Articles | Volume 13, issue 1
https://doi.org/10.5194/bg-13-77-2016
https://doi.org/10.5194/bg-13-77-2016
Research article
 | 
15 Jan 2016
Research article |  | 15 Jan 2016

Parameterization of biogeochemical sediment–water fluxes using in situ measurements and a diagenetic model

A. Laurent, K. Fennel, R. Wilson, J. Lehrter, and R. Devereux

Related authors

Modelling considerations for research on ocean alkalinity enhancement (OAE)
Katja Fennel, Matthew C. Long, Christopher Algar, Brendan Carter, David Keller, Arnaud Laurent, Jann Paul Mattern, Ruth Musgrave, Andreas Oschlies, Josiane Ostiguy, Jaime B. Palter, and Daniel B. Whitt
State Planet, 2-oae2023, 9, https://doi.org/10.5194/sp-2-oae2023-9-2023,https://doi.org/10.5194/sp-2-oae2023-9-2023, 2023
Short summary
Role of phosphorus in the seasonal deoxygenation of the East China Sea shelf
Arnaud Laurent, Haiyan Zhang, and Katja Fennel
Biogeosciences, 19, 5893–5910, https://doi.org/10.5194/bg-19-5893-2022,https://doi.org/10.5194/bg-19-5893-2022, 2022
Short summary
An observation-based evaluation and ranking of historical Earth system model simulations in the northwest North Atlantic Ocean
Arnaud Laurent, Katja Fennel, and Angela Kuhn
Biogeosciences, 18, 1803–1822, https://doi.org/10.5194/bg-18-1803-2021,https://doi.org/10.5194/bg-18-1803-2021, 2021
Short summary
A numerical model study of the main factors contributing to hypoxia and its interannual and short-term variability in the East China Sea
Haiyan Zhang, Katja Fennel, Arnaud Laurent, and Changwei Bian
Biogeosciences, 17, 5745–5761, https://doi.org/10.5194/bg-17-5745-2020,https://doi.org/10.5194/bg-17-5745-2020, 2020
Short summary
Quantifying the contributions of riverine vs. oceanic nitrogen to hypoxia in the East China Sea
Fabian Große, Katja Fennel, Haiyan Zhang, and Arnaud Laurent
Biogeosciences, 17, 2701–2714, https://doi.org/10.5194/bg-17-2701-2020,https://doi.org/10.5194/bg-17-2701-2020, 2020
Short summary

Related subject area

Biogeochemistry: Modelling, Aquatic
Investigating ecosystem connections in the shelf sea environment using complex networks
Ieuan Higgs, Jozef Skákala, Ross Bannister, Alberto Carrassi, and Stefano Ciavatta
Biogeosciences, 21, 731–746, https://doi.org/10.5194/bg-21-731-2024,https://doi.org/10.5194/bg-21-731-2024, 2024
Short summary
Seasonal and interannual variability of the pelagic ecosystem and of the organic carbon budget in the Rhodes Gyre (eastern Mediterranean): influence of winter mixing
Joelle Habib, Caroline Ulses, Claude Estournel, Milad Fakhri, Patrick Marsaleix, Mireille Pujo-Pay, Marine Fourrier, Laurent Coppola, Alexandre Mignot, Laurent Mortier, and Pascal Conan
Biogeosciences, 20, 3203–3228, https://doi.org/10.5194/bg-20-3203-2023,https://doi.org/10.5194/bg-20-3203-2023, 2023
Short summary
Validation of the coupled physical-biogeochemical ocean model NEMO-SCOBI for the North Sea-Baltic Sea system
Itzel Ruvalcaba Baroni, Elin Almroth-Rosell, Lars Axell, Sam T. Fredriksson, Jenny Hieronymus, Magnus Hieronymus, Sandra-Esther Brunnabend, Matthias Gröger, and Lars Arneborg
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-116,https://doi.org/10.5194/bg-2023-116, 2023
Revised manuscript accepted for BG
Short summary
How much do bacterial growth properties and biodegradable dissolved organic matter control water quality at low flow?
Masihullah Hasanyar, Thomas Romary, Shuaitao Wang, and Nicolas Flipo
Biogeosciences, 20, 1621–1633, https://doi.org/10.5194/bg-20-1621-2023,https://doi.org/10.5194/bg-20-1621-2023, 2023
Short summary
Methane emissions from Arctic landscapes during 2000–2015: an analysis with land and lake biogeochemistry models
Xiangyu Liu and Qianlai Zhuang
Biogeosciences, 20, 1181–1193, https://doi.org/10.5194/bg-20-1181-2023,https://doi.org/10.5194/bg-20-1181-2023, 2023
Short summary

Cited articles

Aller, R. C.: The effects of macrobenthos on chemical properties of marine sediment and overlying water, in: Animal-sediment relations, 53–102, 1982.
Bohlen, L., Dale, A. W., and Wallmann, K.: Simple transfer functions for calculating benthic fixed nitrogen losses and C : N : P regeneration ratios in global biogeochemical models, Global Biogeochem. Cy., 26, GB3029, https://doi.org/10.1029/2011GB004198, 2012.
Boudreau, B. P.: Diagenetic models and their implementation: modelling transport and reactions in aquatic sediments, Springer, 414 pp., 1997.
Boudreau, B. P., Mucci, A., Sundby, B., Luther, G. W., and Silverberg, N.: Comparative diagenesis at three sites on the Canadian continental margin, J. Mar. Res., 56, 1259–1284, https://doi.org/10.1357/002224098765093634, 1998.
Briggs, K. B., Cartwright, G., Friedrichs, C. T., and Shivarudruppa, S.: Biogenic effects on cohesive sediment erodibility resulting from recurring seasonal hypoxia on the Louisiana shelf, Cont. Shelf Res., 93, 17–26, https://doi.org/10.1016/j.csr.2014.11.005, 2014.
Download
Short summary
In low oxygen environments, the lack of oxygen influences sediment biogeochemistry and in turn sediment-water fluxes. These nonlinear interactions are often missing from biogeochemical circulation models because sediment models are computationally expensive. A method for parameterizing realistic sediment-water fluxes is presented and applied to the Mississippi River Dead Zone where high primary production, stimulated by excess nutrient loads, promotes low bottom water conditions in summer.
Altmetrics
Final-revised paper
Preprint