scale distributions of tropical rain forest trees, Ecology, 80, 2662–2675, https://doi.org/10.1890/0012-9658(1999)080[2662:EFATLS]2.0.CO;2, 1999.
Cochard, H., Pimont, F., Ruffault, J., and Martin-StPaul, N.: SurEau: a mechanistic model of plant water relations under extreme drought, Ann. For. Sci., 78, 55, https://doi.org/10.1007/s13595-021-01067-y, 2021.
Coddington, O., Lean, J. L., Pilewskie, P., Snow, M., and Lindholm, D.: A Solar Irradiance Climate Data Record, B. Am. Meteorol. Soc., 97, 1265–1282, https://doi.org/10.1175/BAMS-D-14-00265.1, 2016.
Corripio, J. G.: insol: Solar Radiation. R package version 1.2.2, https://www.meteoexploration.com/R/insol/ (last access: 27 May 2024), 2020.
Danielson, J. J. and Gesch, D. B.: Global multi-resolution terrain elevation data 2010 (GMTED2010): U.S. Geological Survey Open-File Report 2011–1073, 26 pp., https://doi.org/10.5066/F7J38R2N, 2011.
Davi, H. and Cailleret, M.: Assessing drought-driven mortality trees with physiological process-based models, Agr. Forest Meteorol., 232, 279–290, https://doi.org/10.1016/j.agrformet.2016.08.019, 2017.
Davi, H., Dufrêne, E., Granier, A., Le Dantec, V., Barbaroux, C., François, C., and Bréda, N.: Modelling carbon and water cycles in a beech forest: Part II.: Validation of the main processes from organ to stand scale, Ecol. Model., 185, 387–405, https://doi.org/10.1016/j.ecolmodel.2005.01.003, 2005.
Davi, H., Dufrêne, E., Francois, C., Le Maire, G., Loustau, D., Bosc, A., Rambal, S., Granier, A., and Moors, E.: Sensitivity of water and carbon fluxes to climate changes from 1960 to 2100 in European forest ecosystems, Agr. Forest Meteorol., 141, 35–56, https://doi.org/10.1016/j.agrformet.2006.09.003, 2006.
Davy, R. and Kusch, E.: Reconciling high resolution climate datasets using KrigR, Environ. Res. Lett., 16, 124040, https://doi.org/10.1088/1748-9326/ac39bf, 2021.
De Cáceres, M., Martínez-Vilalta, J., Coll, L., Llorens, P., Casals, P., Poyatos, R., Pausas, J. G., and Brotons, L.: Coupling a water balance model with forest inventory data to predict drought stress: the role of forest structural changes vs. climate changes, Agr. Forest Meteorol., 213, 77–90, https://doi.org/10.1016/j.agrformet.2015.06.012, 2015.
De Cáceres, M., Martin-StPaul, N., Turco, M., Cabon, A., and Granda, V.: Estimating daily meteorological data and downscaling climate models over landscapes, Environ. Modell. Softw., 108, 186–196, https://doi.org/10.1016/j.envsoft.2018.08.003, 2018.
De Cáceres, M., Molowny-Horas, R., Cabon, A., Martínez-Vilalta, J., Mencuccini, M., García-Valdés, R., Nadal-Sala, D., Sabaté, S., Martin-StPaul, N., Morin, X., D'Adamo, F., Batllori, E., and Améztegui, A.: MEDFATE 2.9.3: a trait-enabled model to simulate Mediterranean forest function and dynamics at regional scales, Geosci. Model Dev., 16, 3165–3201, https://doi.org/10.5194/gmd-16-3165-2023, 2023.
De Coligny, F.: Capsis platform (v4) [code], https://capsis.cirad.fr/, last access: 19 December 2024.
De Jong, J. B. R. M.: Een karakterisering van de zonnestraling (A characterization of solar radiation) in Nederland, Doctoral report, Eindhoven University of Technology, the Netherlands, 97 + 67 pp., 1980.
Delpierre, N., Soudani, K., François, C., Le Maire, G., Bernhofer, C., Kutsch, W., Misson, L., Rambal, S., Vesala, T., and Dufrêne, E.: Quantifying the influence of climate and biological drivers on the interannual variability of carbon exchanges in European forests through process-based modelling, Agr. Forest Meteorol., 154–155, 99–112, https://doi.org/10.1016/j.agrformet.2011.10.010, 2012.
Dirnbock, T., Dullinger, S., Gottfried, M., Ginzler, C., and Grabherr, G.: Mapping alpine vegetation based on image analysis, topographic variables and Canonical Correspondance Analysis, Appl. Veg. Sci., 6, 85–96, https://doi.org/10.1111/j.1654-109X.2003.tb00567.x, 2003.
Druel, A.: ModelData_Toolkit: Multiple scripts to download, manipulate, and modify data used as input for environmental modeling, Forgemia [code], https://forgemia.inra.fr/urfm/modeldata_toolkit, last access: 19 December 2024.
Druel, A., Marloie, O., and Martin-StPaul, N. K.: Monitoring photosynthetically active radiation on Mont Ventoux, 2016–2017, Recherche Data Gouv [data set], https://doi.org/10.57745/B22AUG, last access: 19 December 2024.
Dubayah, R. and Loechel, S.: Modeling topographic solar radiation using GOES data, J. Appl. Meteorol. Clim., 36, 141–154, https://doi.org/10.1175/1520-0450(1997)036<0141:MTSRUG>2.0.CO;2, 1997.
Dufrêne, E., Davi, H., François, C., Maire, G. L., Dantec, V. L., and Granier, A.: Modelling carbon and water cycles in a beech forest: Part I: Model description and uncertainty analysis on modelled NEE, Ecol. Model., 185, 407–436, https://doi.org/10.1016/j.ecolmodel.2005.01.004, 2005.
Fealy, R. and Sweeney, J.: Statistical downscaling of temperature, radiation and potential evapotranspiration to produce a multiple GCM ensemble mean for a selection of sites in Ireland, Irish Geography, 41, 1–27, https://doi.org/10.1080/00750770801909235, 2008.
Fisher, J. B., Whittaker, R. J., and Malhi, Y.: ET come home: Potential evapotranspiration in geographical ecology: ET come home, Global Ecol. Biogeogr., 20, 1–18, https://doi.org/10.1111/j.1466-8238.2010.00578.x, 2011.
Franklin, J.: Predicting the distribution of shrub species in southern California from climate and terrain-derived variables, J. Veg. Sci., 9, 733–748, https://doi.org/10.2307/3237291, 1998.
Granier, A., Breda, N., Biron, P., and Villette, S.: A lumped water balance model to evaluate duration and intensity of drought constraints in forest stands, Ecol. Model., 116, 269–283, https://doi.org/10.1016/S0304-3800(98)00205-1, 1999.
Granier, A., Reichstein, M., Bréda, N., Janssens, I. A., Falge, E., Ciais, P., Grünwald, T., Aubinet, M., Berbigier, P., Bernhofer, C., Buchmann, N., Facini, O., Grassi, G., Heinesch, B., Ilvesniemi, H., Keronen, P., Knohl, A., Köstner, B., Lagergren, F., Lindroth, A., Longdoz, B., Loustau, D., Mateus, J., Montagnani, L., Nys, C., Moors, E. J., Papale, D., Peiffer, M., Pilegaard, K., Pita, G., Pumpanen, J., Rambal, S., Rebmann, C., Rodrigues, A., Seufert, G., Tenhunen, J., Vesala, T., and Wang, Q.: Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003, Agr. Forest Meteorol., 143, 123–145, https://doi.org/10.1016/j.agrformet.2006.12.004, 2007.
Hammond, W. M., Yu, K., Wilson, L. A., Will, R. E., Anderegg, W. R. L., and Adams, H. D.: Dead or dying? Quantifying the point of no return from hydraulic failure in drought-induced tree mortality, New Phytol., 223, 1834–1843, https://doi.org/10.1111/nph.15922, 2019.
Hernanz, A., Correa, C., Domínguez, M., Rodríguez-Guisado, E., and Rodríguez-Camino, E.: Comparison of machine learning statistical downscaling and regional climate models for temperature, precipitation, wind speed, humidity and radiation over Europe under present conditions, Int. J. Climatol., 43, 6065–6082, https://doi.org/10.1002/joc.8190, 2023.
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., and Jarvis, A.: Very high-resolution interpolated climate surfaces for global land areas, Int. J. Climatol., 25, 1965–1978, https://doi.org/10.1002/joc.1276, 2005.
Jean, F., Davi, H., Oddou-Muratorio, S., Fady, B., Scotti, I., Scotti-Saintagne, C., Ruffault, J., Journe, V., Clastre, P., Marloie, O., Brunetto, W., Correard, M., Gilg, O., Pringarve, M., Rei, F., Thevenet, J., Turion, N., and Pichot, C.: A 14 year series of leaf phenological data collected for European beech (Fagus sylvatica L.) and silver fir (Abies alba Mill.) from their geographic range margins in south-eastern France, Ann. For. Sci., 80, 35, https://doi.org/10.1186/s13595-023-01193-9, 2023.
Klucher, T. M.: Evaluation of models to predict insolation on tilted surfaces, Division of solar energy, N.A.S.A. TM-78842, https://doi.org/10.1016/0038-092X(79)90110-5, 1978.
Lander, T. A., Klein, E. K., Roig, A., and Oddou-Muratorio, S.: Weak founder effects but significant spatial genetic imprint of recent contraction and expansion of European beech populations, Heredity, 126, 491–504, https://doi.org/10.1038/s41437-020-00387-5, 2021.
Liston, G. E. and Elder, K.: A Meteorological Distribution System for High-Resolution Terrestrial Modeling (MicroMet), J. Hydrometeorol., 7-2, 217–234, https://doi.org/10.1175/JHM486.1, 2006.
Maraun, D., Wetterhall, F., Ireson, A., Chandler, R., Kendon, E., Widmann, M., Brienen, S., Rust, H. W., Sauter, T., Themeßl, M., Venema, V. K. C., Chun, K. P., Goodess, C. M., Jones, R. G., Onof, C., Vrac., M., and Thiele‐Eich, I.: Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user, Rev. Geophys., 48, RG3003, https://doi.org/10.1029/2009RG000314, 2010.
Martin-StPaul, N., Delzon, S., and Cochard, H.: Plant resistance to drought depends on timely stomatal closure, Ecol. Lett., 20, 1437–1447, https://doi.org/10.1111/ele.12851, 2017.
Martin-StPaul, N., Ruffault, J., Guillemot, J., Barbero, R., Cochard, H., Cailleret, M., Cáceres, M. D., Dupuy, J.-L., Pimont, F., Torres-Ruiz, J. M., and Limousin, J.-M.: How much does VPD drive tree water stress and forest disturbances?, Authorea [preprint], https://doi.org/10.22541/au.168147010.01270793/v1, 2025.
Meentemeyer, R. K., Moody, A., and Franklin, J.: Landscape-scale patterns of shrub-species abundance in California chaparral: The role of topographically mediated resource gradients, Plant Ecol., 156, 19–41, https://doi.org/10.1023/A:1011944805738, 2001.
Mira, M., Olioso, A., Gallego-Elvira, B., Courault, D., Garrigues, S., Marloie, O., Hagolle, O., Guillevic, P., and Boulet, G.: Uncertainty assessment of surface net radiation derived from Landsat images, Remote Sens. Environ., 175, 251–270, https://doi.org/10.1016/j.rse.2015.12.054, 2016.
Monteith, J. L.: Evaporation and surface temperature, Q. J. Roy. Meteor. Soc., 107, 1–27, https://doi.org/10.1002/qj.49710745102, 1981.
Moreno, M., Simioni, G., Cailleret, M., Ruffault, J., Badel, E., Carrière, S., Davi, H., Gavinet, J., Huc, R., Limousin, J.-M., Marloie, O., Martin, L., Rodríguez-Calcerrada, J., Vennetier, M., and Martin-StPaul, N.: Consistently lower sap velocity and growth over nine years of rainfall exclusion in a Mediterranean mixed pine-oak forest, Agr. Forest Meteorol., 308–309, 108472, https://doi.org/10.1016/j.agrformet.2021.108472, 2021.
Müller, M. D. and Scherer, D.: A grid- and subgrid-scale radiation parametrization of topographic effects for mesoscale weather forecast models, Mon. Weather Rev., 133, 1431–1442, https://doi.org/10.1175/MWR2927.1, 2005.
Muñoz-Sabater, J.: ERA5-Land hourly data from 1950 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.e2161bac, 2019.
Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., and Thépaut, J.-N.: ERA5-Land: a state-of-the-art global reanalysis dataset for land applications, Earth Syst. Sci. Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021, 2021.
Oliphant, A. J. and Stoy, P. C.: An evaluation of semiempirical models for partitioning photosynthetically active radiation into diffuse and direct beam components, J. Geophys. Res.-Biogeo., 123, 889–901, https://doi.org/10.1002/2017JG004370, 2018.
Patsiou, T. S., Conti, E., Zimmermann, N. E., Theodoridis, S., and Randin, C. F.: Topo-climatic microrefugia explain the persistence of a rare endemic plant in the Alps during the last 21 millennia, Global Change Biol., 20, 2286–2300, https://doi.org/10.1111/gcb.12515, 2014.
Piedallu, C. and Gégout, J.-C.: Multiscale computation of solar radiation for predictive vegetation modelling, Ann. For. Sci., 64, 899–909, https://doi.org/10.1051/forest:2007072, 2007.
Piedallu, C. and Gégout, J.-C.: Efficient assessment of topographic solar radiation to improve plant distribution models, Agr. Forest Meteorol., 148, 1696–1706, https://doi.org/10.1016/j.agrformet.2008.06.001, 2008.
Pierce, K. B., Lookingbill, T., and Urban, D.: A simple method for estimating potential relative radiation (PRR) for landscape-scale vegetation analysis, Landscape Ecol., 20, 137–147, https://doi.org/10.1007/s10980-004-1296-6, 2005.
Poggio, L., de Sousa, L. M., Batjes, N. H., Heuvelink, G. B. M., Kempen, B., Ribeiro, E., and Rossiter, D.: SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty, SOIL, 7, 217–240, https://doi.org/10.5194/soil-7-217-2021, 2021.
Randin, C. F., Engler, R., Normand, S., Zappa, M., Zimmermann, N. E., Pearman, P. B., Vittoz, P., Thuiller, W., and Guisan, A.: Climate change and plant distribution: local models predict high-elevation persistence, Global Change Biol., 15, 1557–1569, https://doi.org/10.1111/j.1365-2486.2008.01766.x, 2009.
Roderick, M. L.: Estimating the diffuse component from daily and monthly measurements of global radiation, Agr. Forest Meteorol., 95, 169–185, https://doi.org/10.1016/S0168-1923(99)00028-3, 1999.
Roerink, G. J., Bojanowski, J. S., de Wit, A. J. W., Eerens, H., Supit, I., Leo, O., and Boogaard, H. L.: Evaluation of MSG-derived global radiation estimates for application in a regional crop model, Agr. Forest Meteorol., 160, 36–47, https://doi.org/10.1016/j.agrformet.2012.02.006, 2012.
Ruffault, J., Martin-StPaul, N. K., Rambal, S., and Mouillot, F.: Differential regional responses in drought length, intensity and timing to recent climate changes in a Mediterranean forested ecosystem, Climatic Change, 117, 103–117, https://doi.org/10.1007/s10584-012-0559-5, 2013.
Ruffault, J., Pimont, F., Cochard, H., Dupuy, J.-L., and Martin-StPaul, N.: SurEau-Ecos v2.0: a trait-based plant hydraulics model for simulations of plant water status and drought-induced mortality at the ecosystem level, Geosci. Model Dev., 15, 5593–5626, https://doi.org/10.5194/gmd-15-5593-2022, 2022.
Ruffault, J., Limousin, J-.M., Pimont, F., Dupuy, J-.L., De Cáceres, M., Cochard, H., Mouillot, F., Blackman, C. J., Torres-Ruiz, J. M., Parsons, R. A., Moreno, M., Delzon, S., Jansen, S., Olioso, A., Choat, B., and Martin-StPaul, N.: Plant hydraulic modelling of leaf and canopy fuel moisture content reveals increasing vulnerability of a Mediterranean forest to wildfires under extreme drought, New Phytol., 237, 1256–1269, https://doi.org/10.1111/nph.18614, 2023.
Ruffault, J., Cochard, H., Rickert, G., Druel, A., and Martin-StPaul, N.: SurEau-Ecos: a trait-based plant hydraulics model, Forgemia [code], https://forgemia.inra.fr/urfm/sureau, last access: 19 December 2024.
Senkova, A. V., Rontu, L., and Savijärvi, H.: Parametrization of orographic effects on surface radiation in HIRLAM, Tellus A, 59, 279–291, https://doi.org/10.1111/j.1600-0870.2007.00235.x, 2007.
Shuttle Radar Topography Mission (SRTM): 1 Arc-Second Global, https://doi.org/10.5066/F7PR7TFT, 2013.
Spitters, C. J. T., Toussaint, H. A. J. M., and Goudriaan, J.: Separating the diffuse and direct component of global radiation and its implications for modeling canopy photosynthesis Part I. Components of incoming radiation, Agr. Forest Meteorol., 38, 217–229, https://doi.org/10.1016/0168-1923(86)90060-2, 1986.
Tappeiner, U., Tasser, E., and Tappeiner, G.: Modelling vegetation patterns using natural and anthropogenic influence factors: preliminary experience with a GIS based model applied to an Alpine area, Ecol. Model., 113, 225–237, https://doi.org/10.1016/S0304-3800(98)00145-8, 1998.
USGS EROS: Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010), USGS EROS [data set], https://doi.org/10.5066/F7J38R2N, last access: 19 December 2024a.
USGS EROS: Shuttle Radar Topography Mission 1 Arc-Second Global, USGS EROS [data set], https://doi.org/10.5066/F7PR7TFT, last access: 19 December 2024b.
Widén, J. and Munkhammar, J.: Solar Radiation Theory, Uppsala University, Department of Engineering Sciences, https://doi.org/10.33063/diva-381852, 2019.
Zimmermann, N. E. and Kienast, F.: Predictive mapping of alpine grasslands in Switzerland: Species versus community approach, J. Veg. Sci., 10, 469–482, https://doi.org/10.2307/3237182, 1999.
Short summary
Accurate radiation data are essential for understanding ecosystem functions and dynamics. Traditional large-scale data lack the precision needed for complex terrain. This study introduces a new model, which accounts for sub-daily direct and diffuse radiation effects caused by terrain features, to enhance the radiation data resolution using elevation maps. Tested on a mountainous area, this method significantly improved radiation estimates, benefiting predictions of forest functions.
Accurate radiation data are essential for understanding ecosystem functions and dynamics....
Altmetrics
Final-revised paper
Preprint