Articles | Volume 17, issue 21
https://doi.org/10.5194/bg-17-5399-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-17-5399-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Microclimatic conditions and water content fluctuations experienced by epiphytic bryophytes in an Amazonian rain forest
Nina Löbs
CORRESPONDING AUTHOR
Multiphase Chemistry and Biogeochemistry Departments, Max Planck Institute
for Chemistry, 55128 Mainz, Germany
David Walter
Multiphase Chemistry and Biogeochemistry Departments, Max Planck Institute
for Chemistry, 55128 Mainz, Germany
Biogeochemical Process Department, Max Planck Institute for
Biogeochemistry, 07701 Jena, Germany
Cybelli G. G. Barbosa
Multiphase Chemistry and Biogeochemistry Departments, Max Planck Institute
for Chemistry, 55128 Mainz, Germany
Sebastian Brill
Multiphase Chemistry and Biogeochemistry Departments, Max Planck Institute
for Chemistry, 55128 Mainz, Germany
Rodrigo P. Alves
Multiphase Chemistry and Biogeochemistry Departments, Max Planck Institute
for Chemistry, 55128 Mainz, Germany
Gabriela R. Cerqueira
Large Scale Biosphere-Atmosphere Experiment in Amazonia (LBA), Instituto
Nacional de Pesquisas da Amazonia (INPA), Manaus-AM, CEP 69067-375, Brazil
Marta de Oliveira Sá
Large Scale Biosphere-Atmosphere Experiment in Amazonia (LBA), Instituto
Nacional de Pesquisas da Amazonia (INPA), Manaus-AM, CEP 69067-375, Brazil
Alessandro C. de Araújo
Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), Belém-PA,
CEP 66095-100, Brazil
Leonardo R. de Oliveira
Large Scale Biosphere-Atmosphere Experiment in Amazonia (LBA), Instituto
Nacional de Pesquisas da Amazonia (INPA), Manaus-AM, CEP 69067-375, Brazil
Florian Ditas
Multiphase Chemistry and Biogeochemistry Departments, Max Planck Institute
for Chemistry, 55128 Mainz, Germany
now at: Hessisches Landesamt für Naturschutz, Umwelt und Geologie, 65203 Wiesbaden, Germany
Daniel Moran-Zuloaga
Multiphase Chemistry and Biogeochemistry Departments, Max Planck Institute
for Chemistry, 55128 Mainz, Germany
Ana Paula Pires Florentino
Multiphase Chemistry and Biogeochemistry Departments, Max Planck Institute
for Chemistry, 55128 Mainz, Germany
Stefan Wolff
Multiphase Chemistry and Biogeochemistry Departments, Max Planck Institute
for Chemistry, 55128 Mainz, Germany
Ricardo H. M. Godoi
Environmental Engineering Department, Federal University of Parana,
Curitiba, PR, Brazil
Jürgen Kesselmeier
Multiphase Chemistry and Biogeochemistry Departments, Max Planck Institute
for Chemistry, 55128 Mainz, Germany
Sylvia Mota de Oliveira
Biodiversity Discovery Group, Naturalis Biodiversity Center, 2333 Leiden, CR, the Netherlands
Meinrat O. Andreae
Multiphase Chemistry and Biogeochemistry Departments, Max Planck Institute
for Chemistry, 55128 Mainz, Germany
Scripps Institution of Oceanography, University of California San Diego,
La Jolla, CA 92037, USA
Christopher Pöhlker
Multiphase Chemistry and Biogeochemistry Departments, Max Planck Institute
for Chemistry, 55128 Mainz, Germany
Multiphase Chemistry and Biogeochemistry Departments, Max Planck Institute
for Chemistry, 55128 Mainz, Germany
Institute for Biology, Division of Plant Sciences, University of Graz,
8010 Graz, Austria
Related authors
No articles found.
Claudia Di Biagio, Elisa Bru, Avila Orta, Servanne Chevaillier, Clarissa Baldo, Antonin Bergé, Mathieu Cazaunau, Sandra Lafon, Sophie Nowak, Edouard Pangui, Meinrat O. Andreae, Pavla Dagsson-Waldhauserova, Kebonyethata Dintwe, Konrad Kandler, James S. King, Amelie Chaput, Gregory S. Okin, Stuart Piketh, Thuraya Saeed, David Seibert, Zongbo Shi, Earle Williams, Pasquale Sellitto, and Paola Formenti
EGUsphere, https://doi.org/10.5194/egusphere-2025-3512, https://doi.org/10.5194/egusphere-2025-3512, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Spectroscopy measurements show that the absorbance of dust in the far-infrared up to 25 μm is comparable in intensity to that in the mid-infrared (3–15μm) suggesting its relevance for dust direct radiative effect. Data evidence different absorption signatures for high and low/mid latitude dust, due to differences in mineralogical composition. These differences could be used to characterise the mineralogy and differentiate the origin of airborne dust based on infrared remote sensing observations.
Amauri C. Prudente Junior, Luiz A. T. Machado, Felipe S. Silva, Tercio Ambrizzi, Paulo Artaxo, Santiago Botia, Luan P. Cordeiro, Cleo Q. Dias Junior, Edmilson Freitas, Demerval S. Moreira, Christopher Pöhlker, Ivan M. C. Toro, Xiyan Xu, and Luciana V. Rizzo
EGUsphere, https://doi.org/10.5194/egusphere-2025-2869, https://doi.org/10.5194/egusphere-2025-2869, 2025
Short summary
Short summary
This study propoes a new method of spatialization to estimate carbon fluxes in the Brazilian Amazon biome. To do so, was used a land surface model (JULES) and two vegetation properties. The results of this spatialization resulted in a carbon fluxes of -1.34 Pg C during the year of 2021 in the entire Brazilian Amazon biome being the states of Amapa and Acre main relevant regions of carbon source.
Sara M. Blichner, Theodore Khadir, Sini Talvinen, Paulo Artaxo, Liine Heikkinen, Harri Kokkola, Radovan Krejci, Muhammed Irfan, Twan van Noije, Tuukka Petäjä, Christopher Pöhlker, Øyvind Seland, Carl Svenhag, Antti Vartiainen, and Ilona Riipinen
EGUsphere, https://doi.org/10.5194/egusphere-2025-2559, https://doi.org/10.5194/egusphere-2025-2559, 2025
Short summary
Short summary
This study looks at how well climate models capture the impact of rain on particles that help form cloud droplets. Using data from three measurement stations and applying both a correlation analysis and a machine learning approach, we found that models often miss how new particles form after rain and struggle in cold environments. This matters because these particles influence cloud formation and climate.
Santiago Botía, Saqr Munassar, Thomas Koch, Danilo Custodio, Luana S. Basso, Shujiro Komiya, Jost V. Lavric, David Walter, Manuel Gloor, Giordane Martins, Stijn Naus, Gerbrand Koren, Ingrid T. Luijkx, Stijn Hantson, John B. Miller, Wouter Peters, Christian Rödenbeck, and Christoph Gerbig
Atmos. Chem. Phys., 25, 6219–6255, https://doi.org/10.5194/acp-25-6219-2025, https://doi.org/10.5194/acp-25-6219-2025, 2025
Short summary
Short summary
This study uses dry CO2 mole fractions from the Amazon Tall Tower Observatory together with airborne profiles to estimate net carbon exchange in tropical South America. We found that the biogeographic Amazon is a net carbon sink, while the Cerrado and Caatinga biomes are net carbon sources, resulting in an overall neutral balance. Finally, to further reduce the uncertainty in our estimates we call for an expansion of the monitoring capacity, especially in the Amazon–Andes foothills.
Carolina Ramírez-Romero, Olatunde Murana, Hichem Bouzidi, Marina Jamar, Sébastien Dusanter, Alexandre Tomas, Ahmad Lahib, Layal Fayad, Véronique Riffault, Christopher Pöhlker, Stéphane Sauvage, and Joel F. de Brito
EGUsphere, https://doi.org/10.5194/egusphere-2025-2331, https://doi.org/10.5194/egusphere-2025-2331, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
Understanding how volatile organic compounds from plants and soils contribute to aerosol particles is essential for predicting air quality and climate effects. This study used advanced mass spectrometry to analyze particles formed from these compounds under controlled conditions. By identifying distinct chemical fingerprints, we can trace particle sources and reactions more accurately, improving our understanding of particle formation processes in the atmosphere.
Rafael Valiati, Bruno Backes Meller, Marco Aurélio Franco, Luciana Varanda Rizzo, Luiz Augusto Toledo Machado, Sebastian Brill, Bruna A. Holanda, Leslie A. Kremper, Subha S. Raj, Samara Carbone, Cléo Quaresma Dias-Júnior, Fernando Gonçalves Morais, Meinrat O. Andreae, Ulrich Pöschl, Christopher Pöhlker, and Paulo Artaxo
EGUsphere, https://doi.org/10.5194/egusphere-2025-1078, https://doi.org/10.5194/egusphere-2025-1078, 2025
Short summary
Short summary
This study highlights the different aerosol populations that are commonly observed in the central Amazon. Vertical gradients of aerosol optical and chemical properties were evaluated on different atmospheric conditions, and showed distinct characteristics of these particles. Intercontinental transport events bring to the region particles with a contrasting chemical composition, while vertical transport processes influence the aerosol properties by promoting the development of coating and aging.
Carlos A. Sierra, Ingrid Chanca, Meinrat Andreae, Alessandro Carioca de Araújo, Hella van Asperen, Lars Borchardt, Santiago Botía, Luiz Antonio Candido, Caio S. C. Correa, Cléo Quaresma Dias-Junior, Markus Eritt, Annica Fröhlich, Luciana V. Gatti, Marcus Guderle, Samuel Hammer, Martin Heimann, Viviana Horna, Armin Jordan, Steffen Knabe, Richard Kneißl, Jost Valentin Lavric, Ingeborg Levin, Kita Macario, Juliana Menger, Heiko Moossen, Carlos Alberto Quesada, Michael Rothe, Christian Rödenbeck, Yago Santos, Axel Steinhof, Bruno Takeshi, Susan Trumbore, and Sönke Zaehle
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-151, https://doi.org/10.5194/essd-2025-151, 2025
Preprint under review for ESSD
Short summary
Short summary
We present here a unique dataset of atmospheric observations of greenhouse gases and isotopes that provide key information on land-atmosphere interactions for the Amazon forests of central Brazil. The data show a relatively large level of variability, but also important trends in greenhouse gases, and signals from fires as well as seasonal biological activity.
Sebastian Brill, Björn Nillius, Jan-David Förster, Paulo Artaxo, Florian Ditas, Dennis Geis, Christian Gurk, Thomas Kenntner, Thomas Klimach, Mark Lamneck, Rafael Valiati, Bettina Weber, Stefan Wolff, Ulrich Pöschl, and Christopher Pöhlker
EGUsphere, https://doi.org/10.5194/egusphere-2025-295, https://doi.org/10.5194/egusphere-2025-295, 2025
Short summary
Short summary
Highly resolved vertical profiles are crucial for understanding ecosystem-atmosphere interactions. We developed the robotic lift (RoLi) as a platform for vertical profile measurements at the Amazon Tall Tower Observatory in the central Amazon basin. Initial results reveal distinct spatiotemporal patterns in altitude profiles of temperature, humidity, fog, and aerosol properties, offering new insights into the diurnal dynamics of convective daytime mixing and stable nighttime stratification.
Jianqiang Zhu, Guo Li, Uwe Kuhn, Bruno Backes Meller, Christopher Pöhlker, Paulo Artaxo, Ulrich Pöschl, Yafang Cheng, and Hang Su
EGUsphere, https://doi.org/10.5194/egusphere-2024-3911, https://doi.org/10.5194/egusphere-2024-3911, 2025
Short summary
Short summary
The manuscript reports unique measurement data on sub-40 nm particles and ions, especially those smaller than 10 nm in the Amazon from December 2022 to January 2023. A large number of sub-3 nm particles and naturally charged ions were present in the Amazonia boundary layer, and they showed a clear diurnal variation. The research will contribute to a better understanding of atmospheric processes in the pristine environment.
Denis Leppla, Stefanie Hildmann, Nora Zannoni, Leslie Kremper, Bruna Hollanda, Jonathan Williams, Christopher Pöhlker, Stefan Wolff, Marta Sà, Maria Cristina Solci, Ulrich Pöschl, and Thorsten Hoffmann
EGUsphere, https://doi.org/10.5194/egusphere-2025-141, https://doi.org/10.5194/egusphere-2025-141, 2025
Short summary
Short summary
The chemical composition of organic particles in the Amazon rainforest was investigated to understand how biogenic and human emissions influence the atmosphere in this unique ecosystem. Seasonal patterns were found where wet seasons were dominated by biogenic compounds from natural sources while dry seasons showed increased fire-related pollutants. These findings reveal how emissions, fires and long-range transport affect atmospheric chemistry, with implications for climate models.
Ingrid Chanca, Ingeborg Levin, Susan Trumbore, Kita Macario, Jost Lavric, Carlos Alberto Quesada, Alessandro Carioca de Araújo, Cléo Quaresma Dias Júnior, Hella van Asperen, Samuel Hammer, and Carlos A. Sierra
Biogeosciences, 22, 455–472, https://doi.org/10.5194/bg-22-455-2025, https://doi.org/10.5194/bg-22-455-2025, 2025
Short summary
Short summary
Assessing the net carbon (C) budget of the Amazon entails considering the magnitude and timing of C absorption and losses through respiration (transit time of C). Radiocarbon-based estimates of the transit time of C in the Amazon Tall Tower Observatory (ATTO) suggest a change in the transit time from 6 ± 2 years and 18 ± 4 years within 2 years (October 2019 and December 2021, respectively). This variability indicates that only a fraction of newly fixed C can be stored for decades or longer.
Akima Ringsdorf, Achim Edtbauer, Bruna Holanda, Christopher Poehlker, Marta O. Sá, Alessandro Araújo, Jürgen Kesselmeier, Jos Lelieveld, and Jonathan Williams
Atmos. Chem. Phys., 24, 11883–11910, https://doi.org/10.5194/acp-24-11883-2024, https://doi.org/10.5194/acp-24-11883-2024, 2024
Short summary
Short summary
We show the average height distribution of separately observed aldehydes and ketones over a day and discuss their rainforest-specific sources and sinks as well as their seasonal changes above the Amazon. Ketones have much longer atmospheric lifetimes than aldehydes and thus different implications for atmospheric chemistry. However, they are commonly observed together, which we overcome by measuring with a NO+ chemical ionization mass spectrometer for the first time in the Amazon rainforest.
Xinyue Shao, Minghuai Wang, Xinyi Dong, Yaman Liu, Wenxiang Shen, Stephen R. Arnold, Leighton A. Regayre, Meinrat O. Andreae, Mira L. Pöhlker, Duseong S. Jo, Man Yue, and Ken S. Carslaw
Atmos. Chem. Phys., 24, 11365–11389, https://doi.org/10.5194/acp-24-11365-2024, https://doi.org/10.5194/acp-24-11365-2024, 2024
Short summary
Short summary
Highly oxygenated organic molecules (HOMs) play an important role in atmospheric new particle formation (NPF). By semi-explicitly coupling the chemical mechanism of HOMs and a comprehensive nucleation scheme in a global climate model, the updated model shows better agreement with measurements of nucleation rate, growth rate, and NPF event frequency. Our results reveal that HOM-driven NPF leads to a considerable increase in particle and cloud condensation nuclei burden globally.
Luiz A. T. Machado, Jürgen Kesselmeier, Santiago Botía, Hella van Asperen, Meinrat O. Andreae, Alessandro C. de Araújo, Paulo Artaxo, Achim Edtbauer, Rosaria R. Ferreira, Marco A. Franco, Hartwig Harder, Sam P. Jones, Cléo Q. Dias-Júnior, Guido G. Haytzmann, Carlos A. Quesada, Shujiro Komiya, Jost Lavric, Jos Lelieveld, Ingeborg Levin, Anke Nölscher, Eva Pfannerstill, Mira L. Pöhlker, Ulrich Pöschl, Akima Ringsdorf, Luciana Rizzo, Ana M. Yáñez-Serrano, Susan Trumbore, Wanda I. D. Valenti, Jordi Vila-Guerau de Arellano, David Walter, Jonathan Williams, Stefan Wolff, and Christopher Pöhlker
Atmos. Chem. Phys., 24, 8893–8910, https://doi.org/10.5194/acp-24-8893-2024, https://doi.org/10.5194/acp-24-8893-2024, 2024
Short summary
Short summary
Composite analysis of gas concentration before and after rainfall, during the day and night, gives insight into the complex relationship between trace gas variability and precipitation. The analysis helps us to understand the sources and sinks of trace gases within a forest ecosystem. It elucidates processes that are not discernible under undisturbed conditions and contributes to a deeper understanding of the trace gas life cycle and its intricate interactions with cloud dynamics in the Amazon.
Marco A. Franco, Rafael Valiati, Bruna A. Holanda, Bruno B. Meller, Leslie A. Kremper, Luciana V. Rizzo, Samara Carbone, Fernando G. Morais, Janaína P. Nascimento, Meinrat O. Andreae, Micael A. Cecchini, Luiz A. T. Machado, Milena Ponczek, Ulrich Pöschl, David Walter, Christopher Pöhlker, and Paulo Artaxo
Atmos. Chem. Phys., 24, 8751–8770, https://doi.org/10.5194/acp-24-8751-2024, https://doi.org/10.5194/acp-24-8751-2024, 2024
Short summary
Short summary
The Amazon wet-season atmosphere was studied at the Amazon Tall Tower Observatory site, revealing vertical variations (between 60 and 325 m) in natural aerosols. Daytime mixing contrasted with nighttime stratification, with distinct rain-induced changes in aerosol populations. Notably, optical property recovery at higher levels was faster, while near-canopy aerosols showed higher scattering efficiency. These findings enhance our understanding of aerosol impacts on climate dynamics.
Hella van Asperen, Thorsten Warneke, Alessandro Carioca de Araújo, Bruce Forsberg, Sávio José Filgueiras Ferreira, Thomas Röckmann, Carina van der Veen, Sipko Bulthuis, Leonardo Ramos de Oliveira, Thiago de Lima Xavier, Jailson da Mata, Marta de Oliveira Sá, Paulo Ricardo Teixeira, Julie Andrews de França e Silva, Susan Trumbore, and Justus Notholt
Biogeosciences, 21, 3183–3199, https://doi.org/10.5194/bg-21-3183-2024, https://doi.org/10.5194/bg-21-3183-2024, 2024
Short summary
Short summary
Carbon monoxide (CO) is regarded as an important indirect greenhouse gas. Soils can emit and take up CO, but, until now, uncertainty remains as to which process dominates in tropical rainforests. We present the first soil CO flux measurements from a tropical rainforest. Based on our observations, we report that tropical rainforest soils are a net source of CO. In addition, we show that valley streams and inundated areas are likely additional hot spots of CO in the ecosystem.
Gabriela R. Unfer, Luiz A. T. Machado, Paulo Artaxo, Marco A. Franco, Leslie A. Kremper, Mira L. Pöhlker, Ulrich Pöschl, and Christopher Pöhlker
Atmos. Chem. Phys., 24, 3869–3882, https://doi.org/10.5194/acp-24-3869-2024, https://doi.org/10.5194/acp-24-3869-2024, 2024
Short summary
Short summary
Amazonian aerosols and their interactions with precipitation were studied by understanding them in a 3D space based on three parameters that characterize the concentration and size distribution of aerosols. The results showed characteristic arrangements regarding seasonal and diurnal cycles, as well as when interacting with precipitation. The use of this 3D space appears to be a promising tool for aerosol population analysis and for model validation and parameterization.
Xurong Wang, Qiaoqiao Wang, Maria Prass, Christopher Pöhlker, Daniel Moran-Zuloaga, Paulo Artaxo, Jianwei Gu, Ning Yang, Xiajie Yang, Jiangchuan Tao, Juan Hong, Nan Ma, Yafang Cheng, Hang Su, and Meinrat O. Andreae
Atmos. Chem. Phys., 23, 9993–10014, https://doi.org/10.5194/acp-23-9993-2023, https://doi.org/10.5194/acp-23-9993-2023, 2023
Short summary
Short summary
In this work, with an optimized particle mass size distribution, we captured observed aerosol optical depth (AOD) and coarse aerosol concentrations over source and/or receptor regions well, demonstrating good performance in simulating export of African dust toward the Amazon Basin. In addition to factors controlling the transatlantic transport of African dust, the study investigated the impact of African dust over the Amazon Basin, including the nutrient inputs associated with dust deposition.
Amelie U. Schmitt, Felix Ament, Alessandro C. de Araújo, Marta Sá, and Paulo Teixeira
Atmos. Chem. Phys., 23, 9323–9346, https://doi.org/10.5194/acp-23-9323-2023, https://doi.org/10.5194/acp-23-9323-2023, 2023
Short summary
Short summary
Tall vegetation in forests affects the exchange of heat and moisture between the atmosphere and the land surface. We compared measurements from the Amazon Tall Tower Observatory to results from a land surface model to identify model shortcomings. Our results suggest that soil temperatures in the model could be improved by incorporating a separate canopy layer which represents the heat storage within the forest.
Eliane Gomes Alves, Raoni Aquino Santana, Cléo Quaresma Dias-Júnior, Santiago Botía, Tyeen Taylor, Ana Maria Yáñez-Serrano, Jürgen Kesselmeier, Efstratios Bourtsoukidis, Jonathan Williams, Pedro Ivo Lembo Silveira de Assis, Giordane Martins, Rodrigo de Souza, Sérgio Duvoisin Júnior, Alex Guenther, Dasa Gu, Anywhere Tsokankunku, Matthias Sörgel, Bruce Nelson, Davieliton Pinto, Shujiro Komiya, Diogo Martins Rosa, Bettina Weber, Cybelli Barbosa, Michelle Robin, Kenneth J. Feeley, Alvaro Duque, Viviana Londoño Lemos, Maria Paula Contreras, Alvaro Idarraga, Norberto López, Chad Husby, Brett Jestrow, and Iván Mauricio Cely Toro
Atmos. Chem. Phys., 23, 8149–8168, https://doi.org/10.5194/acp-23-8149-2023, https://doi.org/10.5194/acp-23-8149-2023, 2023
Short summary
Short summary
Isoprene is emitted mainly by plants and can influence atmospheric chemistry and air quality. But, there are uncertainties in model emission estimates and follow-up atmospheric processes. In our study, with long-term observational datasets of isoprene and biological and environmental factors from central Amazonia, we show that isoprene emission estimates could be improved when biological processes were mechanistically incorporated into the model.
Yunyao Ma, Bettina Weber, Alexandra Kratz, José Raggio, Claudia Colesie, Maik Veste, Maaike Y. Bader, and Philipp Porada
Biogeosciences, 20, 2553–2572, https://doi.org/10.5194/bg-20-2553-2023, https://doi.org/10.5194/bg-20-2553-2023, 2023
Short summary
Short summary
We found that the modelled annual carbon balance of biocrusts is strongly affected by both the environment (mostly air temperature and CO2 concentration) and physiology, such as temperature response of respiration. However, the relative impacts of these drivers vary across regions with different climates. Uncertainty in driving factors may lead to unrealistic carbon balance estimates, particularly in temperate climates, and may be explained by seasonal variation of physiology due to acclimation.
Xuemei Wang, Hamish Gordon, Daniel P. Grosvenor, Meinrat O. Andreae, and Ken S. Carslaw
Atmos. Chem. Phys., 23, 4431–4461, https://doi.org/10.5194/acp-23-4431-2023, https://doi.org/10.5194/acp-23-4431-2023, 2023
Short summary
Short summary
New particle formation in the upper troposphere is important for the global boundary layer aerosol population, and they can be transported downward in Amazonia. We use a global and a regional model to quantify the number of aerosols that are formed at high altitude and transported downward in a 1000 km region. We find that the majority of the aerosols are from outside the region. This suggests that the 1000 km region is unlikely to be a
closed loopfor aerosol formation, transport and growth.
Haley M. Royer, Mira L. Pöhlker, Ovid Krüger, Edmund Blades, Peter Sealy, Nurun Nahar Lata, Zezhen Cheng, Swarup China, Andrew P. Ault, Patricia K. Quinn, Paquita Zuidema, Christopher Pöhlker, Ulrich Pöschl, Meinrat Andreae, and Cassandra J. Gaston
Atmos. Chem. Phys., 23, 981–998, https://doi.org/10.5194/acp-23-981-2023, https://doi.org/10.5194/acp-23-981-2023, 2023
Short summary
Short summary
This paper presents atmospheric particle chemical composition and measurements of aerosol water uptake properties collected at Ragged Point, Barbados, during the winter of 2020. The result of this study indicates the importance of small African smoke particles for cloud droplet formation in the tropical North Atlantic and highlights the large spatial and temporal pervasiveness of smoke over the Atlantic Ocean.
Denis Leppla, Nora Zannoni, Leslie Kremper, Jonathan Williams, Christopher Pöhlker, Marta Sá, Maria Christina Solci, and Thorsten Hoffmann
Atmos. Chem. Phys., 23, 809–820, https://doi.org/10.5194/acp-23-809-2023, https://doi.org/10.5194/acp-23-809-2023, 2023
Short summary
Short summary
Chiral chemodiversity plays a critical role in biochemical processes such as insect and plant communication. Here we report on the measurement of chiral-specified secondary organic aerosol in the Amazon rainforest. The results show that the chiral ratio is mainly determined by large-scale emission processes. Characteristic emissions of chiral aerosol precursors from different forest ecosystems can thus provide large-scale information on different biogenic sources via chiral particle analysis.
Yunfan Liu, Hang Su, Siwen Wang, Chao Wei, Wei Tao, Mira L. Pöhlker, Christopher Pöhlker, Bruna A. Holanda, Ovid O. Krüger, Thorsten Hoffmann, Manfred Wendisch, Paulo Artaxo, Ulrich Pöschl, Meinrat O. Andreae, and Yafang Cheng
Atmos. Chem. Phys., 23, 251–272, https://doi.org/10.5194/acp-23-251-2023, https://doi.org/10.5194/acp-23-251-2023, 2023
Short summary
Short summary
The origins of the abundant cloud condensation nuclei (CCN) in the upper troposphere (UT) of the Amazon remain unclear. With model developments of new secondary organic aerosol schemes and constrained by observation, we show that strong aerosol nucleation and condensation in the UT is triggered by biogenic organics, and organic condensation is key for UT CCN production. This UT CCN-producing mechanism may prevail over broader vegetation canopies and deserves emphasis in aerosol–climate feedback.
Dirk Dienhart, Bettina Brendel, John N. Crowley, Philipp G. Eger, Hartwig Harder, Monica Martinez, Andrea Pozzer, Roland Rohloff, Jan Schuladen, Sebastian Tauer, David Walter, Jos Lelieveld, and Horst Fischer
Atmos. Chem. Phys., 23, 119–142, https://doi.org/10.5194/acp-23-119-2023, https://doi.org/10.5194/acp-23-119-2023, 2023
Short summary
Short summary
Formaldehyde and hydroperoxide measurements were performed in the marine boundary layer around the Arabian Peninsula and highlight the Suez Canal and Arabian (Persian) Gulf as a hotspot of photochemical air pollution. A comparison with the EMAC model shows that the formaldehyde results match within a factor of 2, while hydrogen peroxide was overestimated by more than a factor of 5, which revealed enhanced HOx (OH+HO2) radicals in the simulation and an underestimation of dry deposition velocites.
Charlotte M. Beall, Thomas C. J. Hill, Paul J. DeMott, Tobias Köneman, Michael Pikridas, Frank Drewnick, Hartwig Harder, Christopher Pöhlker, Jos Lelieveld, Bettina Weber, Minas Iakovides, Roman Prokeš, Jean Sciare, Meinrat O. Andreae, M. Dale Stokes, and Kimberly A. Prather
Atmos. Chem. Phys., 22, 12607–12627, https://doi.org/10.5194/acp-22-12607-2022, https://doi.org/10.5194/acp-22-12607-2022, 2022
Short summary
Short summary
Ice-nucleating particles (INPs) are rare aerosols that can trigger ice formation in clouds and affect climate-relevant cloud properties such as phase, reflectivity and lifetime. Dust is the dominant INP source, yet few measurements have been reported near major dust sources. We report INP observations within hundreds of kilometers of the biggest dust source regions globally: the Sahara and the Arabian Peninsula. Results show that at temperatures > −15 °C, INPs are dominated by organics.
Simon F. Reifenberg, Anna Martin, Matthias Kohl, Sara Bacer, Zaneta Hamryszczak, Ivan Tadic, Lenard Röder, Daniel J. Crowley, Horst Fischer, Katharina Kaiser, Johannes Schneider, Raphael Dörich, John N. Crowley, Laura Tomsche, Andreas Marsing, Christiane Voigt, Andreas Zahn, Christopher Pöhlker, Bruna A. Holanda, Ovid Krüger, Ulrich Pöschl, Mira Pöhlker, Patrick Jöckel, Marcel Dorf, Ulrich Schumann, Jonathan Williams, Birger Bohn, Joachim Curtius, Hardwig Harder, Hans Schlager, Jos Lelieveld, and Andrea Pozzer
Atmos. Chem. Phys., 22, 10901–10917, https://doi.org/10.5194/acp-22-10901-2022, https://doi.org/10.5194/acp-22-10901-2022, 2022
Short summary
Short summary
In this work we use a combination of observational data from an aircraft campaign and model results to investigate the effect of the European lockdown due to COVID-19 in spring 2020. Using model results, we show that the largest relative changes to the atmospheric composition caused by the reduced emissions are located in the upper troposphere around aircraft cruise altitude, while the largest absolute changes are present at the surface.
Alexander D. Harrison, Daniel O'Sullivan, Michael P. Adams, Grace C. E. Porter, Edmund Blades, Cherise Brathwaite, Rebecca Chewitt-Lucas, Cassandra Gaston, Rachel Hawker, Ovid O. Krüger, Leslie Neve, Mira L. Pöhlker, Christopher Pöhlker, Ulrich Pöschl, Alberto Sanchez-Marroquin, Andrea Sealy, Peter Sealy, Mark D. Tarn, Shanice Whitehall, James B. McQuaid, Kenneth S. Carslaw, Joseph M. Prospero, and Benjamin J. Murray
Atmos. Chem. Phys., 22, 9663–9680, https://doi.org/10.5194/acp-22-9663-2022, https://doi.org/10.5194/acp-22-9663-2022, 2022
Short summary
Short summary
The formation of ice in clouds fundamentally alters cloud properties; hence it is important we understand the special aerosol particles that can nucleate ice when immersed in supercooled cloud droplets. In this paper we show that African desert dust that has travelled across the Atlantic to the Caribbean nucleates ice much less well than we might have expected.
Ovid O. Krüger, Bruna A. Holanda, Sourangsu Chowdhury, Andrea Pozzer, David Walter, Christopher Pöhlker, Maria Dolores Andrés Hernández, John P. Burrows, Christiane Voigt, Jos Lelieveld, Johannes Quaas, Ulrich Pöschl, and Mira L. Pöhlker
Atmos. Chem. Phys., 22, 8683–8699, https://doi.org/10.5194/acp-22-8683-2022, https://doi.org/10.5194/acp-22-8683-2022, 2022
Short summary
Short summary
The abrupt reduction in human activities during the first COVID-19 lockdown created unprecedented atmospheric conditions. We took the opportunity to quantify changes in black carbon (BC) as a major anthropogenic air pollutant. Therefore, we measured BC on board a research aircraft over Europe during the lockdown and compared the results to measurements from 2017. With model simulations we account for different weather conditions and find a lockdown-related decrease in BC of 41 %.
M. Dolores Andrés Hernández, Andreas Hilboll, Helmut Ziereis, Eric Förster, Ovid O. Krüger, Katharina Kaiser, Johannes Schneider, Francesca Barnaba, Mihalis Vrekoussis, Jörg Schmidt, Heidi Huntrieser, Anne-Marlene Blechschmidt, Midhun George, Vladyslav Nenakhov, Theresa Harlass, Bruna A. Holanda, Jennifer Wolf, Lisa Eirenschmalz, Marc Krebsbach, Mira L. Pöhlker, Anna B. Kalisz Hedegaard, Linlu Mei, Klaus Pfeilsticker, Yangzhuoran Liu, Ralf Koppmann, Hans Schlager, Birger Bohn, Ulrich Schumann, Andreas Richter, Benjamin Schreiner, Daniel Sauer, Robert Baumann, Mariano Mertens, Patrick Jöckel, Markus Kilian, Greta Stratmann, Christopher Pöhlker, Monica Campanelli, Marco Pandolfi, Michael Sicard, José L. Gómez-Amo, Manuel Pujadas, Katja Bigge, Flora Kluge, Anja Schwarz, Nikos Daskalakis, David Walter, Andreas Zahn, Ulrich Pöschl, Harald Bönisch, Stephan Borrmann, Ulrich Platt, and John P. Burrows
Atmos. Chem. Phys., 22, 5877–5924, https://doi.org/10.5194/acp-22-5877-2022, https://doi.org/10.5194/acp-22-5877-2022, 2022
Short summary
Short summary
EMeRGe provides a unique set of in situ and remote sensing airborne measurements of trace gases and aerosol particles along selected flight routes in the lower troposphere over Europe. The interpretation uses also complementary collocated ground-based and satellite measurements. The collected data help to improve the current understanding of the complex spatial distribution of trace gases and aerosol particles resulting from mixing, transport, and transformation of pollution plumes over Europe.
Hanna K. Lappalainen, Tuukka Petäjä, Timo Vihma, Jouni Räisänen, Alexander Baklanov, Sergey Chalov, Igor Esau, Ekaterina Ezhova, Matti Leppäranta, Dmitry Pozdnyakov, Jukka Pumpanen, Meinrat O. Andreae, Mikhail Arshinov, Eija Asmi, Jianhui Bai, Igor Bashmachnikov, Boris Belan, Federico Bianchi, Boris Biskaborn, Michael Boy, Jaana Bäck, Bin Cheng, Natalia Chubarova, Jonathan Duplissy, Egor Dyukarev, Konstantinos Eleftheriadis, Martin Forsius, Martin Heimann, Sirkku Juhola, Vladimir Konovalov, Igor Konovalov, Pavel Konstantinov, Kajar Köster, Elena Lapshina, Anna Lintunen, Alexander Mahura, Risto Makkonen, Svetlana Malkhazova, Ivan Mammarella, Stefano Mammola, Stephany Buenrostro Mazon, Outi Meinander, Eugene Mikhailov, Victoria Miles, Stanislav Myslenkov, Dmitry Orlov, Jean-Daniel Paris, Roberta Pirazzini, Olga Popovicheva, Jouni Pulliainen, Kimmo Rautiainen, Torsten Sachs, Vladimir Shevchenko, Andrey Skorokhod, Andreas Stohl, Elli Suhonen, Erik S. Thomson, Marina Tsidilina, Veli-Pekka Tynkkynen, Petteri Uotila, Aki Virkkula, Nadezhda Voropay, Tobias Wolf, Sayaka Yasunaka, Jiahua Zhang, Yubao Qiu, Aijun Ding, Huadong Guo, Valery Bondur, Nikolay Kasimov, Sergej Zilitinkevich, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 22, 4413–4469, https://doi.org/10.5194/acp-22-4413-2022, https://doi.org/10.5194/acp-22-4413-2022, 2022
Short summary
Short summary
We summarize results during the last 5 years in the northern Eurasian region, especially from Russia, and introduce recent observations of the air quality in the urban environments in China. Although the scientific knowledge in these regions has increased, there are still gaps in our understanding of large-scale climate–Earth surface interactions and feedbacks. This arises from limitations in research infrastructures and integrative data analyses, hindering a comprehensive system analysis.
Marco A. Franco, Florian Ditas, Leslie A. Kremper, Luiz A. T. Machado, Meinrat O. Andreae, Alessandro Araújo, Henrique M. J. Barbosa, Joel F. de Brito, Samara Carbone, Bruna A. Holanda, Fernando G. Morais, Janaína P. Nascimento, Mira L. Pöhlker, Luciana V. Rizzo, Marta Sá, Jorge Saturno, David Walter, Stefan Wolff, Ulrich Pöschl, Paulo Artaxo, and Christopher Pöhlker
Atmos. Chem. Phys., 22, 3469–3492, https://doi.org/10.5194/acp-22-3469-2022, https://doi.org/10.5194/acp-22-3469-2022, 2022
Short summary
Short summary
In Central Amazonia, new particle formation in the planetary boundary layer is rare. Instead, there is the appearance of sub-50 nm aerosols with diameters larger than about 20 nm that eventually grow to cloud condensation nuclei size range. Here, 254 growth events were characterized which have higher predominance in the wet season. About 70 % of them showed direct relation to convective downdrafts, while 30 % occurred partly under clear-sky conditions, evidencing still unknown particle sources.
Meinrat O. Andreae, Tracey W. Andreae, Florian Ditas, and Christopher Pöhlker
Atmos. Chem. Phys., 22, 2487–2505, https://doi.org/10.5194/acp-22-2487-2022, https://doi.org/10.5194/acp-22-2487-2022, 2022
Short summary
Short summary
Atmospheric aerosol particles are key players in the Earth’s climate system, but there is still considerable uncertainty about where and how these particles are initially formed. We present the first study of new particle formation (NPF) at a pristine site in a subboreal forest region of North America. Our data suggest that, in this environment, there is frequent NPF from biogenic organic precursor compounds, which was likely the predominant source of particles in the preindustrial environment.
Kai Tang, Beatriz Sánchez-Parra, Petya Yordanova, Jörn Wehking, Anna T. Backes, Daniel A. Pickersgill, Stefanie Maier, Jean Sciare, Ulrich Pöschl, Bettina Weber, and Janine Fröhlich-Nowoisky
Biogeosciences, 19, 71–91, https://doi.org/10.5194/bg-19-71-2022, https://doi.org/10.5194/bg-19-71-2022, 2022
Short summary
Short summary
Metagenomic sequencing and freezing experiments of aerosol samples collected on Cyprus revealed rain-related short-term changes of bioaerosol and ice nuclei composition. Filtration experiments showed a rain-related enhancement of biological ice nuclei > 5 µm and < 0.1 µm. The observed effects of rainfall on the composition of atmospheric bioaerosols and ice nuclei may influence the hydrological cycle as well as the health effects of air particulate matter (pathogens, allergens).
Luiz A. T. Machado, Marco A. Franco, Leslie A. Kremper, Florian Ditas, Meinrat O. Andreae, Paulo Artaxo, Micael A. Cecchini, Bruna A. Holanda, Mira L. Pöhlker, Ivan Saraiva, Stefan Wolff, Ulrich Pöschl, and Christopher Pöhlker
Atmos. Chem. Phys., 21, 18065–18086, https://doi.org/10.5194/acp-21-18065-2021, https://doi.org/10.5194/acp-21-18065-2021, 2021
Short summary
Short summary
Several studies evaluate aerosol–cloud interactions, but only a few attempted to describe how clouds modify aerosol properties. This study evaluates the effect of weather events on the particle size distribution at the ATTO, combining remote sensing and in situ data. Ultrafine, Aitken and accumulation particles modes have different behaviors for the diurnal cycle and for rainfall events. This study opens up new scientific questions that need to be pursued in detail in new field campaigns.
Ramon Campos Braga, Barbara Ervens, Daniel Rosenfeld, Meinrat O. Andreae, Jan-David Förster, Daniel Fütterer, Lianet Hernández Pardo, Bruna A. Holanda, Tina Jurkat-Witschas, Ovid O. Krüger, Oliver Lauer, Luiz A. T. Machado, Christopher Pöhlker, Daniel Sauer, Christiane Voigt, Adrian Walser, Manfred Wendisch, Ulrich Pöschl, and Mira L. Pöhlker
Atmos. Chem. Phys., 21, 17513–17528, https://doi.org/10.5194/acp-21-17513-2021, https://doi.org/10.5194/acp-21-17513-2021, 2021
Short summary
Short summary
Interactions of aerosol particles with clouds represent a large uncertainty in estimates of climate change. Properties of aerosol particles control their ability to act as cloud condensation nuclei. Using aerosol measurements in the Amazon, we performed model studies to compare predicted and measured cloud droplet number concentrations at cloud bases. Our results confirm previous estimates of particle hygroscopicity in this region.
Igor B. Konovalov, Nikolai A. Golovushkin, Matthias Beekmann, Mikhail V. Panchenko, and Meinrat O. Andreae
Atmos. Meas. Tech., 14, 6647–6673, https://doi.org/10.5194/amt-14-6647-2021, https://doi.org/10.5194/amt-14-6647-2021, 2021
Short summary
Short summary
The absorption of solar light by organic matter, known as brown carbon (BrC), contributes significantly to the radiative budget of the Earth’s atmosphere, but its representation in atmospheric models is uncertain. This paper advances a methodology to constrain model parameters characterizing BrC absorption of atmospheric aerosol originating from biomass burning with the available remote ground-based observations of atmospheric aerosol.
Ramon Campos Braga, Daniel Rosenfeld, Ovid O. Krüger, Barbara Ervens, Bruna A. Holanda, Manfred Wendisch, Trismono Krisna, Ulrich Pöschl, Meinrat O. Andreae, Christiane Voigt, and Mira L. Pöhlker
Atmos. Chem. Phys., 21, 14079–14088, https://doi.org/10.5194/acp-21-14079-2021, https://doi.org/10.5194/acp-21-14079-2021, 2021
Short summary
Short summary
Quantifying the precipitation within clouds is crucial for our understanding of the Earth's hydrological cycle. Using in situ measurements of cloud and rain properties over the Amazon Basin and Atlantic Ocean, we show here a linear relationship between the effective radius (re) and precipitation water content near the tops of convective clouds for different pollution states and temperature levels. Our results emphasize the role of re to determine both initiation and amount of precipitation.
Maria Prass, Meinrat O. Andreae, Alessandro C. de Araùjo, Paulo Artaxo, Florian Ditas, Wolfgang Elbert, Jan-David Förster, Marco Aurélio Franco, Isabella Hrabe de Angelis, Jürgen Kesselmeier, Thomas Klimach, Leslie Ann Kremper, Eckhard Thines, David Walter, Jens Weber, Bettina Weber, Bernhard M. Fuchs, Ulrich Pöschl, and Christopher Pöhlker
Biogeosciences, 18, 4873–4887, https://doi.org/10.5194/bg-18-4873-2021, https://doi.org/10.5194/bg-18-4873-2021, 2021
Short summary
Short summary
Bioaerosols in the atmosphere over the Amazon rain forest were analyzed by molecular biological staining and microscopy. Eukaryotic, bacterial, and archaeal aerosols were quantified in time series and altitude profiles which exhibited clear differences in number concentrations and vertical distributions. Our results provide insights into the sources and dispersion of different Amazonian bioaerosol types as a basis for a better understanding of biosphere–atmosphere interactions.
Bjorn Stevens, Sandrine Bony, David Farrell, Felix Ament, Alan Blyth, Christopher Fairall, Johannes Karstensen, Patricia K. Quinn, Sabrina Speich, Claudia Acquistapace, Franziska Aemisegger, Anna Lea Albright, Hugo Bellenger, Eberhard Bodenschatz, Kathy-Ann Caesar, Rebecca Chewitt-Lucas, Gijs de Boer, Julien Delanoë, Leif Denby, Florian Ewald, Benjamin Fildier, Marvin Forde, Geet George, Silke Gross, Martin Hagen, Andrea Hausold, Karen J. Heywood, Lutz Hirsch, Marek Jacob, Friedhelm Jansen, Stefan Kinne, Daniel Klocke, Tobias Kölling, Heike Konow, Marie Lothon, Wiebke Mohr, Ann Kristin Naumann, Louise Nuijens, Léa Olivier, Robert Pincus, Mira Pöhlker, Gilles Reverdin, Gregory Roberts, Sabrina Schnitt, Hauke Schulz, A. Pier Siebesma, Claudia Christine Stephan, Peter Sullivan, Ludovic Touzé-Peiffer, Jessica Vial, Raphaela Vogel, Paquita Zuidema, Nicola Alexander, Lyndon Alves, Sophian Arixi, Hamish Asmath, Gholamhossein Bagheri, Katharina Baier, Adriana Bailey, Dariusz Baranowski, Alexandre Baron, Sébastien Barrau, Paul A. Barrett, Frédéric Batier, Andreas Behrendt, Arne Bendinger, Florent Beucher, Sebastien Bigorre, Edmund Blades, Peter Blossey, Olivier Bock, Steven Böing, Pierre Bosser, Denis Bourras, Pascale Bouruet-Aubertot, Keith Bower, Pierre Branellec, Hubert Branger, Michal Brennek, Alan Brewer, Pierre-Etienne Brilouet, Björn Brügmann, Stefan A. Buehler, Elmo Burke, Ralph Burton, Radiance Calmer, Jean-Christophe Canonici, Xavier Carton, Gregory Cato Jr., Jude Andre Charles, Patrick Chazette, Yanxu Chen, Michal T. Chilinski, Thomas Choularton, Patrick Chuang, Shamal Clarke, Hugh Coe, Céline Cornet, Pierre Coutris, Fleur Couvreux, Susanne Crewell, Timothy Cronin, Zhiqiang Cui, Yannis Cuypers, Alton Daley, Gillian M. Damerell, Thibaut Dauhut, Hartwig Deneke, Jean-Philippe Desbios, Steffen Dörner, Sebastian Donner, Vincent Douet, Kyla Drushka, Marina Dütsch, André Ehrlich, Kerry Emanuel, Alexandros Emmanouilidis, Jean-Claude Etienne, Sheryl Etienne-Leblanc, Ghislain Faure, Graham Feingold, Luca Ferrero, Andreas Fix, Cyrille Flamant, Piotr Jacek Flatau, Gregory R. Foltz, Linda Forster, Iulian Furtuna, Alan Gadian, Joseph Galewsky, Martin Gallagher, Peter Gallimore, Cassandra Gaston, Chelle Gentemann, Nicolas Geyskens, Andreas Giez, John Gollop, Isabelle Gouirand, Christophe Gourbeyre, Dörte de Graaf, Geiske E. de Groot, Robert Grosz, Johannes Güttler, Manuel Gutleben, Kashawn Hall, George Harris, Kevin C. Helfer, Dean Henze, Calvert Herbert, Bruna Holanda, Antonio Ibanez-Landeta, Janet Intrieri, Suneil Iyer, Fabrice Julien, Heike Kalesse, Jan Kazil, Alexander Kellman, Abiel T. Kidane, Ulrike Kirchner, Marcus Klingebiel, Mareike Körner, Leslie Ann Kremper, Jan Kretzschmar, Ovid Krüger, Wojciech Kumala, Armin Kurz, Pierre L'Hégaret, Matthieu Labaste, Tom Lachlan-Cope, Arlene Laing, Peter Landschützer, Theresa Lang, Diego Lange, Ingo Lange, Clément Laplace, Gauke Lavik, Rémi Laxenaire, Caroline Le Bihan, Mason Leandro, Nathalie Lefevre, Marius Lena, Donald Lenschow, Qiang Li, Gary Lloyd, Sebastian Los, Niccolò Losi, Oscar Lovell, Christopher Luneau, Przemyslaw Makuch, Szymon Malinowski, Gaston Manta, Eleni Marinou, Nicholas Marsden, Sebastien Masson, Nicolas Maury, Bernhard Mayer, Margarette Mayers-Als, Christophe Mazel, Wayne McGeary, James C. McWilliams, Mario Mech, Melina Mehlmann, Agostino Niyonkuru Meroni, Theresa Mieslinger, Andreas Minikin, Peter Minnett, Gregor Möller, Yanmichel Morfa Avalos, Caroline Muller, Ionela Musat, Anna Napoli, Almuth Neuberger, Christophe Noisel, David Noone, Freja Nordsiek, Jakub L. Nowak, Lothar Oswald, Douglas J. Parker, Carolyn Peck, Renaud Person, Miriam Philippi, Albert Plueddemann, Christopher Pöhlker, Veronika Pörtge, Ulrich Pöschl, Lawrence Pologne, Michał Posyniak, Marc Prange, Estefanía Quiñones Meléndez, Jule Radtke, Karim Ramage, Jens Reimann, Lionel Renault, Klaus Reus, Ashford Reyes, Joachim Ribbe, Maximilian Ringel, Markus Ritschel, Cesar B. Rocha, Nicolas Rochetin, Johannes Röttenbacher, Callum Rollo, Haley Royer, Pauline Sadoulet, Leo Saffin, Sanola Sandiford, Irina Sandu, Michael Schäfer, Vera Schemann, Imke Schirmacher, Oliver Schlenczek, Jerome Schmidt, Marcel Schröder, Alfons Schwarzenboeck, Andrea Sealy, Christoph J. Senff, Ilya Serikov, Samkeyat Shohan, Elizabeth Siddle, Alexander Smirnov, Florian Späth, Branden Spooner, M. Katharina Stolla, Wojciech Szkółka, Simon P. de Szoeke, Stéphane Tarot, Eleni Tetoni, Elizabeth Thompson, Jim Thomson, Lorenzo Tomassini, Julien Totems, Alma Anna Ubele, Leonie Villiger, Jan von Arx, Thomas Wagner, Andi Walther, Ben Webber, Manfred Wendisch, Shanice Whitehall, Anton Wiltshire, Allison A. Wing, Martin Wirth, Jonathan Wiskandt, Kevin Wolf, Ludwig Worbes, Ethan Wright, Volker Wulfmeyer, Shanea Young, Chidong Zhang, Dongxiao Zhang, Florian Ziemen, Tobias Zinner, and Martin Zöger
Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, https://doi.org/10.5194/essd-13-4067-2021, 2021
Short summary
Short summary
The EUREC4A field campaign, designed to test hypothesized mechanisms by which clouds respond to warming and benchmark next-generation Earth-system models, is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. It was the first campaign that attempted to characterize the full range of processes and scales influencing trade wind clouds.
Eugene F. Mikhailov, Mira L. Pöhlker, Kathrin Reinmuth-Selzle, Sergey S. Vlasenko, Ovid O. Krüger, Janine Fröhlich-Nowoisky, Christopher Pöhlker, Olga A. Ivanova, Alexey A. Kiselev, Leslie A. Kremper, and Ulrich Pöschl
Atmos. Chem. Phys., 21, 6999–7022, https://doi.org/10.5194/acp-21-6999-2021, https://doi.org/10.5194/acp-21-6999-2021, 2021
Short summary
Short summary
Subpollen particles are a relatively new subset of atmospheric aerosol particles. When pollen grains rupture, they release cytoplasmic fragments known as subpollen particles (SPPs). We found that SPPs, containing a broad spectrum of biopolymers and hydrocarbons, exhibit abnormally high water uptake. This effect may influence the life cycle of SPPs and the related direct and indirect impacts on radiation budget as well as reinforce their allergic potential.
Robbie Ramsay, Chiara F. Di Marco, Mathew R. Heal, Matthias Sörgel, Paulo Artaxo, Meinrat O. Andreae, and Eiko Nemitz
Biogeosciences, 18, 2809–2825, https://doi.org/10.5194/bg-18-2809-2021, https://doi.org/10.5194/bg-18-2809-2021, 2021
Short summary
Short summary
The exchange of the gas ammonia between the atmosphere and the surface is an important biogeochemical process, but little is known of this exchange for certain ecosystems, such as the Amazon rainforest. This study took measurements of ammonia exchange over an Amazon rainforest site and subsequently modelled the observed deposition and emission patterns. We observed emissions of ammonia from the rainforest, which can be simulated accurately by using a canopy resistance modelling approach.
Jessica C. A. Baker, Luis Garcia-Carreras, Manuel Gloor, John H. Marsham, Wolfgang Buermann, Humberto R. da Rocha, Antonio D. Nobre, Alessandro Carioca de Araujo, and Dominick V. Spracklen
Hydrol. Earth Syst. Sci., 25, 2279–2300, https://doi.org/10.5194/hess-25-2279-2021, https://doi.org/10.5194/hess-25-2279-2021, 2021
Short summary
Short summary
Evapotranspiration (ET) is a vital part of the Amazon water cycle, but it is difficult to measure over large areas. In this study, we compare spatial patterns, seasonality, and recent trends in Amazon ET from a water-budget analysis with estimates from satellites, reanalysis, and global climate models. We find large differences between products, showing that many widely used datasets and climate models may not provide a reliable representation of this crucial variable over the Amazon.
Eva Y. Pfannerstill, Nina G. Reijrink, Achim Edtbauer, Akima Ringsdorf, Nora Zannoni, Alessandro Araújo, Florian Ditas, Bruna A. Holanda, Marta O. Sá, Anywhere Tsokankunku, David Walter, Stefan Wolff, Jošt V. Lavrič, Christopher Pöhlker, Matthias Sörgel, and Jonathan Williams
Atmos. Chem. Phys., 21, 6231–6256, https://doi.org/10.5194/acp-21-6231-2021, https://doi.org/10.5194/acp-21-6231-2021, 2021
Short summary
Short summary
Tropical forests are globally significant for atmospheric chemistry. However, the mixture of reactive organic gases emitted by these ecosystems is poorly understood. By comprehensive observations at an Amazon forest site, we show that oxygenated species were previously underestimated in their contribution to the tropical-forest reactant mix. Our results show rain and temperature effects and have implications for models and the understanding of ozone and particle formation above tropical forests.
Hella van Asperen, João Rafael Alves-Oliveira, Thorsten Warneke, Bruce Forsberg, Alessandro Carioca de Araújo, and Justus Notholt
Biogeosciences, 18, 2609–2625, https://doi.org/10.5194/bg-18-2609-2021, https://doi.org/10.5194/bg-18-2609-2021, 2021
Short summary
Short summary
Termites are insects that are highly abundant in tropical ecosystems. It is known that termites emit CH4, an important greenhouse gas, but their absolute emission remains uncertain. In the Amazon rainforest, we measured CH4 emissions from termite nests and groups of termites. In addition, we tested a fast and non-destructive field method to estimate termite nest colony size. We found that termites play a significant role in an ecosystem's CH4 budget and probably emit more than currently assumed.
Shujiro Komiya, Fumiyoshi Kondo, Heiko Moossen, Thomas Seifert, Uwe Schultz, Heike Geilmann, David Walter, and Jost V. Lavric
Atmos. Meas. Tech., 14, 1439–1455, https://doi.org/10.5194/amt-14-1439-2021, https://doi.org/10.5194/amt-14-1439-2021, 2021
Short summary
Short summary
The Amazon basin influences the atmospheric and hydrological cycles on local to global scales. To better understand how, we plan to perform continuous on-site measurements of the stable isotope composition of atmospheric water vapour. For making accurate on-site observations possible, we have investigated the performance of two commercial analysers and determined the best calibration strategy. Well calibrated, both analysers will allow us to record natural signals in the Amazon rainforest.
Guilherme F. Camarinha-Neto, Julia C. P. Cohen, Cléo Q. Dias-Júnior, Matthias Sörgel, José Henrique Cattanio, Alessandro Araújo, Stefan Wolff, Paulo A. F. Kuhn, Rodrigo A. F. Souza, Luciana V. Rizzo, and Paulo Artaxo
Atmos. Chem. Phys., 21, 339–356, https://doi.org/10.5194/acp-21-339-2021, https://doi.org/10.5194/acp-21-339-2021, 2021
Short summary
Short summary
It was observed that friagem phenomena (incursion of cold waves from the high latitudes of the Southern Hemisphere to the Amazon region), very common in the dry season of the Amazon region, produced significant changes in microclimate and atmospheric chemistry. Moreover, the effects of the friagem change the surface O3 and CO2 mixing ratios and therefore interfere deeply in the microclimatic conditions and the chemical composition of the atmosphere above the rainforest.
Igor B. Konovalov, Nikolai A. Golovushkin, Matthias Beekmann, and Meinrat O. Andreae
Atmos. Chem. Phys., 21, 357–392, https://doi.org/10.5194/acp-21-357-2021, https://doi.org/10.5194/acp-21-357-2021, 2021
Short summary
Short summary
A lack of consistent observational constraints on the atmospheric evolution of the optical properties of biomass burning (BB) aerosol limits the accuracy of assessments of the aerosol radiative and climate effects. We show that useful insights into the evolution of the BB aerosol optical properties can be inferred from a combination of satellite observations and 3D modeling. We report major changes that occurred in the optical properties of Siberian BB aerosol during its long-range transport.
Robert B. Chatfield, Meinrat O. Andreae, ARCTAS Science Team, and SEAC4RS Science Team
Atmos. Meas. Tech., 13, 7069–7096, https://doi.org/10.5194/amt-13-7069-2020, https://doi.org/10.5194/amt-13-7069-2020, 2020
Short summary
Short summary
Forest burning affects air pollution and global climate. A NASA aircraft studied fire emissions including the Rim Fire near Yosemite. We found frequent confusions between the actual fire emission factors and other effects on the air samples. Effects on CO2 and CO can originate far upwind; the gases can mix variably into a smoke plume. We devised a theory of constant features in plumes. A statistical mixed-effects analysis of a co-emitted tracers model disentangles such mixing from fire effects.
Jann Schrod, Erik S. Thomson, Daniel Weber, Jens Kossmann, Christopher Pöhlker, Jorge Saturno, Florian Ditas, Paulo Artaxo, Valérie Clouard, Jean-Marie Saurel, Martin Ebert, Joachim Curtius, and Heinz G. Bingemer
Atmos. Chem. Phys., 20, 15983–16006, https://doi.org/10.5194/acp-20-15983-2020, https://doi.org/10.5194/acp-20-15983-2020, 2020
Short summary
Short summary
Long-term ice-nucleating particle (INP) data are presented from four semi-pristine sites located in the Amazon, the Caribbean, Germany and the Arctic. Average INP concentrations did not differ by orders of magnitude between the sites. For all sites short-term variability dominated the time series, which lacked clear trends and seasonalities. Common drivers to explain the INP levels and their variations could not be identified, illustrating the complex nature of heterogeneous ice nucleation.
Robbie Ramsay, Chiara F. Di Marco, Matthias Sörgel, Mathew R. Heal, Samara Carbone, Paulo Artaxo, Alessandro C. de Araùjo, Marta Sá, Christopher Pöhlker, Jost Lavric, Meinrat O. Andreae, and Eiko Nemitz
Atmos. Chem. Phys., 20, 15551–15584, https://doi.org/10.5194/acp-20-15551-2020, https://doi.org/10.5194/acp-20-15551-2020, 2020
Short summary
Short summary
The Amazon rainforest is a unique
laboratoryto study the processes which govern the exchange of gases and aerosols to and from the atmosphere. This study investigated these processes by measuring the atmospheric concentrations of trace gases and particles at the Amazon Tall Tower Observatory. We found that the long-range transport of pollutants can affect the atmospheric composition above the Amazon rainforest and that the gases ammonia and nitrous acid can be emitted from the rainforest.
Robinson I. Negrón-Juárez, Jennifer A. Holm, Boris Faybishenko, Daniel Magnabosco-Marra, Rosie A. Fisher, Jacquelyn K. Shuman, Alessandro C. de Araujo, William J. Riley, and Jeffrey Q. Chambers
Biogeosciences, 17, 6185–6205, https://doi.org/10.5194/bg-17-6185-2020, https://doi.org/10.5194/bg-17-6185-2020, 2020
Short summary
Short summary
The temporal variability in the Landsat satellite near-infrared (NIR) band captured the dynamics of forest regrowth after disturbances in Central Amazon. This variability was represented by the dynamics of forest regrowth after disturbances were properly represented by the ELM-FATES model (Functionally Assembled Terrestrial Ecosystem Simulator (FATES) in the Energy Exascale Earth System Model (E3SM) Land Model (ELM)).
Zhuang Wang, Cheng Liu, Zhouqing Xie, Qihou Hu, Meinrat O. Andreae, Yunsheng Dong, Chun Zhao, Ting Liu, Yizhi Zhu, Haoran Liu, Chengzhi Xing, Wei Tan, Xiangguang Ji, Jinan Lin, and Jianguo Liu
Atmos. Chem. Phys., 20, 14917–14932, https://doi.org/10.5194/acp-20-14917-2020, https://doi.org/10.5194/acp-20-14917-2020, 2020
Short summary
Short summary
Significant stratification of aerosols was observed in North China. Polluted dust dominated above the PBL, and anthropogenic aerosols prevailed within the PBL, which is mainly driven by meteorological conditions. The key role of the elevated dust is to alter atmospheric thermodynamics and stability, causing the suppression of turbulence exchange and a decrease in PBL height, especially during the dissipation stage, thereby inhibiting dissipation of persistent heavy surface haze pollution.
Lixia Liu, Yafang Cheng, Siwen Wang, Chao Wei, Mira L. Pöhlker, Christopher Pöhlker, Paulo Artaxo, Manish Shrivastava, Meinrat O. Andreae, Ulrich Pöschl, and Hang Su
Atmos. Chem. Phys., 20, 13283–13301, https://doi.org/10.5194/acp-20-13283-2020, https://doi.org/10.5194/acp-20-13283-2020, 2020
Short summary
Short summary
This modeling paper reveals how aerosol–cloud interactions (ACIs) and aerosol–radiation interactions (ARIs) induced by biomass burning (BB) aerosols act oppositely on radiation, cloud, and precipitation in the Amazon during the dry season. The varying relative significance of ACIs and ARIs with BB aerosol concentration leads to a nonlinear dependence of the total climate response on BB aerosol loading and features the growing importance of ARIs at high aerosol loading.
Rachel L. Tunnicliffe, Anita L. Ganesan, Robert J. Parker, Hartmut Boesch, Nicola Gedney, Benjamin Poulter, Zhen Zhang, Jošt V. Lavrič, David Walter, Matthew Rigby, Stephan Henne, Dickon Young, and Simon O'Doherty
Atmos. Chem. Phys., 20, 13041–13067, https://doi.org/10.5194/acp-20-13041-2020, https://doi.org/10.5194/acp-20-13041-2020, 2020
Short summary
Short summary
This study quantifies Brazil’s emissions of a potent atmospheric greenhouse gas, methane. This is in the field of atmospheric modelling and uses remotely sensed data and surface measurements of methane concentrations as well as an atmospheric transport model to interpret the data. Because of Brazil’s large emissions from wetlands, agriculture and biomass burning, these emissions affect global methane concentrations and thus are of global significance.
Cited articles
Andreae, M. O., Acevedo, O. C., Araùjo, A., Artaxo, P., Barbosa, C. G.
G., Barbosa, H. M. J., Brito, J., Carbone, S., Chi, X., Cintra, B. B. L., Da
Silva, N. F., Dias, N. L., Dias-Júnior, C. Q., Ditas, F., Ditz, R.,
Godoi, A. F. L., Godoi, R. H. M., Heimann, M., Hoffmann, T., Kesselmeier,
J., Könemann, T., Krüger, M. L., Lavric, J. V., Manzi, A. O., Lopes,
A. P., Martins, D. L., Mikhailov, E. F., Moran-Zuloaga, D., Nelson, B. W.,
Nölscher, A. C., Santos Nogueira, D., Piedade, M. T. F., Pöhlker,
C., Pöschl, U., Quesada, C. A., Rizzo, L. V., Ro, C. U., Ruckteschler,
N., Sá, L. D. A., De Oliveira Sá, M., Sales, C. B., Dos Santos, R.
M. N., Saturno, J., Schöngart, J., Sörgel, M., De Souza, C. M., De
Souza, R. A. F., Su, H., Targhetta, N., Tóta, J., Trebs, I., Trumbore,
S., Van Eijck, A., Walter, D., Wang, Z., Weber, B., Williams, J.,
Winderlich, J., Wittmann, F., Wolff, S., and Yáñez-Serrano, A. M.:
The Amazon Tall Tower Observatory (ATTO): Overview of pilot measurements on
ecosystem ecology, meteorology, trace gases, and aerosols, Atmos. Chem.
Phys., 15, 10723–10776, https://doi.org/10.5194/acp-15-10723-2015, 2015.
Batista, W. V. S. M. and Santos, N. D. D.: Can regional and local filters explain epiphytic bryophyte distributions in the Atlantic Forest of southeastern Brazil?, Acta Bot. Brasil., 30, 462–472, https://doi.org/10.1590/0102-33062016abb0179, 2016.
Caesar, J., Tamm, A., Ruckteschler, N., Lena Leifke, A., and Weber, B.:
Revisiting chlorophyll extraction methods in biological soil crusts –
Methodology for determination of chlorophyll a and chlorophyll a Cb as
compared to previous methods, Biogeosciences, 15, 1415–1424,
https://doi.org/10.5194/bg-15-1415-2018, 2018.
Campos, L. V., ter Steege, H., and Uribe, J.: The epiphytic bryophyte flora of
the Colombian Amazon, Caldasia, 37, 47–59,
https://doi.org/10.15446/caldasia.v37n1.50980, 2015.
Campos, L. V., Oliveira, S. M. D., Benavides, J. C., Uribe-M, J., and ter Steege, H.: Vertical distribution and diversity of epiphytic bryophytes in the Colombian Amazon, J. Bryol., 41, 328–340, https://doi.org/10.1080/03736687.2019.1641898, 2019.
Chazdon, R. L. and Fetcher, N.: Light Environments of Tropical Forests, in:
Physiological ecology of plants of the wet tropics: Proceedings of an
International Symposium Held in Oxatepec and Los Tuxtlas, Mexico, 29 June to
6 July 1983, edited by: Medina, E., Mooney, H. A., and
Vázquez-Yánes, C., Springer Netherlands, Dordrecht, 27–36, 1984.
Cornelissen, J. T. and ter Steege, H.: Distribution and ecology of epiphytic bryophytes and lichens in dry ever-green forest of Guyana, J. Trop. Ecol., 5, 131–150, https://doi.org/10.1017/S0266467400003400, 1989.
Cornelissen, J. H. C., Lang, S. I., Soudzilovskaia, N. A., and During, H. J.:
Comparative cryptogam ecology: A review of bryophyte and lichen traits that
drive biogeochemistry, Ann. Bot., 99, 987–1001, https://doi.org/10.1093/aob/mcm030, 2007.
Cowan, I. R., Lange, O. L., and Green, T. G. A.: Carbon-dioxide exchange in
lichens: determination of transport and carboxylation characteristics,
Planta, 187, 282–294, https://doi.org/10.1007/BF00201952, 1992.
Coxson, D. S., McIntyre, D. D., and Vogel, H. J.: Pulse Release of Sugars and
Polyols from Canopy Bryophytes in Tropical Montane Rain Pulse Release of
Sugars and Polyols from Canopy Bryophytes in Tropical Montane Rain Forest
(Guadeloupe, French West Indies), Biotropica, 24, 121–133, 1992.
Cuartas, L. A., Tomasella, J., Nobre, A. D., Hodnett, M. G., Waterloo, M. J.,
and Múnera, J. C.: Interception water-partitioning dynamics for a
pristine rainforest in Central Amazonia: Marked differences between normal
and dry years, Agr. Forest Meteorol., 145, 69–83,
https://doi.org/10.1016/J.AGRFORMET.2007.04.008, 2007.
de Ribeiro, A.: Local rainfall variability – a potential bias for
bioecological studies in the central Amazon, Acta Amaz., 14, 159–174, 1984.
Dislich, R., Marília, E., Pinheiro, L., and Guimarães, M.:
Corticolous liverworts and mosses in a gallery forest in Central Brazil:
effects of environmental variables and space on species richness and
composition, Nov. Hedwigia, 107, 385–406, 2018.
Elbert, W., Weber, B., Burrows, S., Steinkamp, J., Büdel, B., Andreae,
M. O., and Pöschl, U.: Contribution of cryptogamic covers to the global
cycles of carbon and nitrogen, Nat. Geosci., 5, 459–462,
https://doi.org/10.1038/ngeo1486, 2012.
Gaudio, N., Gendre, X., Saudreau, M., Seigner, V., and Balandier, P.: Impact
of tree canopy on thermal and radiative microclimates in a mixed temperate
forest: A new statistical method to analyse hourly temporal dynamics, Agr.
Forest Meteorol., 237/238, 71–79, https://doi.org/10.1016/J.AGRFORMET.2017.02.010, 2017.
Gimeno, T. E., Ogée, J., Royles, J., Gibon, Y., West, J. B., Burlett,
R., Jones, S. P., Sauze, J., Wohl, S., Benard, C., Genty, B., and Wingate,
L.: Bryophyte gas-exchange dynamics along varying hydration status reveal a
significant carbonyl sulphide (COS) sink in the dark and COS source in the
light, New Phytol., 215, 965–976, https://doi.org/10.1111/nph.14584, 2017.
Gimingham, C. H. and Birse, E. M: Ecological studies on growth-form in bryophytes: I. Correlations between growth-form and habitat, J. Ecol., 45, 533–545, https://doi.org/10.2307/2256934, 1957.
Gradstein, R., Churchill, S. P., and Salazar Allen, N.: Guide to bryophytes
of tropical America, Mem. N. Y. Bot. Gard., 86, 577 pp., 2001.
Gradstein, S. R. and Salazar Allen, N.: Bryophyte diversity along an
altitudinal gradient in Darién National Park, Panama, Trop. Bryol., 5,
61–71, 1992.
Green, T. G. A. and Proctor, M. C. F.: Physiology of Photosynthetic
Organisms Within Biological Soil Crusts: Their Adaptation, Flexibility, and
Plasticity, in: Biological Soil Crusts: An Organizing Principle in Drylands,
edited by: Weber, B., Büdel, B., and Belnap, J., Springer
International Publishing, Chamber, 347–381, 2016.
Green, T. G. A., Kilian, E., and Lange, O. L.: Pseudocyphellaria dissimilis:
a desiccation-sensitive, highly shade-adapted lichen from New Zealand,
Oecologia, 85, 498–503, https://doi.org/10.1007/BF00323761, 1991.
Green, T. G. A., Kulle, D., Pannewitz, S., Sancho, L. G., and Schroeter, B.:
UV-A protection in mosses growing in continental Antarctica, Polar Biol.,
28, 822–827, https://doi.org/10.1007/s00300-005-0011-7, 2005.
Green, T. G. A., Sancho, L. G., and Pintado, A.: Ecophysiology of
Desiccation/Rehydration Cycles in Mosses and Lichens, in: Plant Desiccation
Tolerance, edited by: Lüttge, U., Beck, E., and Bartels, D.,
Springer Berlin Heidelberg, Berlin, Heidelberg, 89–120, 2011.
Hargis, H., Gotsch, S. G., Porada, P., Moore, G. W., Ferguson, B., and Van
Stan, J. T.: Arboreal Epiphytes in the Soil-Atmosphere Interface?: How Often
Are the Biggest “ Buckets ” in the Canopy Empty?, Geosciences, 9,
1–17, 2019.
Kangas, L., Maanavilja, L., Hájek, T., Juurola, E., Chimner, R. A.,
Mehtätalo, L., and Tuittila, E. S.: Photosynthetic traits of Sphagnum and
feather moss species in undrained, drained and rewetted boreal spruce swamp
forests, Ecol. Evol., 4, 381–396, https://doi.org/10.1002/ece3.939, 2014.
Komposch, H. and Hafellner, J.: Diversity and vertical distribution of
lichens in a venezuelan tropical lowland rain forest, Selbyana, 21,
11–24, 2000.
Kruijt, B., Malhi, Y., Lloyd, J., Norbre, A. D., Miranda, A. C., Pereira, M.
G. P., Culf, A., and Grace, J.: Turbulence Statistics Above And Within Two
Amazon Rain Forest Canopies, Bound.-Lay. Meteorol., 94, 297–331,
https://doi.org/10.1023/A:1002401829007, 2000.
Lakatos, M., Rascher, U., and Büdel, B.: Functional characteristics of
corticolous lichens in the understory of a tropical lowland rain forest, New
Phytol., 172, 679–695, https://doi.org/10.1111/j.1469-8137.2006.01871.x, 2006.
Lakatos, M., Obregón, A., Büdel, B., and Bendix, J.: Midday dew – an
overlooked factor enhancing photosynthetic activity of corticolous epiphytes
in a wet tropical rain forest, New Phytol., 194, 245–253,
https://doi.org/10.1111/j.1469-8137.2011.04034.x, 2012.
Lancaster, J., Lancaster, N., and Seely, M.: Climate of the Central Namib
Desert, Madoqua, 14, 5–61, 1984.
Lange, O. L.: Moisture content and CO2 exchange of lichens, Oecologica,
45, 82–87, 1980.
Lange, O. L. and Kilian, E.: Reaktivierung der Photosynthese trockener
Flechten durch Wasserdampfaufnahme aus dem Luftraum: Artspezifisch
unterschiedliches Verhalten, Flora, 176, 7–23,
https://doi.org/10.1016/S0367-2530(17)30100-7, 1985.
Lange, O. L. and Tenhunen, J. D.: Moisture Content and CO2 Exchange of
Lichens. II. Depression of Net Photosynthesis in Ramalina maciformis at High
Water Content is Caused by Increased Thallus Carbon Dioxide Diffusion
Resistance, Oecologia, 51, 426–429, 1981.
Lange, O. L., Green, T. G. A., Lange, O. L., and Green, T. G. A.: High
thallus water content severely limits photosynthetic carbon gain of central
European epilithic lichens under natural conditions, Oecologia, 108, 13–20,
1996.
Lange, O. L., Belnap, J., and Reichenberger, H.: Photosynthesis of the
cyanobacterial soil-crust lichen Collema tenax from arid lands in southern
Utah, USA: Role of water content on light and temperature responses of CO2
exchange, Funct. Ecol., 12, 195–202, https://doi.org/10.1046/j.1365-2435.1998.00192.x, 1998.
Lange, O. L., Büdel, B., Meyer, A., Zellner, H., and Zotz, G.: Lichen
carbon gain under tropical conditions?: water relations and CO2 exchange of
three Leptogium species of a lower montane rainforest in Panama, Flora –
Morphol. Distrib. Funct. Ecol. Plant., 195, 172–190,
https://doi.org/10.1016/S0367-2530(17)30965-9, 2000.
Lange, O. L., Green, T. G. A., and Heber, U.: Hydration-dependent
photosynthetic production of lichens: what do laboratory studies tell us
about field performance?, J. Experim., 52, 2033–2042, 2001.
Lange, O. L., Allan Green, T. G., Melzer, B., Meyer, A., and Zellner, H.:
Water relations and CO2 exchange of the terrestrial lichen Teloschistes
capensis in the Namib fog desert: Measurements during two seasons in the
field and under controlled conditions, Flora – Morphol. Distrib. Funct.
Ecol. Plant., 201, 268–280, https://doi.org/10.1016/J.FLORA.2005.08.003, 2006.
León-Vargas, Y., Engwald, S., and Proctor, M. C. F.: Microclimate, light
adaptation and desiccation tolerance of epiphytic bryophytes in two
Venezuelan cloud forests, J. Biogeogr., 33, 901–913,
https://doi.org/10.1111/j.1365-2699.2006.01468.x, 2006.
Lloyd, C. R. and de Marques, A. de O.: Spatial variability of throughfall and
stemflow measurements in Amazonian rainforest, Agr. Forest Meteorol., 42,
63–73, 1988.
Löbs, N., Weber, B., and Pöhlker, C.: Available data for the microclimate of epiphytic bryophytes investigated at ATTO, Max Planck Society, https://doi.org/10.17617/3.51, last access: 6 November 2020.
Lopes, A. P., Nelson, B. W., Wu, J., Graça, P. M. L. de A., Tavares, J.
V., Prohaska, N., Martins, G. A., and Saleska, S. R.: Leaf flush drives dry
season green-up of the Central Amazon, Remote Sens. Environ., 182, 90–98,
https://doi.org/10.1016/j.rse.2016.05.009, 2016.
Lösch, R., Mülders, P., Fischer, E., and Frahm, J. P.: Scientific
Results of the BRYOTROP Expedition to Zaire and 3. Photosynthetic gas
exchange of bryophytes from different forest types in eastern Central Africa, Trop. Bryol., 9, 169–185, 1994.
Mägdefrau, K.: Life-forms of bryophytes. In Bryophyte ecology, edited by: Smith, A. J. E., Springer Netherlands, Dordrecht, 45–58 , https://doi.org/10.1007/978-94-009-5891-3_2, 1982.
Marin, C. T., Bouten, W., and Sevink, J.: Gross rainfall and its partitioning
into throughfall, stemflow and evaporation of intercepted water in four
forest ecosystems in western Amazonia, J. Hydrol., 237, 40–57, 2000.
Marks, R. A., Pike, B. D., and Nicholas McLetchie, D.: Water stress tolerance
tracks environmental exposure and exhibits a fluctuating sexual dimorphism
in a tropical liverwort, Oecologia, 191, 791–802,
https://doi.org/10.1007/s00442-019-04538-2, 2019.
Martin, S. T., Andreae, M. O., Artaxo, P., Baumgardner, D., Chen, Q.,
Goldstein, A. H., Guenther, A., Heald, C. L., Mayol-Bracero, O. L., McMurry,
P. H., Pauliquevis, T., Pöschl, U., Prather, K. A., Roberts, G. C.,
Saleska, S. R., Dias, M. A. S., Spracklen, D. V, Swietlicki, E., and Trebs,
I.: Sources and properties of Amazonian aerosol particles, Rev. Geophys.,
48, RG2002, https://doi.org/10.1029/2008RG000280, 2010.
McWilliam, A.-L. C., Roberts, J. M., Cabral, O., Leitao, M. V. B. R., de
Costa, A., Maitelli, G. T., and Zamparoni, C. A. G. P.: Leaf Area Index and
Above-Ground Biomass of terra firme Rain Forest and Adjacent Clearings in
Amazonia, Funct. Ecol., 7, 310–317, 1993.
Mendieta-Leiva, G., Porada, P., and Bader, M. Y.: Interactions of Epiphytes
with Precipitation Partitioning, in: Precipitation Partitioning by
Vegetation: A Global Synthesis, edited by: Van StanII, J. T., Gutmann, E., and
Friesen, J., Springer International Publishing, Chamber, 133–146, 2020.
Mota de Oliveira, S., ter Steege, H., Cornelissen, J. H. C., and Gradstein,
S. R.: Niche assembly of epiphytic bryophyte communities in the Guianas: A
regional approach, J. Biogeogr., 41, 2076–2084, https://doi.org/10.1111/j.1365-2699.2009.02144.x, 2009.
Normann, F., Weigelt, P., Gehrig-Downie, C., Gradstein, S. R., Sipman, H. J.
M., Obregon, A., and Bendix, J.: Diversity and vertical distribution of
epiphytic macrolichens in lowland rain forest and lowland cloud forest of
French Guiana, Ecol. Indic., 10, 1111–1118,
https://doi.org/10.1016/J.ECOLIND.2010.03.008, 2010.
Oliveira, S. M. D.: Diversity of epiphytic bryophytes across the Amazon (Doctoral Thesis, University Utrecht), available at: https://dspace.library.uu.nl/handle/1874/42818 (last access: 6 November 2020), 2010.
Oliveira, S. M. D.: The double role of pigmentation and convolute leaves in community assemblage of Amazonian epiphytic Lejeuneaceae, Peer J., 6, e5921, https://doi.org/10.7717/peerj.5921, 2018.
Oliveira, S. M. D. and ter Steege, H.: Bryophyte communities in the Amazon forest are regulated by height on the host tree and site elevation, J. Ecol., 103, 441–450, https://doi.org/10.1111/1365-2745.12359, 2015.
Oliver, M. J., Velten, J., and Mishler, B. D.: Desiccation Tolerance in
Bryophytes: A Reflection of the Primitive Strategy for Plant Survival in
Dehydrating Habitats?, Integr. Comp. Biol., 45, 788–799, 2005.
Pantoja, A. C. C., Ilkiu-Borges, A. L., Tavares-Martins, A. C. C., and Garcia, E. T.: Bryophytes in fragments of Terra Firme forest on the great curve of the Xingu River, Pará state, Brazil, Braz. J. Biol., 75, 238–249, https://doi.org/10.1590/1519-6984.02814BM, 2015.
Pardow, A. and Lakatos, M.: Desiccation Tolerance and Global Change:
Implications for Tropical Bryophytes in Lowland Forests, Biotropica, 45,
27–36, https://doi.org/10.1111/j.1744-7429.2012.00884.x, 2013.
Pardow, A., Hartard, B., and Lakatos, M.: Morphological, photosynthetic and
water relations traits underpin the contrasting success of two tropical
lichen groups at the interior and edge of forest fragments, AoB Plants,
2010, 1–12, https://doi.org/10.1093/aobpla/plq004, 2010.
Piepenbring, M.: Inventoring the fungi of Panama, Biodivers. Conserv.,
16, 73–84, https://doi.org/10.1007/s10531-006-9051-8, 2007.
Pinheiro da Costa, D.: Epiphytic Bryophyte Diversity in Primary and
Secondary Lowland Rainforests in Southeastern Brazil, Bryologist, 102,
320–326, 1999.
Pöhlker, M. L., Pöhlker, C., Ditas, F., Klimach, T., De Angelis, I.
H., Araújo, A., Brito, J., Carbone, S., Cheng, Y., Chi, X., Ditz, R.,
Gunthe, S. S., Kesselmeier, J., Könemann, T., Lavrič, J. V., Martin,
S. T., Mikhailov, E., Moran-Zuloaga, D., Rose, D., Saturno, J., Su, H.,
Thalman, R., Walter, D., Wang, J., Wolff, S., Barbosa, H. M. J., Artaxo, P.,
Andreae, M. O., and Pöschl, U.: Long-term observations of cloud
condensation nuclei in the Amazon rain forest – Part 1: Aerosol size
distribution, hygroscopicity, and new model parametrizations for CCN
prediction, Atmos. Chem. Phys., 16, 15709–15740,
https://doi.org/10.5194/acp-16-15709-2016, 2016.
Porada, P., Tamm, A., Raggio, J., Cheng, Y., Kleidon, A., Pöschl, U., and
Weber, B.: Global NO and HONO emissions of biological soil crusts estimated
by a process-based non-vascular vegetation model, Biogeosciences, 16,
2003–2031, https://doi.org/10.5194/bg-16-2003-2019, 2019.
Proctor, M. C. F.: The physiological basis of bryophyte production, Bot. J. Linn. Soc., 104, 61–77, https://doi.org/10.1111/j.1095-8339.1990.tb02211.x, 1990.
Proctor, M. C. F.: The bryophyte paradox: Tolerance of desiccation, evasion
of drought, Plant Ecol., 151, 41–49, https://doi.org/10.1023/A:1026517920852, 2000.
Proctor, M. C. F., Oliver, M. J., Wood, A. J., Alpert, P., Stark, L. R.,
Cleavitt, N. L., and Mishler, B. D.: Desiccation-tolerance in bryophytes: a
review, Bryologist, 110, 595–621, 2007.
Raggio, J., Green, T. G. A., Sancho, L. G., Pintado, A., Colesie, C., Weber,
B., and Büdel, B.: Metabolic activity duration of biological soil crusts
across Europe can be predicted from common climate data, Geoderma, 306,
10–17, https://doi.org/10.1016/j.geoderma.2017.07.001, 2017.
Rastogi, B., Berkelhammer, M., Wharton, S., Whelan, M. E., Itter, M. S.,
Leen, J. B., Gupta, M. X., Noone, D., and Still, C. J.: Large Uptake of
Atmospheric OCS Observed at a Moist Old Growth Forest: Controls and
Implications for Carbon Cycle Applications, J. Geophys. Res.-Biogeo.,
123, 3424–3438, https://doi.org/10.1029/2018JG004430, 2018.
Reiter, R., Höftberger, M., G. Allan Green, T., and Türk, R.:
Photosynthesis of lichens from lichen-dominated communities in the
alpine/nival belt of the Alps – II: Laboratory and field measurements of
CO2 exchange and water relations, Flora – Morphol. Distrib. Funct. Ecol.
Plants, 203, 34–46, 2008.
Richards, P. W.: Notes on the Bryophyte Communities of Lowland Tropical Rain
Forest, with Special Reference to Moraballi Creek, British Guiana,
Vegetatio, 5, 319–328, 1954.
Rodriguez-Iturbe, I., D'Odorico, P., Porporato, A., and Ridolfi, L.: On the
spatial and temporal links between vegetation, climate, and soil moisture,
Water Resour. Res., 35, 3709–3722, https://doi.org/10.1029/1999WR900255, 1999.
Romero, C., Putz, F. E., and Kitajima, K.: Ecophysiology in relation to
exposure of pendant epiphytic bryophytes in the canopy of a tropical montane
oak forest, Biotropica, 38, 35–41, https://doi.org/10.1111/j.1744-7429.2006.00099.x, 2006.
Seel, W. E., Hendry, G. A. F., and Lee, J. A.: The combined effects of
desiccation and irradiance on mosses from xeric and hydric habitats, J. Exp.
Bot., 43, 1023–1030, https://doi.org/10.1093/jxb/43.8.1023, 1992.
Sinha, R. P. and Häder, D. P.: UV-protectants in cyanobacteria, Plant
Sci., 174, 278–289, https://doi.org/10.1016/j.plantsci.2007.12.004, 2008.
Snelgar, W. P., Green, T. G. A., and Wilkins, A. L.: Carbon dioxide exchange
in lichens: resistances to CO2 uptake different thallus water contents, New
Phytol., 88, 353–361, 1981.
Soepadmo, E.: Tropical rain forests as carbon sinks, Chemosphere, 27,
1025–1039, https://doi.org/10.1016/0045-6535(93)90066-E, 1993.
Stace, C. A.: Combretaceae, in: The Families and Genera of Vascular Plants.
Flowering Plants, Eudicots, Vol. 9, edited by: K. Kubitzki,
Springer Berlin Heidelberg, 67–82, 2007.
Thompson, O. E. and Pinker, R. T.: Wind and temperature profile
characteristics in a tropical evergreen forest in Thailand, Tellus, 27,
562–573, https://doi.org/10.1111/j.2153-3490.1975.tb01711.x, 1975.
Tucker, C. L., McHugh, T. A., Howell, A., Gill, R., Weber, B., Belnap, J.,
Grote, E., and Reed, S. C.: The concurrent use of novel soil surface
microclimate measurements to evaluate CO2 pulses in biocrusted interspaces
in a cool desert ecosystem, Biogeochemistry, 135, 239–249,
https://doi.org/10.1007/s10533-017-0372-3, 2017.
Valente, E. D. B., Pôrto, K. C., and Bastos, C. J. P.: Habitat heterogeneity and diversity of bryophytes in campos rupestres, Ac. Bot. Brasil., 31, 241–249, https://doi.org/10.1590/0102-33062016abb0450, 2017.
van Stan, J. T. and Gordon, D. A.: Mini-Review: Stemflow as a Resource
Limitation to Near-Stem Soils, Pront. Plant Sci., 9, 1–7,
https://doi.org/10.3389/fpls.2018.00248, 2018.
von Arx, G., Dobbertin, M., and Rebetez, M.: Spatio-temporal effects of
forest canopy on understory microclimate in a long-term experiment in
Switzerland, Agr. Forest Meteorol., 166/167, 144–155,
https://doi.org/10.1016/J.AGRFORMET.2012.07.018, 2012.
Wagner, S., Zotz, G., Salazar Allen, N., and Bader, M. Y.: Altitudinal
changes in temperature responses of net photosynthesis and dark respiration
in tropical bryophytes, Ann. Bot., 111, 455–465, https://doi.org/10.1093/aob/mcs267,
2013.
Wagner, S., Bader, M. Y., and Zotz, G.: Physiological Ecology of Tropical
Bryophytes, in: Photosynthesis in Bryophytes and Early Land Plants, edited by:
Hanson, D. T. and Rice, S. K., Springer Netherlands, Dordrecht,
269–289, 2014.
Walter, H. and Stadelmann, E.: The Physiological Prerequisites for the
Transition of Autotrophic Plants from Water to Terrestrial Life, Bioscience,
18, 694–701, 1968.
Weber, B., Berkemeier, T., Ruckteschler, N., Caesar, J., Heintz, H., Ritter,
H., and Braß, H.: Development and calibration of a novel sensor to
quantify the water content of surface soils and biological soil crusts,
Methods Ecol. Evol., 7, 14–22, https://doi.org/10.1111/2041-210X.12459, 2016.
Westberg, M. and Kärnefelt, I.: The Genus Fulgensia A. Massal. –
De Not., a Diverse Group in the Teloschistaceae, Lichenol., 30,
515–532, https://doi.org/10.1006/lich.1998.0141, 1998.
Williams, T. G. and Flanagan, L. B.: Effect of changes in water content on
photosynthesis, transpiration and discrimination against 13C02 and C180160
in Pleurozium and Sphagnum, Oecologia, 2, 38–46, https://doi.org/10.1007/BF00333212,
1996.
Wilske, B., Holzinger, R., and Kesselmeier, J.: Evidence for ethanolic
fermentation in lichens during periods of high thallus water content,
Symbiosis, 31, 95–111, 2001.
Zartman, C. E.: Habitat fragmentation impacts on epiphyllous bryophyte
communities in central Amazonia, Ecology, 84, 948–954,
https://doi.org/10.1890/0012-9658(2003)084[0948:HFIOEB]2.0.CO;2, 2003.
Zotz, G., Büdel, B., Meyer, A., Zellner, H., and Lange, L.: Water
relations and CO2 exchange of tropical bryophytes in a lower montane rain
forest in Panama, Bot. Acta, 110, 9–17,
https://doi.org/10.1111/j.1438-8677.1997.tb00605.x, 1997.
Short summary
Cryptogamic organisms, such as bryophytes, lichens, and algae, cover major parts of vegetation in the Amazonian rain forest, but their relevance in biosphere–atmosphere exchange, climate processes, and nutrient cycling is largely unknown.
Over the duration of 2 years we measured their water content, temperature, and light conditions to get better insights into their physiological activity patterns and thus their potential impact on local, regional, and even global biogeochemical processes.
Cryptogamic organisms, such as bryophytes, lichens, and algae, cover major parts of vegetation...
Altmetrics
Final-revised paper
Preprint