Research article
07 Nov 2018
Research article | 07 Nov 2018
Diazotrophy as the main driver of the oligotrophy gradient in the western tropical South Pacific Ocean: results from a one-dimensional biogeochemical–physical coupled model
Audrey Gimenez et al.
Related authors
Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean
Thierry Moutin, Thibaut Wagener, Mathieu Caffin, Alain Fumenia, Audrey Gimenez, Melika Baklouti, Pascale Bouruet-Aubertot, Mireille Pujo-Pay, Karine Leblanc, Dominique Lefevre, Sandra Helias Nunige, Nathalie Leblond, Olivier Grosso, and Alain de Verneil
Biogeosciences, 15, 2961–2989, https://doi.org/10.5194/bg-15-2961-2018,https://doi.org/10.5194/bg-15-2961-2018, 2018
Short summary
Dynamics and controls of heterotrophic prokaryotic production in the western tropical South Pacific Ocean: links with diazotrophic and photosynthetic activity
France Van Wambeke, Audrey Gimenez, Solange Duhamel, Cécile Dupouy, Dominique Lefevre, Mireille Pujo-Pay, and Thierry Moutin
Biogeosciences, 15, 2669–2689, https://doi.org/10.5194/bg-15-2669-2018,https://doi.org/10.5194/bg-15-2669-2018, 2018
Short summary
N2 fixation as a dominant new N source in the western tropical South Pacific Ocean (OUTPACE cruise)
Mathieu Caffin, Thierry Moutin, Rachel Ann Foster, Pascale Bouruet-Aubertot, Andrea Michelangelo Doglioli, Hugo Berthelot, Cécile Guieu, Olivier Grosso, Sandra Helias-Nunige, Nathalie Leblond, Audrey Gimenez, Anne Alexandra Petrenko, Alain de Verneil, and Sophie Bonnet
Biogeosciences, 15, 2565–2585, https://doi.org/10.5194/bg-15-2565-2018,https://doi.org/10.5194/bg-15-2565-2018, 2018
Short summary
Longitudinal contrast in turbulence along a ∼ 19° S section in the Pacific and its consequences for biogeochemical fluxes
Pascale Bouruet-Aubertot, Yannis Cuypers, Andrea Doglioli, Mathieu Caffin, Christophe Yohia, Alain de Verneil, Anne Petrenko, Dominique Lefèvre, Hervé Le Goff, Gilles Rougier, Marc Picheral, and Thierry Moutin
Biogeosciences, 15, 7485–7504, https://doi.org/10.5194/bg-15-7485-2018,https://doi.org/10.5194/bg-15-7485-2018, 2018
Short summary
Carbonate system distribution, anthropogenic carbon and acidification in the western tropical South Pacific (OUTPACE 2015 transect)
Thibaut Wagener, Nicolas Metzl, Mathieu Caffin, Jonathan Fin, Sandra Helias Nunige, Dominique Lefevre, Claire Lo Monaco, Gilles Rougier, and Thierry Moutin
Biogeosciences, 15, 5221–5236, https://doi.org/10.5194/bg-15-5221-2018,https://doi.org/10.5194/bg-15-5221-2018, 2018
Short summary
Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean
Thierry Moutin, Thibaut Wagener, Mathieu Caffin, Alain Fumenia, Audrey Gimenez, Melika Baklouti, Pascale Bouruet-Aubertot, Mireille Pujo-Pay, Karine Leblanc, Dominique Lefevre, Sandra Helias Nunige, Nathalie Leblond, Olivier Grosso, and Alain de Verneil
Biogeosciences, 15, 2961–2989, https://doi.org/10.5194/bg-15-2961-2018,https://doi.org/10.5194/bg-15-2961-2018, 2018
Short summary
Distribution and rates of nitrogen fixation in the western tropical South Pacific Ocean constrained by nitrogen isotope budgets
Angela N. Knapp, Kelly M. McCabe, Olivier Grosso, Nathalie Leblond, Thierry Moutin, and Sophie Bonnet
Biogeosciences, 15, 2619–2628, https://doi.org/10.5194/bg-15-2619-2018,https://doi.org/10.5194/bg-15-2619-2018, 2018
Short summary
Dynamics and controls of heterotrophic prokaryotic production in the western tropical South Pacific Ocean: links with diazotrophic and photosynthetic activity
France Van Wambeke, Audrey Gimenez, Solange Duhamel, Cécile Dupouy, Dominique Lefevre, Mireille Pujo-Pay, and Thierry Moutin
Biogeosciences, 15, 2669–2689, https://doi.org/10.5194/bg-15-2669-2018,https://doi.org/10.5194/bg-15-2669-2018, 2018
Short summary
N2 fixation as a dominant new N source in the western tropical South Pacific Ocean (OUTPACE cruise)
Mathieu Caffin, Thierry Moutin, Rachel Ann Foster, Pascale Bouruet-Aubertot, Andrea Michelangelo Doglioli, Hugo Berthelot, Cécile Guieu, Olivier Grosso, Sandra Helias-Nunige, Nathalie Leblond, Audrey Gimenez, Anne Alexandra Petrenko, Alain de Verneil, and Sophie Bonnet
Biogeosciences, 15, 2565–2585, https://doi.org/10.5194/bg-15-2565-2018,https://doi.org/10.5194/bg-15-2565-2018, 2018
Short summary
OUTPACE long duration stations: physical variability, context of biogeochemical sampling, and evaluation of sampling strategy
Alain de Verneil, Louise Rousselet, Andrea M. Doglioli, Anne A. Petrenko, Christophe Maes, Pascale Bouruet-Aubertot, and Thierry Moutin
Biogeosciences, 15, 2125–2147, https://doi.org/10.5194/bg-15-2125-2018,https://doi.org/10.5194/bg-15-2125-2018, 2018
Short summary
Coupling physics and biogeochemistry thanks to high-resolution observations of the phytoplankton community structure in the northwestern Mediterranean Sea
Pierre Marrec, Gérald Grégori, Andrea M. Doglioli, Mathilde Dugenne, Alice Della Penna, Nagib Bhairy, Thierry Cariou, Sandra Hélias Nunige, Soumaya Lahbib, Gilles Rougier, Thibaut Wagener, and Melilotus Thyssen
Biogeosciences, 15, 1579–1606, https://doi.org/10.5194/bg-15-1579-2018,https://doi.org/10.5194/bg-15-1579-2018, 2018
Short summary
Nitrogen isotopic evidence for a shift from nitrate- to diazotroph-fueled export production in the VAHINE mesocosm experiments
Angela N. Knapp, Sarah E. Fawcett, Alfredo Martínez-Garcia, Nathalie Leblond, Thierry Moutin, and Sophie Bonnet
Biogeosciences, 13, 4645–4657, https://doi.org/10.5194/bg-13-4645-2016,https://doi.org/10.5194/bg-13-4645-2016, 2016
Short summary
Dynamics of transparent exopolymer particles (TEP) during the VAHINE mesocosm experiment in the New Caledonian lagoon
Ilana Berman-Frank, Dina Spungin, Eyal Rahav, France Van Wambeke, Kendra Turk-Kubo, and Thierry Moutin
Biogeosciences, 13, 3793–3805, https://doi.org/10.5194/bg-13-3793-2016,https://doi.org/10.5194/bg-13-3793-2016, 2016
Short summary
Heterotrophic bacterial production and metabolic balance during the VAHINE mesocosm experiment in the New Caledonia lagoon
France Van Wambeke, Ulrike Pfreundt, Aude Barani, Hugo Berthelot, Thierry Moutin, Martine Rodier, Wolfgang R. Hess, and Sophie Bonnet
Biogeosciences, 13, 3187–3202, https://doi.org/10.5194/bg-13-3187-2016,https://doi.org/10.5194/bg-13-3187-2016, 2016
Short summary
Introduction to the project VAHINE: VAriability of vertical and tropHIc transfer of diazotroph derived N in the south wEst Pacific
Sophie Bonnet, Thierry Moutin, Martine Rodier, Jean-Michel Grisoni, Francis Louis, Eric Folcher, Bertrand Bourgeois, Jean-Michel Boré, and Armelle Renaud
Biogeosciences, 13, 2803–2814, https://doi.org/10.5194/bg-13-2803-2016,https://doi.org/10.5194/bg-13-2803-2016, 2016
Short summary
New insights into the organic carbon export in the Mediterranean Sea from 3-D modeling
A. Guyennon, M. Baklouti, F. Diaz, J. Palmieri, J. Beuvier, C. Lebaupin-Brossier, T. Arsouze, K. Béranger, J.-C. Dutay, and T. Moutin
Biogeosciences, 12, 7025–7046, https://doi.org/10.5194/bg-12-7025-2015,https://doi.org/10.5194/bg-12-7025-2015, 2015
Short summary
Dinitrogen fixation and dissolved organic nitrogen fueled primary production and particulate export during the VAHINE mesocosm experiment (New Caledonia lagoon)
H. Berthelot, T. Moutin, S. L'Helguen, K. Leblanc, S. Hélias, O. Grosso, N. Leblond, B. Charrière, and S. Bonnet
Biogeosciences, 12, 4099–4112, https://doi.org/10.5194/bg-12-4099-2015,https://doi.org/10.5194/bg-12-4099-2015, 2015
Related subject area
Quantifying spatiotemporal variability in zooplankton dynamics in the Gulf of Mexico with a physical–biogeochemical model
Taylor A. Shropshire, Steven L. Morey, Eric P. Chassignet, Alexandra Bozec, Victoria J. Coles, Michael R. Landry, Rasmus Swalethorp, Glenn Zapfe, and Michael R. Stukel
Biogeosciences, 17, 3385–3407, https://doi.org/10.5194/bg-17-3385-2020,https://doi.org/10.5194/bg-17-3385-2020, 2020
Short summary
One size fits all? Calibrating an ocean biogeochemistry model for different circulations
Iris Kriest, Paul Kähler, Wolfgang Koeve, Karin Kvale, Volkmar Sauerland, and Andreas Oschlies
Biogeosciences, 17, 3057–3082, https://doi.org/10.5194/bg-17-3057-2020,https://doi.org/10.5194/bg-17-3057-2020, 2020
Short summary
Merging bio-optical data from Biogeochemical-Argo floats and models in marine biogeochemistry
Elena Terzić, Paolo Lazzari, Emanuele Organelli, Cosimo Solidoro, Stefano Salon, Fabrizio D'Ortenzio, and Pascal Conan
Biogeosciences, 16, 2527–2542, https://doi.org/10.5194/bg-16-2527-2019,https://doi.org/10.5194/bg-16-2527-2019, 2019
Short summary
Biogeochemical response of the Mediterranean Sea to the transient SRES-A2 climate change scenario
Camille Richon, Jean-Claude Dutay, Laurent Bopp, Briac Le Vu, James C. Orr, Samuel Somot, and François Dulac
Biogeosciences, 16, 135–165, https://doi.org/10.5194/bg-16-135-2019,https://doi.org/10.5194/bg-16-135-2019, 2019
Short summary
Causes of simulated long-term changes in phytoplankton biomass in the Baltic proper: a wavelet analysis
Jenny Hieronymus, Kari Eilola, Magnus Hieronymus, H. E. Markus Meier, Sofia Saraiva, and Bengt Karlson
Biogeosciences, 15, 5113–5129, https://doi.org/10.5194/bg-15-5113-2018,https://doi.org/10.5194/bg-15-5113-2018, 2018
Short summary
Modelling N2 fixation related to Trichodesmium sp.: driving processes and impacts on primary production in the tropical Pacific Ocean
Cyril Dutheil, Olivier Aumont, Thomas Gorguès, Anne Lorrain, Sophie Bonnet, Martine Rodier, Cécile Dupouy, Takuhei Shiozaki, and Christophe Menkes
Biogeosciences, 15, 4333–4352, https://doi.org/10.5194/bg-15-4333-2018,https://doi.org/10.5194/bg-15-4333-2018, 2018
Short summary
Seasonal patterns in phytoplankton biomass across the northern and deep Gulf of Mexico: a numerical model study
Fabian A. Gomez, Sang-Ki Lee, Yanyun Liu, Frank J. Hernandez Jr., Frank E. Muller-Karger, and John T. Lamkin
Biogeosciences, 15, 3561–3576, https://doi.org/10.5194/bg-15-3561-2018,https://doi.org/10.5194/bg-15-3561-2018, 2018
Short summary
Groundwater data improve modelling of headwater stream CO2 outgassing with a stable DIC isotope approach
Anne Marx, Marcus Conrad, Vadym Aizinger, Alexander Prechtel, Robert van Geldern, and Johannes A. C. Barth
Biogeosciences, 15, 3093–3106, https://doi.org/10.5194/bg-15-3093-2018,https://doi.org/10.5194/bg-15-3093-2018, 2018
Short summary
Modelling potential production of macroalgae farms in UK and Dutch coastal waters
Johan van der Molen, Piet Ruardij, Karen Mooney, Philip Kerrison, Nessa E. O'Connor, Emma Gorman, Klaas Timmermans, Serena Wright, Maeve Kelly, Adam D. Hughes, and Elisa Capuzzo
Biogeosciences, 15, 1123–1147, https://doi.org/10.5194/bg-15-1123-2018,https://doi.org/10.5194/bg-15-1123-2018, 2018
Short summary
Implications of sea-ice biogeochemistry for oceanic production and emissions of dimethyl sulfide in the Arctic
Hakase Hayashida, Nadja Steiner, Adam Monahan, Virginie Galindo, Martine Lizotte, and Maurice Levasseur
Biogeosciences, 14, 3129–3155, https://doi.org/10.5194/bg-14-3129-2017,https://doi.org/10.5194/bg-14-3129-2017, 2017
Short summary
Reviews and syntheses: parameter identification in marine planktonic ecosystem modelling
Markus Schartau, Philip Wallhead, John Hemmings, Ulrike Löptien, Iris Kriest, Shubham Krishna, Ben A. Ward, Thomas Slawig, and Andreas Oschlies
Biogeosciences, 14, 1647–1701, https://doi.org/10.5194/bg-14-1647-2017,https://doi.org/10.5194/bg-14-1647-2017, 2017
Short summary
Manganese in the west Atlantic Ocean in the context of the first global ocean circulation model of manganese
Marco van Hulten, Rob Middag, Jean-Claude Dutay, Hein de Baar, Matthieu Roy-Barman, Marion Gehlen, Alessandro Tagliabue, and Andreas Sterl
Biogeosciences, 14, 1123–1152, https://doi.org/10.5194/bg-14-1123-2017,https://doi.org/10.5194/bg-14-1123-2017, 2017
Short summary
Marine regime shifts in ocean biogeochemical models: a case study in the Gulf of Alaska
Claudie Beaulieu, Harriet Cole, Stephanie Henson, Andrew Yool, Thomas R. Anderson, Lee de Mora, Erik T. Buitenhuis, Momme Butenschön, Ian J. Totterdell, and J. Icarus Allen
Biogeosciences, 13, 4533–4553, https://doi.org/10.5194/bg-13-4533-2016,https://doi.org/10.5194/bg-13-4533-2016, 2016
Short summary
Modeling pCO2 variability in the Gulf of Mexico
Zuo Xue, Ruoying He, Katja Fennel, Wei-Jun Cai, Steven Lohrenz, Wei-Jen Huang, Hanqin Tian, Wei Ren, and Zhengchen Zang
Biogeosciences, 13, 4359–4377, https://doi.org/10.5194/bg-13-4359-2016,https://doi.org/10.5194/bg-13-4359-2016, 2016
Short summary
Seasonal variability of the oxygen minimum zone off Peru in a high-resolution regional coupled model
Oscar Vergara, Boris Dewitte, Ivonne Montes, Veronique Garçon, Marcel Ramos, Aurélien Paulmier, and Oscar Pizarro
Biogeosciences, 13, 4389–4410, https://doi.org/10.5194/bg-13-4389-2016,https://doi.org/10.5194/bg-13-4389-2016, 2016
Short summary
Methane and sulfate dynamics in sediments from mangrove-dominated tropical coastal lagoons, Yucatán, Mexico
Pei-Chuan Chuang, Megan B. Young, Andrew W. Dale, Laurence G. Miller, Jorge A. Herrera-Silveira, and Adina Paytan
Biogeosciences, 13, 2981–3001, https://doi.org/10.5194/bg-13-2981-2016,https://doi.org/10.5194/bg-13-2981-2016, 2016
Short summary
Transfer of radiocaesium from contaminated bottom sediments to marine organisms through benthic food chains in post-Fukushima and post-Chernobyl periods
Roman Bezhenar, Kyung Tae Jung, Vladimir Maderich, Stefan Willemsen, Govert de With, and Fangli Qiao
Biogeosciences, 13, 3021–3034, https://doi.org/10.5194/bg-13-3021-2016,https://doi.org/10.5194/bg-13-3021-2016, 2016
Short summary
The mechanisms of North Atlantic CO2 uptake in a large Earth System Model ensemble
P. R. Halloran, B. B. B. Booth, C. D. Jones, F. H. Lambert, D. J. McNeall, I. J. Totterdell, and C. Völker
Biogeosciences, 12, 4497–4508, https://doi.org/10.5194/bg-12-4497-2015,https://doi.org/10.5194/bg-12-4497-2015, 2015
Short summary
Capturing optically important constituents and properties in a marine biogeochemical and ecosystem model
S. Dutkiewicz, A. E. Hickman, O. Jahn, W. W. Gregg, C. B. Mouw, and M. J. Follows
Biogeosciences, 12, 4447–4481, https://doi.org/10.5194/bg-12-4447-2015,https://doi.org/10.5194/bg-12-4447-2015, 2015
Short summary
Cited articles
Agawin, N. S., Rabouille, S., Veldhuis, M. J., Servatius, L., Hol, S., van
Overzee, H. M., and Huisman, J.: Competition and facilitation between
unicellular nitrogen-fixing cyanobacteria and non—nitrogen-fixing
phytoplankton species, Limnol. Oceanogr., 52, 2233–2248,
2007.
a,
b,
c
Alekseenko, E., Raybaud, V., Espinasse, B., Carlotti, F., Queguiner, B.,
Thouvenin, B., Garreau, P., and Baklouti, M.: Seasonal dynamics and
stoichiometry of the planktonic community in the
NW
Mediterranean
Sea; a 3
D modeling approach,
Ocean Dynam., 64, 179–207, 2014.
a,
b
Baklouti, M., Faure, V., Pawlowski, L., and Sciandra, A.: Investigation and
sensitivity analysis of a mechanistic phytoplankton model implemented in a
new modular numerical tool (Eco3M) dedicated to biogeochemical modelling,
Prog. Oceanogr., 71, 34–58,
https://doi.org/10.1016/j.pocean.2006.05.003,
2006.
a
Behrenfeld, M. J., O'Malley, R. T., Siegel, D. A., McClain, C. R.,
Sarmiento,
J. L., Feldman, G. C., Milligan, A. J., Falkowski, P. G., Letelier, R. M.,
and Boss, E. S.: Climate-driven trends in contemporary ocean productivity,
Nature, 444, 752–755,
https://doi.org/10.1038/nature05317,
2006.
a
Benavides, M., Agawin, N., Aristegui, J., Penne, J., and Stal, L.: Dissolved
organic nitrogen and carbon release by a marine unicellular diazotrophic
cyanobacterium, Aquat. Microb. Ecol., 69, 69–80, 2013. a
Berthelot, H., Bonnet, S., Camps, M., Grosso, O., and Moutin, T.: Assessment
of
the dinitrogen released as ammonium and dissolved organic nitrogen by
unicellular and filamentous marine diazotrophic cyanobacteria grown in
culture, Front. Mar. Sci., 2, 80,
https://doi.org/10.3389/fmars.2015.00080,
2015.
a
Bonnet, S., Caffin, M., Berthelot, H., and Moutin, T.: Hot spot of N2
fixation in the western tropical South Pacific pleads for a spatial
decoupling between N2 fixation and denitrification, P.
Natl. Acad. Sci., 114, E2800–E2801,
https://doi.org/10.1073/pnas.1619514114,
2017.
a,
b,
c,
d
Bratbak, G.: Bacterial Biovolume and Biomass Estimations, Appl.
Environ. Microbiol., 49, 1488–1493,
1985. a
Bronk, D. A. and Ward, B. B.: Magnitude of dissolved organic nitrogen release
relative to gross nitrogen uptake in marine systems, Limnol.
Oceanogr., 45, 1879–1883,
https://doi.org/10.4319/lo.2000.45.8.1879,
2000.
a
Caffin, M., Moutin, T., Foster, R. A., Bouruet-Aubertot, P., Doglioli, A. M.,
Berthelot, H., Guieu, C., Grosso, O., Helias-Nunige, S., Leblond, N.,
Gimenez, A., Petrenko, A. A., de Verneil, A., and Bonnet, S.: N
2 fixation
as a dominant new N source in the western tropical South Pacific Ocean
(OUTPACE cruise), Biogeosciences, 15, 2565–2585,
https://doi.org/10.5194/bg-15-2565-2018, 2018.
a,
b
Capone, D. G., Zehr, J. P., Paerl, H. W., Bergman, B., and Carpenter, E. J.:
Trichodesmium, a globally significant marine cyanobacterium, Science, 276,
1221–1229,
1997. a
Capone, D. G., Burns, J. A., Montoya, J. P., Subramaniam, A., Mahaffey, C.,
Gunderson, T., Michaels, A. F., and Carpenter, E. J.: Nitrogen fixation by Trichodesmium spp.: An important source
of new nitrogen to the tropical and subtropical North Atlantic Ocean,
Global Biogeochem. Cy., 19, GB2024,
https://doi.org/10.1029/2004GB002331,
2005.
a
Cermeño, P., Dutkiewicz, S., Harris, R. P., Follows, M., Schofield, O., and
Falkowski, P. G.: The role of nutricline depth in regulating the ocean carbon
cycle, P. Natl. Acad. Sci., 105,
20344–20349,
https://doi.org/10.1073/pnas.0811302106,
2008.
a
Claustre, H., Sciandra, A., and Vaulot, D.: Introduction to the special
section bio-optical and biogeochemical conditions in the South East Pacific
in late 2004: the BIOSOPE program, Biogeosciences, 5, 679–691,
https://doi.org/10.5194/bg-5-679-2008, 2008.
a
Coles, V. J. and Hood, R. R.: Modeling the impact of iron and phosphorus
limitations on nitrogen fixation in the Atlantic Ocean, Biogeosciences, 4,
455–479,
https://doi.org/10.5194/bg-4-455-2007, 2007.
a,
b
Cotner, J. B., Hall, E. K., Scott, T., and Heldal, M.: Freshwater Bacteria
are Stoichiometrically Flexible with a Nutrient Composition Similar
to Seston, Front. Microbiol., 1,
https://doi.org/10.3389/fmicb.2010.00132,
2010.
a
de Verneil, A., Rousselet, L., Doglioli, A. M., Petrenko, A. A., Maes, C.,
Bouruet-Aubertot, P., and Moutin, T.: OUTPACE long duration stations:
physical variability, context of biogeochemical sampling, and evaluation of
sampling strategy, Biogeosciences, 15, 2125–2147,
https://doi.org/10.5194/bg-15-2125-2018, 2018.
a
Dutheil, C., Aumont, O., Gorguès, T., Lorrain, A., Bonnet, S., Rodier, M.,
Dupouy, C., Shiozaki, T., and Menkes, C.: Modelling N
2 fixation related to
Trichodesmium sp.: driving processes and impacts on primary
production in the tropical Pacific Ocean, Biogeosciences, 15, 4333–4352,
https://doi.org/10.5194/bg-15-4333-2018, 2018.
a
Falkowski, P. G.: Evolution of the nitrogen cycle and its influence on the
biological sequestration of CO
2 in the ocean, Nature, 387, 272–275,
https://doi.org/10.1038/387272a0,
1997.
a,
b
Fennel, K., Spitz, Y. H., Letelier, R. M., Abbott, M. R., and Karl, D. M.: A
deterministic model for N
2 fixation at stn. ALOHA in the
subtropical North Pacific Ocean, Deep Sea Res. Pt. II, 49, 149–174,
2002. a
Fumenia, A., Moutin, T., Bonnet, S., Benavides, M., Petrenko, A., Helias
Nunige, S., and Maes, C.: Excess nitrogen as a marker of intense dinitrogen
fixation in the Western Tropical South Pacific Ocean: impact on the
thermocline waters of the South Pacific, Biogeosciences Discuss.,
https://doi.org/10.5194/bg-2017-557, in review, 2018.
a,
b,
c
Gaspar, P., Grégoris, Y., and Lefevre, J.-M.: A simple eddy kinetic energy
model for simulations of the oceanic vertical mixing: Tests at station
Papa and long-term upper ocean study site, J. Geophys. Res.,
95, 16179,
https://doi.org/10.1029/JC095iC09p16179,
1990.
a
Gimenez, A., Baklouti, M., Bonnet, S., and Moutin, T.: Biogeochemical fluxes
and fate of diazotroph-derived nitrogen in the food web after a phosphate
enrichment: modeling of the VAHINE mesocosms experiment, Biogeosciences, 13,
5103–5120,
https://doi.org/10.5194/bg-13-5103-2016, 2016.
a,
b,
c,
d,
e,
f,
g,
h
Goldman, J. C. and Dennett, M. R.: Growth of marine bacteria in batch and
continuous culture under carbon and nitrogen limitation, Limnol.
Oceanogr., 45, 789–800,
https://doi.org/10.4319/lo.2000.45.4.0789,
2000.
a
Grimaud, G. M., Dron, A., Rabouille, S., Sciandra, A., and Bernard, O.: Modelling light-dark regime influence on the carbon-nitrogen
metabolism in a unicellular diazotrophic cyanobacterium, in: CAB,
available at:
http://hal.upmc.fr/hal-00854479 (last access: 8 October 2018), 2013. a
Gruber, N.: The dynamics of the marine nitrogen cycle and its influence on
atmospheric CO
2 variations, in: The ocean carbon cycle and
climate, 97–148, Springer, 2004. a
Gruber, N. and Sarmiento, J. L.: Global patterns of marine nitrogen fixation
and denitrification, Global Biogeochem. Cy., 11, 235–266,
https://doi.org/10.1029/97GB00077,
1997.
a,
b
Guieu, C., Bonnet, S., Petrenko, A., Menkes, C., Chavagnac, V., Desboeufs,
K.,
Maes, C., and Moutin, T.: Iron from a submarine source impacts the productive
layer of the Western Tropical South Pacific (WTSP), Scientific
Reports, 8, 9075,
https://doi.org/10.1038/s41598-018-27407-z,
2018.
a,
b
Hansell, D. A., Bates, N. R., and Olson, D. B.: Excess nitrate and nitrogen
fixation in the North Atlantic Ocean, Marine Chem., 84, 243–265,
https://doi.org/10.1016/j.marchem.2003.08.004,
2004.
a
Holl, C. M. and Montoya, J. P.: Diazotrophic growth of the marine
yanobacterium
Trichodesmium Ims101 in continuous culture: effects of growth rate on
N
2-fixation rate, biomass, and C:N:P stoichiometry,
J. Phycol., 44, 929–937,
https://doi.org/10.1111/j.1529-8817.2008.00534.x,
2008.
a
Hutchins, D. A., Fu, F.-X., Zhang, Y., Warner, M. E., Feng, Y., Portune, K.,
Bernhardt, P. W., and Mulholland, M. R.: CO2 control of Trichodesmium
N2 fixation, photosynthesis, growth rates, and elemental ratios:
Implications for past, present, and future ocean biogeochemistry, Limnol. Oceanogr., 52, 1293–1304,
https://doi.org/10.4319/lo.2007.52.4.1293,
2007.
a
Karl, D. and Letelier, R.: Nitrogen fixation-enhanced carbon sequestration in
low nitrate, low chlorophyll seascapes, Mar. Ecol. Prog. Ser., 364,
257–268,
https://doi.org/10.3354/meps07547,
2008.
a
Karl, D., Letelier, R., Tupas, L., Dore, J., Christian, J., and Hebel, D.:
The
role of nitrogen fixation in biogeochemical cycling in the subtropical
North Pacific Ocean, Nature, 388, 533–538,
https://doi.org/10.1038/41474,
1997.
a,
b
Karl, D., Michaels, A., Bergman, B., Capone, D., Carpenter, E., Letelier, R.,
Lipschultz, F., Paerl, H., Sigman, D., and Stal, L.: Dinitrogen fixation in
the world's oceans, Biogeochemistry, 57-58, 47–98,
https://doi.org/10.1023/A:1015798105851,
2002.
a
Landolfi, A., Oschlies, A., and Sanders, R.: Organic nutrients and excess
nitrogen in the North Atlantic subtropical gyre, Biogeosciences, 5,
1199–1213,
https://doi.org/10.5194/bg-5-1199-2008, 2008.
a
Law, C. S., Woodward, E. M. S., Ellwood, M. J., Marriner, A., Bury, S. J.,
and
Safi, K. A.: Response of surface nutrient inventories and nitrogen fixation
to a tropical cyclone in the southwest Pacific, Limnol. Oceanogr.,
56, 1372–1385,
https://doi.org/10.4319/lo.2011.56.4.1372,
2011.
a,
b
Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., Garcia,
H. E.,
Baranova, O. K., Zweng, M. M., Paver, C. R., Reagan, J. R., Johnson, D. R.,
Hamilton, M., and Seidov, D.: World ocean atlas 2013. Volume 1,
Temperature, Tech. rep., NOAA Atlas NESDIS 73,
https://doi.org/10.7289/V55X26VD,
2013.
a
Luo, Y.-W., Doney, S. C., Anderson, L. A., Benavides, M., Berman-Frank, I.,
Bode, A., Bonnet, S., Boström, K. H., Böttjer, D., Capone, D. G.,
Carpenter, E. J., Chen, Y. L., Church, M. J., Dore, J. E., Falcón, L. I.,
Fernández, A., Foster, R. A., Furuya, K., Gómez, F., Gundersen, K.,
Hynes, A. M., Karl, D. M., Kitajima, S., Langlois, R. J., LaRoche, J.,
Letelier, R. M., Marañón, E., McGillicuddy Jr., D. J., Moisander, P. H.,
Moore, C. M., Mouriño-Carballido, B., Mulholland, M. R., Needoba, J. A.,
Orcutt, K. M., Poulton, A. J., Rahav, E., Raimbault, P., Rees, A. P.,
Riemann, L., Shiozaki, T., Subramaniam, A., Tyrrell, T., Turk-Kubo, K. A.,
Varela, M., Villareal, T. A., Webb, E. A., White, A. E., Wu, J., and Zehr, J.
P.: Database of diazotrophs in global ocean: abundance, biomass and nitrogen
fixation rates, Earth Syst. Sci. Data, 4, 47–73,
https://doi.org/10.5194/essd-4-47-2012, 2012.
a
Martiny, A. C., Pham, C. T. A., Primeau, F. W., Vrugt, J. A., Moore, J. K.,
Levin, S. A., and Lomas, M. W.: Strong latitudinal patterns in the elemental
ratios of marine plankton and organic matter, Nature Geosci., 6, 279–283,
https://doi.org/10.1038/ngeo1757,
2013.
a
Martínez, L., Silver, M. W., King, J. M., and Alldredge, A. L.: Nitrogen
Fixation by Floating Diatom Mats: A Source of New Nitrogen to
Oligotrophic Ocean Waters, Science, 221, 152–154,
https://doi.org/10.1126/science.221.4606.152,
1983.
a
Mauriac, R., Moutin, T., and Baklouti, M.: Accumulation of DOC in Low
Phosphate Low Chlorophyll (LPLC) area: is it related to higher production
under high N:P ratio?, Biogeosciences, 8, 933–950,
https://doi.org/10.5194/bg-8-933-2011, 2011.
a
Mills, M. M., Ridame, C., Davey, M., La Roche, J., and Geider, R. J.: Iron
and
phosphorus co-limit nitrogen fixation in the eastern tropical North
Atlantic, Nature, 429, 292–294,
2004. a
Moisander, P. H., Zhang, R., Boyle, E. A., Hewson, I., Montoya, J. P., and
Zehr, J. P.: Analogous nutrient limitations in unicellular diazotrophs and
Prochlorococcus in the South Pacific Ocean, The ISME Journal, 6,
733–744,
2012. a
Monteiro, F. M., Dutkiewicz, S., and Follows, M. J.: Biogeographical controls
on the marine nitrogen fixers: controls on marine nitrogen fixers, Global
Biogeochem. Cy., 25,
https://doi.org/10.1029/2010GB003902,
2011.
a,
b
Moore, J. K., Doney, S. C., Glover, D. M., and Fung, I. Y.: Iron cycling and
nutrient-limitation patterns in surface waters of the World Ocean, Deep
Sea Res. Pt. II, 49, 463–507,
https://doi.org/10.1016/S0967-0645(01)00109-6,
2002.
a
Moore, J. K., Doney, S. C., and Lindsay, K.: Upper ocean ecosystem dynamics
and
iron cycling in a global three-dimensional model: global
ecosystem-biogeochemical model, Global Biogeochem. Cy., 18,
https://doi.org/10.1029/2004GB002220,
2004.
a
Moutin, T., Van Den Broeck, N., Beker, B., Dupouy, C., Rimmelin, P., and
Le Bouteiller, A.: Phosphate availability controls Trichodesmium spp.
biomass in the SW Pacific Ocean, Mar. Ecol. Prog. Ser., 297,
15–21,
2005.
a,
b,
c
Moutin, T., Karl, D. M., Duhamel, S., Rimmelin, P., Raimbault, P., Van Mooy,
B. A. S., and Claustre, H.: Phosphate availability and the ultimate control
of new nitrogen input by nitrogen fixation in the tropical Pacific Ocean,
Biogeosciences, 5, 95–109, https://doi.org/10.5194/bg-5-95-2008, 2008.
a,
b,
c,
d
Moutin, T., Doglioli, A. M., de Verneil, A., and Bonnet, S.: Preface: The
Oligotrophy to the UlTra-oligotrophy PACific Experiment (OUTPACE cruise, 18
February to 3 April 2015), Biogeosciences, 14, 3207–3220,
https://doi.org/10.5194/bg-14-3207-2017, 2017.
a,
b
Moutin, T., Wagener, T., Caffin, M., Fumenia, A., Gimenez, A., Baklouti, M.,
Bouruet-Aubertot, P., Pujo-Pay, M., Leblanc, K., Lefevre, D., Helias Nunige,
S., Leblond, N., Grosso, O., and de Verneil, A.: Nutrient availability and
the ultimate control of the biological carbon pump in the western tropical
South Pacific Ocean, Biogeosciences, 15, 2961–2989,
https://doi.org/10.5194/bg-15-2961-2018, 2018.
a,
b,
c,
d,
e,
f,
g
Mulholland, M., Bronk, D., and Capone, D.: Dinitrogen fixation and release of
ammonium and dissolved organic nitrogen by Trichodesmium IMS101, Aquat.
Microbial. Ecol., 37, 85–94,
https://doi.org/10.3354/ame037085,
2004.
a
Mulholland, M. R. and Bernhardt, P. W.: The effect of growth rate, phosphorus
concentration, and temperature on N
2 fixation, carbon
fixation, and nitrogen release in continuous cultures of Trichodesmium
IMS101, Limnol. Oceanogr., 50, 839–849,
2005. a
Mulholland, M. R., Bernhardt, P. W., Heil, C. A., Bronk, D. A., and O'Neil,
J. M.: Nitrogen fixation and release of fixed nitrogen by Trichodesmium
spp. in the Gulf of Mexico, Limnol. Oceanogr., 51, 1762–1776,
2006. a
Olsen, A., Key, R. M., van Heuven, S., Lauvset, S. K., Velo, A., Lin, X.,
Schirnick, C., Kozyr, A., Tanhua, T., Hoppema, M., Jutterström, S.,
Steinfeldt, R., Jeansson, E., Ishii, M., Pérez, F. F., and Suzuki, T.: The
Global Ocean Data Analysis Project version 2 (GLODAPv2) – an internally
consistent data product for the world ocean, Earth Syst. Sci. Data, 8,
297–323,
https://doi.org/10.5194/essd-8-297-2016, 2016.
a
Paerl, H. W., Crocker, K. M., and Prufert, L. E.: Limitation of
N
2 fixation in coastal marine waters: Relative importance
of molybdenum, iron, phosphorus, and organic matter availability1, Limnol. Oceanogr., 32, 525–536,
https://doi.org/10.4319/lo.1987.32.3.0525,
1987.
a
Perry, M. J.: Alkaline phosphatase activity in subtropical Central North
Pacific waters using a sensitive fluorometric method, Mar. Biol., 15,
113–119,
https://doi.org/10.1007/BF00353639,
1972.
a,
b
Perry, M. J.: Phosphate utilization by an oceanic diatom in
phosphorus-limited
chemostat culture and in the oligotrophic waters of the central North
Pacific1, Limnol. Oceanogr., 21, 88–107,
https://doi.org/10.4319/lo.1976.21.1.0088,
1976.
a,
b
Polovina, J. J., Howell, E. A., and Abecassis, M.: Ocean's least productive
waters are expanding, Geophys. Res. Lett., 35, L03618,
https://doi.org/10.1029/2007GL031745,
2008.
a
Rabouille, S., Staal, M., Stal, L. J., and Soetaert, K.: Modeling the
Dynamic
Regulation of Nitrogen Fixation in the Cyanobacterium Trichodesmium
sp., Appl. Environ. Microbiol., 72, 3217–3227,
https://doi.org/10.1128/AEM.72.5.3217-3227.2006,
2006.
a,
b,
c,
d
Radenac, M.-H. and Rodier, M.: Nitrate and chlorophyll distributions in
relation to thermohaline and current structures in the western tropical
Pacific during 1985–1989, Deep Sea Res. Pt. II, 43, 725–752,
https://doi.org/10.1016/0967-0645(96)00025-2,
1996.
a
Rueter, J. G., Ohki, K., and Fujita, Y.: The effect of iron nutrition on
photosynthesis and nitrogen fixation in cultures of
Trichodesmium
(Cyanophyceae), J. Phycol., 26, 30–35,
https://doi.org/10.1111/j.0022-3646.1990.00030.x,
1990.
a
Sañudo-Wilhelmy, S. A., Kustka, A. B., Gobler, C. J., Hutchins, D. A.,
Yang,
M., Lwiza, K., Burns, J., Capone, D. G., Raven, J. A., and Carpenter, E. J.:
Phosphorus limitation of nitrogen fixation by
Trichodesmium in the
central Atlantic Ocean, Nature, 411, 66–69,
https://doi.org/10.1038/35075041,
2001.
a
Shamarock, W., Kemp, J. B., Dudhia, J., Gill, D., Barker, D., Duda, M., and
Powers, J.: A Description of the Advanced Research WRF Version 3:
NCAR Technical Note TN–475+ STR, Tech. rep., National Center for
Atmospheric Research Boulder, Colorado, USA, 2008. a
Stenegren, M., Caputo, A., Berg, C., Bonnet, S., and Foster, R. A.:
Distribution and drivers of symbiotic and free-living diazotrophic
cyanobacteria in the western tropical South Pacific, Biogeosciences, 15,
1559–1578,
https://doi.org/10.5194/bg-15-1559-2018, 2018.
a
Van Den Broeck, N., Moutin, T., Rodier, M., and Le Bouteiller, A.: Seasonal
variations of phosphate availability in the SW Pacific Ocean near New
Caledonia, Mar. Ecol. Prog. Ser., 268, 1–12,
2004. a
Van Wambeke, F., Gimenez, A., Duhamel, S., Dupouy, C., Lefevre, D., Pujo-Pay,
M., and Moutin, T.: Dynamics and controls of heterotrophic prokaryotic
production in the western tropical South Pacific Ocean: links with
diazotrophic and photosynthetic activity, Biogeosciences, 15, 2669–2689,
https://doi.org/10.5194/bg-15-2669-2018, 2018.
a
Vidal, M., Duarte, C., Agustí, S., Gasol, J., and Vaqué, D.: Alkaline
phosphatase activities in the central Atlantic Ocean indicate large areas
with phosphorus deficiency, Mar. Ecol. Prog. Ser., 262, 43–53,
https://doi.org/10.3354/meps262043,
2003.
a,
b
Vrede, K., Heldal, M., Norland, S., and Bratbak, G.: Elemental Composition
(C, N, P) and Cell Volume of Exponentially Growing and
Nutrient-Limited Bacterioplankton, Appl. Environ.
Microbiol., 68, 2965–2971,
https://doi.org/10.1128/AEM.68.6.2965-2971.2002,
2002.
a
Wu, J., Sunda, W., Boyle, E. A., and Karl, D. M.: Phosphate depletion in the
western North Atlantic Ocean, Science, 289, 759–762, 2000. a
Zamora, L. M., Landolfi, A., Oschlies, A., Hansell, D. A., Dietze, H., and
Dentener, F.: Atmospheric deposition of nutrients and excess N formation in
the North Atlantic, Biogeosciences, 7, 777–793,
https://doi.org/10.5194/bg-7-777-2010, 2010.
a,
b,
c
Zehr, J. P. and McReynolds, L. A.: Use of degenerate oligonucleotides for
amplification of the nifH gene from the marine cyanobacterium
Trichodesmium thiebautii, Appl. Environ. Microbiol., 55,
2522–2526,
1989. a
Zhang, R.-H., Busalacchi, A. J., and Xue, Y.: Decadal change in the
relationship between the oceanic entrainment temperature and thermocline
depth in the far western tropical Pacific, Geophys. Res. Lett.,
34, L23612,
https://doi.org/10.1029/2007GL032119,
2007.
a
Zimmerman, A. E., Allison, S. D., and Martiny, A. C.: Phylogenetic
constraints
on elemental stoichiometry and resource allocation in heterotrophic marine
bacteria, Environ. Microbiol., 16, 1398–1410,
https://doi.org/10.1111/1462-2920.12329,
2014.
a
Zweng, M. M., Reagan, J. R., Antonov, J. I., Locarnini, R. A., Mishonov,
A. V.,
Boyer, T. P., Garcia, H. E., Baranova, O. K., Johnson, D. R., Seidov, D., and
Biddle, M. M.: World ocean atlas 2013. Volume 2, Salinity, Tech. rep.,
NOAA Atlas NESDIS 74,
https://doi.org/10.7289/V5251G4D, 2013.
a