Articles | Volume 17, issue 19
https://doi.org/10.5194/bg-17-4745-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-17-4745-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Elevated sources of cobalt in the Arctic Ocean
Randelle M. Bundy
Department of Marine Chemistry and Geochemistry, Woods Hole
Oceanographic Institution, Woods Hole, MA, USA
now at: School of Oceanography, University of Washington, Seattle, WA, USA
Alessandro Tagliabue
School of Environmental Sciences, University of Liverpool, Liverpool,
United Kingdom
Nicholas J. Hawco
Department of Marine Chemistry and Geochemistry, Woods Hole
Oceanographic Institution, Woods Hole, MA, USA
Department of Oceanography, University of Hawai`i at Manoa, Honolulu,
HI, USA
Peter L. Morton
National High Magnetic Field Laboratory, Tallahassee, FL, USA
Benjamin S. Twining
Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA
Mariko Hatta
Department of Oceanography, University of Hawai`i at Manoa, Honolulu,
HI, USA
Abigail E. Noble
Department of Marine Chemistry and Geochemistry, Woods Hole
Oceanographic Institution, Woods Hole, MA, USA
now at: California Department of Toxic Substances Control, Sacramento, CA, USA
Mattias R. Cape
Department of Marine Chemistry and Geochemistry, Woods Hole
Oceanographic Institution, Woods Hole, MA, USA
now at: School of Oceanography, University of Washington, Seattle, WA, USA
Seth G. John
Department of Earth Sciences, University of Southern California, Los
Angeles, CA, USA
Jay T. Cullen
School of Earth and Ocean Sciences, University of Victoria, Victoria,
BC, Canada
Department of Marine Chemistry and Geochemistry, Woods Hole
Oceanographic Institution, Woods Hole, MA, USA
Related authors
Travis Mellett, Justine Albers, Alyson Santoro, Pascal Salaun, Joseph Resing, Wenhao Wang, Alistar Lough, Alessandro Tagliabue, Maeve Lohan, Randelle Bundy, and Kristen Buck
EGUsphere, https://doi.org/10.5194/egusphere-2025-1798, https://doi.org/10.5194/egusphere-2025-1798, 2025
Short summary
Short summary
Hydrothermal plumes of iron have been observed to persist in the deep ocean, but the exact mechanisms that contribute to the long-range transport of iron is not well defined. We collected plume waters from three different vent systems along the mid-Atlantic Ridge and monitored the temporal evolution of the physical and chemical forms of iron and its interaction with organic matter over time to learn about the mechanisms that control its dispersion.
Colleen L. Hoffman, Patrick J. Monreal, Justine B. Albers, Alastair J. M. Lough, Alyson E. Santoro, Travis Mellett, Kristen N. Buck, Alessandro Tagliabue, Maeve C. Lohan, Joseph A. Resing, and Randelle M. Bundy
Biogeosciences, 21, 5233–5246, https://doi.org/10.5194/bg-21-5233-2024, https://doi.org/10.5194/bg-21-5233-2024, 2024
Short summary
Short summary
Hydrothermally derived iron can be transported kilometers away from deep-sea vents, representing a significant flux of vital micronutrients to the ocean. However, the mechanisms that support the stabilization of dissolved iron remain elusive. Using electrochemical, spectrometry, and genomic methods, we demonstrated that strong ligands exert an important control on iron in plumes, and high-affinity iron-binding siderophores were identified in several hydrothermal plume samples for the first time.
Travis Mellett, Justine Albers, Alyson Santoro, Pascal Salaun, Joseph Resing, Wenhao Wang, Alistar Lough, Alessandro Tagliabue, Maeve Lohan, Randelle Bundy, and Kristen Buck
EGUsphere, https://doi.org/10.5194/egusphere-2025-1798, https://doi.org/10.5194/egusphere-2025-1798, 2025
Short summary
Short summary
Hydrothermal plumes of iron have been observed to persist in the deep ocean, but the exact mechanisms that contribute to the long-range transport of iron is not well defined. We collected plume waters from three different vent systems along the mid-Atlantic Ridge and monitored the temporal evolution of the physical and chemical forms of iron and its interaction with organic matter over time to learn about the mechanisms that control its dispersion.
Riss M. Kell, Adam V. Subhas, Nicole L. Schanke, Lauren E. Lees, Rebecca J. Chmiel, Deepa Rao, Margaret M. Brisbin, Dawn M. Moran, Matthew R. McIlvin, Francesco Bolinesi, Olga Mangoni, Raffaella Casotti, Cecilia Balestra, Tristan Horner, Robert B. Dunbar, Andrew E. Allen, Giacomo R. DiTullio, and Mak A. Saito
EGUsphere, https://doi.org/10.1101/2023.11.05.565706, https://doi.org/10.1101/2023.11.05.565706, 2025
Short summary
Short summary
Photosynthetic productivity is strongly influenced by water column nutrient availability. Despite the importance of zinc, definitive evidence for oceanic zinc limitation of photosynthesis has been scarce. We applied multiple biogeochemical measurements to a field site in Terra Nova Bay, Antarctica, to demonstrate that the phytoplankton community was experiencing zinc limitation. This field evidence paves the way for future experimental studies to consider Zn as a limiting oceanic micronutrient.
Noelle A. Held, Korrina Kunde, Clare E. Davis, Neil J. Wyatt, Elizabeth L. Mann, E. Malcolm S. Woodward, Matthew McIlvin, Alessandro Tagliabue, Benjamin S. Twining, Claire Mahaffey, Mak A. Saito, and Maeve C. Lohan
EGUsphere, https://doi.org/10.5194/egusphere-2024-3996, https://doi.org/10.5194/egusphere-2024-3996, 2025
Short summary
Short summary
Microbial enzymes are critical to marine biogeochemical cycles, but which microbes are producing those enzymes? We used a targeted proteomics method to quantify how much Prochlorococcus and Synechococcus contribute to surface ocean alkaline phosphatase activity. We find that alkaline phosphatase abundance is limited by the availability of iron, zinc and cobalt (which may substitute for zinc).
Claire Mahaffey, Noelle Held, Korinne Kunde, Clare Davis, Neil Wyatt, Matthew McIlvin, Malcolm Woodward, Lewis Wrightson, Alessandro Tagliabue, Maeve Lohan, and Mak Saito
EGUsphere, https://doi.org/10.5194/egusphere-2024-3987, https://doi.org/10.5194/egusphere-2024-3987, 2025
Short summary
Short summary
Picocyanobacteria fix over 50 % of carbon in the subtropical ocean, but which nutrients control their growth and activity? Using a states, rates and metaproteomic approach alongside targeted proteomics in experiments, we reveal picocyanobacteria are phosphorus stressed in the west Atlantic and nitrogen stressed in east Atlantic. We find evidence for trace metal and organic phosphorus control on alkaline phosphatase activity.
Pearse J. Buchanan, Juan J. Pierella Karlusich, Robyn E. Tuerena, Roxana Shafiee, E. Malcolm S. Woodward, Chris Bowler, and Alessandro Tagliabue
EGUsphere, https://doi.org/10.5194/egusphere-2024-3639, https://doi.org/10.5194/egusphere-2024-3639, 2025
Short summary
Short summary
Ammonium is a form of nitrogen that may become more important for growth of marine primary producers (i.e., phytoplankton) in the future. Because some phytoplankton taxa have a greater affinity for ammonium than others, the relative increase in ammonium could cause shifts in community composition. We quantify ammonium enrichment, identify its drivers, and isolate the possible effect on phytoplankton community composition under a high emissions scenario.
Riss M. Kell, Rebecca J. Chmiel, Deepa Rao, Dawn M. Moran, Matthew R. McIlvin, Tristan J. Horner, Nicole L. Schanke, Ichiko Sugiyama, Robert B. Dunbar, Giacomo R. DiTullio, and Mak A. Saito
Biogeosciences, 21, 5685–5706, https://doi.org/10.5194/bg-21-5685-2024, https://doi.org/10.5194/bg-21-5685-2024, 2024
Short summary
Short summary
Despite interest in modeling the biogeochemical uptake and cycling of the trace metal zinc (Zn), measurements of Zn uptake in natural marine phytoplankton communities have not been conducted previously. To fill this gap, we employed a stable isotope uptake rate measurement method to quantify Zn uptake into natural phytoplankton assemblages within the Southern Ocean. Zn demand was high and rapid enough to depress the inventory of Zn available to phytoplankton on seasonal timescales.
Colleen L. Hoffman, Patrick J. Monreal, Justine B. Albers, Alastair J. M. Lough, Alyson E. Santoro, Travis Mellett, Kristen N. Buck, Alessandro Tagliabue, Maeve C. Lohan, Joseph A. Resing, and Randelle M. Bundy
Biogeosciences, 21, 5233–5246, https://doi.org/10.5194/bg-21-5233-2024, https://doi.org/10.5194/bg-21-5233-2024, 2024
Short summary
Short summary
Hydrothermally derived iron can be transported kilometers away from deep-sea vents, representing a significant flux of vital micronutrients to the ocean. However, the mechanisms that support the stabilization of dissolved iron remain elusive. Using electrochemical, spectrometry, and genomic methods, we demonstrated that strong ligands exert an important control on iron in plumes, and high-affinity iron-binding siderophores were identified in several hydrothermal plume samples for the first time.
Mak A. Saito, Jaclyn K. Saunders, Matthew R. McIlvin, Erin M. Bertrand, John A. Breier, Margaret Mars Brisbin, Sophie M. Colston, Jaimee R. Compton, Tim J. Griffin, W. Judson Hervey, Robert L. Hettich, Pratik D. Jagtap, Michael Janech, Rod Johnson, Rick Keil, Hugo Kleikamp, Dagmar Leary, Lennart Martens, J. Scott P. McCain, Eli Moore, Subina Mehta, Dawn M. Moran, Jaqui Neibauer, Benjamin A. Neely, Michael V. Jakuba, Jim Johnson, Megan Duffy, Gerhard J. Herndl, Richard Giannone, Ryan Mueller, Brook L. Nunn, Martin Pabst, Samantha Peters, Andrew Rajczewski, Elden Rowland, Brian Searle, Tim Van Den Bossche, Gary J. Vora, Jacob R. Waldbauer, Haiyan Zheng, and Zihao Zhao
Biogeosciences, 21, 4889–4908, https://doi.org/10.5194/bg-21-4889-2024, https://doi.org/10.5194/bg-21-4889-2024, 2024
Short summary
Short summary
The ability to assess the functional capabilities of microbes in the environment is of increasing interest. Metaproteomics, the ability to measure proteins across microbial populations, has been increasing in capability and popularity in recent years. Here, an international team of scientists conducted an intercomparison study using samples collected from the North Atlantic Ocean and observed consistency in the peptides and proteins identified, their functions, and their taxonomic origins.
David A. Hutchins, Fei-Xue Fu, Shun-Chung Yang, Seth G. John, Stephen J. Romaniello, M. Grace Andrews, and Nathan G. Walworth
Biogeosciences, 20, 4669–4682, https://doi.org/10.5194/bg-20-4669-2023, https://doi.org/10.5194/bg-20-4669-2023, 2023
Short summary
Short summary
Applications of the mineral olivine are a promising means to capture carbon dioxide via coastal enhanced weathering, but little is known about the impacts on important marine phytoplankton. We examined the effects of olivine dissolution products on species from three major phytoplankton groups: diatoms, coccolithophores, and cyanobacteria. Growth and productivity were generally either unaffected or stimulated, suggesting the effects of olivine on key phytoplankton are negligible or positive.
Rebecca J. Chmiel, Riss M. Kell, Deepa Rao, Dawn M. Moran, Giacomo R. DiTullio, and Mak A. Saito
Biogeosciences, 20, 3997–4027, https://doi.org/10.5194/bg-20-3997-2023, https://doi.org/10.5194/bg-20-3997-2023, 2023
Short summary
Short summary
Cobalt is an important micronutrient for plankton, yet it is often scarce throughout the oceans. A 2017/2018 expedition to coastal Antarctica, including regions of the Amundsen Sea and the Ross Sea, discovered lower concentrations of cobalt compared to two past expeditions in 2005 and 2006, particularly for the type of cobalt preferred as a nutrient by phytoplankton. This loss may be due to changing inputs of other nutrients, causing higher uptake of cobalt by plankton over the last decade.
Alastair J. M. Lough, Alessandro Tagliabue, Clément Demasy, Joseph A. Resing, Travis Mellett, Neil J. Wyatt, and Maeve C. Lohan
Biogeosciences, 20, 405–420, https://doi.org/10.5194/bg-20-405-2023, https://doi.org/10.5194/bg-20-405-2023, 2023
Short summary
Short summary
Iron is a key nutrient for ocean primary productivity. Hydrothermal vents are a source of iron to the oceans, but the size of this source is poorly understood. This study examines the variability in iron inputs between hydrothermal vents in different geological settings. The vents studied release different amounts of Fe, resulting in plumes with similar dissolved iron concentrations but different particulate concentrations. This will help to refine modelling of iron-limited ocean productivity.
Laurent Bopp, Olivier Aumont, Lester Kwiatkowski, Corentin Clerc, Léonard Dupont, Christian Ethé, Thomas Gorgues, Roland Séférian, and Alessandro Tagliabue
Biogeosciences, 19, 4267–4285, https://doi.org/10.5194/bg-19-4267-2022, https://doi.org/10.5194/bg-19-4267-2022, 2022
Short summary
Short summary
The impact of anthropogenic climate change on the biological production of phytoplankton in the ocean is a cause for concern because its evolution could affect the response of marine ecosystems to climate change. Here, we identify biological N fixation and its response to future climate change as a key process in shaping the future evolution of marine phytoplankton production. Our results show that further study of how this nitrogen fixation responds to environmental change is essential.
Benoît Pasquier, Sophia K. V. Hines, Hengdi Liang, Yingzhe Wu, Steven L. Goldstein, and Seth G. John
Geosci. Model Dev., 15, 4625–4656, https://doi.org/10.5194/gmd-15-4625-2022, https://doi.org/10.5194/gmd-15-4625-2022, 2022
Short summary
Short summary
Neodymium isotopes in seawater have the potential to provide key information about ocean circulation, both today and in the past. This can shed light on the underlying drivers of global climate, which will improve our ability to predict future climate change, but uncertainties in our understanding of neodymium cycling have limited use of this tracer. We present a new model of neodymium in the modern ocean that runs extremely fast, matches observations, and is freely available for development.
Rebecca Chmiel, Nathan Lanning, Allison Laubach, Jong-Mi Lee, Jessica Fitzsimmons, Mariko Hatta, William Jenkins, Phoebe Lam, Matthew McIlvin, Alessandro Tagliabue, and Mak Saito
Biogeosciences, 19, 2365–2395, https://doi.org/10.5194/bg-19-2365-2022, https://doi.org/10.5194/bg-19-2365-2022, 2022
Short summary
Short summary
Dissolved cobalt is present in trace amounts in seawater and is a necessary nutrient for marine microbes. On a transect from the Alaskan coast to Tahiti, we measured seawater concentrations of dissolved cobalt. Here, we describe several interesting features of the Pacific cobalt cycle including cobalt sources along the Alaskan coast and Hawaiian vents, deep-ocean particle formation, cobalt activity in low-oxygen regions, and how our samples compare to a global biogeochemical model’s predictions.
Natalie R. Cohen, Abigail E. Noble, Dawn M. Moran, Matthew R. McIlvin, Tyler J. Goepfert, Nicholas J. Hawco, Christopher R. German, Tristan J. Horner, Carl H. Lamborg, John P. McCrow, Andrew E. Allen, and Mak A. Saito
Biogeosciences, 18, 5397–5422, https://doi.org/10.5194/bg-18-5397-2021, https://doi.org/10.5194/bg-18-5397-2021, 2021
Short summary
Short summary
A previous study documented an intense hydrothermal plume in the South Pacific Ocean; however, the iron release associated with this plume and the impact on microbiology were unclear. We describe metal concentrations associated with multiple hydrothermal plumes in this region and protein signatures of plume-influenced microbes. Our findings demonstrate that resources released from these systems can be transported away from their source and may alter the physiology of surrounding microbes.
Thomas S. Bianchi, Madhur Anand, Chris T. Bauch, Donald E. Canfield, Luc De Meester, Katja Fennel, Peter M. Groffman, Michael L. Pace, Mak Saito, and Myrna J. Simpson
Biogeosciences, 18, 3005–3013, https://doi.org/10.5194/bg-18-3005-2021, https://doi.org/10.5194/bg-18-3005-2021, 2021
Short summary
Short summary
Better development of interdisciplinary ties between biology, geology, and chemistry advances biogeochemistry through (1) better integration of contemporary (or rapid) evolutionary adaptation to predict changing biogeochemical cycles and (2) universal integration of data from long-term monitoring sites in terrestrial, aquatic, and human systems that span broad geographical regions for use in modeling.
Cited articles
Aagaard, K. and Carmack, E. C.: The role of sea ice and other fresh water in
the Arctic circulation, J. Geophys. Res.-Oceans, 94, 14485–14498,
1989.
Adjou, M.: Data inventory for cruise CCGS Amundsen 0903 (ArcticNet, GIPY14), available at: https://www.bodc.ac.uk/geotraces/data/inventories/0903/, last access: 10 August 2020.
Aumont, O., van Hulten, M., Roy-Barman, M., Dutay, J.-C., Éthé, C., and Gehlen, M.: Variable reactivity of particulate organic matter in a global ocean biogeochemical model, Biogeosciences, 14, 2321–2341, https://doi.org/10.5194/bg-14-2321-2017, 2017.
Baars, O. and Croot, P. L.: Dissolved cobalt speciation and reactivity in
the eastern tropical North Atlantic, Mar. Chem., 173, 310–319,
https://doi.org/10.1016/j.marchem.2014.10.006, 2015.
Bauch, D., Erlenkeuser, H., and Andersen, N.: Water mass processes on Arctic
shelves as revealed from δ18O of H2O, Global Planet. Change,
48, 165–174, 2005.
Bertrand, E. M., Saito, M. A., Rose, J. M., Riesselman, C. R., Lohan, M. C.,
Noble, A. E., Lee, P. A., and DiTullio, G. R.: Vitamin B12 and iron
colimitation of phytoplankton growth in the Ross Sea, Limnol. Oceanogr.,
52, 1079–1093, https://doi.org/10.4319/lo.2007.52.3.1079, 2007.
Bertrand, E. M., Allen, A. E., Dupont, C. L., Norden-Krichmar, T. M., Bai,
J., Valas, R. E., and Saito, M. A.: Influence of cobalamin scarcity on diatom
molecular physiology and identification of a cobalamin acquisition protein,
P. Natl. Acad. Sci. USA, 109, E1762–E1771, https://doi.org/10.1073/pnas.1201731109,
2012.
Bertrand, E. M., McCrow, J. P., Moustafa, A., Zheng, H., McQuaid, J. B.,
Delmont, T. O., Post, A. F., Sipler, R. E., Spackeen, J. L., and Xu, K.:
Phytoplankton–bacterial interactions mediate micronutrient colimitation at
the coastal Antarctic sea ice edge, P. Natl. Acad. Sci. USA, 112,
9938–9943, 2015.
Black, E. E.: An investigation of basin-scale controls on upper ocean export and remineralization, Doctoral dissertation, Massachusetts Institute of Technology, 2018.
Bown, J., Boye, M., Baker, A., Duvieilbourg, E., Lacan, F., Le Moigne, F.,
Planchon, F., Speich, S., and Nelson, D. M.: The biogeochemical cycle of
dissolved cobalt in the Atlantic and the Southern Ocean south off the coast
of South Africa, Mar. Chem., 126, 193–206, 2011.
Browning, T. J., Achterberg, E. P., Rapp, I., Engel, A., Bertrand, E. M.,
Tagliabue, A., and Moore, C. M.: Nutrient co-limitation at the boundary of an
oceanic gyre, Nature, 551, 242–246, https://doi.org/10.1038/nature24063, 2017.
Bruland, K. W., Rue, E. L., and Smith, G. J.: Iron and macronutrients in
California coastal upwelling regimes: Implications for diatom blooms,
Limnol. Oceanogr., 46, 1661–1674, https://doi.org/10.4319/lo.2001.46.7.1661, 2001.
Bundy, R. M., Abdulla, H. A. N. N., Hatcher, P. G., Biller, D. V., Buck, K.
N., and Barbeau, K. A.: Iron-binding ligands and humic substances in the San
Francisco Bay estuary and estuarine-influenced shelf regions of coastal
California, Mar. Chem., 173, 183–194, https://doi.org/10.1016/j.marchem.2014.11.005,
2015.
Carmack, E. C., Macdonald, R. W., Perkin, R. G., McLaughlin, F. A., and
Pearson, R. J.: Evidence for warming of Atlantic water in the southern
Canadian Basin of the Arctic Ocean: Results from the Larsen-93 expedition,
Geophys. Res. Lett., 22, 1061–1064, 1995.
Charette, M. A., Kipp, L. E., Jensen, L. T., Dabrowski, J. S., Whitmore, L. M., Fitzsimmons, J. N., Williford, T., Ulfsbo, A., Jones, E., Bundy, R. M., and Vivancos, S. M.: The Transpolar Drift as a Source of Riverine and Shelf‐Derived Trace Elements to the Central Arctic Ocean, J. Geophys. Res.-Oceans, 125, e2019JC015920, https://doi.org/10.1029/2019JC015920, 2020.
Chase, Z., Strutton, P. G., and Hales, B.: Iron links river runoff and shelf
width to phytoplankton biomass along the US West Coast, Geophys. Res.
Lett., 34, L04607, https://doi.org/10.1029/2006GL028069, 2007.
Colombo, M., Jackson, S. L., Cullen, J. T., and Orians, K. J.: Dissolved iron
and manganese in the Canadian Arctic Ocean: On the biogeochemical processes
controlling their distributions, Geochim. Cosmochim. Ac., 277,
150–174, 2020.
Cooper, L. W., Whitledge, T. E., Grebmeier, J. M., and Weingartner, T.: The
nutrient, salinity, and stable oxygen isotope composition of Bering and
Chukchi Seas waters in and near the Bering Strait, J. Geophys. Res.-Oceans,
102, 12563–12573, 1997.
Cooper, L. W., Benner, R., McClelland, J. W., Peterson, B. J., Holmes, R.
M., Raymond, P. A., Hansell, D. A., Grebmeier, J. M., and Codispoti, L. A.:
Linkages among runoff, dissolved organic carbon, and the stable oxygen
isotope composition of seawater and other water mass indicators in the
Arctic Ocean, J. Geophys. Res.-Biogeo., 110, G02013, https://doi.org/10.1029/2005JG000031, 2005.
Cottrell, M. T. and Kirchman, D. L.: Photoheterotrophic microbes in the
Arctic Ocean in summer and winter, Appl. Environ. Microb., 75,
4958–4966, 2009.
Cowen, J. P. and Bruland, K. W.: Metal deposits associated with bacteria:
implications for Fe and Mn marine biogeochemistry, Deep-Sea Res. Pt. A, 32, 253–272, 1985.
Cutter, G. A. and Bruland, K. W.: Rapid and noncontaminating sampling system
for trace elements in global ocean surveys, Limnol. Oceanogr.-Meth.,
10, 425–436, https://doi.org/10.4319/lom.2012.10.425, 2012.
Del Vecchio, R. and Blough, N. V: On the origin of the optical properties of
humic substances, Environ. Sci. Technol., 38, 3885–3891, 2004.
Doxaran, D., Devred, E., and Babin, M.: A 50 % increase in the mass of terrestrial particles delivered by the Mackenzie River into the Beaufort Sea (Canadian Arctic Ocean) over the last 10 years, Biogeosciences, 12, 3551–3565, https://doi.org/10.5194/bg-12-3551-2015, 2015.
Doxey, A. C., Kurtz, D. A., Lynch, M. D. J., Sauder, L. A., and Neufeld, J.
D.: Aquatic metagenomes implicate Thaumarchaeota in global cobalamin
production, ISME J., 9, 461–471, https://doi.org/10.1038/ismej.2014.142, 2015.
Drake, T. W., Tank, S. E., Zhulidov, A. V, Holmes, R. M., Gurtovaya, T., and
Spencer, R. G. M.: Increasing alkalinity export from large Russian Arctic
rivers, Environ. Sci. Technol., 52, 8302–8308, 2018.
Dulaquais, G., Boye, M., Middag, R., Owens, S., Puigcorbé, V.,
Buesseler, K. O., Masqué, P., de Baar, H. J. W., and Carton, X.:
Contrasting biochemical cycles of cobalt in the surface western Atlantic
ocean, Global Biogeochem. Cy., 28, 1387–1412,
https://doi.org/10.1002/2014GB004903, 2014a.
Dulaquais, G., Boye, M., Rijkenberg, M. J. A., and Carton, X.: Physical and remineralization processes govern the cobalt distribution in the deep western Atlantic Ocean, Biogeosciences, 11, 1561–1580, https://doi.org/10.5194/bg-11-1561-2014, 2014b.
Dulaquais, G., Planquette, H., L'Helguen, S., Rijkenberg, M. J. A., and Boye,
M.: The biogeochemistry of cobalt in the Mediterranean Sea, Global
Biogeochem. Cy., 31, 377–399, https://doi.org/10.1002/2016GB005478, 2017.
Gascard, J., Festy, J., le Goff, H., Weber, M., Bruemmer, B., Offermann, M.,
Doble, M., Wadhams, P., Forsberg, R., and Hanson, S.: Exploring Arctic
transpolar drift during dramatic sea ice retreat, EOS T. Am. Geophys.
Un., 89, 21–22, 2008.
Hawco, N. J. and Saito, M. A.: Competitive inhibition of cobalt uptake by
zinc and manganese in a pacific Prochlorococcus strain: Insights into metal
homeostasis in a streamlined oligotrophic cyanobacterium, Limnol. Oceanogr.,
63, 2229–2249, 2018.
Hawco, N. J., Ohnemus, D. C., Resing, J. A., Twining, B. S., and Saito, M. A.: A dissolved cobalt plume in the oxygen minimum zone of the eastern tropical South Pacific, Biogeosciences, 13, 5697–5717, https://doi.org/10.5194/bg-13-5697-2016, 2016.
Hawco, N. J., Lam, P. J., Lee, J. M., Ohnemus, D. C., Noble, A. E., Wyatt,
N. J., Lohan, M. C., and Saito, M. A.: Cobalt scavenging in the mesopelagic
ocean and its influence on global mass balance: Synthesizing water column
and sedimentary fluxes, Mar. Chem., 201, 151–166,
https://doi.org/10.1016/j.marchem.2017.09.001, 2018.
Hawco, N. J., McIlvin, M. M., Bundy, R. M., Tagliabue, A., Goepfert, T. J.,
Moran, D. M., Valentin-Alvarado, L., DiTullio, G. R., and Saito, M. A.:
Minimal cobalt metabolism in the marine cyanobacterium Prochlorococcus,
P. Natl. Acad. Sci., 117, 15740–15747, https://doi.org/10.1073/pnas.2001393117, 2020.
Heal, K.: The Power and Promise of Direct Measurements of Metabolites in Marine Systems, Doctoral dissertation, University of Washington, Seattle, WA, 2018.
Heal, K. R., Qin, W., Ribalet, F., Bertagnolli, A. D., Coyote-Maestas, W.,
Hmelo, L. R., Moffett, J. W., Devol, A. H., Armbrust, E. V., and Stahl, D.
A.: Two distinct pools of B12 analogs reveal community interdependencies in
the ocean, P. Natl. Acad. Sci. USA, 114, 364–369, 2017.
Holmes, R. M., McClelland, J. W., Tank, S. E., Spencer, R. G., and
Shiklomanov, A. I.: Arctic Great Rivers Observatory Water Quality Dataset, available at: https://www.arcticgreatrivers.org/data (last access: 30 June 2020), 2018.
Jensen, L., Wyatt, N., Twining, B., Rauschenberg, S., Landing, W., Sherrell,
R., and Fitzsimmons, J.: Biogeochemical cycling of dissolved zinc in the
Western Arctic (Arctic GEOTRACES GN01), Global Biogeochem. Cy., 33,
343–369, 2019.
Johannessen, O. M., Bengtsson, L., Miles, M. W., Kuzmina, S. I., Semenov, V.
A., Alekseev, G. V, Nagurnyi, A. P., Zakharov, V. F., Bobylev, L. P., and
Pettersson, L. H.: Arctic climate change: observed and modelled temperature
and sea-ice variability, Tellus A, 56, 328–341,
2004.
Johnson, K. S., Berelson, W. M., Coale, K. H., Coley, T. L., Elrod, V. A.,
Fairey, W. R., Iams, H. D., Kilgore, T. E., and Nowicki, J. L.: Mangense flux
from continental-margin sediments in a transect through the oxygen minimum,
Science, 257, 1242–1245, https://doi.org/10.1126/science.257.5074.1242,
1992.
Jorgenson, M. T., Shur, Y. L., and Pullman, E. R.: Abrupt increase in
permafrost degradation in Arctic Alaska, Geophys. Res. Lett., 33, L02503, https://doi.org/10.1029/2005GL024960, 2006.
Kellogg, M. M., McIlvin, M. R., Vedamati, J., Twining, B. S., Moffett, J.
W., Marchetti, A., Moran, D. M., and Saito, M. A.: Efficient zinc/cobalt
inter-replacement in northeast Pacific diatoms and relationship to high
surface dissolved Co : Zn ratios, Limnol. Oceanogr., https://doi.org/10.1002/lno.11471, online first, 2020.
Kipp, L. E., Charette, M. A., Moore, W. S., Henderson, P. B., and Rigor, I.
G.: Increased fluxes of shelf-derived materials to the central Arctic Ocean,
Sci. Adv., 4, eaao1302, https://doi.org/10.1126/sciadv.aao1302, 2018.
Klunder, M. B., Bauch, D., Laan, P., de Baar, H. J. W., van Heuven, S., and
Ober, S.: Dissolved iron in the Arctic shelf seas and surface waters of the
central Arctic Ocean: Impact of Arctic river water and ice-melt, J. Geophys.
Res., 117, C01027, https://doi.org/10.1029/2011jc007133, 2012.
Landing, W. M., Cutter, G., and Kadko, D. C.: Bottle data from the GEOTRACES Clean Carousel sampling system (GTC) on the Arctic Section cruise (HLY1502) from August to October 2015 (US GEOTRACES Arctic project), Biological and Chemical Oceanography Data Management Office (BCO-DMO), available at: https://www.bco-dmo.org/project/638812 (last access: 27 September 2020), 2019.
Lane, T. W. and Morel, F. M. M.: Regulation of carbonic anhydrase expression
by zinc, cobalt, and carbon dioxide in the marine diatom Thalassiosira
weissflogii, Plant Physiol., 123, 345–352, 2000.
Le Bras, I. A., Yashayaev, I., and Toole, J. M.: Tracking Labrador Sea water
property signals along the deep western boundary current, J. Geophys. Res.-Oceans, 122, 5348–5366, 2017.
Lee, J.-M., Heller, M. I., and Lam, P. J.: Size distribution of particulate
trace elements in the US GEOTRACES Eastern Pacific Zonal Transect (GP16),
Mar. Chem., 201, 108–123, 2018.
Lionheart, R.: Exploring the ocean microbiome: quantified cobalamin
production in pelagic bacteria using liquid chromatography and mass
spectrometry, Doctoral dissertation, University of Washington, Seattle, WA, 2017.
Marsay, C. M., Aguilar-Islas, A., Fitzsimmons, J. N., Hatta, M., Jensen, L.
T., John, S. G., Kadko, D., Landing, W. M., Lanning, N. T., Morton, P. L.,
Pasqualini, A., Rauschenberg, S., Sherrell, R. M., Shiller, A. M., Twining,
B. S., Whitmore, L. M., Zhang, R., and Buck, C. S.: Dissolved and
particulate trace elements in late summer Arctic melt ponds, Mar. Chem.,
204, 70–85, https://doi.org/10.1016/j.marchem.2018.06.002, 2018.
Martin, J. H., Gordon, R. M., Fitzwater, S., and Broenkow, W. W.: VERTEX:
phytoplankton/iron studies in the Gulf of Alaska, Deep-Sea Res. Pt. A, 36, 649–680, 1989.
März, C., Stratmann, A., Matthiessen, J., Meinhardt, A. K., Eckert, S.,
Schnetger, B., Vogt, C., Stein, R., and Brumsack, H. J.: Manganese-rich brown
layers in Arctic Ocean sediments: Composition, formation mechanisms, and
diagenetic overprint, Geochim. Cosmochim. Ac., 75, 7668–7687,
https://doi.org/10.1016/j.gca.2011.09.046, 2011.
McManus, J., Berelson, W. M., Severmann, S., Johnson, K. S., Hammond, D. E.,
Roy, M., and Coale, K. H.: Benthic manganese fluxes along the
Oregon-California continental shelf and slope, Cont. Shelf Res., 43, 71–85,
https://doi.org/10.1016/j.csr.2012.04.016, 2012.
Middag, R., De Baar, H. J. W., Laan, P., and Klunder, M. B.: Fluvial and
hydrothermal input of manganese into the Arctic Ocean, Geochim. Cosmochim.
Ac., 75, 2393–2408, 2011.
Moffett, J. W. and Ho, J.: Oxidation of cobalt and manganese in seawater via
a common microbially catalyzed pathway, Geochim. Cosmochim. Ac., 60,
3415–3424, https://doi.org/10.1016/0016-7037(96)00176-7, 1996.
Moore, C. M., Mills, M. M., Arrigo, K. R., Berman-Frank, I., Bopp, L., Boyd,
P. W., Galbraith, E. D., Geider, R. J., Guieu, C., Jaccard, S. L., Jickells,
T. D., La Roche, J., Lenton, T. M., Mahowald, N. M., Marañón, E.,
Marinov, I., Moore, J. K., Nakatsuka, T., Oschlies, A., Saito, M. A.,
Thingstad, T. F., Tsuda, A., Ulloa, O., Maranon, E., Marinov, I., Moore, J.
K., Nakatsuka, T., Oschlies, A., Saito, M. A., Thingstad, T. F., Tsuda, A.,
and Ulloa, O.: Processes and patterns of oceanic nutrient limitation, Nat.
Geosci., 6, 701–710, https://doi.org/10.1038/ngeo1765, 2013.
Myers, P. G.: Impact of freshwater from the Canadian Arctic Archipelago on Labrador Sea Water formation, Geophys. Res. Lett., 32, L06605, https://doi.org/10.1029/2004GL022082, 2005.
Newton, R., Schlosser, P., Mortlock, R., Swift, J., and MacDonald, R.:
Canadian Basin freshwater sources and changes: Results from the 2005 Arctic
Ocean Section, J. Geophys. Res.-Oceans, 118, 2133–2154, 2013.
Nixon, R. L., Jackson, S. L., Cullen, J. T., and Ross, A. R. S.: Distribution
of copper-complexing ligands in Canadian Arctic waters as determined by
immobilized copper (II)-ion affinity chromatography, Mar. Chem., 215,
103673, https://doi.org/10.1016/j.marchem.2019.103673, 2019.
Noble, A. E.: Influences on the oceanic biogeochemical cycling of the
hybrid-type metals, cobalt, iron, and manganese, Doctoral dissertation, Massachusetts Institute of
Technology, 296 pp., 2012.
Noble, A. E., Saito, M. A., Maiti, K., and Benitez-Nelson, C. R.: Cobalt,
manganese, and iron near the Hawaiian Islands: A potential concentrating
mechanism for cobalt within a cyclonic eddy and implications for the
hybrid-type trace metals, Deep-Sea Res. Pt. II,
55, 1473–1490, 2008.
Noble, A. E., Lamborg, C. H., Ohnemus, D. C., Lam, P. J., Goepfert, T. J.,
Measures, C. I., Frame, C. H., Casciotti, K. L., DiTullio, G. R., Jennings,
J., and Saito, M. A.: Basin-scale inputs of cobalt, iron, and manganese from
the Benguela-Angola front to the South Atlantic Ocean, Limnol. Oceanogr.,
57, 989–1010, https://doi.org/10.4319/lo.2012.57.4.0989, 2012.
Noble, A. E., Ohnemus, D. C., Hawco, N. J., Lam, P. J., and Saito, M. A.: Coastal sources, sinks and strong organic complexation of dissolved cobalt within the US North Atlantic GEOTRACES transect GA03, Biogeosciences, 14, 2715–2739, https://doi.org/10.5194/bg-14-2715-2017, 2017.
Ohnemus, D. C., Auro, M. E., Sherrell, R. M., Lagerström, M., Morton, P. L., Twining, B. S., Rauschenberg, S., and Lam, P. J.: Laboratory intercomparison of marine particulate digestions including Piranha: a novel chemical method for dissolution of polyethersulfone filters, Limnol. Oceanogr.-Meth., 12, 530–547, 2014.
Panzeca, C., Beck, A. J., Leblanc, K., Taylor, G. T., Hutchins, D. A., and
Sanudo-Wilhelmy, S. A.: Potential cobalt limitation of vitamin B12 synthesis
in the North Atlantic Ocean, Global Biogeochem. Cy., 22, GB2029, https://doi.org/10.1029/2007GB003124, 2008.
Resing, J. A. and Mottl, M. J.: Determination of manganese in seawater using
flow injection analysis with on-line preconcentration and spectrophotometric
detection, Anal. Chem., 64, 2682–2687, 1992.
Saito, M. A. and Moffett, J. W.: Complexation of cobalt by natural organic
ligands in the Sargasso Sea as determined by a new high-sensitivity
electrochemical cobalt speciation method suitable for open ocean work, Mar.
Chem., 75, 49–68, https://doi.org/10.1016/s0304-4203(01)00025-1, 2001.
Saito, M. A. and Rauch, S.: Dataset: GN01 Dissolved and Labile Cobalt, available at: https://www.bco-dmo.org/dataset/722472, last access: 25 August 2020.
Saito, M. A., Moffett, J. W., Chisholm, S. W., and Waterbury, J. B.: Cobalt
limitation and uptake in Prochlorococcus, Limnol. Oceanogr., 47,
1629–1636, 2002.
Saito, M. A., Moffett, J. W., and DiTullio, G. R.: Cobalt and nickel in the
Peru upwelling region: A major flux of labile cobalt utilized as a
micronutrient, Global Biogeochem. Cy., 18, 1–14,
https://doi.org/10.1029/2003GB002216, 2004.
Saito, M. A., Rocap, G., and Moffett, J. W.: Production of cobalt binding
ligands in a Synechococcus feature at the Costa Rica upwelling dome, Limnol.
Oceanogr., 50, 279–290, 2005.
Saito, M. A., Goepfert, T. J., Noble, A. E., Bertrand, E. M., Sedwick, P. N., and DiTullio, G. R.: A seasonal study of dissolved cobalt in the Ross Sea, Antarctica: micronutrient behavior, absence of scavenging, and relationships with Zn, Cd, and P, Biogeosciences, 7, 4059–4082, https://doi.org/10.5194/bg-7-4059-2010, 2010.
Saito, M. A., Noble, A. E., Hawco, N., Twining, B. S., Ohnemus, D. C., John, S. G., Lam, P., Conway, T. M., Johnson, R., Moran, D., and McIlvin, M.: The acceleration of dissolved cobalt's ecological stoichiometry due to biological uptake, remineralization, and scavenging in the Atlantic Ocean, Biogeosciences, 14, 4637–4662, https://doi.org/10.5194/bg-14-4637-2017, 2017.
Schlitzer, R., Anderson, R. F., Dodas, E. M., Lohan, M., Geibert, W.,
Tagliabue, A., Bowie, A., Jeandel, C., Maldonado, M. T., Landing, W. M., and
others: The GEOTRACES intermediate data product 2017, Chem. Geol., 493,
210–223, 2018.
Screen, J. A. and Simmonds, I.: The central role of diminishing sea ice in
recent Arctic temperature amplification, Nature, 464, 1334, 2010.
Serreze, M. C. and Barry, R. G.: Processes and impacts of Arctic
amplification: A research synthesis, Global Planet. Change, 77, 85–96,
2011.
Shelley, R. U., Sedwick, P. N., Bibby, T. S., Cabedo-Sanz, P., Church, T.
M., Johnson, R. J., Macey, A. I., Marsay, C. M., Sholkovitz, E. R., and
Ussher, S. J.: Controls on dissolved cobalt in surface waters of the
Sargasso Sea: Comparisons with iron and aluminum, Global Biogeochem. Cy.,
26, GB2020, https://doi.org/10.1029/2011GB004155, 2012.
Slagter, H. A., Reader, H. E., Rijkenberg, M. J. A., van der Loeff, M. R.,
de Baar, H. J. W., and Gerringa, L. J. A.: Organic Fe speciation in the
Eurasian Basins of the Arctic Ocean and its relation to terrestrial DOM,
Mar. Chem., 197, 11–25, https://doi.org/10.1016/j.marchem.2017.10.005, 2017.
Slagter, H. A., Laglera, L. M., Sukekava, C., and Gerringa, L. J. A.:
Fe-binding organic ligands in the humic-rich TransPolar Drift in the surface
Arctic Ocean using multiple voltammetric methods, J. Geophys. Res.-Oceans,
124, 1491–1508, 2019.
Steele, M. and Boyd, T.: Retreat of the cold halocline layer in the Arctic
Ocean, J. Geophys. Res.-Oceans, 103, 10419–10435, 1998.
Steele, M., Morison, J., Ermold, W., Rigor, I., Ortmeyer, M., and Shimada,
K.: Circulation of summer Pacific halocline water in the Arctic Ocean, J.
Geophys. Res.-Oceans, 109, C02027, https://doi.org/10.1029/2003JC002009, 2004.
Stroeve, J. C., Serreze, M. C., Holland, M. M., Kay, J. E., Malanik, J., and
Barrett, A. P.: The Arctic's rapidly shrinking sea ice cover: a research
synthesis, Climatic Change, 110, 1005–1027, 2012.
Sunda, W. G. and Huntsman, S. A.: Effect of sunlight on redox cycles of
manganese in the southwestern Sargasso Sea, Deep-Sea Res. Pt. A., 35, 1297–1317, 1988.
Sunda, W. G. and Huntsman, S. A.: Cobalt and zinc interreplacement in marine
phytoplankton: biological and geochemical implications, Limnol. Oceanogr.,
40, 1404–1417, 1995.
Swift, J. H., Takahashi, T., and Livingston, H. D.: The contribution of the
Greenland and Barents seas to the deep water of the Arctic Ocean, J.
Geophys. Res.-Oceans, 88, 5981–5986, 1983.
Talley, L. D.: Freshwater transport estimates and the global overturning circulation: Shallow, deep and throughflow components, Prog. Oceanogr., 78, 257–303, 2008.
Tagliabue, A., Hawco, N. J., Bundy, R. M., Landing, W. M., Milne, A.,
Morton, P. L., and Saito, M. A.: The role of external inputs and internal
cycling in shaping the global ocean cobalt distribution: insights from the
first cobalt biogeochemical model, Global Biogeochem. Cy., 32, 1–23,
https://doi.org/10.1002/2017GB005830, 2018.
Tank, S. E., Striegl, R. G., McClelland, J. W., and Kokelj, S. V:
Multi-decadal increases in dissolved organic carbon and alkalinity flux from
the Mackenzie drainage basin to the Arctic Ocean, Environ. Res. Lett.,
11, 54015, https://doi.org/10.1088/1748-9326/11/5/054015, 2016.
Tebo, B. M., Bargar, J. R., Clement, B. G., Dick, G. J., Murray, K. J.,
Parker, D., Verity, R., and Webb, S. M.: Biogenic manganese oxides:
properties and mechanisms of formation, Annu. Rev. Earth Planet. Sc., 32,
287–328, 2004.
Thuróczy, C.-E., Boye, M., and Losno, R.: Dissolution of cobalt and zinc from natural and anthropogenic dusts in seawater, Biogeosciences, 7, 1927–1936, https://doi.org/10.5194/bg-7-1927-2010, 2010.
Tonnard, M., Planquette, H., Bowie, A. R., van der Merwe, P., Gallinari, M., Desprez de Gésincourt, F., Germain, Y., Gourain, A., Benetti, M., Reverdin, G., Tréguer, P., Boutorh, J., Cheize, M., Lacan, F., Menzel Barraqueta, J.-L., Pereira-Contreira, L., Shelley, R., Lherminier, P., and Sarthou, G.: Dissolved iron in the North Atlantic Ocean and Labrador Sea along the GEOVIDE section (GEOTRACES section GA01), Biogeosciences, 17, 917–943, https://doi.org/10.5194/bg-17-917-2020, 2020.
Toohey, R. C., Herman-Mercer, N. M., Schuster, P. F., Mutter, E. A., and
Koch, J. C.: Multidecadal increases in the Yukon River Basin of chemical
fluxes as indicators of changing flowpaths, groundwater, and permafrost,
Geophys. Res. Lett., 43, 12–120, 2016.
Tovar-Sánchez, A., Sañudo-Wilhelmy, S. A., and Flegal, A. R.:
Temporal and spatial variations in the biogeochemical cycling of cobalt in
two urban estuaries: Hudson River Estuary and San Francisco Bay, Estuar.
Coast. Shelf Sci., 60, 717–728, 2004.
Twining, B. S., Rauschenberg, S., Morton, P. L., Ohnemus, D. C., and Lam, P.
J.: Comparison of particulate trace element concentrations in the North
Atlantic Ocean as determined with discrete bottle sampling and in situ
pumping, Deep-Sea Res. Pt. II, 116, 273–282,
https://doi.org/10.1016/j.dsr2.2014.11.005, 2015.
Twining, B. S., Morton, P. L., and Salters, V. J.: Trace element
concentrations (labile and total measurements) in particles collected with
GO-Flo bottles and analyzed with ICP-MS from the US GEOTRACES Arctic cruise
(HLY1502; GNo1) from August to October 2015, Biol. Chem. Oceanogr. Data
Manag. Off., https://doi.org/10.1575/1912/bco-dmo.771474.2, 2019.
van der Loeff, M., Kipp, L., Charette, M. A., Moore, W. S., Black, E.,
Stimac, I., Charkin, A., Bauch, D., Valk, O., Karcher, M., Krumpen, T.,
Casacuberta, N.,
Smethie, W., and
Rember, R.: Radium
isotopes across the Arctic Ocean show time scales of water mass ventilation
and increasing shelf inputs, J. Geophys. Res.-Oceans, 123, 4853–4873,
2018.
Waleron, M., Waleron, K., Vincent, W. F., and Wilmotte, A.: Allochthonous
inputs of riverine picocyanobacteria to coastal waters in the Arctic Ocean,
FEMS Microbiol. Ecol., 59, 356–365, 2007.
Wheeler, P. A., Watkins, J. M., and Hansing, R. L.: Nutrients, organic carbon
and organic nitrogen in the upper water column of the Arctic Ocean:
implications for the sources of dissolved organic carbon, Deep-Sea Res. Pt.
II, 44, 1571–1592, 1997.
Yang, R. J. and Van Den Berg, C. M. G.: Metal Complexation by Humic
Substances in Seawater, Environ. Sci. Technol., 43, 7192–7197,
https://doi.org/10.1021/es900173w, 2009.
Yee, D. and Morel, F. M. M.: In vivo substitution of zinc by cobalt in
carbonic anhydrase of a marine diatom, Limnol. Oceanogr., 41, 573–577,
1996.
Zakhia, F., Jungblut, A.-D., Taton, A., Vincent, W. F., and Wilmotte, A.:
Cyanobacteria in cold ecosystems, in: Psychrophiles: from biodiversity to
biotechnology, edited by: Margesin, R., Schinner, F., Marx, J. C., and Gerday, C., 121–135, Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-540-74335-4_8, 2008.
Zhang, H., Van Den Berg, C. M. G., and Wollast, R.: The determination of
interactions of cobalt (II) with organic compounds in seawater using
cathodic stripping voltammetry, Mar. Chem., 28, 285–300, 1990.
Zhang, Y., Rodionov, D. A., Gelfand, M. S., and Gladyshev, V. N.: Comparative
genomic analyses of nickel, cobalt and vitamin B12 utilization, BMC
Genomics, 10, 78, https://doi.org/10.1186/1471-2164-10-78, 2009.
Short summary
Cobalt (Co) is an essential nutrient for ocean microbes and is scarce in most areas of the ocean. This study measured Co concentrations in the Arctic Ocean for the first time and found that Co levels are extremely high in the surface waters of the Canadian Arctic. Although the Co primarily originates from the shelf, the high concentrations persist throughout the central Arctic. Co in the Arctic appears to be increasing over time and might be a source of Co to the North Atlantic.
Cobalt (Co) is an essential nutrient for ocean microbes and is scarce in most areas of the...
Altmetrics
Final-revised paper
Preprint