Articles | Volume 12, issue 10
https://doi.org/10.5194/bg-12-2847-2015
https://doi.org/10.5194/bg-12-2847-2015
Research article
 | 
19 May 2015
Research article |  | 19 May 2015

Methane-related changes in prokaryotes along geochemical profiles in sediments of Lake Kinneret (Israel)

I. Bar-Or, E. Ben-Dov, A. Kushmaro, W. Eckert, and O. Sivan

Related authors

Long-term incubations provide insight into the mechanisms of anaerobic oxidation of methane in methanogenic lake sediments
Hanni Vigderovich, Werner Eckert, Michal Elul, Maxim Rubin-Blum, Marcus Elvert, and Orit Sivan
Biogeosciences, 19, 2313–2331, https://doi.org/10.5194/bg-19-2313-2022,https://doi.org/10.5194/bg-19-2313-2022, 2022
Short summary
Metagenomic insights into the metabolism of microbial communities that mediate iron and methane cycling in Lake Kinneret iron-rich methanic sediments
Michal Elul, Maxim Rubin-Blum, Zeev Ronen, Itay Bar-Or, Werner Eckert, and Orit Sivan
Biogeosciences, 18, 2091–2106, https://doi.org/10.5194/bg-18-2091-2021,https://doi.org/10.5194/bg-18-2091-2021, 2021
Evidence for microbial iron reduction in the methanic sediments of the oligotrophic southeastern Mediterranean continental shelf
Hanni Vigderovich, Lewen Liang, Barak Herut, Fengping Wang, Eyal Wurgaft, Maxim Rubin-Blum, and Orit Sivan
Biogeosciences, 16, 3165–3181, https://doi.org/10.5194/bg-16-3165-2019,https://doi.org/10.5194/bg-16-3165-2019, 2019
Short summary

Related subject area

Biogeochemistry: Environmental Microbiology
Changes in diazotrophic community structure associated with Kuroshio succession in the northern South China Sea
Han Zhang, Guangming Mai, Weicheng Luo, Meng Chen, Ran Duan, and Tuo Shi
Biogeosciences, 21, 2529–2546, https://doi.org/10.5194/bg-21-2529-2024,https://doi.org/10.5194/bg-21-2529-2024, 2024
Short summary
Technical note: A comparison of methods for estimating coccolith mass
Celina Rebeca Valença, Luc Beaufort, Gustaaf Marinus Hallegraeff, and Marius Nils Müller
Biogeosciences, 21, 1601–1611, https://doi.org/10.5194/bg-21-1601-2024,https://doi.org/10.5194/bg-21-1601-2024, 2024
Short summary
Fractionation of stable carbon isotopes during formate consumption in anoxic rice paddy soils and lake sediments
Ralf Conrad and Peter Claus
Biogeosciences, 21, 1161–1172, https://doi.org/10.5194/bg-21-1161-2024,https://doi.org/10.5194/bg-21-1161-2024, 2024
Short summary
Effects of surface water interactions with karst groundwater on microbial biomass, metabolism, and production
Adrian Barry-Sosa, Madison K. Flint, Justin C. Ellena, Jonathan B. Martin, and Brent C. Christner
EGUsphere, https://doi.org/10.5194/egusphere-2024-49,https://doi.org/10.5194/egusphere-2024-49, 2024
Short summary
Characteristics of bacterial and fungal communities and their associations with sugar compounds in atmospheric aerosols at a rural site in northern China
Mutong Niu, Shu Huang, Wei Hu, Yajie Wang, Wanyun Xu, Wan Wei, Qiang Zhang, Zihan Wang, Donghuan Zhang, Rui Jin, Libin Wu, Junjun Deng, Fangxia Shen, and Pingqing Fu
Biogeosciences, 20, 4915–4930, https://doi.org/10.5194/bg-20-4915-2023,https://doi.org/10.5194/bg-20-4915-2023, 2023
Short summary

Cited articles

Adler, M., Eckert, W., and Sivan, O.: Quantifying rates of methanogenesis and methanotrophy in Lake Kinneret sediments (Israel) using pore-water profiles, Limnol. Oceanogr., 56, 1525–1535, 2011.
Beal, E. J., House, C. H., and Orphan, V. J.: Manganese-and Iron-Dependent Marine Methane Oxidation, Science, 325, 184–187, 2009.
Ben-Dov, E., Brenner, A., and Kushmaro, A.: Quantification of sulfate-reducing bacteria in industrial wastewater, by real-time polymerase chain reaction (PCR) using dsrA and apsA genes, Microb. Ecol., 54, 439–451, 2007.
Bligh, E. G. and Dyer, W. J.: A rapid method of total lipid extraction and purification, Can. J. Biochem. Physiol., 37, 911–917, 1959.
Bodrossy, L., Holmes, E. M., Holmes, A. J., Kovács, K. L., and Murrell, J. C.: Analysis of 16S rRNA and methane monooxygenase gene sequences reveals a novel group of thermotolerant, Arch. Microbiol., 168, 493–503, 1997.
Download
Short summary
This study attempted to correlate between the performed geochemical and microbial profiles in lake sediments. The geochemical data suggest three main depth related zones of electron acceptor activities in the sediment: sulfate reduction, methanogenesis and a novel, deep iron-driven AOM. The prokaryotic analysis provided clues regarding the microorganisms that may be involved in this novel process and the metabolic paths that occur throughout the microbial assemblage.
Altmetrics
Final-revised paper
Preprint