Articles | Volume 15, issue 8
https://doi.org/10.5194/bg-15-2525-2018
https://doi.org/10.5194/bg-15-2525-2018
Research article
 | 
27 Apr 2018
Research article |  | 27 Apr 2018

Understanding Mn-nodule distribution and evaluation of related deep-sea mining impacts using AUV-based hydroacoustic and optical data

Anne Peukert, Timm Schoening, Evangelos Alevizos, Kevin Köser, Tom Kwasnitschka, and Jens Greinert

Related authors

The role of heat wave events in the occurrence and persistence of thermal stratification in the southern North Sea
Wei Chen, Joanna Staneva, Sebastian Grayek, Johannes Schulz-Stellenfleth, and Jens Greinert
Nat. Hazards Earth Syst. Sci., 22, 1683–1698, https://doi.org/10.5194/nhess-22-1683-2022,https://doi.org/10.5194/nhess-22-1683-2022, 2022
Short summary
Megafauna community assessment of polymetallic-nodule fields with cameras: platform and methodology comparison
Timm Schoening, Autun Purser, Daniel Langenkämper, Inken Suck, James Taylor, Daphne Cuvelier, Lidia Lins, Erik Simon-Lledó, Yann Marcon, Daniel O. B. Jones, Tim Nattkemper, Kevin Köser, Martin Zurowietz, Jens Greinert, and Jose Gomes-Pereira
Biogeosciences, 17, 3115–3133, https://doi.org/10.5194/bg-17-3115-2020,https://doi.org/10.5194/bg-17-3115-2020, 2020
Short summary
Scars in the abyss: reconstructing sequence, location and temporal change of the 78 plough tracks of the 1989 DISCOL deep-sea disturbance experiment in the Peru Basin
Florian Gausepohl, Anne Hennke, Timm Schoening, Kevin Köser, and Jens Greinert
Biogeosciences, 17, 1463–1493, https://doi.org/10.5194/bg-17-1463-2020,https://doi.org/10.5194/bg-17-1463-2020, 2020
Short summary
Observations of deep-sea fishes and mobile scavengers from the abyssal DISCOL experimental mining area
Jeffrey C. Drazen, Astrid B. Leitner, Sage Morningstar, Yann Marcon, Jens Greinert, and Autun Purser
Biogeosciences, 16, 3133–3146, https://doi.org/10.5194/bg-16-3133-2019,https://doi.org/10.5194/bg-16-3133-2019, 2019
Short summary
ITERATIVE REFINEMENT FOR UNDERWATER 3D RECONSTRUCTION: APPLICATION TO DISPOSED UNDERWATER MUNITIONS IN THE BALTIC SEA
Y. Song, K. Köser, T. Kwasnitschka, and R. Koch
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W10, 181–187, https://doi.org/10.5194/isprs-archives-XLII-2-W10-181-2019,https://doi.org/10.5194/isprs-archives-XLII-2-W10-181-2019, 2019

Related subject area

Biogeochemistry: Open Ocean
Anthropogenic carbon storage and its decadal changes in the Atlantic between 1990–2020
Reiner Steinfeldt, Monika Rhein, and Dagmar Kieke
Biogeosciences, 21, 3839–3867, https://doi.org/10.5194/bg-21-3839-2024,https://doi.org/10.5194/bg-21-3839-2024, 2024
Short summary
Ocean alkalinity enhancement impacts: regrowth of marine microalgae in alkaline mineral concentrations simulating the initial concentrations after ship-based dispersions
Stephanie Delacroix, Tor Jensen Nystuen, August E. Dessen Tobiesen, Andrew L. King, and Erik Höglund
Biogeosciences, 21, 3677–3690, https://doi.org/10.5194/bg-21-3677-2024,https://doi.org/10.5194/bg-21-3677-2024, 2024
Short summary
Climatic controls on metabolic constraints in the ocean
Precious Mongwe, Matthew Long, Takamitsu Ito, Curtis Deutsch, and Yeray Santana-Falcón
Biogeosciences, 21, 3477–3490, https://doi.org/10.5194/bg-21-3477-2024,https://doi.org/10.5194/bg-21-3477-2024, 2024
Short summary
Effects of grain size and seawater salinity on magnesium hydroxide dissolution and secondary calcium carbonate precipitation kinetics: implications for ocean alkalinity enhancement
Charly A. Moras, Tyler Cyronak, Lennart T. Bach, Renaud Joannes-Boyau, and Kai G. Schulz
Biogeosciences, 21, 3463–3475, https://doi.org/10.5194/bg-21-3463-2024,https://doi.org/10.5194/bg-21-3463-2024, 2024
Short summary
Short-term response of Emiliania huxleyi growth and morphology to abrupt salinity stress
Rosie M. Sheward, Christina Gebühr, Jörg Bollmann, and Jens O. Herrle
Biogeosciences, 21, 3121–3141, https://doi.org/10.5194/bg-21-3121-2024,https://doi.org/10.5194/bg-21-3121-2024, 2024
Short summary

Cited articles

Barnett, B. and Suzuki, T.: The use of kringing to estimate resedimentation in the JET experiment, in: Proceedings, international symposium on environmental studies for deep-sea mining, Tokyo, November 1997, 143–151, 1997. a, b
Bluhm, H., Schriever, G., and Thiel, H.: Megabenthic recolonization in an experimentally disturbed abyssal manganese nodule area, Mar. Georesour. Geotec., 13, 393–416, 1995. a
Boetius, A.: RV SONNE Fahrtbericht/Cruise Report SO242-2 [SO242/2]: JPI OCEANS Ecological Aspects of Deep-Sea Mining, DISCOL Revisited, Guayaquil-Guayaquil (Equador), 28.08.–1.10. 2015, 2015. a
Brenke, N.: An epibenthic sledge for operations on marine soft bottom and bedrock, Mar. Technol. Soc. J., 39, 10–21, 2005. a, b
Brockett, T. and Richards, C. Z.: Deepsea mining simulator for environmental impact studies, Sea Technol., 35, 77–82, 1994. a
Download
Short summary
Manganese nodules are a deep-sea mineral resource considered for mining. This paper provides insights into measuring the distribution of manganese nodules at meter resolution. Nodule abundance was determined by autonomous robots using cameras and echo sounders. Based on the meter-scale abundance measurements, environmental impacts of simulated deep-sea mining were assessed. The spatial extent of a sediment plume was determined and showed correlation to small variations in seafloor topography.
Altmetrics
Final-revised paper
Preprint