Articles | Volume 12, issue 19
Biogeosciences, 12, 5771–5792, 2015
https://doi.org/10.5194/bg-12-5771-2015
Biogeosciences, 12, 5771–5792, 2015
https://doi.org/10.5194/bg-12-5771-2015

Research article 12 Oct 2015

Research article | 12 Oct 2015

Modeling the global emission, transport and deposition of trace elements associated with mineral dust

Y. Zhang et al.

Related authors

Emission inventory of air pollutants and chemical speciation for specific anthropogenic sources based on local measurements in the Yangtze River Delta region, China
Jingyu An, Yiwei Huang, Cheng Huang, Xin Wang, Rusha Yan, Qian Wang, Hongli Wang, Sheng'ao Jing, Yan Zhang, Yiming Liu, Yuan Chen, Chang Xu, Liping Qiao, Min Zhou, Shuhui Zhu, Qingyao Hu, Jun Lu, and Changhong Chen
Atmos. Chem. Phys., 21, 2003–2025, https://doi.org/10.5194/acp-21-2003-2021,https://doi.org/10.5194/acp-21-2003-2021, 2021
Short summary
Size-segregated characteristics of organic carbon (OC), elemental carbon (EC) and organic matter in particulate matter (PM) emitted from different types of ships in China
Fan Zhang, Hai Guo, Yingjun Chen, Volker Matthias, Yan Zhang, Xin Yang, and Jianmin Chen
Atmos. Chem. Phys., 20, 1549–1564, https://doi.org/10.5194/acp-20-1549-2020,https://doi.org/10.5194/acp-20-1549-2020, 2020
Short summary
Surveillance of SO2 and NO2 from ship emissions by MAX-DOAS measurements and the implications regarding fuel sulfur content compliance
Yuli Cheng, Shanshan Wang, Jian Zhu, Yanlin Guo, Ruifeng Zhang, Yiming Liu, Yan Zhang, Qi Yu, Weichun Ma, and Bin Zhou
Atmos. Chem. Phys., 19, 13611–13626, https://doi.org/10.5194/acp-19-13611-2019,https://doi.org/10.5194/acp-19-13611-2019, 2019
Short summary
Atmospheric pollution from ships and its impact on local air quality at a port site in Shanghai
Xinning Wang, Yin Shen, Yanfen Lin, Jun Pan, Yan Zhang, Peter K. K. Louie, Mei Li, and Qingyan Fu
Atmos. Chem. Phys., 19, 6315–6330, https://doi.org/10.5194/acp-19-6315-2019,https://doi.org/10.5194/acp-19-6315-2019, 2019
Short summary
The influence of spatiality on shipping emissions, air quality and potential human exposure in the Yangtze River Delta/Shanghai, China
Junlan Feng, Yan Zhang, Shanshan Li, Jingbo Mao, Allison P. Patton, Yuyan Zhou, Weichun Ma, Cong Liu, Haidong Kan, Cheng Huang, Jingyu An, Li Li, Yin Shen, Qingyan Fu, Xinning Wang, Juan Liu, Shuxiao Wang, Dian Ding, Jie Cheng, Wangqi Ge, Hong Zhu, and Katherine Walker
Atmos. Chem. Phys., 19, 6167–6183, https://doi.org/10.5194/acp-19-6167-2019,https://doi.org/10.5194/acp-19-6167-2019, 2019
Short summary

Related subject area

Biogeochemistry: Air - Sea Exchange
An empirical MLR for estimating surface layer DIC and a comparative assessment to other gap-filling techniques for ocean carbon time series
Jesse M. Vance, Kim Currie, John Zeldis, Peter W. Dillingham, and Cliff S. Law
Biogeosciences, 19, 241–269, https://doi.org/10.5194/bg-19-241-2022,https://doi.org/10.5194/bg-19-241-2022, 2022
Short summary
Derivation of seawater pCO2 from net community production identifies the South Atlantic Ocean as a CO2 source
Daniel J. Ford, Gavin H. Tilstone, Jamie D. Shutler, and Vassilis Kitidis
Biogeosciences, 19, 93–115, https://doi.org/10.5194/bg-19-93-2022,https://doi.org/10.5194/bg-19-93-2022, 2022
Short summary
Sea ice concentration impacts dissolved organic gases in the Canadian Arctic
Charel Wohl, Anna E. Jones, William T. Sturges, Philip D. Nightingale, Brent Else, Brian J. Butterworth, and Mingxi Yang
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-252,https://doi.org/10.5194/bg-2021-252, 2021
Revised manuscript accepted for BG
Short summary
Eukaryotic community composition in the sea surface microlayer across an east–west transect in the Mediterranean Sea
Birthe Zäncker, Michael Cunliffe, and Anja Engel
Biogeosciences, 18, 2107–2118, https://doi.org/10.5194/bg-18-2107-2021,https://doi.org/10.5194/bg-18-2107-2021, 2021
Short summary
Enhancement of the North Atlantic CO2 sink by Arctic Waters
Jon Olafsson, Solveig R. Olafsdottir, Taro Takahashi, Magnus Danielsen, and Thorarinn S. Arnarson
Biogeosciences, 18, 1689–1701, https://doi.org/10.5194/bg-18-1689-2021,https://doi.org/10.5194/bg-18-1689-2021, 2021
Short summary

Cited articles

Albani, S., Mahowald, N. M., Perry, A. T., Scanza, R. A., Zender, C. S., Heavens, N. G., Maggi, V., Kok, J. F., and Otto-Bliesner, B. L.: Improved dust representation in the Community Atmosphere Model, J. Adv. Model. Earth Syst., 6, 541–570, https://doi.org/10.1002/2013MS000279, 2014.
Baker, A. R. and Croot, P. L.:. Atmospheric and marine controls on aerosol iron solubility in seawater, Mar. Chem., 120, 4–13, 2010.
Baker, A. R., Kelly, S. D., Biswas, K. F., Witt, M., and Jickells, T. D.: Atmospheric deposition of nutrients to the Atlantic Ocean, Geophys. Res. Lett., 30, 2296, https://doi.org/10.1029/2003GL018518, 2003.
Baker, A. R., French, M., and Linge, K. L.: Trends in aerosol nutrient solubility along a west–east transect of the Saharan dust plume, Geophys. Res. Lett., 33, L07805, https://doi.org/10.1029/2005GL024764, 2006a.
Baker, A. R., Jickells, T. D., Witt, M., and Linge, K. L.: Trends in the solubility of iron, aluminum, manganese and phosphorus collected over the Atlantic Ocean, Mar. Chem., 98, 43–58, https://doi.org/10.1016/j.marchem.2005.06.004, 2006b.
Download
Short summary
A new technique to determine a size-fractionated global soil elemental emission inventory based on a global soil and mineralogical data set is introduced. Spatial variability of mineral dust elemental fractions (8 elements, e.g., Ca, Fe, Al) is identified on a global scale, particularly for Ca. The Ca/Al ratio ranged between 0.1 and 5.0 and is confirmed as an indicator of dust source regions by a global dust model. Total and soluble dust element fluxes into different ocean basins are estimated.
Altmetrics
Final-revised paper
Preprint