Articles | Volume 15, issue 5
Technical note
15 Mar 2018
Technical note |  | 15 Mar 2018

Technical note: A simple approach for efficient collection of field reference data for calibrating remote sensing mapping of northern wetlands

Magnus Gålfalk, Martin Karlson, Patrick Crill, Philippe Bousquet, and David Bastviken

Related authors

Technical Note: Cost-efficient approaches to measure carbon dioxide (CO2) fluxes and concentrations in terrestrial and aquatic environments using mini loggers
D. Bastviken, I. Sundgren, S. Natchimuthu, H. Reyier, and M. Gålfalk
Biogeosciences, 12, 3849–3859,,, 2015
Short summary

Related subject area

Biogeochemistry: Wetlands
Spatial patterns of organic matter content in the surface soil of the salt marshes of the Venice Lagoon (Italy)
Alice Puppin, Davide Tognin, Massimiliano Ghinassi, Erica Franceschinis, Nicola Realdon, Marco Marani, and Andrea D'Alpaos
Biogeosciences, 21, 2937–2954,,, 2024
Short summary
Sorption of colored vs. noncolored organic matter by tidal marsh soils
Patrick J. Neale, J. Patrick Megonigal, Maria Tzortziou, Elizabeth A. Canuel, Christina R. Pondell, and Hannah Morrissette
Biogeosciences, 21, 2599–2620,,, 2024
Short summary
Peatland evaporation across hemispheres: contrasting controls and sensitivity to climate warming driven by plant functional types
Leeza Speranskaya, David I. Campbell, Peter M. Lafleur, and Elyn R. Humphreys
Biogeosciences, 21, 1173–1190,,, 2024
Short summary
Patterns and drivers of organic matter decomposition in peatland open-water pools
Julien Arsenault, Julie Talbot, Tim R. Moore, Klaus-Holger Knorr, Henning Teickner, and Jean-François Lapierre
EGUsphere,,, 2024
Short summary
Seasonal controls on methane flux components in a boreal peatland – combining plant removal and stable isotope analyses
Katharina Jentzsch, Elisa Männistö, Maija E. Marushchak, Aino Korrensalo, Lona van Delden, Eeva-Stiina Tuittila, Christian Knoblauch, and Claire C. Treat
EGUsphere,,, 2024
Short summary

Cited articles

Belward, A. S. and Skøien, J. O.: Who launched what, when and why; trends in global land-cover observation capacity from civilian earth observation satellites, ISPRS J. Photogramm., 103, 115–128, 2015. 
Booth, D. T., Cox, S. E., Meikle, T. W., and Fitzgerald, C.: The accuracy of ground cover measurements, Rangeland Ecol. Manag., 59, 179–188, 2006a. 
Booth, D. T., Cox, S. E., and Berryman, R. D.: Point sampling digital imagery with “SamplePoint”, Environ. Monit. Assess., 123, 97–108, 2006b. 
Bäckstrand, K., Crill, P. M., Jackowicz-Korczyñski, M., Mastepanov, M., Christensen, T. R., and Bastviken, D.: Annual carbon gas budget for a subarctic peatland, Northern Sweden, Biogeosciences, 7, 95–108,, 2010. 
Chen, Z., Chen, W., Leblanc, S. G., and Henry, G. H. R.: Digital Photograph Analysis for Measuring Percent Plant Cover in the Arctic, Arctic, 63, 315–326, 2010. 
Short summary
We describe a quick in situ method for mapping ground surface cover, calculating areas of each surface type in a 10 x 10 m plot for each measurement. The method is robust, weather-independent, easily carried out, and uses wide-field imaging with a standard remote-controlled camera mounted on a very long extendible monopod from a height of 3–4.5 m. The method enables collection of detailed field reference data, critical in many remote sensing applications, such as wetland mapping.
Final-revised paper