Articles | Volume 13, issue 16
https://doi.org/10.5194/bg-13-4659-2016
https://doi.org/10.5194/bg-13-4659-2016
Research article
 | 
19 Aug 2016
Research article |  | 19 Aug 2016

Inorganic carbon cycling and biogeochemical processes in an Arctic inland sea (Hudson Bay)

William J. Burt, Helmuth Thomas, Lisa A. Miller, Mats A. Granskog, Tim N. Papakyriakou, and Leah Pengelly

Related authors

Influences on Chemical Distribution Patterns across the west Greenland Shelf: The Roles of Ocean Currents, Sea Ice Melt, and Freshwater Runoff
Claudia Elena Schmidt, Tristan Zimmermann, Katarzyna Koziorowska, Daniel Pröfrock, and Helmuth Thomas
EGUsphere, https://doi.org/10.5194/egusphere-2025-291,https://doi.org/10.5194/egusphere-2025-291, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Evaluating ocean alkalinity enhancement as a carbon dioxide removal strategy in the North Sea
Feifei Liu, Ute Daewel, Jan Kossack, Kubilay Timur Demir, Helmuth Thomas, and Corinna Schrum
EGUsphere, https://doi.org/10.5194/egusphere-2025-81,https://doi.org/10.5194/egusphere-2025-81, 2025
Short summary
Variable organic matter stoichiometry enhances the biological drawdown of CO2 in the Northwest European shelf seas
Kubilay Timur Demir, Moritz Mathis, Jan Kossack, Feifei Liu, Ute Daewel, Christoph Stegert, Helmuth Thomas, and Corinna Schrum
EGUsphere, https://doi.org/10.5194/egusphere-2024-3449,https://doi.org/10.5194/egusphere-2024-3449, 2024
Short summary
Alkalinity sources in the Dutch Wadden Sea
Mona Norbisrath, Justus E. E. van Beusekom, and Helmuth Thomas
Ocean Sci., 20, 1423–1440, https://doi.org/10.5194/os-20-1423-2024,https://doi.org/10.5194/os-20-1423-2024, 2024
Short summary
Intertidal Regions Regulate Seasonal Coastal Carbonate System Dynamics in the East Frisian Wadden Sea
Julia Meyer, Yoana G. Voynova, Bryce Van Dam, Lara Luitjens, Dagmar Daehne, and Helmuth Thomas
EGUsphere, https://doi.org/10.5194/egusphere-2024-3048,https://doi.org/10.5194/egusphere-2024-3048, 2024
Short summary

Related subject area

Biogeochemistry: Coastal Ocean
Ocean alkalinity enhancement (OAE) does not cause cellular stress in a phytoplankton community of the subtropical Atlantic Ocean
Librada Ramírez, Leonardo J. Pozzo-Pirotta, Aja Trebec, Víctor Manzanares-Vázquez, José L. Díez, Javier Arístegui, Ulf Riebesell, Stephen D. Archer, and María Segovia
Biogeosciences, 22, 1865–1886, https://doi.org/10.5194/bg-22-1865-2025,https://doi.org/10.5194/bg-22-1865-2025, 2025
Short summary
Reviews and syntheses: On increasing hypoxia in eastern boundary upwelling systems – zooplankton under metabolic stress
Leissing Frederick, Mauricio A. Urbina, and Ruben Escribano
Biogeosciences, 22, 1839–1852, https://doi.org/10.5194/bg-22-1839-2025,https://doi.org/10.5194/bg-22-1839-2025, 2025
Short summary
Technical note: Testing a new approach for the determination of N2 fixation rates by coupling a membrane equilibrator to a mass spectrometer for long-term observations
Sören Iwe, Oliver Schmale, and Bernd Schneider
Biogeosciences, 22, 1767–1779, https://doi.org/10.5194/bg-22-1767-2025,https://doi.org/10.5194/bg-22-1767-2025, 2025
Short summary
Long-term variations in pH in coastal waters along the Korean Peninsula
Yong-Woo Lee, Mi-Ok Park, Seong-Gil Kim, Tae-Hoon Kim, Yong Hwa Oh, Sang Heon Lee, and DongJoo Joung
Biogeosciences, 22, 675–690, https://doi.org/10.5194/bg-22-675-2025,https://doi.org/10.5194/bg-22-675-2025, 2025
Short summary
The effect of carbonate mineral additions on biogeochemical conditions in surface sediments and benthic–pelagic exchange fluxes
Kadir Biçe, Tristen Myers Stewart, George G. Waldbusser, and Christof Meile
Biogeosciences, 22, 641–657, https://doi.org/10.5194/bg-22-641-2025,https://doi.org/10.5194/bg-22-641-2025, 2025
Short summary

Cited articles

AMAP: AMAP Assessment 2013: Arctic Ocean Acidification, Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, 99 pp., 2013.
Azetsu-Scott, K., Starr, M., Mei, Z.-P., and Granskog, M.: Low calcium carbonate saturation state in an Arctic inland sea having large and varying fluvial inputs: The Hudson Bay system, J. Geophys. Res.-Oceans, 119, 6210–6220, https://doi.org/10.1002/2014JC009948, 2014.
Burt, W. J., Thomas, H., Hagens, M., Pätsch, J., Clargo, N. M., Salt, L. A., Winde, V., and Böttcher, M. E.: Carbon Sources in the North Sea Evaluated by means of Radium and Stable Carbon Isotope Tracers, Limnol. Oceanogr., 61, 666–683, https://doi.org/10.1002/lno.10243, 2016.
Chierici, M. and Fransson, A.: Calcium carbonate saturation in the surface water of the Arctic Ocean: undersaturation in freshwater influenced shelves, Biogeosciences, 6, 2421–2431, https://doi.org/10.5194/bg-6-2421-2009, 2009.
Cooper, L. W., McClelland, J. W., Holmes, R. M., Raymond, P. A., Gibson, J. J., Guay, C. K., and Peterson, B. J.: Flow-weighted values of runoff tracers (δ18O, DOC, Ba, alkalinity) from the six largest Arctic rivers, Geophys. Res. Lett., 35, L18606, https://doi.org/10.1029/2008GL035007, 2008.
Download
Short summary
This study assesses the state of the carbon cycle in Hudson Bay, an ecologically important region of the Canadian Arctic. Results show that river input, sea-ice melt, biological activity, and general circulation patterns all have significant, and regionally dependent, impacts on the carbon cycle. The study also highlights the importance of detailed sampling procedures in highly stratified waters, and reveals that the deep Hudson Bay is primarily filled with waters of Pacific origin.
Share
Altmetrics
Final-revised paper
Preprint