Articles | Volume 13, issue 16
Biogeosciences, 13, 4659–4671, 2016
https://doi.org/10.5194/bg-13-4659-2016
Biogeosciences, 13, 4659–4671, 2016
https://doi.org/10.5194/bg-13-4659-2016

Research article 19 Aug 2016

Research article | 19 Aug 2016

Inorganic carbon cycling and biogeochemical processes in an Arctic inland sea (Hudson Bay)

William J. Burt et al.

Related authors

A modeling study of temporal and spatial pCO2 variability on the biologically active and temperature-dominated Scotian Shelf
Krysten Rutherford, Katja Fennel, Dariia Atamanchuk, Douglas Wallace, and Helmuth Thomas
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-48,https://doi.org/10.5194/bg-2021-48, 2021
Preprint under review for BG
Short summary
Using 226Ra and 228Ra isotopes to distinguish water mass distribution in the Canadian Arctic Archipelago
Chantal Mears, Helmuth Thomas, Paul B. Henderson, Matthew A. Charette, Hugh MacIntyre, Frank Dehairs, Christophe Monnin, and Alfonso Mucci
Biogeosciences, 17, 4937–4959, https://doi.org/10.5194/bg-17-4937-2020,https://doi.org/10.5194/bg-17-4937-2020, 2020
Short summary
The impact of intertidal areas on the carbonate system of the southern North Sea
Fabian Schwichtenberg, Johannes Pätsch, Michael Ernst Böttcher, Helmuth Thomas, Vera Winde, and Kay-Christian Emeis
Biogeosciences, 17, 4223–4245, https://doi.org/10.5194/bg-17-4223-2020,https://doi.org/10.5194/bg-17-4223-2020, 2020
Short summary
The recent state and variability of the carbonate system of the Canadian Arctic Archipelago and adjacent basins in the context of ocean acidification
Alexis Beaupré-Laperrière, Alfonso Mucci, and Helmuth Thomas
Biogeosciences, 17, 3923–3942, https://doi.org/10.5194/bg-17-3923-2020,https://doi.org/10.5194/bg-17-3923-2020, 2020
Short summary
Spatial variations in CO2 fluxes in the Saguenay Fjord (Quebec, Canada) and results of a water mixing model
Louise Delaigue, Helmuth Thomas, and Alfonso Mucci
Biogeosciences, 17, 547–566, https://doi.org/10.5194/bg-17-547-2020,https://doi.org/10.5194/bg-17-547-2020, 2020
Short summary

Related subject area

Biogeochemistry: Coastal Ocean
Organic carbon densities and accumulation rates in surface sediments of the North Sea and Skagerrak
Markus Diesing, Terje Thorsnes, and Lilja Rún Bjarnadóttir
Biogeosciences, 18, 2139–2160, https://doi.org/10.5194/bg-18-2139-2021,https://doi.org/10.5194/bg-18-2139-2021, 2021
Short summary
An observation-based evaluation and ranking of historical Earth system model simulations in the northwest North Atlantic Ocean
Arnaud Laurent, Katja Fennel, and Angela Kuhn
Biogeosciences, 18, 1803–1822, https://doi.org/10.5194/bg-18-1803-2021,https://doi.org/10.5194/bg-18-1803-2021, 2021
Short summary
Characterizing the origins of dissolved organic carbon in coastal seawater using stable carbon isotope and light absorption characteristics
Heejun Han, Jeomshik Hwang, and Guebuem Kim
Biogeosciences, 18, 1793–1801, https://doi.org/10.5194/bg-18-1793-2021,https://doi.org/10.5194/bg-18-1793-2021, 2021
Short summary
Warming and ocean acidification may decrease estuarine dissolved organic carbon export to the ocean
Michelle N. Simone, Kai G. Schulz, Joanne M. Oakes, and Bradley D. Eyre
Biogeosciences, 18, 1823–1838, https://doi.org/10.5194/bg-18-1823-2021,https://doi.org/10.5194/bg-18-1823-2021, 2021
Short summary
Chemical characterization of the Punta de Fuencaliente CO2-enriched system (La Palma, NE Atlantic Ocean): a new natural laboratory for ocean acidification studies
Sara González-Delgado, David González-Santana, Magdalena Santana-Casiano, Melchor González-Dávila, Celso A. Hernández, Carlos Sangil, and José Carlos Hernández
Biogeosciences, 18, 1673–1687, https://doi.org/10.5194/bg-18-1673-2021,https://doi.org/10.5194/bg-18-1673-2021, 2021
Short summary

Cited articles

AMAP: AMAP Assessment 2013: Arctic Ocean Acidification, Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, 99 pp., 2013.
Azetsu-Scott, K., Starr, M., Mei, Z.-P., and Granskog, M.: Low calcium carbonate saturation state in an Arctic inland sea having large and varying fluvial inputs: The Hudson Bay system, J. Geophys. Res.-Oceans, 119, 6210–6220, https://doi.org/10.1002/2014JC009948, 2014.
Burt, W. J., Thomas, H., Hagens, M., Pätsch, J., Clargo, N. M., Salt, L. A., Winde, V., and Böttcher, M. E.: Carbon Sources in the North Sea Evaluated by means of Radium and Stable Carbon Isotope Tracers, Limnol. Oceanogr., 61, 666–683, https://doi.org/10.1002/lno.10243, 2016.
Chierici, M. and Fransson, A.: Calcium carbonate saturation in the surface water of the Arctic Ocean: undersaturation in freshwater influenced shelves, Biogeosciences, 6, 2421–2431, https://doi.org/10.5194/bg-6-2421-2009, 2009.
Cooper, L. W., McClelland, J. W., Holmes, R. M., Raymond, P. A., Gibson, J. J., Guay, C. K., and Peterson, B. J.: Flow-weighted values of runoff tracers (δ18O, DOC, Ba, alkalinity) from the six largest Arctic rivers, Geophys. Res. Lett., 35, L18606, https://doi.org/10.1029/2008GL035007, 2008.
Download
Short summary
This study assesses the state of the carbon cycle in Hudson Bay, an ecologically important region of the Canadian Arctic. Results show that river input, sea-ice melt, biological activity, and general circulation patterns all have significant, and regionally dependent, impacts on the carbon cycle. The study also highlights the importance of detailed sampling procedures in highly stratified waters, and reveals that the deep Hudson Bay is primarily filled with waters of Pacific origin.
Altmetrics
Final-revised paper
Preprint