Articles | Volume 16, issue 19
https://doi.org/10.5194/bg-16-3835-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-16-3835-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Rapid environmental responses to climate-induced hydrographic changes in the Baltic Sea entrance
Laurie M. Charrieau
Department of Geology, Lund University, Lund, Sweden
Karl Ljung
Department of Geology, Lund University, Lund, Sweden
Frederik Schenk
Bolin Centre for Climate Research and Department of Geological
Sciences, Stockholm University, Stockholm, Sweden
Ute Daewel
Department of System Analysis and Modelling, Centre for Materials and
Coastal Research, Geesthacht, Germany
Emma Kritzberg
Department of Biology, Lund University, Lund, Sweden
Helena L. Filipsson
CORRESPONDING AUTHOR
Department of Geology, Lund University, Lund, Sweden
Related authors
Laurie M. Charrieau, Lene Bryngemark, Ingemar Hansson, and Helena L. Filipsson
J. Micropalaeontol., 37, 191–194, https://doi.org/10.5194/jm-37-191-2018, https://doi.org/10.5194/jm-37-191-2018, 2018
Short summary
Short summary
Splitting samples into smaller subsamples is often necessary in micropalaeontological studies. Indeed, the general high abundance of microfossils – which makes them excellent tools to reconstruct past environments – also results in very time-consuming faunal analyses. Here we present an improved and cost-effective wet splitter for micropalaeontological samples aimed to reduce picking time, while keeping information loss to a minimum.
Kubilay Timur Demir, Moritz Mathis, Jan Kossack, Feifei Liu, Ute Daewel, Christoph Stegert, Helmuth Thomas, and Corinna Schrum
EGUsphere, https://doi.org/10.5194/egusphere-2024-3449, https://doi.org/10.5194/egusphere-2024-3449, 2024
Short summary
Short summary
This study examines how variations in the ratios of carbon, nitrogen and phosphorus in organic matter affect carbon cycling in the Northwest European shelf seas. Traditional models with fixed ratios tend to underestimate biological carbon uptake. By integrating variable ratios into a regional model, we find that carbon dioxide uptake increases by 10–33 %. These results highlight the need to include variable ratios for accurate assessments of regional and global carbon cycles.
Hoa T. T. Nguyen, Ute Daewel, Neil Banas, and Corinna Schrum
EGUsphere, https://doi.org/10.5194/egusphere-2024-2710, https://doi.org/10.5194/egusphere-2024-2710, 2024
Short summary
Short summary
Parameterisation is key in modeling to reproduce observations well but is often done manually. This study presents a Particle Swarm Optimizer-based toolbox for marine ecosystem models, compatible with the Framework for Aquatic Biogeochemical Models, thus enhancing its reusability. Applied to the Sylt ecosystem, the toolbox effectively (1) identified multiple parameter sets that matched observations well, thus providing different insights into ecosystem dynamics, (2) optimized model complexity.
Paul Töchterle, Anna Baldo, Julian B. Murton, Frederik Schenk, R. Lawrence Edwards, Gabriella Koltai, and Gina E. Moseley
Clim. Past, 20, 1521–1535, https://doi.org/10.5194/cp-20-1521-2024, https://doi.org/10.5194/cp-20-1521-2024, 2024
Short summary
Short summary
We present a reconstruction of permafrost and snow cover on the British Isles for the Younger Dryas period, a time of extremely cold winters that happened approximately 12 000 years ago. Our results indicate that seasonal sea ice in the North Atlantic was most likely a crucial factor to explain the observed climate shifts during this time.
Lucas Porz, Wenyan Zhang, Nils Christiansen, Jan Kossack, Ute Daewel, and Corinna Schrum
Biogeosciences, 21, 2547–2570, https://doi.org/10.5194/bg-21-2547-2024, https://doi.org/10.5194/bg-21-2547-2024, 2024
Short summary
Short summary
Seafloor sediments store a large amount of carbon, helping to naturally regulate Earth's climate. If disturbed, some sediment particles can turn into CO2, but this effect is not well understood. Using computer simulations, we found that bottom-contacting fishing gears release about 1 million tons of CO2 per year in the North Sea, one of the most heavily fished regions globally. We show how protecting certain areas could reduce these emissions while also benefitting seafloor-living animals.
Ana Lúcia Lindroth Dauner, Frederik Schenk, Katherine Elizabeth Power, and Maija Heikkilä
The Cryosphere, 18, 1399–1418, https://doi.org/10.5194/tc-18-1399-2024, https://doi.org/10.5194/tc-18-1399-2024, 2024
Short summary
Short summary
In this study, we analysed 14 sea-ice proxy records and compared them with the results from two different climate simulations from the Atlantic sector of the Arctic Ocean over the Common Era (last 2000 years). Both proxy and model approaches demonstrated a long-term sea-ice increase. The good correspondence suggests that the state-of-the-art sea-ice proxies are able to capture large-scale climate drivers. Short-term variability, however, was less coherent due to local-to-regional scale forcings.
Babette Hoogakker, Catherine Davis, Yi Wang, Stepanie Kusch, Katrina Nilsson-Kerr, Dalton Hardisty, Allison Jacobel, Dharma Reyes Macaya, Nicolaas Glock, Sha Ni, Julio Sepúlveda, Abby Ren, Alexandra Auderset, Anya Hess, Katrina Meissner, Jorge Cardich, Robert Anderson, Christine Barras, Chandranath Basak, Harold Bradbury, Inda Brinkmann, Alexis Castillo, Madelyn Cook, Kassandra Costa, Constance Choquel, Paula Diz, Jonas Donnenfield, Felix Elling, Zeynep Erdem, Helena Filipsson, Sebastian Garrido, Julia Gottschalk, Anjaly Govindankutty Menon, Jeroen Groeneveld, Christian Hallman, Ingrid Hendy, Rick Hennekam, Wanyi Lu, Jean Lynch-Stieglitz, Lelia Matos, Alfredo Martínez-García, Giulia Molina, Práxedes Muñoz, Simone Moretti, Jennifer Morford, Sophie Nuber, Svetlana Radionovskaya, Morgan Raven, Christopher Somes, Anja Studer, Kazuyo Tachikawa, Raúl Tapia, Martin Tetard, Tyler Vollmer, Shuzhuang Wu, Yan Zhang, Xin-Yuan Zheng, and Yuxin Zhou
EGUsphere, https://doi.org/10.5194/egusphere-2023-2981, https://doi.org/10.5194/egusphere-2023-2981, 2024
Short summary
Short summary
Paleo-oxygen proxies can extend current records, bound pre-anthropogenic baselines, provide datasets necessary to test climate models under different boundary conditions, and ultimately understand how ocean oxygenation responds on longer timescales. Here we summarize current proxies used for the reconstruction of Cenozoic seawater oxygen levels. This includes an overview of the proxy's history, how it works, resources required, limitations, and future recommendations.
K. Mareike Paul, Martijn Hermans, Sami A. Jokinen, Inda Brinkmann, Helena L. Filipsson, and Tom Jilbert
Biogeosciences, 20, 5003–5028, https://doi.org/10.5194/bg-20-5003-2023, https://doi.org/10.5194/bg-20-5003-2023, 2023
Short summary
Short summary
Seawater naturally contains trace metals such as Mo and U, which accumulate under low oxygen conditions on the seafloor. Previous studies have used sediment Mo and U contents as an archive of changing oxygen concentrations in coastal waters. Here we show that in fjords the use of Mo and U for this purpose may be impaired by additional processes. Our findings have implications for the reliable use of Mo and U to reconstruct oxygen changes in fjords.
Rodrigo Martínez-Abarca, Michelle Abstein, Frederik Schenk, David Hodell, Philipp Hoelzmann, Mark Brenner, Steffen Kutterolf, Sergio Cohuo, Laura Macario-González, Mona Stockhecke, Jason Curtis, Flavio S. Anselmetti, Daniel Ariztegui, Thomas Guilderson, Alexander Correa-Metrio, Thorsten Bauersachs, Liseth Pérez, and Antje Schwalb
Clim. Past, 19, 1409–1434, https://doi.org/10.5194/cp-19-1409-2023, https://doi.org/10.5194/cp-19-1409-2023, 2023
Short summary
Short summary
Lake Petén Itzá, northern Guatemala, is one of the oldest lakes in the northern Neotropics. In this study, we analyzed geochemical and mineralogical data to decipher the hydrological response of the lake to climate and environmental changes between 59 and 15 cal ka BP. We also compare the response of Petén Itzá with other regional records to discern the possible climate forcings that influenced them. Short-term climate oscillations such as Greenland interstadials and stadials are also detected.
Philipp Heinrich, Stefan Hagemann, Ralf Weisse, Corinna Schrum, Ute Daewel, and Lidia Gaslikova
Nat. Hazards Earth Syst. Sci., 23, 1967–1985, https://doi.org/10.5194/nhess-23-1967-2023, https://doi.org/10.5194/nhess-23-1967-2023, 2023
Short summary
Short summary
High seawater levels co-occurring with high river discharges have the potential to cause destructive flooding. For the past decades, the number of such compound events was larger than expected by pure chance for most of the west-facing coasts in Europe. Additionally rivers with smaller catchments showed higher numbers. In most cases, such events were associated with a large-scale weather pattern characterized by westerly winds and strong rainfall.
Johannes Bieser, David J. Amptmeijer, Ute Daewel, Joachim Kuss, Anne L. Soerensen, and Corinna Schrum
Geosci. Model Dev., 16, 2649–2688, https://doi.org/10.5194/gmd-16-2649-2023, https://doi.org/10.5194/gmd-16-2649-2023, 2023
Short summary
Short summary
MERCY is a 3D model to study mercury (Hg) cycling in the ocean. Hg is a highly harmful pollutant regulated by the UN Minamata Convention on Mercury due to widespread human emissions. These emissions eventually reach the oceans, where Hg transforms into the even more toxic and bioaccumulative pollutant methylmercury. MERCY predicts the fate of Hg in the ocean and its buildup in the food chain. It is the first model to consider Hg accumulation in fish, a major source of Hg exposure for humans.
Erica Jaakkola, Antje Gärtner, Anna Maria Jönsson, Karl Ljung, Per-Ola Olsson, and Thomas Holst
Biogeosciences, 20, 803–826, https://doi.org/10.5194/bg-20-803-2023, https://doi.org/10.5194/bg-20-803-2023, 2023
Short summary
Short summary
Increased spruce bark beetle outbreaks were recently seen in Sweden. When Norway spruce trees are attacked, they increase their production of VOCs, attempting to kill the beetles. We provide new insights into how the Norway spruce act when infested and found the emitted volatiles to increase up to 700 times and saw a change in compound blend. We estimate that the 2020 bark beetle outbreak in Sweden could have increased the total monoterpene emissions from the forest by more than 10 %.
Petter L. Hällberg, Frederik Schenk, Kweku A. Yamoah, Xueyuen Kuang, and Rienk H. Smittenberg
Clim. Past, 18, 1655–1674, https://doi.org/10.5194/cp-18-1655-2022, https://doi.org/10.5194/cp-18-1655-2022, 2022
Short summary
Short summary
Using climate model simulations, we find that SE Asian tropical climate was strongly seasonal under Late Glacial conditions. During Northern Hemisphere winters, it was highly arid in this region that is today humid year-round. The seasonal aridity was driven by orbital forcing and stronger East Asian winter monsoon. A breakdown of deep convection caused a reorganized Walker Circulation and a mean state resembling El Niño conditions.
Inda Brinkmann, Christine Barras, Tom Jilbert, Tomas Næraa, K. Mareike Paul, Magali Schweizer, and Helena L. Filipsson
Biogeosciences, 19, 2523–2535, https://doi.org/10.5194/bg-19-2523-2022, https://doi.org/10.5194/bg-19-2523-2022, 2022
Short summary
Short summary
The concentration of the trace metal barium (Ba) in coastal seawater is a function of continental input, such as riverine discharge. Our geochemical records of the severely hot and dry year 2018, and following wet year 2019, reveal that prolonged drought imprints with exceptionally low Ba concentrations in benthic foraminiferal calcium carbonates of coastal sediments. This highlights the potential of benthic Ba / Ca to trace past climate extremes and variability in coastal marine records.
Veli Çağlar Yumruktepe, Annette Samuelsen, and Ute Daewel
Geosci. Model Dev., 15, 3901–3921, https://doi.org/10.5194/gmd-15-3901-2022, https://doi.org/10.5194/gmd-15-3901-2022, 2022
Short summary
Short summary
We describe the coupled bio-physical model ECOSMO II(CHL), which is used for regional configurations for the North Atlantic and the Arctic hind-casting and operational purposes. The model is consistent with the large-scale climatological nutrient settings and is capable of representing regional and seasonal changes, and model primary production agrees with previous measurements. For the users of this model, this paper provides the underlying science, model evaluation and its development.
Constance Choquel, Emmanuelle Geslin, Edouard Metzger, Helena L. Filipsson, Nils Risgaard-Petersen, Patrick Launeau, Manuel Giraud, Thierry Jauffrais, Bruno Jesus, and Aurélia Mouret
Biogeosciences, 18, 327–341, https://doi.org/10.5194/bg-18-327-2021, https://doi.org/10.5194/bg-18-327-2021, 2021
Short summary
Short summary
Marine microorganisms such as foraminifera are able to live temporarily without oxygen in sediments. In a Swedish fjord subjected to seasonal oxygen scarcity, a change in fauna linked to the decrease in oxygen and the increase in an invasive species was shown. The invasive species respire nitrate until 100 % of the nitrate porewater in the sediment and could be a major contributor to nitrogen balance in oxic coastal ecosystems. But prolonged hypoxia creates unfavorable conditions to survive.
Simon David Herzog, Per Persson, Kristina Kvashnina, and Emma Sofia Kritzberg
Biogeosciences, 17, 331–344, https://doi.org/10.5194/bg-17-331-2020, https://doi.org/10.5194/bg-17-331-2020, 2020
Short summary
Short summary
Fe concentrations in boreal rivers are increasing strongly in several regions in Northern Europe. This study focuses on how Fe speciation and interaction with organic matter affect stability of Fe across estuarine salinity gradients. The results confirm a positive relationship between the relative contribution of organically complexed Fe and stability. Moreover, organically complexed Fe was more prevalent at high flow conditions and more dominant further upstream in a catchment.
Svante Björck, Jesper Sjolte, Karl Ljung, Florian Adolphi, Roger Flower, Rienk H. Smittenberg, Malin E. Kylander, Thomas F. Stocker, Sofia Holmgren, Hui Jiang, Raimund Muscheler, Yamoah K. K. Afrifa, Jayne E. Rattray, and Nathalie Van der Putten
Clim. Past, 15, 1939–1958, https://doi.org/10.5194/cp-15-1939-2019, https://doi.org/10.5194/cp-15-1939-2019, 2019
Short summary
Short summary
Southern Hemisphere westerlies play a key role in regulating global climate. A lake sediment record on a mid-South Atlantic island shows changes in the westerlies and hydroclimate 36.4–18.6 ka. Before 31 ka the westerlies shifted in concert with the bipolar seesaw mechanism in a fairly warm climate, followed by southerly westerlies and falling temperatures. After 27.5 ka temperatures dropped 3 °C with drier conditions and with shifting westerlies possibly triggering the variable LGM CO2 levels.
Johannes Pein, Annika Eisele, Richard Hofmeister, Tina Sanders, Ute Daewel, Emil V. Stanev, Justus van Beusekom, Joanna Staneva, and Corinna Schrum
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-265, https://doi.org/10.5194/bg-2019-265, 2019
Revised manuscript not accepted
Short summary
Short summary
The Elbe estuary is subject to vigorous tidal forcing from the sea side and considerable biological inputs from the land side. Our 3D numerical coupled physical-biogeochemical integrates these forcing signals and provides highly realistic hindcasts of the associated dynamics. Model simulations show that the freshwater part of Elbe estuary is inhabited by plankton. According to simulations these organism play a key role in converting organic inputs into nitrate, the major inorganic nutrient.
Ute Daewel, Corinna Schrum, and Jed I. Macdonald
Geosci. Model Dev., 12, 1765–1789, https://doi.org/10.5194/gmd-12-1765-2019, https://doi.org/10.5194/gmd-12-1765-2019, 2019
Short summary
Short summary
Here we propose a novel modelling approach that includes an extended food web in a functional-group-type marine ecosystem model (ECOSMO E2E) by formulating new groups for macrobenthos and fish. This enables the estimation of the dynamics of the higher-trophic-level production potential and constitutes a more consistent closure term for the lower-trophic-level ecosystem. Thus, the model allows for the study of the control mechanisms for marine ecosystems at a high spatial and temporal resolution.
Changjin Zhao, Ute Daewel, and Corinna Schrum
Earth Syst. Dynam., 10, 287–317, https://doi.org/10.5194/esd-10-287-2019, https://doi.org/10.5194/esd-10-287-2019, 2019
Short summary
Short summary
Our study highlights the importance of tides in controlling the spatial and temporal distributions North Sea primary production based on numerical experiments. We identified two different response chains acting in different regions of the North Sea. (i) In the southern shallow areas, strong tidal mixing dilutes phytoplankton concentrations and increases turbidity, thus decreasing NPP. (ii) In the frontal regions, tidal mixing infuses nutrients into the surface mixed layer, thus increasing NPP.
Wytze K. Lenstra, Matthias Egger, Niels A. G. M. van Helmond, Emma Kritzberg, Daniel J. Conley, and Caroline P. Slomp
Biogeosciences, 15, 6979–6996, https://doi.org/10.5194/bg-15-6979-2018, https://doi.org/10.5194/bg-15-6979-2018, 2018
Short summary
Short summary
We show that burial rates of phosphorus (P) in an estuary in the northern Baltic Sea are very high. We demonstrate that at high sedimentation rates, P retention in the sediment is related to the formation of vivianite. With a reactive transport model, we assess the sensitivity of sedimentary vivianite formation. We suggest that enrichments of iron and P in the sediment are linked to periods of enhanced riverine input of Fe, which subsequently strongly enhances P burial in coastal sediments.
Jeroen Groeneveld, Helena L. Filipsson, William E. N. Austin, Kate Darling, David McCarthy, Nadine B. Quintana Krupinski, Clare Bird, and Magali Schweizer
J. Micropalaeontol., 37, 403–429, https://doi.org/10.5194/jm-37-403-2018, https://doi.org/10.5194/jm-37-403-2018, 2018
Short summary
Short summary
Current climate and environmental changes strongly affect shallow marine and coastal areas like the Baltic Sea. The combination of foraminiferal geochemistry and environmental parameters demonstrates that in a highly variable setting like the Baltic Sea, it is possible to separate different environmental impacts on the foraminiferal assemblages and therefore use chemical factors to reconstruct how seawater temperature, salinity, and oxygen varied in the past and may vary in the future.
Irina Polovodova Asteman, Helena L. Filipsson, and Kjell Nordberg
Clim. Past, 14, 1097–1118, https://doi.org/10.5194/cp-14-1097-2018, https://doi.org/10.5194/cp-14-1097-2018, 2018
Short summary
Short summary
We present 2500 years of winter temperatures, using a sediment record from Gullmar Fjord analyzed for stable oxygen isotopes in benthic foraminifera. Reconstructed temperatures are within the annual temperature variability recorded in the fjord since the 1890s. Results show the warm Roman and Medieval periods and the cold Little Ice Age. The record also shows the recent warming, which does not stand out in the 2500-year perspective and is comparable to the Roman and Medieval climate anomalies.
Monika J. Barcikowska, Scott J. Weaver, Frauke Feser, Simone Russo, Frederik Schenk, Dáithí A. Stone, Michael F. Wehner, and Matthias Zahn
Earth Syst. Dynam., 9, 679–699, https://doi.org/10.5194/esd-9-679-2018, https://doi.org/10.5194/esd-9-679-2018, 2018
Laurie M. Charrieau, Lene Bryngemark, Ingemar Hansson, and Helena L. Filipsson
J. Micropalaeontol., 37, 191–194, https://doi.org/10.5194/jm-37-191-2018, https://doi.org/10.5194/jm-37-191-2018, 2018
Short summary
Short summary
Splitting samples into smaller subsamples is often necessary in micropalaeontological studies. Indeed, the general high abundance of microfossils – which makes them excellent tools to reconstruct past environments – also results in very time-consuming faunal analyses. Here we present an improved and cost-effective wet splitter for micropalaeontological samples aimed to reduce picking time, while keeping information loss to a minimum.
Ulrich Kotthoff, Jeroen Groeneveld, Jeanine L. Ash, Anne-Sophie Fanget, Nadine Quintana Krupinski, Odile Peyron, Anna Stepanova, Jonathan Warnock, Niels A. G. M. Van Helmond, Benjamin H. Passey, Ole Rønø Clausen, Ole Bennike, Elinor Andrén, Wojciech Granoszewski, Thomas Andrén, Helena L. Filipsson, Marit-Solveig Seidenkrantz, Caroline P. Slomp, and Thorsten Bauersachs
Biogeosciences, 14, 5607–5632, https://doi.org/10.5194/bg-14-5607-2017, https://doi.org/10.5194/bg-14-5607-2017, 2017
Short summary
Short summary
We present reconstructions of paleotemperature, paleosalinity, and paleoecology from the Little Belt (Site M0059) over the past ~ 8000 years and evaluate the applicability of numerous proxies. Conditions were lacustrine until ~ 7400 cal yr BP. A transition to brackish–marine conditions then occurred within ~ 200 years. Salinity proxies rarely allowed quantitative estimates but revealed congruent results, while quantitative temperature reconstructions differed depending on the proxies used.
Ute Daewel and Corinna Schrum
Earth Syst. Dynam., 8, 801–815, https://doi.org/10.5194/esd-8-801-2017, https://doi.org/10.5194/esd-8-801-2017, 2017
Short summary
Short summary
Processes behind observed long-term variations in marine ecosystems are difficult to be deduced from in situ observations only. By statistically analysing a 61-year model simulation for the North Sea and Baltic Sea and additional model scenarios, we identified major modes of variability in the environmental variables and associated those with changes in primary production. We found that the dominant impact on changes in ecosystem productivity was introduced by modulations of the wind fields.
Ana R. A. Soares, Ann-Kristin Bergström, Ryan A. Sponseller, Joanna M. Moberg, Reiner Giesler, Emma S. Kritzberg, Mats Jansson, and Martin Berggren
Biogeosciences, 14, 1527–1539, https://doi.org/10.5194/bg-14-1527-2017, https://doi.org/10.5194/bg-14-1527-2017, 2017
Wenxin Ning, Jing Tang, and Helena L. Filipsson
Earth Surf. Dynam., 4, 773–780, https://doi.org/10.5194/esurf-4-773-2016, https://doi.org/10.5194/esurf-4-773-2016, 2016
Raquel Vaquer-Sunyer, Heather E. Reader, Saraladevi Muthusamy, Markus V. Lindh, Jarone Pinhassi, Daniel J. Conley, and Emma S. Kritzberg
Biogeosciences, 13, 4751–4765, https://doi.org/10.5194/bg-13-4751-2016, https://doi.org/10.5194/bg-13-4751-2016, 2016
Short summary
Short summary
Nitrogen-rich dissolved organic matter inputs from wastewater treatment plant effluents increased bacterial production and decreased primary production and community respiration. Nutrient amendments and seasonally variable environmental conditions lead to shifts in bacterial community composition. Increases in bacterial production and simultaneous decreases in primary production lead to more carbon being consumed in the microbial loop and reduce its availability to sustain the food web.
J. M. Bernhard, W. G. Phalen, A. McIntyre-Wressnig, F. Mezzo, J. C. Wit, M. Jeglinski, and H. L. Filipsson
Biogeosciences, 12, 5515–5522, https://doi.org/10.5194/bg-12-5515-2015, https://doi.org/10.5194/bg-12-5515-2015, 2015
Short summary
Short summary
We present an innovative method using osmotic pumps and the fluorescent marker calcein to help identify where and when calcareous bottom-dwelling organisms mineralize in sediments. These organisms, and their geochemical signatures in their carbonate, are the ocean’s storytellers helping us understand past marine conditions. For many species, the timing and location of their calcite growth is not known. Knowing this will enable us to reconstruct past marine environments with greater accuracy.
C. L. McKay, J. Groeneveld, H. L. Filipsson, D. Gallego-Torres, M. J. Whitehouse, T. Toyofuku, and O.E. Romero
Biogeosciences, 12, 5415–5428, https://doi.org/10.5194/bg-12-5415-2015, https://doi.org/10.5194/bg-12-5415-2015, 2015
Short summary
Short summary
We highlight the proxy potential of foraminiferal Mn/Ca determined by secondary ion mass spectrometry and flow-through inductively coupled plasma optical emission spectroscopy for recording changes in bottom-water oxygen conditions. Comparisons with Mn sediment bulk measurements from the same sediment core largely agree with the results. High foraminiferal Mn/Ca occurs in samples from times of high productivity export and corresponds with the benthic foraminiferal faunal composition.
M. P. Nardelli, C. Barras, E. Metzger, A. Mouret, H. L. Filipsson, F. Jorissen, and E. Geslin
Biogeosciences, 11, 4029–4038, https://doi.org/10.5194/bg-11-4029-2014, https://doi.org/10.5194/bg-11-4029-2014, 2014
H. E. Reader, C. A. Stedmon, and E. S. Kritzberg
Biogeosciences, 11, 3409–3419, https://doi.org/10.5194/bg-11-3409-2014, https://doi.org/10.5194/bg-11-3409-2014, 2014
J. Groeneveld and H. L. Filipsson
Biogeosciences, 10, 5125–5138, https://doi.org/10.5194/bg-10-5125-2013, https://doi.org/10.5194/bg-10-5125-2013, 2013
B. C. Lougheed, H. L. Filipsson, and I. Snowball
Clim. Past, 9, 1015–1028, https://doi.org/10.5194/cp-9-1015-2013, https://doi.org/10.5194/cp-9-1015-2013, 2013
I. Polovodova Asteman, K. Nordberg, and H. L. Filipsson
Biogeosciences, 10, 1275–1290, https://doi.org/10.5194/bg-10-1275-2013, https://doi.org/10.5194/bg-10-1275-2013, 2013
Related subject area
Earth System Science/Response to Global Change: Climate Change
Effect of terrestrial nutrient limitation on the estimation of the remaining carbon budget
Projected changes in forest fire season, the number of fires, and burnt area in Fennoscandia by 2100
New ozone–nitrogen model shows early senescence onset is the primary cause of ozone-induced reduction in grain quality of wheat
Ocean alkalinity enhancement approaches and the predictability of runaway precipitation processes: results of an experimental study to determine critical alkalinity ranges for safe and sustainable application scenarios
Variations of polyphenols and carbohydrates of Emiliania huxleyi grown under simulated ocean acidification conditions
Global and regional hydrological impacts of global forest expansion
The biological and preformed carbon pumps in perpetually slower and warmer oceans
The Southern Ocean as the climate's freight train – driving ongoing global warming under zero-emission scenarios with ACCESS-ESM1.5
Review and syntheses: Ocean alkalinity enhancement and carbon dioxide removal through coastal enhanced silicate weathering with olivine
Mapping the future afforestation distribution of China constrained by a national afforestation plan and climate change
Southern Ocean phytoplankton under climate change: a shifting balance of bottom-up and top-down control
Coherency and time lag analyses between MODIS vegetation indices and climate across forests and grasslands in the European temperate zone
Direct foliar phosphorus uptake from wildfire ash
Unifying framework for assessing sensitivity for marine calcifiers to ocean alkalinity enhancement identifies winners, losers and biological thresholds – importance of caution with precautionary principle
Effect of the 2022 summer drought across forest types in Europe
The effect of forest cover changes on the regional climate conditions in Europe during the period 1986–2015
Carbon cycle feedbacks in an idealized simulation and a scenario simulation of negative emissions in CMIP6 Earth system models
Responses of field-grown maize to different soil types, water regimes, and contrasting vapor pressure deficit
Spatiotemporal heterogeneity in the increase in ocean acidity extremes in the northeastern Pacific
Particle fluxes by subtropical pelagic communities under ocean alkalinity enhancement
Anthropogenic climate change drives non-stationary phytoplankton internal variability
The response of wildfire regimes to Last Glacial Maximum carbon dioxide and climate
Simulated responses of soil carbon to climate change in CMIP6 Earth system models: the role of false priming
Alkalinity biases in CMIP6 Earth system models and implications for simulated CO2 drawdown via artificial alkalinity enhancement
Experiments of the efficacy of tree ring blue intensity as a climate proxy in central and western China
Burned area and carbon emissions across northwestern boreal North America from 2001–2019
Quantifying land carbon cycle feedbacks under negative CO2 emissions
The potential of an increased deciduous forest fraction to mitigate the effects of heat extremes in Europe
Ideas and perspectives: Alleviation of functional limitations by soil organisms is key to climate feedbacks from arctic soils
A comparison of the climate and carbon cycle effects of carbon removal by afforestation and an equivalent reduction in fossil fuel emissions
Stability of alkalinity in ocean alkalinity enhancement (OAE) approaches – consequences for durability of CO2 storage
Ideas and perspectives: Land–ocean connectivity through groundwater
Bioclimatic change as a function of global warming from CMIP6 climate projections
Reconciling different approaches to quantifying land surface temperature impacts of afforestation using satellite observations
Drivers of intermodel uncertainty in land carbon sink projections
Reviews and syntheses: A framework to observe, understand and project ecosystem response to environmental change in the East Antarctic Southern Ocean
Acidification impacts and acclimation potential of Caribbean benthic foraminifera assemblages in naturally discharging low-pH water
Monitoring vegetation condition using microwave remote sensing: the standardized vegetation optical depth index (SVODI)
Evaluation of soil carbon simulation in CMIP6 Earth system models
Diazotrophy as a key driver of the response of marine net primary productivity to climate change
Impact of negative and positive CO2 emissions on global warming metrics using an ensemble of Earth system model simulations
Acidification, deoxygenation, and nutrient and biomass declines in a warming Mediterranean Sea
Ocean alkalinity enhancement – avoiding runaway CaCO3 precipitation during quick and hydrated lime dissolution
Assessment of the impacts of biological nitrogen fixation structural uncertainty in CMIP6 earth system models
Soil carbon loss in warmed subarctic grasslands is rapid and restricted to topsoil
The European forest carbon budget under future climate conditions and current management practices
The influence of mesoscale climate drivers on hypoxia in a fjord-like deep coastal inlet and its potential implications regarding climate change: examining a decade of water quality data
Contrasting responses of phytoplankton productivity between coastal and offshore surface waters in the Taiwan Strait and the South China Sea to short-term seawater acidification
Modeling interactions between tides, storm surges, and river discharges in the Kapuas River delta
The application of dendrometers to alpine dwarf shrubs – a case study to investigate stem growth responses to environmental conditions
Makcim L. De Sisto and Andrew H. MacDougall
Biogeosciences, 21, 4853–4873, https://doi.org/10.5194/bg-21-4853-2024, https://doi.org/10.5194/bg-21-4853-2024, 2024
Short summary
Short summary
The remaining carbon budget (RCB) represents the allowable future CO2 emissions before a temperature target is reached. Understanding the uncertainty in the RCB is critical for effective climate regulation and policy-making. One major source of uncertainty is the representation of the carbon cycle in Earth system models. We assessed how nutrient limitation affects the estimation of the RCB. We found a reduction in the estimated RCB when nutrient limitation is taken into account.
Outi Kinnunen, Leif Backman, Juha Aalto, Tuula Aalto, and Tiina Markkanen
Biogeosciences, 21, 4739–4763, https://doi.org/10.5194/bg-21-4739-2024, https://doi.org/10.5194/bg-21-4739-2024, 2024
Short summary
Short summary
Climate change is expected to increase the risk of forest fires. Ecosystem process model simulations are used to project changes in fire occurrence in Fennoscandia under six climate projections. The findings suggest a longer fire season, more fires, and an increase in burnt area towards the end of the century.
Jo Cook, Clare Brewster, Felicity Hayes, Nathan Booth, Sam Bland, Pritha Pande, Samarthia Thankappan, Håkan Pleijel, and Lisa Emberson
Biogeosciences, 21, 4809–4835, https://doi.org/10.5194/bg-21-4809-2024, https://doi.org/10.5194/bg-21-4809-2024, 2024
Short summary
Short summary
At ground level, the air pollutant ozone (O3) damages wheat yield and quality. We modified the DO3SE-Crop model to simulate O3 effects on wheat quality and identified onset of leaf death as the key process affecting wheat quality upon O3 exposure. This aligns with expectations, as the onset of leaf death aids nutrient transfer from leaves to grains. Breeders should prioritize wheat varieties resistant to protein loss from delayed leaf death, to maintain yield and quality under O3 exposure.
Niels Suitner, Giulia Faucher, Carl Lim, Julieta Schneider, Charly A. Moras, Ulf Riebesell, and Jens Hartmann
Biogeosciences, 21, 4587–4604, https://doi.org/10.5194/bg-21-4587-2024, https://doi.org/10.5194/bg-21-4587-2024, 2024
Short summary
Short summary
Recent studies described the precipitation of carbonates as a result of alkalinity enhancement in seawater, which could adversely affect the carbon sequestration potential of ocean alkalinity enhancement (OAE) approaches. By conducting experiments in natural seawater, this study observed uniform patterns during the triggered runaway carbonate precipitation, which allow the prediction of safe and efficient local application levels of OAE scenarios.
Milagros Rico, Paula Santiago-Díaz, Guillermo Samperio-Ramos, Melchor González-Dávila, and Juana Magdalena Santana-Casiano
Biogeosciences, 21, 4381–4394, https://doi.org/10.5194/bg-21-4381-2024, https://doi.org/10.5194/bg-21-4381-2024, 2024
Short summary
Short summary
Changes in pH generate stress conditions, either because high pH drastically decreases the availability of trace metals such as Fe(II), a restrictive element for primary productivity, or because reactive oxygen species are increased with low pH. The metabolic functions and composition of microalgae can be affected. These modifications in metabolites are potential factors leading to readjustments in phytoplankton community structure and diversity and possible alteration in marine ecosystems.
James A. King, James Weber, Peter Lawrence, Stephanie Roe, Abigail L. S. Swann, and Maria Val Martin
Biogeosciences, 21, 3883–3902, https://doi.org/10.5194/bg-21-3883-2024, https://doi.org/10.5194/bg-21-3883-2024, 2024
Short summary
Short summary
Tackling climate change by adding, restoring, or enhancing forests is gaining global support. However, it is important to investigate the broader implications of this. We used a computer model of the Earth to investigate a future where tree cover expanded as much as possible. We found that some tropical areas were cooler because of trees pumping water into the atmosphere, but this also led to soil and rivers drying. This is important because it might be harder to maintain forests as a result.
Benoît Pasquier, Mark Holzer, and Matthew A. Chamberlain
Biogeosciences, 21, 3373–3400, https://doi.org/10.5194/bg-21-3373-2024, https://doi.org/10.5194/bg-21-3373-2024, 2024
Short summary
Short summary
How do perpetually slower and warmer oceans sequester carbon? Compared to the preindustrial state, we find that biological productivity declines despite warming-stimulated growth because of a lower nutrient supply from depth. This throttles the biological carbon pump, which still sequesters more carbon because it takes longer to return to the surface. The deep ocean is isolated from the surface, allowing more carbon from the atmosphere to pass through the ocean without contributing to biology.
Matthew A. Chamberlain, Tilo Ziehn, and Rachel M. Law
Biogeosciences, 21, 3053–3073, https://doi.org/10.5194/bg-21-3053-2024, https://doi.org/10.5194/bg-21-3053-2024, 2024
Short summary
Short summary
This paper explores the climate processes that drive increasing global average temperatures in zero-emission commitment (ZEC) simulations despite decreasing atmospheric CO2. ACCESS-ESM1.5 shows the Southern Ocean to continue to warm locally in all ZEC simulations. In ZEC simulations that start after the emission of more than 1000 Pg of carbon, the influence of the Southern Ocean increases the global temperature.
Luna J. J. Geerts, Astrid Hylén, and Filip J. R. Meysman
EGUsphere, https://doi.org/10.5194/egusphere-2024-1824, https://doi.org/10.5194/egusphere-2024-1824, 2024
Short summary
Short summary
Coastal enhanced silicate weathering (CESW) with olivine is a promising method for capturing CO2 from the atmosphere, yet studies in field conditions are lacking. We bridge the gap between theoretical studies and the real-world environment by estimating the predictability of CESW parameters and identifying aspects to consider when applying CESW. A major source of uncertainty is the lack of experimental studies with sediment, which can heavily influence the speed and efficiency of CO2 drawdown.
Shuaifeng Song, Xuezhen Zhang, and Xiaodong Yan
Biogeosciences, 21, 2839–2858, https://doi.org/10.5194/bg-21-2839-2024, https://doi.org/10.5194/bg-21-2839-2024, 2024
Short summary
Short summary
We mapped the distribution of future potential afforestation regions based on future high-resolution climate data and climate–vegetation models. After considering the national afforestation policy and climate change, we found that the future potential afforestation region was mainly located around and to the east of the Hu Line. This study provides a dataset for exploring the effects of future afforestation.
Tianfei Xue, Jens Terhaar, A. E. Friederike Prowe, Thomas L. Frölicher, Andreas Oschlies, and Ivy Frenger
Biogeosciences, 21, 2473–2491, https://doi.org/10.5194/bg-21-2473-2024, https://doi.org/10.5194/bg-21-2473-2024, 2024
Short summary
Short summary
Phytoplankton play a crucial role in marine ecosystems. However, climate change's impact on phytoplankton biomass remains uncertain, particularly in the Southern Ocean. In this region, phytoplankton biomass within the water column is likely to remain stable in response to climate change, as supported by models. This stability arises from a shallower mixed layer, favoring phytoplankton growth but also increasing zooplankton grazing due to phytoplankton concentration near the surface.
Kinga Kulesza and Agata Hościło
Biogeosciences, 21, 2509–2527, https://doi.org/10.5194/bg-21-2509-2024, https://doi.org/10.5194/bg-21-2509-2024, 2024
Short summary
Short summary
We present coherence and time lags in spectral response of three vegetation types in the European temperate zone to the influencing meteorological factors and teleconnection indices for the period 2002–2022. Vegetation condition in broadleaved forest, coniferous forest and pastures was measured with MODIS NDVI and EVI, and the coherence between NDVI and EVI and meteorological elements was described using the methods of wavelet coherence and Pearson’s linear correlation with time lag.
Anton Lokshin, Daniel Palchan, and Avner Gross
Biogeosciences, 21, 2355–2365, https://doi.org/10.5194/bg-21-2355-2024, https://doi.org/10.5194/bg-21-2355-2024, 2024
Short summary
Short summary
Ash particles from wildfires are rich in phosphorus (P), a crucial nutrient that constitutes a limiting factor in 43 % of the world's land ecosystems. We hypothesize that wildfire ash could directly contribute to plant nutrition. We find that fire ash application boosts the growth of plants, but the only way plants can uptake P from fire ash is through the foliar uptake pathway and not through the roots. The fertilization impact of fire ash was also maintained under elevated levels of CO2.
Nina Bednaršek, Greg Pelletier, Hanna van de Mortel, Marisol García-Reyes, Richard Feely, and Andrew Dickson
EGUsphere, https://doi.org/10.5194/egusphere-2024-947, https://doi.org/10.5194/egusphere-2024-947, 2024
Short summary
Short summary
The environmental impacts of ocean alkalinity enhancement (OAE) are unknown. A conceptual framework was developed showing 40 % of species to respond positively, 20 % negatively and 40 % with neutral response upon alkalinity addition. Biological thresholds were found between 10 to 500 µmol/kg NaOH addition, emphasizing lab experiments to be conducted at lower dosages. A precautionary approach is warranted to avoid potential risks.
Mana Gharun, Ankit Shekhar, Jingfeng Xiao, Xing Li, and Nina Buchmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-423, https://doi.org/10.5194/egusphere-2024-423, 2024
Short summary
Short summary
In 2022, Europe's forests faced unprecedented dry conditions. Our study aimed to understand how different forest types respond to extreme drought. Using meteorological data and satellite imagery, we compared 2022 with two previous extreme years, 2003 and 2018. Despite less severe drought in 2022, forests showed a 30 % greater decline in photosynthesis compared to 2018 and 60 % more than 2003. This suggests a concerning trend of declining forest resilience to more frequent droughts.
Marcus Breil, Vanessa K. M. Schneider, and Joaquim G. Pinto
Biogeosciences, 21, 811–824, https://doi.org/10.5194/bg-21-811-2024, https://doi.org/10.5194/bg-21-811-2024, 2024
Short summary
Short summary
The general impact of afforestation on the regional climate conditions in Europe during the period 1986–2015 is investigated. For this purpose, a regional climate model simulation is performed, in which afforestation during this period is considered, and results are compared to a simulation in which this is not the case. Results show that afforestation had discernible impacts on the climate change signal in Europe, which may have mitigated the local warming trend, especially in summer in Europe.
Ali Asaadi, Jörg Schwinger, Hanna Lee, Jerry Tjiputra, Vivek Arora, Roland Séférian, Spencer Liddicoat, Tomohiro Hajima, Yeray Santana-Falcón, and Chris D. Jones
Biogeosciences, 21, 411–435, https://doi.org/10.5194/bg-21-411-2024, https://doi.org/10.5194/bg-21-411-2024, 2024
Short summary
Short summary
Carbon cycle feedback metrics are employed to assess phases of positive and negative CO2 emissions. When emissions become negative, we find that the model disagreement in feedback metrics increases more strongly than expected from the assumption that the uncertainties accumulate linearly with time. The geographical patterns of such metrics over land highlight that differences in response between tropical/subtropical and temperate/boreal ecosystems are a major source of model disagreement.
Thuy Huu Nguyen, Thomas Gaiser, Jan Vanderborght, Andrea Schnepf, Felix Bauer, Anja Klotzsche, Lena Lärm, Hubert Hüging, and Frank Ewert
EGUsphere, https://doi.org/10.5194/egusphere-2023-2967, https://doi.org/10.5194/egusphere-2023-2967, 2024
Short summary
Short summary
Leaf water potential was at certain thresholds which depends on soil types, water treatment, and weather conditions. In rainfed plot, the lower water availability in the stony soil resulted in less roots with a higher root tissue conductance than the silty soil. In silty soil, higher stress in the rainfed soil led to more roots with a lower root tissue conductance than in the irrigated plot. Crop responses to water stress can be opposite depending on soil water conditions that are compared.
Flora Desmet, Matthias Münnich, and Nicolas Gruber
Biogeosciences, 20, 5151–5175, https://doi.org/10.5194/bg-20-5151-2023, https://doi.org/10.5194/bg-20-5151-2023, 2023
Short summary
Short summary
Ocean acidity extremes in the upper 250 m depth of the northeastern Pacific rapidly increase with atmospheric CO2 rise, which is worrisome for marine organisms that rapidly experience pH levels outside their local environmental conditions. Presented research shows the spatiotemporal heterogeneity in this increase between regions and depths. In particular, the subsurface increase is substantially slowed down by the presence of mesoscale eddies, often not resolved in Earth system models.
Philipp Suessle, Jan Taucher, Silvan Goldenberg, Moritz Baumann, Kristian Spilling, Andrea Noche-Ferreira, Mari Vanharanta, and Ulf Riebesell
EGUsphere, https://doi.org/10.5194/egusphere-2023-2800, https://doi.org/10.5194/egusphere-2023-2800, 2023
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is a negative emission technology which may alter marine communities and the particle export they drive. Here, impacts of carbonate-based OAE on the flux and attenuation of sinking particles in an oligotrophic plankton community are presented. Whilst biological parameters remained unaffected, abiotic carbonate precipitation occurred. Among counteracting OAE’s efficiency, it influenced mineral ballasting and particle sinking velocities, requiring monitoring.
Geneviève W. Elsworth, Nicole S. Lovenduski, Kristen M. Krumhardt, Thomas M. Marchitto, and Sarah Schlunegger
Biogeosciences, 20, 4477–4490, https://doi.org/10.5194/bg-20-4477-2023, https://doi.org/10.5194/bg-20-4477-2023, 2023
Short summary
Short summary
Anthropogenic climate change will influence marine phytoplankton over the coming century. Here, we quantify the influence of anthropogenic climate change on marine phytoplankton internal variability using an Earth system model ensemble and identify a decline in global phytoplankton biomass variance with warming. Our results suggest that climate mitigation efforts that account for marine phytoplankton changes should also consider changes in phytoplankton variance driven by anthropogenic warming.
Olivia Haas, Iain Colin Prentice, and Sandy P. Harrison
Biogeosciences, 20, 3981–3995, https://doi.org/10.5194/bg-20-3981-2023, https://doi.org/10.5194/bg-20-3981-2023, 2023
Short summary
Short summary
We quantify the impact of CO2 and climate on global patterns of burnt area, fire size, and intensity under Last Glacial Maximum (LGM) conditions using three climate scenarios. Climate change alone did not produce the observed LGM reduction in burnt area, but low CO2 did through reducing vegetation productivity. Fire intensity was sensitive to CO2 but strongly affected by changes in atmospheric dryness. Low CO2 caused smaller fires; climate had the opposite effect except in the driest scenario.
Rebecca M. Varney, Sarah E. Chadburn, Eleanor J. Burke, Simon Jones, Andy J. Wiltshire, and Peter M. Cox
Biogeosciences, 20, 3767–3790, https://doi.org/10.5194/bg-20-3767-2023, https://doi.org/10.5194/bg-20-3767-2023, 2023
Short summary
Short summary
This study evaluates soil carbon projections during the 21st century in CMIP6 Earth system models. In general, we find a reduced spread of changes in global soil carbon in CMIP6 compared to the previous CMIP5 generation. The reduced CMIP6 spread arises from an emergent relationship between soil carbon changes due to change in plant productivity and soil carbon changes due to changes in turnover time. We show that this relationship is consistent with false priming under transient climate change.
Claudia Hinrichs, Peter Köhler, Christoph Völker, and Judith Hauck
Biogeosciences, 20, 3717–3735, https://doi.org/10.5194/bg-20-3717-2023, https://doi.org/10.5194/bg-20-3717-2023, 2023
Short summary
Short summary
This study evaluated the alkalinity distribution in 14 climate models and found that most models underestimate alkalinity at the surface and overestimate it in the deeper ocean. It highlights the need for better understanding and quantification of processes driving alkalinity distribution and calcium carbonate dissolution and the importance of accounting for biases in model results when evaluating potential ocean alkalinity enhancement experiments.
Yonghong Zheng, Huanfeng Shen, Rory Abernethy, and Rob Wilson
Biogeosciences, 20, 3481–3490, https://doi.org/10.5194/bg-20-3481-2023, https://doi.org/10.5194/bg-20-3481-2023, 2023
Short summary
Short summary
Investigations in central and western China show that tree ring inverted latewood intensity expresses a strong positive relationship with growing-season temperatures, indicating exciting potential for regions south of 30° N that are traditionally not targeted for temperature reconstructions. Earlywood BI also shows good potential to reconstruct hydroclimate parameters in some humid areas and will enhance ring-width-based hydroclimate reconstructions in the future.
Stefano Potter, Sol Cooperdock, Sander Veraverbeke, Xanthe Walker, Michelle C. Mack, Scott J. Goetz, Jennifer Baltzer, Laura Bourgeau-Chavez, Arden Burrell, Catherine Dieleman, Nancy French, Stijn Hantson, Elizabeth E. Hoy, Liza Jenkins, Jill F. Johnstone, Evan S. Kane, Susan M. Natali, James T. Randerson, Merritt R. Turetsky, Ellen Whitman, Elizabeth Wiggins, and Brendan M. Rogers
Biogeosciences, 20, 2785–2804, https://doi.org/10.5194/bg-20-2785-2023, https://doi.org/10.5194/bg-20-2785-2023, 2023
Short summary
Short summary
Here we developed a new burned-area detection algorithm between 2001–2019 across Alaska and Canada at 500 m resolution. We estimate 2.37 Mha burned annually between 2001–2019 over the domain, emitting 79.3 Tg C per year, with a mean combustion rate of 3.13 kg C m−2. We found larger-fire years were generally associated with greater mean combustion. The burned-area and combustion datasets described here can be used for local- to continental-scale applications of boreal fire science.
V. Rachel Chimuka, Claude-Michel Nzotungicimpaye, and Kirsten Zickfeld
Biogeosciences, 20, 2283–2299, https://doi.org/10.5194/bg-20-2283-2023, https://doi.org/10.5194/bg-20-2283-2023, 2023
Short summary
Short summary
We propose a new method to quantify carbon cycle feedbacks under negative CO2 emissions. Our method isolates the lagged carbon cycle response to preceding positive emissions from the response to negative emissions. Our findings suggest that feedback parameters calculated with the novel approach are larger than those calculated with the conventional approach whereby carbon cycle inertia is not corrected for, with implications for the effectiveness of carbon dioxide removal in reducing CO2 levels.
Marcus Breil, Annabell Weber, and Joaquim G. Pinto
Biogeosciences, 20, 2237–2250, https://doi.org/10.5194/bg-20-2237-2023, https://doi.org/10.5194/bg-20-2237-2023, 2023
Short summary
Short summary
A promising strategy for mitigating burdens of heat extremes in Europe is to replace dark coniferous forests with brighter deciduous forests. The consequence of this would be reduced absorption of solar radiation, which should reduce the intensities of heat periods. In this study, we show that deciduous forests have a certain cooling effect on heat period intensities in Europe. However, the magnitude of the temperature reduction is quite small.
Gesche Blume-Werry, Jonatan Klaminder, Eveline J. Krab, and Sylvain Monteux
Biogeosciences, 20, 1979–1990, https://doi.org/10.5194/bg-20-1979-2023, https://doi.org/10.5194/bg-20-1979-2023, 2023
Short summary
Short summary
Northern soils store a lot of carbon. Most research has focused on how this carbon storage is regulated by cold temperatures. However, it is soil organisms, from minute bacteria to large earthworms, that decompose the organic material. Novel soil organisms from further south could increase decomposition rates more than climate change does and lead to carbon losses. We therefore advocate for including soil organisms when predicting the fate of soil functions in warming northern ecosystems.
Koramanghat Unnikrishnan Jayakrishnan and Govindasamy Bala
Biogeosciences, 20, 1863–1877, https://doi.org/10.5194/bg-20-1863-2023, https://doi.org/10.5194/bg-20-1863-2023, 2023
Short summary
Short summary
Afforestation and reducing fossil fuel emissions are two important mitigation strategies to reduce the amount of global warming. Our work shows that reducing fossil fuel emissions is relatively more effective than afforestation for the same amount of carbon removed from the atmosphere. However, understanding of the processes that govern the biophysical effects of afforestation should be improved before considering our results for climate policy.
Jens Hartmann, Niels Suitner, Carl Lim, Julieta Schneider, Laura Marín-Samper, Javier Arístegui, Phil Renforth, Jan Taucher, and Ulf Riebesell
Biogeosciences, 20, 781–802, https://doi.org/10.5194/bg-20-781-2023, https://doi.org/10.5194/bg-20-781-2023, 2023
Short summary
Short summary
CO2 can be stored in the ocean via increasing alkalinity of ocean water. Alkalinity can be created via dissolution of alkaline materials, like limestone or soda. Presented research studies boundaries for increasing alkalinity in seawater. The best way to increase alkalinity was found using an equilibrated solution, for example as produced from reactors. Adding particles for dissolution into seawater on the other hand produces the risk of losing alkalinity and degassing of CO2 to the atmosphere.
Damian L. Arévalo-Martínez, Amir Haroon, Hermann W. Bange, Ercan Erkul, Marion Jegen, Nils Moosdorf, Jens Schneider von Deimling, Christian Berndt, Michael Ernst Böttcher, Jasper Hoffmann, Volker Liebetrau, Ulf Mallast, Gudrun Massmann, Aaron Micallef, Holly A. Michael, Hendrik Paasche, Wolfgang Rabbel, Isaac Santos, Jan Scholten, Katrin Schwalenberg, Beata Szymczycha, Ariel T. Thomas, Joonas J. Virtasalo, Hannelore Waska, and Bradley A. Weymer
Biogeosciences, 20, 647–662, https://doi.org/10.5194/bg-20-647-2023, https://doi.org/10.5194/bg-20-647-2023, 2023
Short summary
Short summary
Groundwater flows at the land–ocean transition and the extent of freshened groundwater below the seafloor are increasingly relevant in marine sciences, both because they are a highly uncertain term of biogeochemical budgets and due to the emerging interest in the latter as a resource. Here, we discuss our perspectives on future research directions to better understand land–ocean connectivity through groundwater and its potential responses to natural and human-induced environmental changes.
Morgan Sparey, Peter Cox, and Mark S. Williamson
Biogeosciences, 20, 451–488, https://doi.org/10.5194/bg-20-451-2023, https://doi.org/10.5194/bg-20-451-2023, 2023
Short summary
Short summary
Accurate climate models are vital for mitigating climate change; however, projections often disagree. Using Köppen–Geiger bioclimate classifications we show that CMIP6 climate models agree well on the fraction of global land surface that will change classification per degree of global warming. We find that 13 % of land will change climate per degree of warming from 1 to 3 K; thus, stabilising warming at 1.5 rather than 2 K would save over 7.5 million square kilometres from bioclimatic change.
Huanhuan Wang, Chao Yue, and Sebastiaan Luyssaert
Biogeosciences, 20, 75–92, https://doi.org/10.5194/bg-20-75-2023, https://doi.org/10.5194/bg-20-75-2023, 2023
Short summary
Short summary
This study provided a synthesis of three influential methods to quantify afforestation impact on surface temperature. Results showed that actual effect following afforestation was highly dependent on afforestation fraction. When full afforestation is assumed, the actual effect approaches the potential effect. We provided evidence the afforestation faction is a key factor in reconciling different methods and emphasized that it should be considered for surface cooling impacts in policy evaluation.
Ryan S. Padrón, Lukas Gudmundsson, Laibao Liu, Vincent Humphrey, and Sonia I. Seneviratne
Biogeosciences, 19, 5435–5448, https://doi.org/10.5194/bg-19-5435-2022, https://doi.org/10.5194/bg-19-5435-2022, 2022
Short summary
Short summary
The answer to how much carbon land ecosystems are projected to remove from the atmosphere until 2100 is different for each Earth system model. We find that differences across models are primarily explained by the annual land carbon sink dependence on temperature and soil moisture, followed by the dependence on CO2 air concentration, and by average climate conditions. Our insights on why each model projects a relatively high or low land carbon sink can help to reduce the underlying uncertainty.
Julian Gutt, Stefanie Arndt, David Keith Alan Barnes, Horst Bornemann, Thomas Brey, Olaf Eisen, Hauke Flores, Huw Griffiths, Christian Haas, Stefan Hain, Tore Hattermann, Christoph Held, Mario Hoppema, Enrique Isla, Markus Janout, Céline Le Bohec, Heike Link, Felix Christopher Mark, Sebastien Moreau, Scarlett Trimborn, Ilse van Opzeeland, Hans-Otto Pörtner, Fokje Schaafsma, Katharina Teschke, Sandra Tippenhauer, Anton Van de Putte, Mia Wege, Daniel Zitterbart, and Dieter Piepenburg
Biogeosciences, 19, 5313–5342, https://doi.org/10.5194/bg-19-5313-2022, https://doi.org/10.5194/bg-19-5313-2022, 2022
Short summary
Short summary
Long-term ecological observations are key to assess, understand and predict impacts of environmental change on biotas. We present a multidisciplinary framework for such largely lacking investigations in the East Antarctic Southern Ocean, combined with case studies, experimental and modelling work. As climate change is still minor here but is projected to start soon, the timely implementation of this framework provides the unique opportunity to document its ecological impacts from the very onset.
Daniel François, Adina Paytan, Olga Maria Oliveira de Araújo, Ricardo Tadeu Lopes, and Cátia Fernandes Barbosa
Biogeosciences, 19, 5269–5285, https://doi.org/10.5194/bg-19-5269-2022, https://doi.org/10.5194/bg-19-5269-2022, 2022
Short summary
Short summary
Our analysis revealed that under the two most conservative acidification projections foraminifera assemblages did not display considerable changes. However, a significant decrease in species richness was observed when pH decreases to 7.7 pH units, indicating adverse effects under high-acidification scenarios. A micro-CT analysis revealed that calcified tests of Archaias angulatus were of lower density in low pH, suggesting no acclimation capacity for this species.
Leander Moesinger, Ruxandra-Maria Zotta, Robin van der Schalie, Tracy Scanlon, Richard de Jeu, and Wouter Dorigo
Biogeosciences, 19, 5107–5123, https://doi.org/10.5194/bg-19-5107-2022, https://doi.org/10.5194/bg-19-5107-2022, 2022
Short summary
Short summary
The standardized vegetation optical depth index (SVODI) can be used to monitor the vegetation condition, such as whether the vegetation is unusually dry or wet. SVODI has global coverage, spans the past 3 decades and is derived from multiple spaceborne passive microwave sensors of that period. SVODI is based on a new probabilistic merging method that allows the merging of normally distributed data even if the data are not gap-free.
Rebecca M. Varney, Sarah E. Chadburn, Eleanor J. Burke, and Peter M. Cox
Biogeosciences, 19, 4671–4704, https://doi.org/10.5194/bg-19-4671-2022, https://doi.org/10.5194/bg-19-4671-2022, 2022
Short summary
Short summary
Soil carbon is the Earth’s largest terrestrial carbon store, and the response to climate change represents one of the key uncertainties in obtaining accurate global carbon budgets required to successfully militate against climate change. The ability of climate models to simulate present-day soil carbon is therefore vital. This study assesses soil carbon simulation in the latest ensemble of models which allows key areas for future model development to be identified.
Laurent Bopp, Olivier Aumont, Lester Kwiatkowski, Corentin Clerc, Léonard Dupont, Christian Ethé, Thomas Gorgues, Roland Séférian, and Alessandro Tagliabue
Biogeosciences, 19, 4267–4285, https://doi.org/10.5194/bg-19-4267-2022, https://doi.org/10.5194/bg-19-4267-2022, 2022
Short summary
Short summary
The impact of anthropogenic climate change on the biological production of phytoplankton in the ocean is a cause for concern because its evolution could affect the response of marine ecosystems to climate change. Here, we identify biological N fixation and its response to future climate change as a key process in shaping the future evolution of marine phytoplankton production. Our results show that further study of how this nitrogen fixation responds to environmental change is essential.
Negar Vakilifard, Richard G. Williams, Philip B. Holden, Katherine Turner, Neil R. Edwards, and David J. Beerling
Biogeosciences, 19, 4249–4265, https://doi.org/10.5194/bg-19-4249-2022, https://doi.org/10.5194/bg-19-4249-2022, 2022
Short summary
Short summary
To remain within the Paris climate agreement, there is an increasing need to develop and implement carbon capture and sequestration techniques. The global climate benefits of implementing negative emission technologies over the next century are assessed using an Earth system model covering a wide range of plausible climate states. In some model realisations, there is continued warming after emissions cease. This continued warming is avoided if negative emissions are incorporated.
Marco Reale, Gianpiero Cossarini, Paolo Lazzari, Tomas Lovato, Giorgio Bolzon, Simona Masina, Cosimo Solidoro, and Stefano Salon
Biogeosciences, 19, 4035–4065, https://doi.org/10.5194/bg-19-4035-2022, https://doi.org/10.5194/bg-19-4035-2022, 2022
Short summary
Short summary
Future projections under the RCP8.5 and RCP4.5 emission scenarios of the Mediterranean Sea biogeochemistry at the end of the 21st century show different levels of decline in nutrients, oxygen and biomasses and an acidification of the water column. The signal intensity is stronger under RCP8.5 and in the eastern Mediterranean. Under RCP4.5, after the second half of the 21st century, biogeochemical variables show a recovery of the values observed at the beginning of the investigated period.
Charly A. Moras, Lennart T. Bach, Tyler Cyronak, Renaud Joannes-Boyau, and Kai G. Schulz
Biogeosciences, 19, 3537–3557, https://doi.org/10.5194/bg-19-3537-2022, https://doi.org/10.5194/bg-19-3537-2022, 2022
Short summary
Short summary
This research presents the first laboratory results of quick and hydrated lime dissolution in natural seawater. These two minerals are of great interest for ocean alkalinity enhancement, a strategy aiming to decrease atmospheric CO2 concentrations. Following the dissolution of these minerals, we identified several hurdles and presented ways to avoid them or completely negate them. Finally, we proceeded to various simulations in today’s oceans to implement the strategy at its highest potential.
Taraka Davies-Barnard, Sönke Zaehle, and Pierre Friedlingstein
Biogeosciences, 19, 3491–3503, https://doi.org/10.5194/bg-19-3491-2022, https://doi.org/10.5194/bg-19-3491-2022, 2022
Short summary
Short summary
Biological nitrogen fixation is the largest natural input of new nitrogen onto land. Earth system models mainly represent global total terrestrial biological nitrogen fixation within observational uncertainties but overestimate tropical fixation. The model range of increase in biological nitrogen fixation in the SSP3-7.0 scenario is 3 % to 87 %. While biological nitrogen fixation is a key source of new nitrogen, its predictive power for net primary productivity in models is limited.
Niel Verbrigghe, Niki I. W. Leblans, Bjarni D. Sigurdsson, Sara Vicca, Chao Fang, Lucia Fuchslueger, Jennifer L. Soong, James T. Weedon, Christopher Poeplau, Cristina Ariza-Carricondo, Michael Bahn, Bertrand Guenet, Per Gundersen, Gunnhildur E. Gunnarsdóttir, Thomas Kätterer, Zhanfeng Liu, Marja Maljanen, Sara Marañón-Jiménez, Kathiravan Meeran, Edda S. Oddsdóttir, Ivika Ostonen, Josep Peñuelas, Andreas Richter, Jordi Sardans, Páll Sigurðsson, Margaret S. Torn, Peter M. Van Bodegom, Erik Verbruggen, Tom W. N. Walker, Håkan Wallander, and Ivan A. Janssens
Biogeosciences, 19, 3381–3393, https://doi.org/10.5194/bg-19-3381-2022, https://doi.org/10.5194/bg-19-3381-2022, 2022
Short summary
Short summary
In subarctic grassland on a geothermal warming gradient, we found large reductions in topsoil carbon stocks, with carbon stocks linearly declining with warming intensity. Most importantly, however, we observed that soil carbon stocks stabilised within 5 years of warming and remained unaffected by warming thereafter, even after > 50 years of warming. Moreover, in contrast to the large topsoil carbon losses, subsoil carbon stocks remained unaffected after > 50 years of soil warming.
Roberto Pilli, Ramdane Alkama, Alessandro Cescatti, Werner A. Kurz, and Giacomo Grassi
Biogeosciences, 19, 3263–3284, https://doi.org/10.5194/bg-19-3263-2022, https://doi.org/10.5194/bg-19-3263-2022, 2022
Short summary
Short summary
To become carbon neutral by 2050, the European Union (EU27) forest C sink should increase to −450 Mt CO2 yr-1. Our study highlights that under current management practices (i.e. excluding any policy scenario) the forest C sink of the EU27 member states and the UK may decrease to about −250 Mt CO2eq yr-1 in 2050. The expected impacts of future climate change, however, add a considerable uncertainty, potentially nearly doubling or halving the sink associated with forest management.
Johnathan Daniel Maxey, Neil David Hartstein, Aazani Mujahid, and Moritz Müller
Biogeosciences, 19, 3131–3150, https://doi.org/10.5194/bg-19-3131-2022, https://doi.org/10.5194/bg-19-3131-2022, 2022
Short summary
Short summary
Deep coastal inlets are important sites for regulating land-based organic pollution before it enters coastal oceans. This study focused on how large climate forces, rainfall, and river flow impact organic loading and oxygen conditions in a coastal inlet in Tasmania. Increases in rainfall were linked to higher organic loading and lower oxygen in basin waters. Finally we observed a significant correlation between the Southern Annular Mode and oxygen concentrations in the system's basin waters.
Guang Gao, Tifeng Wang, Jiazhen Sun, Xin Zhao, Lifang Wang, Xianghui Guo, and Kunshan Gao
Biogeosciences, 19, 2795–2804, https://doi.org/10.5194/bg-19-2795-2022, https://doi.org/10.5194/bg-19-2795-2022, 2022
Short summary
Short summary
After conducting large-scale deck-incubation experiments, we found that seawater acidification (SA) increased primary production (PP) in coastal waters but reduced it in pelagic zones, which is mainly regulated by local pH, light intensity, salinity, and community structure. In future oceans, SA combined with decreased upward transports of nutrients may synergistically reduce PP in pelagic zones.
Joko Sampurno, Valentin Vallaeys, Randy Ardianto, and Emmanuel Hanert
Biogeosciences, 19, 2741–2757, https://doi.org/10.5194/bg-19-2741-2022, https://doi.org/10.5194/bg-19-2741-2022, 2022
Short summary
Short summary
This study is the first assessment to evaluate the interactions between river discharges, tides, and storm surges and how they can drive compound flooding in the Kapuas River delta. We successfully created a realistic hydrodynamic model whose domain covers the land–sea continuum using a wetting–drying algorithm in a data-scarce environment. We then proposed a new method to delineate compound flooding hazard zones along the river channels based on the maximum water level profiles.
Svenja Dobbert, Roland Pape, and Jörg Löffler
Biogeosciences, 19, 1933–1958, https://doi.org/10.5194/bg-19-1933-2022, https://doi.org/10.5194/bg-19-1933-2022, 2022
Short summary
Short summary
Understanding how vegetation might respond to climate change is especially important in arctic–alpine ecosystems, where major shifts in shrub growth have been observed. We studied how such changes come to pass and how future changes might look by measuring hourly variations in the stem diameter of dwarf shrubs from one common species. From these data, we are able to discern information about growth mechanisms and can thus show the complexity of shrub growth and micro-environment relations.
Cited articles
Alve, E.: Opportunistic features of the foraminifer Stainforthia fusiformis (Williamson): evidence from Frierfjord, Norway, J. Micropalaeontol., 13, 24–24, https://doi.org/10.1144/jm.13.1.24, 1994.
Andersson, P., Håkansson, B., Håkansson, J., and Sahlsten, E.: SMHI
Report: Marine Acidification – On Effects and Monitoring of Marine
Acidification in the Seas Surrounding Sweden, Report Oceanography No. 92,
2008.
Appleby, P. G.: Chronostratigraphic techniques in recent sediments, in:
Tracking Environmental Change Using Lake Sediments, edited by: Last, W. M. and Smol, J. P., Vol. 1, Springer Netherlands, 2001.
Asteman, I. P. and Schönfeld, J.: Recent invasion of the foraminifer Nonionella stella Cushman & Moyer, 1930 in northern European waters: evidence from the Skagerrak and its fjords, J. Micropalaeontol., 35, 20–25, https://doi.org/10.1144/jmpaleo2015-007, 2016.
Bergsten, H., Nordberg, K., and Malmgren, B.: Recent benthic foraminifera
as tracers of water masses along a transect in the Skagerrak, North-Eastern
North Sea, J. Sea Res., 35, 111–121,
https://doi.org/10.1016/S1385-1101(96)90740-6, 1996.
Bergström, S. and Carlsson, B.: River runoff to the Baltic Sea –
1950–1990, Ambio, 23, 280–287, 1994.
Berkeley, A., Perry, C. T., Smithers, S. G., Horton, B. P., and Taylor, K. G.:
A review of the ecological and taphonomic controls on foraminiferal
assemblage development in intertidal environments, Earth-Sci. Rev., 83, 205–230,
https://doi.org/10.1016/j.earscirev.2007.04.003, 2007.
Bernhard, J. M., Sen Gupta, B. K., and Borne, P. F.: Benthic foraminiferal
proxy to estimate dysoxic bottom-water oxygen concentrations; Santa Barbara
Basin, U.S. Pacific continental margin, J. Foramin. Res., 27, 301–310,
https://doi.org/10.2113/gsjfr.27.4.301, 1997.
Bird, C., Schweizer, M., Roberts, A., Austin, W. E. N., Knudsen, K. L.,
Evans, K. M., Filipsson, H. L., Sayer, M. D. J., Geslin, E., and Darling, K. F.: The
genetic diversity, morphology, biogeography, and taxonomic designations of
Ammonia (Foraminifera) in the Northeast Atlantic, Mar. Micropaleontol.,
https://doi.org/10.1016/j.marmicro.2019.02.001, in press, 2019.
Borg, H. and Jonsson, P.: Large-scale metal distribution in Baltic Sea
sediments, Mar. Pollut. Bull., 32, 8–21, https://doi.org/10.1016/0025-326X(95)00103-T,
1996.
Brodie, C. R., Leng, M. J., Casford, J. S. L., Kendrick, C. P., Lloyd, J. M.,
Yongqiang, Z., and Bird, M. I.: Evidence for bias in C and N concentrations and
δ13C composition of terrestrial and aquatic organic materials
due to pre-analysis acid preparation methods, Chem. Geol., 282, 67–83,
https://doi.org/10.1016/j.chemgeo.2011.01.007, 2011.
Carstensen, J., Conley, D. J., Andersen, J. H., and Ærtebjerg, G.:
Coastal eutrophication and trend reversal: A Danish case study,
Limno. Oceanogr., 51, 398–408, https://doi.org/10.4319/lo.2006.51.1_part_2.0398, 2006.
Cesbron, F., Geslin, E., Jorissen, F. J., Delgard, M. L., Charrieau, L.,
Deflandre, B., Jézéquel, D., Anschutz, P., and Metzger, E.: Vertical
distribution and respiration rates of benthic foraminifera: Contribution to
aerobic remineralization in intertidal mudflats covered by Zostera noltei meadows,
Estuar. Coast. Shelf Sci., 179, 23–38, https://doi.org/10.1016/j.ecss.2015.12.005, 2016.
Charrieau, L. M., Filipsson, H. L., Ljung, K., Chierici, M., Knudsen, K. L., and
Kritzberg, E.: The effects of multiple stressors on the distribution of
coastal benthic foraminifera: A case study from the Skagerrak-Baltic Sea
region, Mar. Micropaleontol., 139, 42–56, https://doi.org/10.1016/j.marmicro.2017.11.004, 2018.
Christiansen, C., Kunzendorf, H., Laima, M. J. C., Lund-Hansen, L. C., and Pedersen, A.
M.: Recent changes in environmental conditions in the
southwestern Kattegat, Scandinavia, NGU Bull., 430, 137–144, 1996.
Conley, D. J., Cartensen, J., Ærtebjerg, G., Christensen, P. B., Dalsgaard,
T., Hansen, J. L. S., and Josefson, A. B.: Long-term changes and impacts of
hypoxia in Danish coastal waters, Ecol. Appl., 17, S16584,
https://doi.org/10.1890/05-0766.1, 2007.
Conley, D. J., Carstensen, J., Aigars, J., Axe, P., Bonsdorff, E., Eremina, T., Haahti, B.-M., Humborg, C., Jonsson, P., Kotta, J., Lännegren, C., Larsson, U., Maximov, A., Medina, M. R., Lysiak-Pastuszak, E., Remeikaitė-Nikienė, N., Walve, J., Wilhelms, S., and Zillén, L.: Hypoxia is increasing in the coastal zone of the
Baltic Sea, Environ. Sci. Technol., 45, 6777–6783, https://doi.org/10.1021/es201212r, 2011.
Conradsen, K., Bergsten, H., Knudsen, K. L., Nordberg, K., and
Seidenkrantz, M.-S.: Recent benthic foraminiferal distribution in the Kattegat
and the Skagerrak, Scandinavia, Cushman Foundation Special Publication No. 32, 5368, 1994.
Cutshall, N. H., Larsen, I. L., and Olsen, C. R.: Direct analysis of
210Pb in sediment samples: Self-absorption corrections, Nuc. Instrum. Methods, 206,
309–312, https://doi.org/10.1016/0167-5087(83)91273-5, 1983.
Daewel, U. and Schrum, C.: Simulating long-term dynamics of the coupled
North Sea and Baltic Sea ecosystem with ECOSMO II: Model description and
validation, J. Mar. Syst., 119–120, 30–49, https://doi.org/10.1016/j.jmarsys.2013.03.008,
2013.
Daewel, U. and Schrum, C.: Low-frequency variability in North Sea and Baltic Sea identified through simulations with the 3-D coupled physical–biogeochemical model ECOSMO, Earth Syst. Dynam., 8, 801–815, https://doi.org/10.5194/esd-8-801-2017, 2017.
Darling, K. F., Schweizer, M., Knudsen, K. L., Evans, K. M., Bird, C., Roberts, A., Filipsson, H. L., Kim, J.-H., Gudmundsson, G., Wade, C. M., Sayer, M. D. J., and Austin, W. E. N.: The genetic diversity, phylogeography and
morphology of Elphidiidae (Foraminifera) in the Northeast Atlantic,
Mar. Micropaleontol., 129, 1–23, https://doi.org/10.1016/j.marmicro.2016.09.001, 2016.
Deldicq, N., Alve, E., Schweizer, M., Polovodova Asteman, I., Hess, S.,
Darling, K., and Bouchet, V.: History of the introduction of a species
resembling the benthic foraminifera Nonionella stella in the Oslofjord (Norway):
morphological, molecular and paleo-ecological evidences, Aquat. Invas., 14, 182–205,
https://doi.org/10.3391/ai.2019.14.2.03, 2019.
Ellis, B. F. and Messina, A. R.: Catalogue of Foraminifera, New York, Micropaleontology Press, The
American Museum of Natural History, 1942.
Erbs-Hansen, D. R., Knudsen, K. L., Gary, A. C., Gyllencreutz, R., and Jansen, E.:
Holocene climatic development in Skagerrak, Eastern North Atlantic:
Foraminiferal and stable isotopic evidence, The Holocene, 22, 301–312,
https://doi.org/10.1177/0959683611423689, 2012.
Feyling-Hanssen, R. W.: Foraminifera in Late Quaternary Deposits from the Oslofjord Area, Vol. 225 of Skrifter (Norges geologiske
undersøkelse), Universitetsforlaget, 1964.
Feyling-Hanssen, R. W.: The Foraminifer Elphidium excavatum (Terquem) and its variant forms,
Micropaleontology, 18, 337–354, https://doi.org/10.2307/1485012, 1972.
Feyling-Hanssen, R. W., Jørgensen, J. A., Knudsen, K. L., and
Andersen, A.-L. L.: Late Quaternary Foraminifera from Vendsyssel, Denmark and Sandnes, Norway, Bull. Geol. Soc.
Denmark, Dansk geologisk forening, 21, 67317, 1971.
Filipsson, H. L. and Nordberg, K.: Climate variations, an overlooked
factor influencing the recent marine environment. An example from Gullmar
Fjord, Sweden, illustrated by benthic foraminifera and hydrographic data,
Estuaries, 27, 867–881, https://doi.org/10.1007/BF02912048, 2004a.
Filipsson, H. L. and Nordberg, K.: A 200-year environmental record of a low-oxygen fjord, Sweden,
elucidated by benthic foraminifera, sediment characteristics and
hydrographic data, J. Foramin. Res., 34, 277–293, https://doi.org/10.2113/34.4.277, 2004.
2004b.
Geslin, E., Debenay, J.-P., Duleba, W., and Bonetti, C.: Morphological
abnormalities of foraminiferal tests in Brazilian environments: comparison
between polluted and non-polluted areas, Mar. Micropaleontol., 45, 151–168,
https://doi.org/10.1016/S0377-8398(01)00042-1, 2002.
Göransson, P.: Changes of benthic fauna in the Kattegat – An
indication of climate change at mid-latitudes?, Estuar. Coast. Shelf Sci., 194, 276–285,
https://doi.org/10.1016/j.ecss.2017.06.034, 2017.
Göransson, P., Angantyr, L. A., Hansen, J. B., Larsen, G., and Bjerre, F.:
Öresunds bottenfauna, Öresundsvattensamarbetet, 57 pp., 2002.
Groeneveld, J., Filipsson, H. L., Austin, W. E. N., Darling, K., McCarthy, D., Quintana Krupinski, N. B., Bird, C., and Schweizer, M.: Assessing proxy signatures of temperature, salinity, and hypoxia in the Baltic Sea through foraminifera-based geochemistry and faunal assemblages, J. Micropalaeontol., 37, 403–429, https://doi.org/10.5194/jm-37-403-2018, 2018.
Gustafsson, B. G., Schenk, F., Blenckner, T., Eilola, K., Meier, H. E. M.,
Müller-Karulis, B., Neumann, T., Ruoho-Airola, T., Savchuk, O. P., and
Zorita, E.: Reconstructing the development of Baltic Sea eutrophication
1850–2006, Ambio, 41, 534–548, https://doi.org/10.1007/s13280-012-0318-x,
2012.
Hammer, Ø., Harper, D. A. T., and Ryan, P. D.: PAST: Paleontological
statistics software package for education and data analysis,
Palaeontol. Electron., 4, 9 pp., 2001.
Hansen, H. J.: On the sedimentology and the quantitative distribution of
living foraminifera in the northern part of the Øresund, Ophelia, 2,
323–331, https://doi.org/10.1080/00785326.1965.10409608, 1965.
HELCOM: Eutrophication in the Baltic Sea – An integrated thematic
assessment of the effects of nutrient enrichment and eutrophication in the
Baltic Sea region, Balt. Sea Environ. Proc. B, 115, 152 pp., 2009.
Henriksson, R.: The bottom fauna in polluted areas of the Sound,
Oikos, 19, 11125, https://doi.org/10.2307/3564736, 1968.
Henriksson, R.: Influence of pollution on the bottom fauna of the Sound
(Öresund), Oikos, 20, 507–523, https://doi.org/10.2307/3543212, 1969.
Hermelin, J. O. R.: Distribution of Holocene benthic foraminifera in the
Baltic Sea, J. Foramin. Res., 17, 62–73, https://doi.org/10.2113/gsjfr.17.1.62, 1987.
Heron-Allen, E. and Earland, A.: On the recent and fossil foraminifera of the shore-sands of Selsey Bill, Sussex, Journal of the Royal Microscopical Society, 436–448, https://www.biodiversitylibrary.org/item/18914#page/516/mode/1up (last access: 27 September 2019), 1911.
ICES: Integrated Ecosystem Assessments of Seven Baltic Sea Areas Covering the Last Three Decades, International council for the exploration of the sea, cooperative
research report No. 302, 2010.
Jarke, J.: Beobachtungen über Kalkauflösung an Schalen von
Mikrofossilien in Sedimenten der westlichen Ostsee, Deutsche Hydrografische Zeitschrift, 14, 6–11,
https://doi.org/10.1007/BF02226819, 1961.
Jones, P. D., Jonsson, T., and Wheeler, D.: Extension to the North Atlantic
oscillation using early instrumental pressure observations from Gibraltar
and South-West Iceland, Int. J. Climatol., 17, 1433–1450,
https://doi.org/10.1002/(SICI)1097-0088(19971115)17:13<1433::AID-JOC203>3.0.CO;2-P, 1997.
Krebs, C. J.: Ecological Methodology, 2nd Edn., University of British Colombia, Pearson, 624 pp., 1998.
Lehmann, A. and Post, P.: Variability of atmospheric circulation patterns
associated with large volume changes of the Baltic Sea, Adv. Sci. Res., 12, 219–225,
https://doi.org/10.5194/asr-12-219-2015, 2015.
Lehmann, A., Höflich, K., Post, P., and Myrberg, K.: Pathways of deep
cyclones associated with large volume changes (LVCs) and major Baltic
inflows (MBIs), J. Mar. Syst., 167, 11–18,
https://doi.org/10.1016/j.jmarsys.2016.10.014, 2017.
Leppäranta, M. and Myrberg, K.: Physical Oceanography of the Baltic Sea, Berlin, Heidelberg, Springer Berlin
Heidelberg, 378 pp., 2009.
Loeblich, A. R. and Tappan, H.: Part C, Protista 2, Sarcodina, Chiefly
“Thecamoebians” and Foraminiferida, in: Treatise on Invertebrate Paleontology, edited by: Moore, R. C., The
Geological Society of America and the University of Kansas, 900 pp., 1964.
Lumborg, U.: Modelling the deposition, erosion, and flux of cohesive
sediment through Øresund, J. Mar. Syst., 56, 179–193,
https://doi.org/10.1016/j.jmarsys.2004.11.003, 2005.
Martin, R. E.: Taphonomy and temporal resolution of foraminiferal
assemblages, in: Modern Foraminifera, 28198, Springer Netherlands,
https://doi.org/10.1007/0-306-48104-9_16, 1999.
Murray, J. W.: Ecology and Applications of Benthic Foraminifera, Cambridge University Press, 426 pp., 2006.
Murray, J. W. and Alve, E.: The distribution of agglutinated foraminifera
in NW European seas: Baseline data for the interpretation of fossil
assemblages, Palaeontol. Electron., 14, 41 pp., 2011.
Murray, J. W. and Alve, E.: Taphonomic experiments on marginal marine
foraminiferal assemblages: how much ecological information is preserved?,
Palaeogeogr. Palaeocl., 149, 183–197, https://doi.org/10.1016/S0031-0182(98)00200-4, 1999.
Nausch, G., Nehring, D., and Aertebjerg, G.: Anthropogenic nutrient load of
the Baltic Sea, Limnologica – Ecology and Management of Inland Waters, 29, 233–241,
https://doi.org/10.1016/S0075-9511(99)80007-3, 1999.
Nielsen, M. H.: Evidence for internal hydraulic control in the northern
Øresund, J. Geophys. Res., 106, 14055–14068,
https://doi.org/10.1029/2000JC900162, 2001.
Nordberg, K., Gustafsson, M., and Krantz, A.-L.: Decreasing oxygen
concentrations in the Gullmar Fjord, Sweden, as confirmed by benthic
foraminifera, and the possible association with NAO, J. Mar. Syst., 23, 303–316,
https://doi.org/10.1016/S0924-7963(99)00067-6, 2000.
Otto, G. H.: Comparative tests of several methods of sampling heavy mineral
concentrates, J. Sediment. Res., 3, 3039, https://doi.org/10.1306/D4268E3C-2B26-11D7-8648000102C1865D, 1933.
Patterson, R. T. and Fishbein, E.: Re-examination of the statistical
methods used to determine the number of point counts needed for
micropaleontological quantitative research, J. Paleontol., 63, 245–248, 1989.
Piña-Ochoa, E., Høgslund, S., Geslin, E., Cedhagen, T., Revsbech, N. P.,
Nielsen, L. P., Schweizer, M., Jorissen, F., Rysgaard, S., and
Risgaard-Petersen, N.: Widespread occurrence of nitrate storage and
denitrification among Foraminifera and Gromiida, P. Natl. Acad. Sci. USA, 107, 1148–1153,
https://doi.org/10.1073/pnas.0908440107, 2010.
Polovodova Asteman, I. and Nordberg, K.: Foraminiferal fauna from a deep
basin in Gullmar Fjord: The influence of seasonal hypoxia and North Atlantic
Oscillation, J. Sea Res., 79, 40–49, https://doi.org/10.1016/j.seares.2013.02.001,
2013.
Polovodova Asteman, I., Hanslik, D., and Nordberg, K.: An almost completed
pollution-recovery cycle reflected by sediment geochemistry and benthic
foraminiferal assemblages in a Swedish-Norwegian Skagerrak fjord, Mar. Pollut. Bull., 95,
126–140, https://doi.org/10.1016/j.marpolbul.2015.04.031, 2015.
Rosenberg, R., Cato, I., Förlin, L., Grip, K., and Rodhe, J.: Marine
environment quality assessment of the Skagerrak – Kattegat, J. Sea Res., 35, 1–8,
https://doi.org/10.1016/S1385-1101(96)90730-3, 1996.
Rydberg, L., Ærtebjerg, G., and Edler, L.: Fifty years of primary
production measurements in the Baltic entrance region, trends and
variability in relation to land-based input of nutrients, J. Sea Res., 56, 1–16,
https://doi.org/10.1016/j.seares.2006.03.009, 2006.
Sayin, E. and Krauß, W.: A numerical study of the water exchange
through the Danish Straits, Tellus, 48, 324–341,
https://doi.org/10.1034/j.1600-0870.1996.t01-1-00009.x, 1996.
Schenk, F.: The analog-method as statistical upscaling tool for
meteorological field reconstructions over Northern Europe since 1850,
Dissertation, University of Hamburg,
available at: http://ediss.sub.uni-hamburg.de/volltexte/2015/7156/, last access: 3 February 2015.
Schenk, F.: The long-term dataset of high resolution atmospheric forcing
fields (HiResAFF) for Northern Europe since 1850, World Data Center for Climate (WDCC) at DKRZ,
https://doi.org/10.1594/WDCC/HiResAFF, 2017.
Schenk, F. and Zorita, E.: Reconstruction of high resolution atmospheric fields for Northern Europe using analog-upscaling, Clim. Past, 8, 1681–1703, https://doi.org/10.5194/cp-8-1681-2012, 2012.
Seidenkrantz, M.-S.: Subrecent changes in the foraminiferal distribution
in the Kattegat and the Skagerrak, Scandinavia: Anthropogenic influence and
natural causes, Boreas, 22, 383–395,
https://doi.org/10.1111/j.1502-3885.1993.tb00201.x, 1993.
Sen Gupta, B. K.: Foraminifera in marginal marine environments, in:
Modern Foraminifera, 14159, Springer Netherlands,
https://doi.org/10.1007/0-306-48104-9_9, 1999a.
Sen Gupta, B. K.: Modern Foraminifera, Springer Science & Business Media, 368 pp., 1999b.
She, J., Berg, P., and Berg, J.: Bathymetry impacts on water exchange
modelling through the Danish Straits, Journal of Marine Systems, Marine Environmental Monitoring
and Prediction, 65, 450–459,
https://doi.org/10.1016/j.jmarsys.2006.01.017, 2007.
Tappan, H. and Loeblich, A. R.: Foraminiferal evolution, diversification,
and extinction, J. Paleontol., 62, 695–714, https://www.jstor.org/stable/1305391 (last access: 27 September 2019), 1988.
Wesslander, K., Andersson, L., Axe, P., Johansson, J., Linders, J., Nixelius, N.,
and Skjevik, A.-T.: SMHI Report: Swedish national report on eutrophication
status in the Skagerrak, Kattegat and the Sound, Report Oceanography No.
54, 160 pp., 2016.
Yanko, V., Arnold, A. J., and Parker, W. C.: Effects of marine pollution on
benthic foraminifera, in: Modern Foraminifera, 21735, Springer Netherlands,
https://doi.org/10.1007/0-306-48104-9_13, 1999.
Short summary
We reconstructed environmental changes in the Öresund during the last 200 years, using foraminifera (microfossils), sediment, and climate data. Five zones were identified, reflecting oxygen, salinity, food content, and pollution levels for each period. The largest changes occurred ~ 1950, towards stronger currents. The foraminifera responded quickly (< 10 years) to the changes. Moreover, they did not rebound when the system returned to the previous pattern, but displayed a new equilibrium state.
We reconstructed environmental changes in the Öresund during the last 200 years, using...
Altmetrics
Final-revised paper
Preprint