Articles | Volume 17, issue 23
https://doi.org/10.5194/bg-17-6017-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-17-6017-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
New insight to niche partitioning and ecological function of ammonia oxidizing archaea in subtropical estuarine ecosystem
Yanhong Lu
SZU–HKUST Joint PhD Program in Marine Environmental Science, Shenzhen University, Shenzhen, China
Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
Shunyan Cheung
Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
Ling Chen
State Key Laboratory of Marine Environmental Science, Xiamen
University, Xiamen, China
Shuh-Ji Kao
State Key Laboratory of Marine Environmental Science, Xiamen
University, Xiamen, China
Xiaomin Xia
Key Laboratory of Tropical Marine Bio-resources and Ecology, South
China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
Jianping Gan
SZU–HKUST Joint PhD Program in Marine Environmental Science, Shenzhen University, Shenzhen, China
Minhan Dai
State Key Laboratory of Marine Environmental Science, Xiamen
University, Xiamen, China
Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China
Related authors
No articles found.
Jialu Huang, Moriaki Yasuhara, He Wang, Pedro Julião Jimenez, Jiying Li, and Minhan Dai
Biogeosciences, 22, 4763–4777, https://doi.org/10.5194/bg-22-4763-2025, https://doi.org/10.5194/bg-22-4763-2025, 2025
Short summary
Short summary
We investigated the abundance, diversity, composition, and distribution of ostracods (a meiobenthic group) and their interactions with eutrophication and pollution through high-resolution sampling of surface sediment in Deep Bay, a small semi-enclosed riverine bay adjacent to two of the world’s most populated cities: Hong Kong and Shenzhen. The results support the idea that ostracods are a useful bioindicator of coastal benthic ecosystems shaped by distinct environmental problems.
Yuye Han, Zvi Steiner, Zhimian Cao, Di Fan, Junhui Chen, Jimin Yu, and Minhan Dai
Biogeosciences, 22, 3681–3697, https://doi.org/10.5194/bg-22-3681-2025, https://doi.org/10.5194/bg-22-3681-2025, 2025
Short summary
Short summary
Our results suggest coccolithophore calcite accounts for a major fraction of PIC (particulate inorganic carbon) standing stocks in the western North Pacific, with a markedly higher contribution in the oligotrophic subtropical gyre than in the Kuroshio–Oyashio transition region, which highlights the importance of coccolithophores for PIC production in the pelagic ocean, particularly in oligotrophic ocean waters.
Michael Morando, Jonathan D. Magasin, Shunyan Cheung, Matthew M. Mills, Jonathan P. Zehr, and Kendra A. Turk-Kubo
Earth Syst. Sci. Data, 17, 393–422, https://doi.org/10.5194/essd-17-393-2025, https://doi.org/10.5194/essd-17-393-2025, 2025
Short summary
Short summary
Nitrogen is crucial in ocean food webs, but only some microbes can fix N2 gas into a bioavailable form. Most are known only by their nifH gene sequence. We created a software workflow for nifH data and ran it on 944 ocean samples, producing a database (DB) that captures the global diversity of N2-fixing marine microbes and the environmental factors that influence them. The workflow and DB can standardize analyses of past and future nifH datasets to enable insights into marine communities.
Yanmin Wang, Xianghui Guo, Guizhi Wang, Lifang Wang, Tao Huang, Yan Li, Zhe Wang, and Minhan Dai
EGUsphere, https://doi.org/10.5194/egusphere-2023-3155, https://doi.org/10.5194/egusphere-2023-3155, 2024
Preprint archived
Short summary
Short summary
This study reports higher nutrient release in fish farming system compared to river inputs and other sources with implications for coastal environment. DIN and DIP variation in Sansha Bay are dominated by mariculture activity relative to river input during spring. The N/P budget shows that 52.8 ± 4.7 % of DIN and 33.0 ± 3.7 % of DIP released from fish feeds exceeded other nutrient inputs. Co-culture strategies (e.g., of fish, kelp and oysters) allow effective mitigation of environmental impacts.
Zhibo Shao, Yangchun Xu, Hua Wang, Weicheng Luo, Lice Wang, Yuhong Huang, Nona Sheila R. Agawin, Ayaz Ahmed, Mar Benavides, Mikkel Bentzon-Tilia, Ilana Berman-Frank, Hugo Berthelot, Isabelle C. Biegala, Mariana B. Bif, Antonio Bode, Sophie Bonnet, Deborah A. Bronk, Mark V. Brown, Lisa Campbell, Douglas G. Capone, Edward J. Carpenter, Nicolas Cassar, Bonnie X. Chang, Dreux Chappell, Yuh-ling Lee Chen, Matthew J. Church, Francisco M. Cornejo-Castillo, Amália Maria Sacilotto Detoni, Scott C. Doney, Cecile Dupouy, Marta Estrada, Camila Fernandez, Bieito Fernández-Castro, Debany Fonseca-Batista, Rachel A. Foster, Ken Furuya, Nicole Garcia, Kanji Goto, Jesús Gago, Mary R. Gradoville, M. Robert Hamersley, Britt A. Henke, Cora Hörstmann, Amal Jayakumar, Zhibing Jiang, Shuh-Ji Kao, David M. Karl, Leila R. Kittu, Angela N. Knapp, Sanjeev Kumar, Julie LaRoche, Hongbin Liu, Jiaxing Liu, Caroline Lory, Carolin R. Löscher, Emilio Marañón, Lauren F. Messer, Matthew M. Mills, Wiebke Mohr, Pia H. Moisander, Claire Mahaffey, Robert Moore, Beatriz Mouriño-Carballido, Margaret R. Mulholland, Shin-ichiro Nakaoka, Joseph A. Needoba, Eric J. Raes, Eyal Rahav, Teodoro Ramírez-Cárdenas, Christian Furbo Reeder, Lasse Riemann, Virginie Riou, Julie C. Robidart, Vedula V. S. S. Sarma, Takuya Sato, Himanshu Saxena, Corday Selden, Justin R. Seymour, Dalin Shi, Takuhei Shiozaki, Arvind Singh, Rachel E. Sipler, Jun Sun, Koji Suzuki, Kazutaka Takahashi, Yehui Tan, Weiyi Tang, Jean-Éric Tremblay, Kendra Turk-Kubo, Zuozhu Wen, Angelicque E. White, Samuel T. Wilson, Takashi Yoshida, Jonathan P. Zehr, Run Zhang, Yao Zhang, and Ya-Wei Luo
Earth Syst. Sci. Data, 15, 3673–3709, https://doi.org/10.5194/essd-15-3673-2023, https://doi.org/10.5194/essd-15-3673-2023, 2023
Short summary
Short summary
N2 fixation by marine diazotrophs is an important bioavailable N source to the global ocean. This updated global oceanic diazotroph database increases the number of in situ measurements of N2 fixation rates, diazotrophic cell abundances, and nifH gene copy abundances by 184 %, 86 %, and 809 %, respectively. Using the updated database, the global marine N2 fixation rate is estimated at 223 ± 30 Tg N yr−1, which triplicates that using the original database.
Wenfeng Lai and Jianping Gan
Ocean Sci., 19, 1107–1121, https://doi.org/10.5194/os-19-1107-2023, https://doi.org/10.5194/os-19-1107-2023, 2023
Short summary
Short summary
Our study shows a high-resolution regional atmospheric model improves near-surface wind and air temperature simulation, resulting in improved circulation and hydrographic simulations in the Pearl River estuary. High-resolution wind forcing is critical for coastal circulation and cross-isobath transport, while high-resolution heat forcing greatly improves sea surface temperature simulation. High-resolution atmospheric forcing is essential for accurately simulating dynamic coastal ocean processes.
Yifan Ma, Kuanbo Zhou, Weifang Chen, Junhui Chen, Jin-Yu Terence Yang, and Minhan Dai
Biogeosciences, 20, 2013–2030, https://doi.org/10.5194/bg-20-2013-2023, https://doi.org/10.5194/bg-20-2013-2023, 2023
Short summary
Short summary
We distinguished particulate organic carbon (POC) export fluxes out of the nutrient-depleted layer (NDL) and the euphotic zone. The amount of POC export flux at the NDL base suggests that the NDL could be a hotspot of particle export. The substantial POC export flux at the NDL base challenges traditional concepts that the NDL was limited in terms of POC export. The dominant nutrient source for POC export fluxes should be subsurface nutrients, which was determined by 15N isotopic mass balance.
Zhixuan Wang, Guizhi Wang, Xianghui Guo, Yan Bai, Yi Xu, and Minhan Dai
Earth Syst. Sci. Data, 15, 1711–1731, https://doi.org/10.5194/essd-15-1711-2023, https://doi.org/10.5194/essd-15-1711-2023, 2023
Short summary
Short summary
We reconstructed monthly sea surface pCO2 data with a high spatial resolution in the South China Sea (SCS) from 2003 to 2020. We validate our reconstruction with three independent testing datasets and present a new method to assess the uncertainty of the data. The results strongly suggest that our reconstruction effectively captures the main features of the spatiotemporal patterns of pCO2 in the SCS. Using this dataset, we found that the SCS is overall a weak source of atmospheric CO2.
Xiaofeng Dai, Mingming Chen, Xianhui Wan, Ehui Tan, Jialing Zeng, Nengwang Chen, Shuh-Ji Kao, and Yao Zhang
Biogeosciences, 19, 3757–3773, https://doi.org/10.5194/bg-19-3757-2022, https://doi.org/10.5194/bg-19-3757-2022, 2022
Short summary
Short summary
This study revealed the distinct distribution patterns of six key microbial functional genes and transcripts related to N2O sources and sinks in four estuaries spanning the Chinese coastline, which were significantly constrained by nitrogen and oxygen concentrations, salinity, temperature, and pH. The community structure of the nosZ clade II was distinctly different from those in the soil and marine OMZs. Denitrification may principally control the N2O emissions patterns across the estuaries.
Yangyang Zhao, Khanittha Uthaipan, Zhongming Lu, Yan Li, Jing Liu, Hongbin Liu, Jianping Gan, Feifei Meng, and Minhan Dai
Biogeosciences, 18, 2755–2775, https://doi.org/10.5194/bg-18-2755-2021, https://doi.org/10.5194/bg-18-2755-2021, 2021
Short summary
Short summary
In situ oxygen consumption rates were estimated for the first time during destruction of coastal hypoxia as disturbed by a typhoon and its reinstatement in the South China Sea off the Pearl River estuary. The reinstatement of summer hypoxia was rapid with a comparable timescale with that of its initial disturbance from frequent tropical cyclones, which has important implications for better understanding the intermittent nature of coastal hypoxia and its prediction in a changing climate.
Siqi Wu, Moge Du, Xianhui Sean Wan, Corday Selden, Mar Benavides, Sophie Bonnet, Robert Hamersley, Carolin R. Löscher, Margaret R. Mulholland, Xiuli Yan, and Shuh-Ji Kao
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-104, https://doi.org/10.5194/bg-2021-104, 2021
Preprint withdrawn
Short summary
Short summary
Nitrogen (N2) fixation is one of the most important nutrient sources to the ocean. Here, we report N2 fixation in the deep, dark ocean in the South China Sea via a highly sensitive new method and elaborate controls, showing the overlooked importance of N2 fixation in the deep ocean. By global data compilation, we also provide an easy measured basic parameter to estimate deep N2 fixation. Our study may help to expand the area limit of N2 fixation studies and better constrain global N2 fixation.
Guizhi Wang, Samuel S. P. Shen, Yao Chen, Yan Bai, Huan Qin, Zhixuan Wang, Baoshan Chen, Xianghui Guo, and Minhan Dai
Earth Syst. Sci. Data, 13, 1403–1417, https://doi.org/10.5194/essd-13-1403-2021, https://doi.org/10.5194/essd-13-1403-2021, 2021
Short summary
Short summary
This study reconstructs a complete field of summer sea surface partial pressure of CO2 (pCO2) over the South China Sea (SCS) with a 0.5° resolution in the period of 2000–2017 using the scattered underway pCO2 observations. The spectral optimal gridding method was used in this reconstruction with empirical orthogonal functions computed from remote sensing data. Our reconstructed data show that the rate of sea surface pCO2 increase in the SCS is 2.4 ± 0.8 µatm yr-1 during 2000–2017.
Hiu Suet Kung and Jianping Gan
Ocean Sci., 16, 1095–1110, https://doi.org/10.5194/os-16-1095-2020, https://doi.org/10.5194/os-16-1095-2020, 2020
Short summary
Short summary
Based on a well-validated ocean circulation model, we found that near-inertial oscillations (NIOs) and near-inertial kinetic energy (KEni) varied distinctly during forcing and relaxation stages of tropical cyclone (TC) forcing, and the horizontal and vertical transport of KEni was largely modulated by the velocity and vorticity of the jet in the semi-enclosed South China Sea (SCS). This study enriches our understanding of the spatial–temporal variability of NIOs in the frequently TC-affected SCS.
Cited articles
Abell, G. C. J., Revill, A. T., Smith, C., Bissett, A. P., Volkman, J. K., and Robert, S. S.: Archaeal ammonia oxidizers and nirS-type denitrifiers dominate
sediment nitrifying and denitrifying populations in a subtropical macrotidal
estuary, ISME J., 4, 286–300,
https://doi.org/10.1038/ismej.2009.105, 2010.
Agarwala, R., Barrett, T., Beck, J., Benson, D. A., Bollin, C., Bolton, E.,
Bourexis, D., Brister, J. R., Bryant, S. H., Canese, K., Cavanaugh, M.,
Charowhas, C., Clark, K., Dondoshansky, I., Feolo, M., Fitzpatrick, L., Funk, K.,
Geer, L. Y., Gorelenkov, V., Graeff, A., Hlavina, W., Holmes, B., Johnson, M.,
Kattman, B., Khotomlianski, V., Kimchi, A., Kimelman, M., Kimura, M., Kitts, P.,
Klimke, W., Kotliarov, A., Krasnov, S., Kuznetsov, A., Landrum, M. J., Landsman,
D., Lathrop, S., Lee, J. M., Leubsdorf, C., Lu, Z. Y., Madden, T. L.,
Marchler-Bauer, A., Malheiro, A., Meric, P., Karsch-Mizrachi, I., Mnev, A.,
Murphy, T., Orris, R., Ostell, J., O'Sullivan, C., Palanigobu, V., Panchenko, A. R., Phan, L., Pierov, B., Pruitt, K. D., Rodarmer, K., Sayers, E. W., Schneider,
V., Schoch, C. L., Schuler, G. D., Sherry, S. T., Siyan, K., Soboleva, A.,
Soussov, V., Starchenko, G., Tatusova, T. A., Thibaud-Nissen, F., Todorov, K.,
Trawick, B. W., Vakatov, D., Ward, M., Yaschenko, E., Zasypkin, A., and Zbicz, K.: Database resources of the National Center for Biotechnology Information,
Nucl. Acids Res., 46, 8–13,
https://doi.org/10.1093/nar/gkx1095, 2018.
Alves, R. J. E., Minh, B. Q., Urich, T., von Haeseler, A., and Schleper, C.:
Unifying the global phylogeny and environmental distribution of
ammonia-oxidising archaea based on amoA genes, Nat. Commun., 9, 1517,
https://doi.org/10.1038/s41467-018-03861-1, 2018.
Beman, J. M., Popp, B. N., and Francis, C. A.: Molecular and biogeochemical
evidence for ammonia oxidation by marine Crenarchaeota in the Gulf of
California, ISME J., 2, 429–441,
https://doi.org/10.1038/ismej.2007.118, 2008.
Beman, J. M., Popp, B. N., and Alford, S. E.: Quantification of ammonia
oxidation rates and ammonia-oxidizing archaea and bacteria at high
resolution in the Gulf of California and eastern tropical North Pacific
Ocean, Limnol. Oceanogr., 57, 711–726,
https://doi.org/10.4319/lo.2012.57.3.0711, 2012.
Bernhard, A. E. and Bollmann, A.: Estuarine nitrifiers: New players,
patterns and processes, Estuar. Coast. Shelf Sci., 88, 1–11,
https://doi.org/10.1016/j.ecss.2010.01.023, 2010.
Bernhard, A. E., Landry, Z. C., Blevins, A., de la Torre, J. R., Giblin, A. E.,
and Stahl, D. A.: Abundance of ammonia-oxidizing archaea and bacteria along
an estuarine salinity gradient in relation to potential nitrification rates,
Appl. Environ. Microbiol., 76, 1285–1289,
https://doi.org/10.1128/Aem.02018-09, 2010.
Blainey, P. C., Mosier, A. C., Potanina, A., Francis, C. A., and Quake, S. R.:
Genome of a Low-salinity ammonia-oxidizing archaeon determined by
single-cell and metagenomic analysis, PLoS One, 6, e16626,
https://doi.org/10.1371/journal.pone.0016626, 2011.
Bristow, L. A., Dalsgaard, T., Tiano, L., Mills, D. B., Bertagnolli, A. D.,
Wright, J. J., Hallam, S. J., Ulloa, O., Canfield, D. E., Revsbech, N. P., and Thamdrup, B.: Ammonium and nitrite oxidation at nanomolar oxygen
concentrations in oxygen minimum zone waters, P. Natl. Acad. Sci. USA,
113, 10601–10606, https://doi.org/10.1073/pnas.1600359113, 2016.
Caffrey, J. M., Bano, N., Kalanetra, K., and Hollibaugh, J. T.: Ammonia
oxidation and ammonia-oxidizing bacteria and archaea from estuaries with
differing histories of hypoxia, ISME J., 1, 660–662,
https://doi.org/10.1038/ismej.2007.79, 2007.
Campbell, L. G., Thrash, J. C., Rabalais, N. N., and Mason, O. U.: Extent of
the annual Gulf of Mexico hypoxic zone influences microbial community
structure, PLoS One, 14, e0209055, https://doi.org/10.1371/journal.pone.0209055, 2019.
Casciotti, K. L., Sigman, D. M., Hastings, M. G., Bohlke, J. K., and Hilkert,
A.: Measurement of the oxygen isotopic composition of nitrate in seawater
and freshwater using the denitrifier method, Anal. Chem., 74, 4905–4912, https://doi.org/10.1021/ac020113w, 2002.
Cheung, S., Mak, W., Xia, X. M., Lu, Y. H., Cheung, Y. Y., and Liu, H. B.:
Overlooked genetic diversity of ammonia oxidizing archaea lineages in the
global oceans, J. Geophys. Res.-Biogeo., 124, 1799–1811,
https://doi.org/10.1029/2018jg004636, 2019.
Dai, M. Guo, H.,
Zhai, W., Yuan, L., Wang, B., Wang, L., Cai, P., Tang, T., and Cai, W.-J.:
Oxygen depletion in the upper reach of
the Pearl River estuary during a winter drought, Mar. Chem., 102, 159–169, https://doi.org/10.1016/j.marchem.2005.09.020, 2006.
Dai, M., Wang, L., Guo, X., Zhai, W., Li, Q., He, B., and Kao, S.-J.: Nitrification and inorganic nitrogen distribution in a large perturbed river/estuarine system: the Pearl River Estuary, China, Biogeosciences, 5, 1227–1244, https://doi.org/10.5194/bg-5-1227-2008, 2008.
Damashek, J., Casciotti, K. L., and Francis, C. A.: Variable nitrification
rates across environmental gradients in turbid, nutrient-rich estuary waters
of San Francisco Bay, Estuar. Coast., 39, 1050–1071,
https://doi.org/10.1007/s12237-016-0071-7, 2016.
Elling, F. J., Konneke, M., Mussmann, M., Greve, A., and Hinrichs, K. U.:
Influence of temperature, pH, and salinity on membrane lipid composition and
TEX86 of marine planktonic thaumarchaeal isolates, Geochim. Cosmochim. Ac.,
171, 238–255, https://doi.org/10.1016/j.gca.2015.09.004, 2015.
Erguder, T. H., Boon, N., Wittebolle, L., Marzorati, M., and Verstraete, W. :
Environmental factors shaping the ecological niches of ammonia-oxidizing
archaea, FEMS Microbiol Rev., 33, 855–869,
https://doi.org/10.1111/j.1574-6976.2009.00179.x, 2009.
Francis, C. A., Roberts, K. J., Beman, J. M., Santoro, A. E., and Oakley, B. B.: Ubiquity and diversity of ammonia-oxidizing archaea in water columns and
sediments of the ocean, P. Natl. Acad. Sci. USA, 102, 14683–14688, https://doi.org/10.1073/pnas.0506625102, 2005.
Hallam, S. J., Mincer, T. J., Schleper, C., Preston, C. M., Roberts, K.,
Richardson, P. M., and DeLong, E. F.: Pathways of carbon assimilation and
ammonia oxidation suggested by environmental genomic analyses of marine
Crenarchaeota, PLoS Biol., 4, 520–536,
https://doi.org/10.1371/journal.pbio.0040095, 2006.
Happel, E. Bartl, I., Voss, M., and Riemann, L.: Extensive nitrification and
active ammonia oxidizers in two contrasting coastal systems of the Baltic
Sea, Environ. Microbiol., 20, 2913–2926, https://doi.org/10.1111/1462-2920.14293, 2018.
Harrison, P. J., Yin, K. D., Lee, J. H. W., Gan, J. P., and Liu, H. B.:
Physical-biological coupling in the Pearl River Estuary, Cont. Shelf Res.,
28, 1405–1415, https://doi.org/10.1016/j.csr.2007.02.011, 2008.
Hsiao, S. S.-Y., Hsu, T.-C., Liu, J.-w., Xie, X., Zhang, Y., Lin, J., Wang, H., Yang, J.-Y. T., Hsu, S.-C., Dai, M., and Kao, S.-J.: Nitrification and its oxygen consumption along the turbid Chang Jiang River plume, Biogeosciences, 11, 2083–2098, https://doi.org/10.5194/bg-11-2083-2014, 2014.
Jing, H. M., Cheung, S. Y., Xia, X. M., Suzuki, K., Nishioka, J., and Liu, H. B.: Geographic distribution of ammonia-oxidizing archaea along the Kuril
Islands in the western subarctic Pacific, Front. Microbiol., 8, 1247,
https://doi.org/10.3389/fmicb.2017.01247, 2017.
Kahle, D. and Wickham, H.: ggmap: Spatial Visualization with ggplot2, The R
J., 51, 144–161, 2013.
Kitzinger, K., Padilla, C. C., Marchant, H. K., Hach, P. F., Herbold, C. W.,
Kidane, A. T., Konneke, M., Littmann, S., Mooshammer, M., Niggemann, J., Petrov,
S., Richter, A., Stewart, F., Wagner, M., Kuypers, M. M. M., and Bristow, L. A.:
Cyanate and urea are substrates for nitrification by Thaumarchaeota in the
marine environment, Nat. Microbiol., 4, 234–243,
https://doi.org/10.1038/s41564-018-0316-2, 2019.
Knapp, A. N., Sigman, D. M., and Lipschultz, F.: N isotopic composition of
dissolved organic nitrogen and nitrate at the Bermuda Atlantic time-series
study site, Global Biogeochem. Cy., 19, GB1018,
https://doi.org/10.1029/2004gb002320, 2005.
Konneke, M., Bernhard, A. E., de la Torre, J. R., Walker, C. B., Waterbury, J. B., and Stahl, D. A.: Isolation of an autotrophic ammonia-oxidizing
marine archaeon, Nature, 437, 543–546,
https://doi.org/10.1038/nature03911, 2005.
Letunic, I. and Bork, P.: Interactive tree of life (iTOL) v3: an online
tool for the display and annotation of phylogenetic and other trees, Nucleic
Acids Res., 44, 242–245, https://doi.org/10.1093/nar/gkw290,
2016.
Lipschultz, F., Wofsy, S. C., and Fox, L. E.: Nitrogen-metabolism of the
eutrophic Delaware River ecosystem, Limnol. Oceanogr., 31, 701–716, https://doi.org/10.4319/lo.1986.31.4.0701, 1986.
Liu, H. B., Jing, H. M., Wong, T. H. C., and Chen, B. Z.: Co-occurrence of
phycocyanin- and phycoerythrin-rich Synechococcus in subtropical estuarine and coastal
waters of Hong Kong, Environ. Microbiol. Rep., 6, 90–99,
https://doi.org/10.1111/1758-2229.12111, 2014.
Logares, R., Audic, S., Bass, D., Bittner, L., Boutte, C., Christen, R., Claverie,
J. M., Decelle, J., Dolan, J. R., Dunthorn, M., Edvardsen, B., Gobet, A.,
Kooistra, W. H. C. F., Mahe, F., Not, F., Ogata, H., Pawlowski, J., Pernice, M.,
C., Romac, S., Shalchian-Tabrizi, K., Simon, N., Stoeck, T., Santini, S., Siano,
R., Wincker, P., Zingone, A., Richards, T. A., de Vargas, C., and Massana, R.:
Patterns of rare and abundant marine microbial eukaryotes, Curr. Biol.,
24, 813–821, https://doi.org/10.1016/j.cub.2014.02.050, 2014.
Lu, Y. H., Xia, X. M., Cheung, S. Y., Jing, H. M., and Liu, H. B.:
Differential distribution and determinants of ammonia oxidizing archaea
sublineages in the oxygen minimum zone off Costa Rica, Microorganisms, 7, 453,
https://doi.org/10.3390/microorganisms7100453, 2019.
Lu, Z. M., Gan, J. P., Dai, M. H., Liu, H. B., and Zhao, X. Z.: Joint effects
of extrinsic biophysical fluxes and intrinsic hydrodynamics on the formation
of hypoxia west off the Pearl River Estuary, J. Geophys. Res.-Ocean,
123, 6241–6259, https://doi.org/10.1029/2018jc014199, 2018.
Magalhaes, C. M., Machado, A., and Bordalo, A. A.: Temporal variability in
the abundance of ammonia-oxidizing bacteria vs. archaea in sandy sediments
of the Douro River estuary, Portugal, Aquat. Microb. Ecol., 56, 13–23, https://doi.org/10.3354/ame01313, 2009.
Martens-Habbena, W., Berube, P. M., Urakawa, H., de la Torre, J. R., and Stahl, D. A.: Ammonia oxidation kinetics determine niche separation of nitrifying
Archaea and Bacteria, Nature, 461, 976–979,
https://doi.org/10.1038/nature08465, 2009.
Moin, N. S., Nelson, K. A., Bush, A., and Bernhard, A. E.: Distribution and
diversity of archaeal and bacterial ammonia oxidizers in salt marsh
sediments, Appl. Environ. Microbiol., 75, 7461–7468,
https://doi.org/10.1128/Aem.01001-09, 2009.
Mosier, A. C. and Francis, C. A.: Relative abundance and diversity of
ammonia-oxidizing archaea and bacteria in the San Francisco Bay estuary,
Environ. Microbiol., 10, 3002–3016,
https://doi.org/10.1111/j.1462-2920.2008.01764.x, 2008.
Mosier, A. C. and Francis C. A.: Determining the distribution of marine
and coastal ammonia-oxidizing archaea and bacteria using a quantitative
approach, Meth. Enzymol., 486, 205–221,
https://doi.org/10.1016/S0076-6879(11)86009-X, 2011.
Oksanen, J., Blanchet, F. G., Friendly, Kindt, M. R., Legendre, P., McGlinn, D.,
Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P. M., Stevens, H. H.,
Szoecs E., and Wagner, H.: vegan: Community Ecology Package, R package
version 2.5-6, availabe at: https://CRAN.R-project.org/package (last access: 19 September 2020), 2019.
Pai, S. C., Tsau, Y. J., and Yang, T. I.: pH and buffering capacity problems
involved in the determination of ammonia in saline water using the
indophenol blue spectrophotometric method, Anal. Chim. Ac., 434, 209–216, https://doi.org/10.1016/S0003-2670(01)00851-0, 2001.
Pakulski, J. D., Benner, R., Amon, R., Eadie, B., and Whitledge, T.: Community
metabolism and nutrient cycling in the Mississippi River Plume – Evidence
for intense nitrification at intermediate salinities, Mar. Ecol. Prog. Ser.,
117, 207–218, https://doi.org/10.3354/meps117207, 1995.
Peng, X. F., Jayakumar, A., and Ward, B. B.: Community composition of
ammonia-oxidizing archaea from surface and anoxic depths of oceanic oxygen
minimum zones, Front. Microbiol., 4, 177, https://doi.org/10.3389/fmicb.2013.00177, 2013.
Qian, W., Gan, J. P., Liu, J. W., He, B. Y., Lu, Z. M., Guo, X. H., Wang, D. L.,
Guo, L. G., Huang, T., and Dai, M. H.: Current status of emerging hypoxia in
a eutrophic estuary: The lower reach of the Pearl River Estuary, China,
Estuar. Coast. Shelf S., 205, 58–67,
https://doi.org/10.1016/j.ecss.2018.03.004, 2018.
Qin, W., Amin, S. A., Martens-Habbena, W., Walker, C. B., Urakawa, H., Devol, A.
H., Ingalls, A. E., Moffett, J. W., Armbrust, E. V., and Stahl, D. A.: Marine
ammonia-oxidizing archaeal isolates display obligate mixotrophy and wide
ecotypic variation, P. Natl. Acad. Sci. USA, 111, 12504–12509.
https://doi.org/10.1073/pnas.1324115111, 2014.
Qin, W., Carlson, L. T., Armbrust, E. V., Devol, A. H., Moffett, J. W., Stahl, D.
A., and Ingalls, A. E.: Confounding effects of oxygen and temperature on the
TEX86 signature of marine Thaumarchaeota, P. Natl. Acad. Sci. USA,
112, 10979–10984, https://doi.org/10.1073/pnas.1501568112, 2015.
Qin, W., Meinhardt, K. A., Moffett, J. W., Devol, A. H., Armbrust, E. V.,
Ingalls, A. E., and Stahl, D. A.: Influence of oxygen availability on the
activities of ammonia-oxidizing archaea, Environ. Microbiol. Rep.,
9, 250–256, https://doi.org/10.1111/1758-2229.12525, 2017.
Rotthauwe, J. H., Witzel, K. P., and Liesack, W.: The ammonia monooxygenase
structural gene amoA as a functional marker: Molecular fine-scale analysis of
natural ammonia-oxidizing populations, Appl. Environ. Microbiol.,
63, 4704–4712, 1997.
Sampou, P. and Kemp, W. N.: Factors regulating phytoplankton community
respiration in Chesapeake Bay, Mar. Ecol. Prog. Ser., 110, 249–258,
https://doi.org/10.3354/meps110249, 1994.
Santoro, A. E., Francis, C. A., de Sieyes, N. R., and Boehm, A. B.: Shifts in
the relative abundance of ammonia-oxidizing bacteria and archaea across
physicochemical gradients in a subterranean estuary, Environ. Microbiol.,
10, 1068–1079, https://doi.org/10.1111/j.1462-2920.2007.01547.x,
2008.
Santoro, A. E., Dupont, C. L., Richter, R. A., Craig, M. T., Carini, P., McIlvin,
M. R., Yang, Y., Orsi, W. D., Moran, D. M., and Saito, M. A.: Genomic and
proteomic characterization of Candidatus Nitrosopelagicus brevis: An ammonia-oxidizing archaeon from the
open ocean, P. Natl. Acad. Sci. USA, 112, 1173–1178,
https://doi.org/10.1073/pnas.1416223112, 2015.
Santoro, A. E., Saito, M. A., Goepfert, T. J., Lamborg, C. H., Dupont, C. L., and DiTullio, G. R.: Thaumarchaeal ecotype distributions across the
equatorial Pacific Ocean and their potential roles in nitrification and
sinking flux attenuation, Limnol. Oceanogr., 62, 1984–2003,
https://doi.org/10.1002/lno.10547, 2017.
Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M.,
Hollister, E. B., Lesniewski, R. A., Oakley, B. B., Parks, D. H., Robinson, C.
J., Sahl, J. W., Stres, B., Thallinger, G. G., Van Horn, D. J., and Weber, C. F.: Introducing mothur: Open-Source, Platform-Independent, Community-Supported
Software for describing and comparing microbial communities, Appl. Environ.
Microbiol., 75, 7537–7541, https://doi.org/10.1128/Aem.01541-09,
2009.
Seyler, L. M., McGuinness, L. M., and Kerkhof, L. J.: Crenarchaeal
heterotrophy in salt marsh sediments, ISME J., 8, 1534–1543, https://doi.org/10.1038/ismej.2014.15, 2014.
Seyler, L. M., McGuinness, L. R., Gilbert, J. A., Biddle, J. F., Gong, D. L.,
and Kerkhof, L. J.: Discerning autotrophy, mixotrophy and heterotrophy in
marine TACK archaea from the North Atlantic, FEMS Microbiol. Ecol., 94, fiy014,
https://doi.org/10.1093/femsec/fiy014, 2018.
Seyler, L. M., Tuorto, S., McGuinness, L. R., Gong, D. L., and Kerkhof, L. J.:
Bacterial and archaeal specific-predation in the North Atlantic Basin,
Front. Mar. Sci., 6, 555, https://doi.org/10.3389/fmars.2019.00555, 2019.
Sigman, D. M., Casciotti, K. L., Andreani, M., Barford, C., Galanter, M., and Bohlke, J. K.: A
bacterial method for the nitrogen isotopic analysis of nitrate in seawater
and freshwater, Anal. Chem., 73, 4145–4153,
https://doi.org/10.1021/ac010088e, 2001.
Smith, J. M., Damashek, J., Chavez, F. P., and Francis, C. A.: Factors
influencing nitrification rates and the abundance and transcriptional
activity of ammonia-oxidizing microorganisms in the dark northeast Pacific
Ocean, Limnol. Oceanogr., 61, 596–609, https://doi.org/10.1002/lno.10235,
2016.
Vaulot, D., Courties, C., and Partensky, F.: A simple method to preserve
oceanic phytoplankton for Flow Cytometric Analyses, Cytometry, 10, 629–635, https://doi.org/10.1002/cyto.990100519, 1989.
Wankel, S. D., Mosier, A. C., Hansel, C. M., Paytan, A., and Francis, C. A.:
Spatial variability in nitrification rates and ammonia-oxidizing microbial
communities in the agriculturally impacted Elkhorn Slough Estuary,
California, Appl. Environ. Microbiol., 77, 269–280,
https://doi.org/10.1128/Aem.01318-10, 2011.
Ward, B. B.: Nitrification and ammonification in aquatic systems, Life
Support Biosph. Sci., 3, 25–29, 1996.
Welschmeyer, N. A.: Fluorometric analysis of Chlorophyll-a in the presence
of Chlorophyll-B and pheopigments, Limnol. Oceanogr., 39, 1985–1992, https://doi.org/10.4319/lo.1994.39.8.1985, 1994.
Wickham, H.: ggplot2: Elegant graphics for data analysis, Springer-Verlag
New York, USA, 2016.
Wu, R. N., Meng, H., Wang, Y. F., Lan, W. S., and Gu, J. D.: A more
comprehensive community of ammonia-oxidizing archaea (AOA) revealed by
genomic DNA and RNA analyses of amoA gene in subtropical acidic Forest Soils,
Microbiol. Ecol., 74, 910–922,
https://doi.org/10.1007/s00248-017-1045-4, 2017.
Xu, J., Jing, H. M., Kong, L. L., Sun, M. M., Harrison, P. J., and Liu, H. B.:
Effect of seawater-sewage cross-transplants on bacterial metabolism and
diversity, Microbiol. Ecol., 66, 60–72,
https://doi.org/10.1007/s00248-013-0207-2, 2013.
Yool, A., Martin, A. P., Fernandez, C., and Clark, D. R.: The significance of
nitrification for oceanic new production, Nature, 447, 999–1002,
https://doi.org/10.1038/nature05885, 2007.
Zhao, H. T.: Evolution of the Pearl River Estuary, China Ocean Press,
Beijing, China, 1990 (in Chinese).
Zhao, Y. Y., Liu, J., Uthaipan, K., Song, X., Xu, Y., He, B. Y., Liu, H.,
Gan, J. P., and Dai, M. H.: Dynamics of inorganic carbon and pH in a large
subtropical continental shelf system: Interaction between eutrophication,
hypoxia, and ocean acidification, Limnol. Oceanogr., 65, 1359–1379,
https:/.doi.org/10.1002/lmo.11393, 2020.
Short summary
Through a comprehensive investigation, we observed differential niche partitioning among diverse ammonia-oxidizing archaea (AOA) sublineages in a typical subtropical estuary. Distinct AOA communities observed at DNA and RNA levels suggested that a strong divergence in ammonia-oxidizing activity among different AOA groups occurs. Our result highlights the importance of identifying major ammonia oxidizers at RNA level in future studies.
Through a comprehensive investigation, we observed differential niche partitioning among diverse...
Altmetrics
Final-revised paper
Preprint