Articles | Volume 17, issue 23
https://doi.org/10.5194/bg-17-6051-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-17-6051-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reviews and syntheses: Present, past, and future of the oxygen minimum zone in the northern Indian Ocean
Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstr. 6, 28359
Bremen, Germany
Greg Cowie
School of Geosciences, University of Edinburgh, James Hutton Road,
Edinburgh EH9 3FE, Scotland, UK
Birgit Gaye
Institute for Geology, Universität Hamburg, Bundesstraße 55, 20146
Hamburg, Germany
Joaquim Goes
Marine Biology, Department of Marine Biology and Paleoenvironment, Lamont–Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades,
New York 10964, USA
Helga do Rosário Gomes
Marine Biology, Department of Marine Biology and Paleoenvironment, Lamont–Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades,
New York 10964, USA
Raleigh R. Hood
Horn Point Laboratory, University of Maryland Center for Environmental
Science, P.O. Box 775, Cambridge, MD 21613, USA
Zouhair Lachkar
Center for Prototype Climate Modeling (CPCM), NYU, Abu Dhabi, UAE
Henrike Schmidt
GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Duesternbrooker Weg 20,
24105 Kiel, Germany
Joachim Segschneider
Institute of Geosciences, Christian-Albrechts-Universität zu Kiel (CAU),
Ludewig-Meyn-Straße 10, 24118 Kiel, Germany
Arvind Singh
Geosciences Division, Physical Research Laboratory (PRL) Navrangpura,
Ahmedabad 380 009, India
Related authors
Luisa Chiara Meiritz, Tim Rixen, Anja Karin van der Plas, Tarron Lamont, and Niko Lahajnar
Biogeosciences, 21, 5261–5276, https://doi.org/10.5194/bg-21-5261-2024, https://doi.org/10.5194/bg-21-5261-2024, 2024
Short summary
Short summary
Moored and drifting sediment trap experiments in the northern (nBUS) and southern (sBUS) Benguela Upwelling System showed that active carbon fluxes by vertically migrating zooplankton were about 3 times higher in the sBUS than in the nBUS. Despite these large variabilities, the mean passive particulate organic carbon (POC) fluxes were almost equal in the two subsystems. The more intense near-bottom oxygen minimum layer seems to lead to higher POC fluxes and accumulation rates in the nBUS.
Alexandra Klemme, Thorsten Warneke, Heinrich Bovensmann, Matthias Weigelt, Jürgen Müller, Tim Rixen, Justus Notholt, and Claus Lämmerzahl
Hydrol. Earth Syst. Sci., 28, 1527–1538, https://doi.org/10.5194/hess-28-1527-2024, https://doi.org/10.5194/hess-28-1527-2024, 2024
Short summary
Short summary
Satellite data help estimate groundwater depletion, but earlier assessments missed mass loss from river sediment. In the Ganges–Brahmaputra–Meghna (GBM) river system, sediment accounts for 4 % of the depletion. Correcting for sediment in the GBM mountains reduces estimated depletion by 14 %. It's important to note that the Himalayas' uplift may offset some sediment-induced mass loss. This understanding is vital for accurate water storage trend assessments and sustainable groundwater management.
Alexandra Klemme, Tim Rixen, Denise Müller-Dum, Moritz Müller, Justus Notholt, and Thorsten Warneke
Biogeosciences, 19, 2855–2880, https://doi.org/10.5194/bg-19-2855-2022, https://doi.org/10.5194/bg-19-2855-2022, 2022
Short summary
Short summary
Tropical peat-draining rivers contain high amounts of carbon. Surprisingly, measured carbon dioxide (CO2) emissions from those rivers are comparatively moderate. We compiled data from 10 Southeast Asian rivers and found that CO2 production within these rivers is hampered by low water pH, providing a natural threshold for CO2 emissions. Furthermore, we find that enhanced carbonate input, e.g. caused by human activities, suspends this natural threshold and causes increased CO2 emissions.
Birgit Gaye, Niko Lahajnar, Natalie Harms, Sophie Anna Luise Paul, Tim Rixen, and Kay-Christian Emeis
Biogeosciences, 19, 807–830, https://doi.org/10.5194/bg-19-807-2022, https://doi.org/10.5194/bg-19-807-2022, 2022
Short summary
Short summary
Amino acids were analyzed in a large number of samples of particulate and dissolved organic matter from coastal regions and the open ocean. A statistical analysis produced two new biogeochemical indicators. An indicator of sinking particle and sediment degradation (SDI) traces the degradation of organic matter from the surface waters into the sediments. A second indicator shows the residence time of suspended matter in the ocean (RTI).
Nicole Burdanowitz, Tim Rixen, Birgit Gaye, and Kay-Christian Emeis
Clim. Past, 17, 1735–1749, https://doi.org/10.5194/cp-17-1735-2021, https://doi.org/10.5194/cp-17-1735-2021, 2021
Short summary
Short summary
To study the interaction of the westerlies and Indian summer monsoon (ISM) during the Holocene, we used paleoenvironmental reconstructions using a sediment core from the northeast Arabian Sea. We found a climatic transition period between 4.6 and 3 ka BP during which the ISM shifted southwards and the influence of Westerlies became prominent. Our data indicate a stronger influence of agriculture activities and enhanced soil erosion, adding to Bond event impact after this transition period.
Shreya Mehta, Jitender Kumar, Sipai Nazirahmed, Himanshu Saxena, Jyotiranjan S. Ray, Sanjeev Kumar, Indrani Karunasagar, and Arvind Singh
EGUsphere, https://doi.org/10.5194/egusphere-2025-3925, https://doi.org/10.5194/egusphere-2025-3925, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
We tested how different minerals affect ocean chemistry to help remove carbon dioxide from the atmosphere. In coastal waters of the Arabian Sea, we found that man-made minerals like periclase and hydrated lime were much more effective than natural ones. Our results also reveal a new way to track unwanted side effects that reduce efficiency. This research helps identify safer and more effective methods for ocean-based climate solutions.
Zouhair Lachkar, Olivier Pauluis, Francesco Paparella, Basit Khan, and John A. Burt
EGUsphere, https://doi.org/10.5194/egusphere-2025-2948, https://doi.org/10.5194/egusphere-2025-2948, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
An analysis of model and reanalysis data reveals that extreme summer temperatures in the Arabian/Persian Gulf are driven by weakened local northwesterly Shamal winds and intensified monsoon winds over the Arabian Sea. These conditions – typically associated with La Niña and a negative NAO phase – increase air moisture over the Gulf and enhance surface heat trapping. The findings offer promising prospects for forecasting summer marine heatwaves in the Gulf and supporting mitigation efforts.
Said Ouala, Oussama Hidaoui, and Zouhair Lachkar
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-288, https://doi.org/10.5194/essd-2025-288, 2025
Preprint under review for ESSD
Short summary
Short summary
Ocean deoxygenation poses major challenges to marine life and can alter carbon cycling. Direct measurements of dissolved oxygen are sparse, and interpolation methods are needed to study the variability and changes in oxygen content. In this work, we used machine learning to improve estimates of oxygen levels across the global ocean. Our approach produces a new gridded product that captures detailed changes in oxygen over time and space.
Gesa Schulz, Kirstin Dähnke, Tina Sanders, Jan Penopp, Hermann W. Bange, Rena Czeschel, and Birgit Gaye
EGUsphere, https://doi.org/10.5194/egusphere-2025-1660, https://doi.org/10.5194/egusphere-2025-1660, 2025
Short summary
Short summary
Oxygen minimum zones (OMZs) are low-oxygen ocean areas that deplete nitrogen, a key marine nutrient. Understanding nitrogen cycling in OMZs is crucial for the global nitrogen cycle. This study examined nitrogen cycling in the OMZ of the Bay of Bengal and East Equatorial Indian Ocean, revealing limited mixing between both regions. Surface phytoplankton consumes nitrate, while deeper nitrification recycles nitrogen. In the BoB’s OMZ (100–300 m), nitrogen loss likely occurs via anammox.
Said Ouala, Oussama Hidaoui, and Zouhair Lachkar
EGUsphere, https://doi.org/10.5194/egusphere-2025-1771, https://doi.org/10.5194/egusphere-2025-1771, 2025
Preprint withdrawn
Short summary
Short summary
In this study, we develop a novel gridded ocean oxygen concentration product by combining observed oxygen data with emulated measurements derived from temperature and salinity profiles. This approach increases the density of observations, particularly in data-sparse regions, allowing for more accurate oxygen concentration estimates than current state-of-the-art products.
Jan Maier, Nicole Burdanowitz, Gerhard Schmiedl, and Birgit Gaye
Clim. Past, 21, 279–297, https://doi.org/10.5194/cp-21-279-2025, https://doi.org/10.5194/cp-21-279-2025, 2025
Short summary
Short summary
We reconstruct sea surface temperatures (SSTs) of the past 43 kyr in the Gulf of Oman. We find SST variations of up to 7 °C with lower SSTs during Heinrich events (HEs), especially HE4, and higher SSTs during Dansgaard–Oeschger events. Our record shows no profound cooling during the Last Glacial Maximum but abrupt variations during the Holocene. We surmise that SST variations are influenced by the southwest (northeast) monsoon during warmer (colder) periods.
Luisa Chiara Meiritz, Tim Rixen, Anja Karin van der Plas, Tarron Lamont, and Niko Lahajnar
Biogeosciences, 21, 5261–5276, https://doi.org/10.5194/bg-21-5261-2024, https://doi.org/10.5194/bg-21-5261-2024, 2024
Short summary
Short summary
Moored and drifting sediment trap experiments in the northern (nBUS) and southern (sBUS) Benguela Upwelling System showed that active carbon fluxes by vertically migrating zooplankton were about 3 times higher in the sBUS than in the nBUS. Despite these large variabilities, the mean passive particulate organic carbon (POC) fluxes were almost equal in the two subsystems. The more intense near-bottom oxygen minimum layer seems to lead to higher POC fluxes and accumulation rates in the nBUS.
Medhavi Pandey, Haimanti Biswas, Daniel Birgel, Nicole Burdanowitz, and Birgit Gaye
Biogeosciences, 21, 4681–4698, https://doi.org/10.5194/bg-21-4681-2024, https://doi.org/10.5194/bg-21-4681-2024, 2024
Short summary
Short summary
We analysed sea surface temperature (SST) proxy and plankton biomarkers in sediments that accumulate sinking material signatures from surface waters in the central Arabian Sea (21°–11° N, 64° E), a tropical basin impacted by monsoons. We saw a north–south SST gradient, and the biological proxies showed more organic matter from larger algae in the north. Smaller algae and zooplankton were more numerous in the south. These trends were related to ocean–atmospheric processes and oxygen availability.
Alexandra Klemme, Thorsten Warneke, Heinrich Bovensmann, Matthias Weigelt, Jürgen Müller, Tim Rixen, Justus Notholt, and Claus Lämmerzahl
Hydrol. Earth Syst. Sci., 28, 1527–1538, https://doi.org/10.5194/hess-28-1527-2024, https://doi.org/10.5194/hess-28-1527-2024, 2024
Short summary
Short summary
Satellite data help estimate groundwater depletion, but earlier assessments missed mass loss from river sediment. In the Ganges–Brahmaputra–Meghna (GBM) river system, sediment accounts for 4 % of the depletion. Correcting for sediment in the GBM mountains reduces estimated depletion by 14 %. It's important to note that the Himalayas' uplift may offset some sediment-induced mass loss. This understanding is vital for accurate water storage trend assessments and sustainable groundwater management.
Nicole Burdanowitz, Gerhard Schmiedl, Birgit Gaye, Philipp M. Munz, and Hartmut Schulz
Biogeosciences, 21, 1477–1499, https://doi.org/10.5194/bg-21-1477-2024, https://doi.org/10.5194/bg-21-1477-2024, 2024
Short summary
Short summary
We analyse benthic foraminifera, nitrogen isotopes and lipids in a sediment core from the Gulf of Oman to investigate how the oxygen minimum zone (OMZ) and bottom water (BW) oxygenation have reacted to climatic changes since 43 ka. The OMZ and BW deoxygenation was strong during the Holocene, but the OMZ was well ventilated during the LGM period. We found an unstable mode of oscillating oxygenation states, from moderately oxygenated in cold stadials to deoxygenated in warm interstadials in MIS 3.
Maria D. Iglesias-Rodríguez, Rosalind E. M. Rickaby, Arvind Singh, and James A. Gately
State Planet, 2-oae2023, 5, https://doi.org/10.5194/sp-2-oae2023-5-2023, https://doi.org/10.5194/sp-2-oae2023-5-2023, 2023
Short summary
Short summary
Recent concern about the repercussions of rising atmospheric CO2 as a key heat-trapping agent have prompted ocean experts to discuss ocean alkalinity enhancement (OAE) as a CO2 removal approach but also as a potential way to mitigate ocean acidification. This chapter provides an overview of best practice in OAE laboratory experimentation by identifying key criteria to achieve high-quality results and providing recommendations to contrast results with other laboratories.
Zhibo Shao, Yangchun Xu, Hua Wang, Weicheng Luo, Lice Wang, Yuhong Huang, Nona Sheila R. Agawin, Ayaz Ahmed, Mar Benavides, Mikkel Bentzon-Tilia, Ilana Berman-Frank, Hugo Berthelot, Isabelle C. Biegala, Mariana B. Bif, Antonio Bode, Sophie Bonnet, Deborah A. Bronk, Mark V. Brown, Lisa Campbell, Douglas G. Capone, Edward J. Carpenter, Nicolas Cassar, Bonnie X. Chang, Dreux Chappell, Yuh-ling Lee Chen, Matthew J. Church, Francisco M. Cornejo-Castillo, Amália Maria Sacilotto Detoni, Scott C. Doney, Cecile Dupouy, Marta Estrada, Camila Fernandez, Bieito Fernández-Castro, Debany Fonseca-Batista, Rachel A. Foster, Ken Furuya, Nicole Garcia, Kanji Goto, Jesús Gago, Mary R. Gradoville, M. Robert Hamersley, Britt A. Henke, Cora Hörstmann, Amal Jayakumar, Zhibing Jiang, Shuh-Ji Kao, David M. Karl, Leila R. Kittu, Angela N. Knapp, Sanjeev Kumar, Julie LaRoche, Hongbin Liu, Jiaxing Liu, Caroline Lory, Carolin R. Löscher, Emilio Marañón, Lauren F. Messer, Matthew M. Mills, Wiebke Mohr, Pia H. Moisander, Claire Mahaffey, Robert Moore, Beatriz Mouriño-Carballido, Margaret R. Mulholland, Shin-ichiro Nakaoka, Joseph A. Needoba, Eric J. Raes, Eyal Rahav, Teodoro Ramírez-Cárdenas, Christian Furbo Reeder, Lasse Riemann, Virginie Riou, Julie C. Robidart, Vedula V. S. S. Sarma, Takuya Sato, Himanshu Saxena, Corday Selden, Justin R. Seymour, Dalin Shi, Takuhei Shiozaki, Arvind Singh, Rachel E. Sipler, Jun Sun, Koji Suzuki, Kazutaka Takahashi, Yehui Tan, Weiyi Tang, Jean-Éric Tremblay, Kendra Turk-Kubo, Zuozhu Wen, Angelicque E. White, Samuel T. Wilson, Takashi Yoshida, Jonathan P. Zehr, Run Zhang, Yao Zhang, and Ya-Wei Luo
Earth Syst. Sci. Data, 15, 3673–3709, https://doi.org/10.5194/essd-15-3673-2023, https://doi.org/10.5194/essd-15-3673-2023, 2023
Short summary
Short summary
N2 fixation by marine diazotrophs is an important bioavailable N source to the global ocean. This updated global oceanic diazotroph database increases the number of in situ measurements of N2 fixation rates, diazotrophic cell abundances, and nifH gene copy abundances by 184 %, 86 %, and 809 %, respectively. Using the updated database, the global marine N2 fixation rate is estimated at 223 ± 30 Tg N yr−1, which triplicates that using the original database.
Alexandra Klemme, Tim Rixen, Denise Müller-Dum, Moritz Müller, Justus Notholt, and Thorsten Warneke
Biogeosciences, 19, 2855–2880, https://doi.org/10.5194/bg-19-2855-2022, https://doi.org/10.5194/bg-19-2855-2022, 2022
Short summary
Short summary
Tropical peat-draining rivers contain high amounts of carbon. Surprisingly, measured carbon dioxide (CO2) emissions from those rivers are comparatively moderate. We compiled data from 10 Southeast Asian rivers and found that CO2 production within these rivers is hampered by low water pH, providing a natural threshold for CO2 emissions. Furthermore, we find that enhanced carbonate input, e.g. caused by human activities, suspends this natural threshold and causes increased CO2 emissions.
Shichao Tian, Birgit Gaye, Jianhui Tang, Yongming Luo, Wenguo Li, Niko Lahajnar, Kirstin Dähnke, Tina Sanders, Tianqi Xiong, Weidong Zhai, and Kay-Christian Emeis
Biogeosciences, 19, 2397–2415, https://doi.org/10.5194/bg-19-2397-2022, https://doi.org/10.5194/bg-19-2397-2022, 2022
Short summary
Short summary
We constrain the nitrogen budget and in particular the internal sources and sinks of nitrate in the Bohai Sea by using a mass-based and dual stable isotope approach based on δ15N and δ18O of nitrate. Based on available mass fluxes and isotope data an updated nitrogen budget is proposed. Compared to previous estimates, it is more complete and includes the impact of the interior cycle (nitrification) on the nitrate pool. The main external nitrogen sources are rivers contributing 19.2 %–25.6 %.
Birgit Gaye, Niko Lahajnar, Natalie Harms, Sophie Anna Luise Paul, Tim Rixen, and Kay-Christian Emeis
Biogeosciences, 19, 807–830, https://doi.org/10.5194/bg-19-807-2022, https://doi.org/10.5194/bg-19-807-2022, 2022
Short summary
Short summary
Amino acids were analyzed in a large number of samples of particulate and dissolved organic matter from coastal regions and the open ocean. A statistical analysis produced two new biogeochemical indicators. An indicator of sinking particle and sediment degradation (SDI) traces the degradation of organic matter from the surface waters into the sediments. A second indicator shows the residence time of suspended matter in the ocean (RTI).
Helen E. Phillips, Amit Tandon, Ryo Furue, Raleigh Hood, Caroline C. Ummenhofer, Jessica A. Benthuysen, Viviane Menezes, Shijian Hu, Ben Webber, Alejandra Sanchez-Franks, Deepak Cherian, Emily Shroyer, Ming Feng, Hemantha Wijesekera, Abhisek Chatterjee, Lisan Yu, Juliet Hermes, Raghu Murtugudde, Tomoki Tozuka, Danielle Su, Arvind Singh, Luca Centurioni, Satya Prakash, and Jerry Wiggert
Ocean Sci., 17, 1677–1751, https://doi.org/10.5194/os-17-1677-2021, https://doi.org/10.5194/os-17-1677-2021, 2021
Short summary
Short summary
Over the past decade, understanding of the Indian Ocean has progressed through new observations and advances in theory and models of the oceanic and atmospheric circulation. This review brings together new understanding of the ocean–atmosphere system in the Indian Ocean, describing Indian Ocean circulation patterns, air–sea interactions, climate variability, and the critical role of the Indian Ocean as a clearing house for anthropogenic heat.
Puthenveettil Narayana Menon Vinayachandran, Yukio Masumoto, Michael J. Roberts, Jenny A. Huggett, Issufo Halo, Abhisek Chatterjee, Prakash Amol, Garuda V. M. Gupta, Arvind Singh, Arnab Mukherjee, Satya Prakash, Lynnath E. Beckley, Eric Jorden Raes, and Raleigh Hood
Biogeosciences, 18, 5967–6029, https://doi.org/10.5194/bg-18-5967-2021, https://doi.org/10.5194/bg-18-5967-2021, 2021
Short summary
Short summary
Upwelling in the coastal ocean triggers biological productivity and thus enhances fisheries. Therefore, understanding the phenomenon of upwelling and the underlying mechanisms is important. In this paper, the present understanding of the upwelling along the coastline of the Indian Ocean from the coast of Africa all the way up to the coast of Australia is reviewed. The review provides a synthesis of the physical processes associated with upwelling and its impact on the marine ecosystem.
Zouhair Lachkar, Michael Mehari, Muchamad Al Azhar, Marina Lévy, and Shafer Smith
Biogeosciences, 18, 5831–5849, https://doi.org/10.5194/bg-18-5831-2021, https://doi.org/10.5194/bg-18-5831-2021, 2021
Short summary
Short summary
This study documents and quantifies a significant recent oxygen decline in the upper layers of the Arabian Sea and explores its drivers. Using a modeling approach we show that the fast local warming of sea surface is the main factor causing this oxygen drop. Concomitant summer monsoon intensification contributes to this trend, although to a lesser extent. These changes exacerbate oxygen depletion in the subsurface, threatening marine habitats and altering the local biogeochemistry.
Henrike Schmidt, Julia Getzlaff, Ulrike Löptien, and Andreas Oschlies
Ocean Sci., 17, 1303–1320, https://doi.org/10.5194/os-17-1303-2021, https://doi.org/10.5194/os-17-1303-2021, 2021
Short summary
Short summary
Oxygen-poor regions in the open ocean restrict marine habitats. Global climate simulations show large uncertainties regarding the prediction of these areas. We analyse the representation of the simulated oxygen minimum zones in the Arabian Sea using 10 climate models. We give an overview of the main deficiencies that cause the model–data misfit in oxygen concentrations. This detailed process analysis shall foster future model improvements regarding the oxygen minimum zone in the Arabian Sea.
Nicole Burdanowitz, Tim Rixen, Birgit Gaye, and Kay-Christian Emeis
Clim. Past, 17, 1735–1749, https://doi.org/10.5194/cp-17-1735-2021, https://doi.org/10.5194/cp-17-1735-2021, 2021
Short summary
Short summary
To study the interaction of the westerlies and Indian summer monsoon (ISM) during the Holocene, we used paleoenvironmental reconstructions using a sediment core from the northeast Arabian Sea. We found a climatic transition period between 4.6 and 3 ka BP during which the ISM shifted southwards and the influence of Westerlies became prominent. Our data indicate a stronger influence of agriculture activities and enhanced soil erosion, adding to Bond event impact after this transition period.
Derara Hailegeorgis, Zouhair Lachkar, Christoph Rieper, and Nicolas Gruber
Biogeosciences, 18, 303–325, https://doi.org/10.5194/bg-18-303-2021, https://doi.org/10.5194/bg-18-303-2021, 2021
Short summary
Short summary
Using a Lagrangian modeling approach, this study provides a quantitative analysis of water and nitrogen offshore transport in the Canary Current System. We investigate the timescales, reach and structure of offshore transport and demonstrate that the Canary upwelling is a key source of nutrients to the open North Atlantic Ocean. Our findings stress the need for improving the representation of the Canary system and other eastern boundary upwelling systems in global coarse-resolution models.
Henrike Schmidt, Rena Czeschel, and Martin Visbeck
Ocean Sci., 16, 1459–1474, https://doi.org/10.5194/os-16-1459-2020, https://doi.org/10.5194/os-16-1459-2020, 2020
Short summary
Short summary
Our investigations give detailed insight on the seasonally changing current system at intermediate depth in the Arabian Sea that is influenced by the monsoon. The changing currents influence the oxygen transport in the interior ocean and thus allow us to draw conclusions on the maintenance and seasonal variability of the upper part of the oxygen minimum zone in the Arabian Sea.
Cited articles
Acharya, S. S. and Panigrahi, M. K.: Eastward shift and maintenance of
Arabian Sea oxygen minimum zone: Understanding the paradox, Deep-Sea
Res. Pt. I, 115, 240–252, 2016.
Agnihotri, R., Bhattacharya, S. K., Sarin, M. M., and Somayajulu, B. L. K.:
Changes in surface productivity and subsurface denitrification during the
Holocene: a multiproxy study from the eastern Arabian Sea, The Holocene, 13,
701–713, 2003.
Al Azhar, M., Lachkar, Z., Lévy, M., and Smith, S.: Oxygen Minimum Zone
Contrasts Between the Arabian Sea and the Bay of Bengal Implied by
Differences in Remineralization Depth, Geophys. Res. Lett., 44,
11106–111114, 2017.
Al-Azri, A. R., Al-Hashmi, K. A., Al-Habsi, H., Al-Azri, N., and
Al-Khusaibi, S.: Abundance of harmful algal blooms in the coastal waters of
Oman: 2006–2011, Aquat. Ecosyst. Health, 18, 269–281,
2015.
Al-Hashmi, K. A., Smith, S. L., Claereboudt, M., Piontkovski, S. A., and
Al-Azri, A.: Dynamics of potentially harmful phytoplankton in a
semi-enclosed bay in the Sea of Oman, B. Mar. Sci.e, 91,
141–166, 2015.
Altabet, M. A.: Isotopic Tracers of the Marine Nitrogen Cycle: Present and
Past, in: Marine Organic Matter: Biomarkers, Isotopes and DNA, The Handbook
of Environmental Chemistry, edited by: Volkman, J. K., Springer, Berlin,
Heidelberg, 2006.
Altabet, M. A., Francois, R., Murray, D. W., and Prell, W. L.:
Climate-related variations in denitrification in the Arabian Sea from
sediment 15N ∕ 14N ratios, Nature, 373, 506–509, 1995.
Altabet, M. A., Murray, D. W., and Prell, W. L.: Climatically linked
oscillations in Arabian Sea denitrification over the past 1 m.y.:
Implications for the marine N cycle, Paleoceanography, 14, 732–743, 1999.
Altabet, M. A., Higginson, M. J., and Murray, D. W.: The effect of
millennial-scale changes in Arabian Sea denitrification on atmospheric
CO2, Nature, 415, 159–162, 2002.
Altieri, A. H., Harrison, S. B., Seemann, J., Collin, R., Diaz, R. J., and
Knowlton, N.: Tropical dead zones and mass mortalities on coral reefs,
P. Natl. Acad. Sci., 114, 3660, https://doi.org/10.1073/pnas.1621517114, 2017.
Andersson, J. H., Woulds, C., Schwartz, M., Cowie, G. L., Levin, L. A., Soetaert, K., and Middelburg, J. J.: Short-term fate of phytodetritus in sediments across the Arabian Sea Oxygen Minimum Zone, Biogeosciences, 5, 43–53, https://doi.org/10.5194/bg-5-43-2008, 2008.
Antoine, D., André, J.-M., and Morel, A.: Oceanic primary production –
2. Estimation at global scale from satellite (coastal zone color scanner)
chlorophyll, Global Biogeochem. Cy., 10, 57–69, 1996.
Armstrong, R. A., Lee, C., Hedges, J. I., Honjo, S., and Wakeham, S.: A new,
mechanistic model for organic carbon fluxes in the ocean: based on the
quantitative association of POC with ballast minerals, Deep-Sea Res.,
49, 219–236, 2002.
Aumont, O., Maier-Reimer, E., Blain, S., and Monfray, P.: An ecosystem model
of the global ocean including Fe, Si, P colimitations, Global Biogeochem.
Cy., 17, 1060, https://doi.org/10.1029/2001GB001745, 2003.
Aumont, O., Ethé, C., Tagliabue, A., Bopp, L., and Gehlen, M.: PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies, Geosci. Model Dev., 8, 2465–2513, https://doi.org/10.5194/gmd-8-2465-2015, 2015.
Aumont, O., Maury, O., Lefort, S., and Bopp, L.: Evaluating the Potential
Impacts of the Diurnal Vertical Migration by Marine Organisms on Marine
Biogeochemistry, Global Biogeochem. Cy., 32, 1622–1643, 2018.
Babbin, A. R., Keil, R. G., Devol, A. H., and Ward, B. B.: Organic Matter
Stoichiometry, Flux, and Oxygen Control Nitrogen Loss in the Ocean, Science,
344, 406–408, 2014.
Bahl, A., Gnanadesikan, A., and Pradal, M. A.: Variations in Ocean
Deoxygenation Across Earth System Models: Isolating the Role of
Parameterized Lateral Mixing, Global Biogeochem. Cy., 33, 703–724,
2019.
Bange, H. W., Rixen, T., Johansen, A. M., Siefert, R. L., Ramesh, R.,
Ittekkot, V., Hoffmann, M. R., and Andreae, M. O.: A revised nitrogen budget
for the Arabian Sea, Global Biogeochem. Cy., 14, 1283–1297, 2000.
Banse, K.: New views on the degradation and disposition of organic particles
as collected by sediment traps in the open sea, Deep-Sea Res., 37,
1177–1195, 1990.
Banse, K.: Grazing and Zooplankton Production as Key Controls of
Phytoplankton Production in the Open Ocean, Oceanography, 7, 13–20, 1994.
Banse, K., Naqvi, S. W. A., Narvekar, P. V., Postel, J. R., and Jayakumar, D. A.: Oxygen minimum zone of the open Arabian Sea: variability of oxygen and nitrite from daily to decadal timescales, Biogeosciences, 11, 2237–2261, https://doi.org/10.5194/bg-11-2237-2014, 2014.
Bauer, S., Hitchcock, G. L., and Olson, D. B.: Influence of
monsoonally-forced Ekman dynamics upon surface layer depth and plankton
biomass distribution in the Arabian Sea, Deep-Sea Res., 38, 531–553,
1991.
Behrenfeld, M. J. and Falkowski, P. G.: Photosynthetic rates derived from
satellite-based chlorophyll concentration, Limnol. Oceanogr., 42,
1–20, 1997.
Bettencourt, J. H., López, C., Hernández-García, E., Montes,
I., Sudre, J., Dewitte, B., Paulmier, A., and Garçon, V.: Boundaries of
the Peruvian oxygen minimum zone shaped by coherent mesoscale dynamics,
Nat. Geosci., 8, 937–940, 2015.
Bianchi, D., Galbraith, E. D., Carozza, D. A., Mislan, K. A. S., and Stock,
C. A.: Intensification of open-ocean oxygen depletion by vertically
migrating animals, Nat. Geosci., 6, 545–548, 2013.
Bianchi, D., Weber, T. S., Kiko, R., and Deutsch, C.: Global niche of marine
anaerobic metabolisms expanded by particle microenvironments, Nat.
Geosci., 11, 263–268, 2018.
Billett, D. S. M., Bett, B. J., Jacobs, C. L., Rouse, I. P., and Wigham, B.
D.: Mass deposition of jellyfish in the deep Arabian Sea, Limnol.d
Oceanogr., 51, 2077–2083, 2006.
Böll, A., Schulz, H., Munz, P., Rixen, T., Gaye, B., and Emeis, K.-C.:
Contrasting sea surface temperature of summer and winter monsoon variability
in the northern Arabian Sea over the last 25 ka, Palaeogeogr.
Palaeocl., 426, 10–21, 2015.
Böning, P. and Bard, E.: Millenial/centennial-scale thermocline
ventilation changes in the Indian Ocean as reflected by aragonite
preservation and geochemical variations in the Arabian Sea sediments,
Geochim. Cosmochim. Ac., 73, 6771–6788, 2009.
Bopp, L., Resplandy, L., Orr, J. C., Doney, S. C., Dunne, J. P., Gehlen, M., Halloran, P., Heinze, C., Ilyina, T., Séférian, R., Tjiputra, J., and Vichi, M.: Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models, Biogeosciences, 10, 6225–6245, https://doi.org/10.5194/bg-10-6225-2013, 2013.
Bopp, L., Resplandy, L., Untersee, A., Le Mezo, P., and Kageyama, M.: Ocean
(de)oxygenation from the Last Glacial Maximum to the twenty-first century:
insights from Earth System models, Philos. Trans. Roy.
Soc. A, 375, 20160323, https://doi.org/10.5194/bg-10-6225-2013,
2017.
Böttger-Schnack, R.: Vertical structure of small metazoan plankton,
especially noncalanoid copepods, I. Deep Arabian Sea, J. Plank.
Res., 18, 1073–1101, 1996.
Bourbonnais, A., Altabet, M. A., Charoenpong, C. N., Larkum, J., Hu, H.,
Bange, H. W., and Stramma, L.: N-loss isotope effects in the Peru oxygen
minimum zone studied using a mesoscale eddy as a natural tracer experiment,
Global Biogeochem. Cy., 29, 793–811, 2015.
Boyer, T. P., Antonov, J. I., Baranova, O. K., Coleman, C., Garcia, H. E.,
Grodsky, A., Johnson, D. R., Locarnini, R. A., Mishonov, A. V., O'Brien, T.
D., Paver, C. R., Reagan, J. R., Seidov, D., Smolyar, I. V., and Zweng, M.
M.: World Ocean Database 2013, Silver Spring, MD, NOAA Printing Officce, (NOAA Atlas NESDIS, 72), 208 pp., available at: http://hdl.handle.net/11329/357 (last access: 21 January 2018), 2013.
Brandes, J. A., Devol, A. H., Yoshinari, T., Jayakumar, A., and Naqvi, S. W.
A.: Isotopic composition of nitrate in the central Arabian Sea and eastern
tropical North Pacific: A tracer for mixing and nitrogen cycles, Limnol.
Oceanogr., 43, 1680–1689, 1998.
Brandt, P., Hormann, V., Körtzinger, A., Visbeck, M., Krahmann, G.,
Stramma, L., Lumpkin, R., and Schmid, C.: Changes in the ventilation of the
oxygen minimum zone of the tropical North Atlantic, J. Phys.
Oceanogr., 40, 1784–1801, 2010.
Brandt, P., Bange, H. W., Banyte, D., Dengler, M., Didwischus, S.-H., Fischer, T., Greatbatch, R. J., Hahn, J., Kanzow, T., Karstensen, J., Körtzinger, A., Krahmann, G., Schmidtko, S., Stramma, L., Tanhua, T., and Visbeck, M.: On the role of circulation and mixing in the ventilation of oxygen minimum zones with a focus on the eastern tropical North Atlantic, Biogeosciences, 12, 489–512, https://doi.org/10.5194/bg-12-489-2015, 2015.
Breitburg, D., Levin, L. A., Oschlies, A., Grégoire, M., Chavez, F. P.,
Conley, D. J., Garçon, V., Gilbert, D., Gutiérrez, D., Isensee, K.,
Jacinto, G. S., Limburg, K. E., Montes, I., Naqvi, S. W. A., Pitcher, G. C.,
Rabalais, N. N., Roman, M. R., Rose, K. A., Seibel, B. A., Telszewski, M.,
Yasuhara, M., and Zhang, J.: Declining oxygen in the global ocean and
coastal waters, Science, 359, eaam7240, https://doi.org/10.1126/science.aam7240, 2018.
Bristow, L. A., Dalsgaard, T., Tiano, L., Mills, D. B., Bertagnolli, A. D.,
Wright, J. J., Hallam, S. J., Ulloa, O., Canfield, D. E., Revsbech, N. P.,
and Thamdrup, B.: Ammonium and nitrite oxidation at nanomolar oxygen
concentrations in oxygen minimum zone waters, P. Natl.
Acad. Sci., 113, 10601, https://doi.org/10.1073/pnas.1600359113, 2016.
Bristow, L. A., Callbeck, C. M., Larsen, M., Altabet, M. A., Dekaezemacker,
J., Forth, M., Gauns, M., Glud, R. N., Kuypers, M. M. M., Lavik, G.,
Milucka, J., Naqvi, S. W. A., Pratihary, A., Revsbech, N. P., Thamdrup, B.,
Treusch, A. H., and Canfield, D. E.: N2 production rates limited by nitrite
availability in the Bay of Bengal oxygen minimum zone, Nat. Geosci.,
10, 24–29, 2017.
Brock, J. C., McClain, C. R., Luther, M. E., and Hay, W. W.: The
Phytplankton Bloom in the Northwestern Arabian Sea During the Southwest
Monsoon of 1979, J. Geophys. Res., 96, 20623–20642, 1991.
Brock, J. C., McClain, C. R., and Hay, W. W.: A Southwest Monsoon
Hydrographic Climatology for the Northwestern Arabian Sea, Journal of
Geophysical Research, 97, 9455-9465, 1992.
Brocks, J. J., Jarrett, A. J. M., Sirantoine, E., Hallmann, C., Hoshino, Y.,
and Liyanage, T.: The rise of algae in Cryogenian oceans and the emergence
of animals, Nature, 548, 578–581, https://doi.org/10.1038/nature23457, 2017.
Broecker, W. S. and Peng, T.-H.: Tracers in the sea, Lamont-Doherty
Geological Observatory, Columbia University, Palisades, New York, 690 pp., 1982.
Bruce, J. G.: Some details of upwelling off the Somali and Arabian Coasts,
J. Mar. Res., 32, 419–423, 1974.
Burd, A. B., Hansell, D. A., Steinberg, D. K., Anderson, T. R., Arístegui, J., Baltar, F., Beaupré, S. R., Buesseler,
K. O., DeHairs, F., Jackson, G. A., Kadko, D. C., Koppelmann, R., Lampitt,
R. S., Nagata, T., Reinthaler, T., Robinson, C., Robison, B. H., Tamburini,
C., and Tanaka, T.: Assessing the apparent imbalance between geochemical and
biochemical indicators of meso- and bathypelagic biological activity: What
the @$,ôØ! is wrong with present calculations of
carbon budgets?, Deep-Sea Res. Pt. II,
57, 1557–1571, 2010.
Burdanowitz, N., Gaye, B., Hilbig, L., Lahajnar, N., Lückge, A., Rixen,
T., and Emeis, K.-C.: Holocene monsoon and sea level-related changes of
sedimentation in the northeastern Arabian Sea, Deep-Sea Res. Pt. II, 166, 6–18, https://doi.org/10.1016/j.dsr2.2019.03.003, 2019.
Cabré, A., Marinov, I., Bernardello, R., and Bianchi, D.: Oxygen minimum zones in the tropical Pacific across CMIP5 models: mean state differences and climate change trends, Biogeosciences, 12, 5429–5454, https://doi.org/10.5194/bg-12-5429-2015, 2015.
Canfield, D.: Oxygen, a four billion year history, Princeton University
Press, Prniceton, New Jersey, USA, 2014.
Canfield, D. E., Kraft, B., Löscher, C. R., Boyle, R. A., Thamdrup, B.,
and Stewart, F. J.: The regulation of oxygen to low concentrations in marine
oxygen-minimum zones, J. Mar. Res., 77, 297–324, 2019.
Carruthers, J. N., Gogate, S. S., Naidu, J. R., and Laevastu, T.: Shorewards
Upslope of the Layer of Minimum Oxygen Off Bombay: Its Influence on Marine
Biology, Especially Fisheries, Nature, 183, 1084–1087, 1959.
Cavan, E. L., Trimmer, M., Shelley, F., and Sanders, R.: Remineralization of
particulate organic carbon in an ocean oxygen minimum zone, Nat.
Commun., 8, 14847, https://doi.org/10.1038/ncomms14847, 2017.
Chelton, D. B., Gaube, P., Schlax, M. G., Early, J. J., and Samelson, R. M.:
The Influence of Nonlinear Mesoscale Eddies on Near-Surface Oceanic
Chlorophyll, Science, 334, 328, https://doi.org/10.1126/science.1208897, 2011.
Chen, G., Wang, D., and Hou, Y.: The features and interannual variability
mechanism of mesoscale eddies in the Bay of Bengal, Cont. Shelf
Res., 47, 178–185, 2012.
Cline, J. D. and Kaplan, I. R.: Isotopic fractionation of dissolved nitrate
during denitrification in the eastern tropical north pacific ocean, Mar.e
Chem., 3, 271–299, 1975.
Cocco, V., Joos, F., Steinacher, M., Frölicher, T. L., Bopp, L., Dunne, J., Gehlen, M., Heinze, C., Orr, J., Oschlies, A., Schneider, B., Segschneider, J., and Tjiputra, J.: Oxygen and indicators of stress for marine life in multi-model global warming projections, Biogeosciences, 10, 1849–1868, https://doi.org/10.5194/bg-10-1849-2013, 2013.
Contreras-Rosales, L. A., Schefuß, E., Meyer, V., Palamenghi, L.,
Lückge, A., and Jennerjahn, T. C.: Origin and fate of sedimentary
organic matter in the northern Bay of Bengal during the last 18 ka, Glob.
Planet. Change, 146, 53–66, 2016.
Couespel, D., Lévy, M., and Bopp, L.: Major Contribution of Reduced
Upper Ocean Oxygen Mixing to Global Ocean Deoxygenation in an Earth System
Model, Geophys. Res. Lett., 46, 12239–12249, 2019.
Cowie, G.: The biogeochemistry of Arabian Sea surficial sediments: A review
of recent studies, Prog. Oceanogr., 65, 260–289, 2005.
Cowie, G. L., Calvert, S. E., Pedersen, T. F., Schulz, H., and von Rad, U.:
Organic content and preservational controls in surficial shelf and slope
sediments from the Arabian Sea (Pakistan margin), Mar. Geol., 161,
23–38, 1999.
Cowie, G. L. and Levin, L. A.: Benthic biological and biogeochemical
patterns and processes across an oxygen minimum zone (Pakistan margin, NE
Arabian Sea), Deep-Sea Res. Pt. II,
56, 261–270, 2009.
Cowie, G. L., Mowbray, S., Lewis, M., Matheson, H., and McKenzie, R.: Carbon
and nitrogen elemental and stable isotopic compositions of surficial
sediments from the Pakistan margin of the Arabian Sea, Deep-Sea Res.
Pt. II, 56, 271–282, 2009.
Crusius, J., Calvert, S., Pedersen, T., and Sage, D.: Rhenium and molybdenum
enrichments in sediments as indicators of oxic, suboxic and sulfidic
conditions of deposition, Earth Planet. Sc. Lett., 145, 65–78,
1996.
Currie, R. I., Fisher, A. E., and Hargreaves, P. M.: Arabian Sea Upwelling.
in: Biology of the Indian Ocean, edited by: Zeitschel, B., Ecological Studies 3,
Springer Verlag, Berlin, 1973.
d'Ovidio, F., De Monte, S., Penna, A. D., Cotté, C., and Guinet, C.:
Ecological implications of eddy retention in the open ocean: a Lagrangian
approach, J. Phys. A, 46, 254023, https://doi.org/10.1088/1751-8113/46/25/254023,
2013.
Dalsgaard, T., Canfield, D. E., Petersen, J., Thamdrup, B., and
Acuna-Gonzalez, J.: N2 production by the anammox reaction in the anoxic
water column of Golfo Dulce, Costa Rica, Nature, 422, 606–608, 2003.
Dalsgaard, T., Stewart, F. J., Thamdrup, B., De Brabandere, L., Revsbech, N.
P., Ulloa, O., Canfield, D. E., and DeLong, E. F.: Oxygen at Nanomolar
Levels Reversibly Suppresses Process Rates and Gene Expression in Anammox
and Denitrification in the Oxygen Minimum Zone off Northern Chile, mBio, 5,
e01966-01914, https://doi.org/10.1128/mBio.01966-14, 2014.
Das, M., Singh, R. K., Gupta, A. K., and Bhaumik, A. K.: Holocene
strengthening of the Oxygen Minimum Zone in the northwestern Arabian Sea
linked to changes in intermediate water circulation or Indian monsoon
intensity?, Paleogeogr. Paleoclimatol., 483, 125–135, 2017.
del Giorgio, P. A. and Duarte, C. M.: Respiration in the open ocean, Nature,
420, 379–384, 2002.
Deuser, W. G., Ross, E. H., and Mlodzinska, Z. J.: Evidence for and rate of
denitrification in the Arabian Sea, Deep-Sea Res., 25, 431–445, 1978.
Diaz, R. J. and Rosenberg, R.: Spreading Dead Zones and Consequences for
Marine Ecosystems, Science, 321, 926–929, 2008.
Diaz, R. J., Rosenberg, R., and Sturdivant, K.: Hypoxia in estuaries and
semi-enclosed seas, in: Ocean deoxygenation: Everyone's problem, edited by: Laffoley,
D. and Baxter, J. M., IUCN, Gland, Switzerland 2019.
Dietrich, G.: Aufbau und Bewegung von Golfstrom und Agulhasstrom,
Naturwissenschaften, 24, 225–230, 1936.
Duteil, O., Koeve, W., Oschlies, A., Aumont, O., Bianchi, D., Bopp, L., Galbraith, E., Matear, R., Moore, J. K., Sarmiento, J. L., and Segschneider, J.: Preformed and regenerated phosphate in ocean general circulation models: can right total concentrations be wrong?, Biogeosciences, 9, 1797–1807, https://doi.org/10.5194/bg-9-1797-2012, 2012.
Ekau, W., Auel, H., Pörtner, H.-O., and Gilbert, D.: Impacts of hypoxia on the structure and processes in pelagic communities (zooplankton, macro-invertebrates and fish), Biogeosciences, 7, 1669–1699, https://doi.org/10.5194/bg-7-1669-2010, 2010.
Emerson, S.: Annual net community production and the biological carbon flux
in the ocean, Global Biogeochem. Cy., 28, 14–28, 2014.
Eppley, R. W. and Peterson, B. J.: Particulate organic matter flux and
planktonic new production in the deep ocean, Nature, 282, 677–680, 1979.
Escribano, R.: Zooplankton interactions with the oxygen minimum zone in the
eastern south pacific, Gayana (Concepción), 70, 19–21, 2006.
Eugster, O. and Gruber, N.: A probabilistic estimate of global marine
N-fixation and denitrification, Global Biogeochem. Cy., 26, GB4013, https://doi.org/10.1029/2012GB004300, 2012.
Falkowski, P. G., Katz, M. E., Knoll, A. H., Quigg, A., Raven, J. A.,
Schofield, O., and Taylor, F. J. R.: The Evolution of Modern Eukaryotic
Phytoplankton, Science, 305, 354–360, 2004.
Fassbender, A. J., Bourbonnais, A., Clayton, S., Gaube, P., Omand, M.,
Franks, P. J. S., Altabet, M. A., and McGillicuddy Jr., D. J.: Interpreting
mosaics of ocean biogeochemistry, EOS, 99, https://doi.org/10.1029/2018EO109707, 2018.
Fiedler, B., Grundle, D. S., Schütte, F., Karstensen, J., Löscher, C. R., Hauss, H., Wagner, H., Loginova, A., Kiko, R., Silva, P., Tanhua, T., and Körtzinger, A.: Oxygen utilization and downward carbon flux in an oxygen-depleted eddy in the eastern tropical North Atlantic, Biogeosciences, 13, 5633–5647, https://doi.org/10.5194/bg-13-5633-2016, 2016.
Filippelli, G. and Cowie, G.: Carbon and Phosphorus Cycling in Arabian Sea
Sediments across the Oxygen Minimum Zone, J. Oceanogr. Mar.e
Res., 5, 171, https://doi.org/10.4172/2572-3103.1000171, 2017.
Fu, W., Primeau, F., Keith Moore, J., Lindsay, K., and Randerson, J. T.:
Reversal of Increasing Tropical Ocean Hypoxia Trends With Sustained Climate
Warming, Global Biogeochem. Cy., 32, 551–564, 2018.
Ganeshram, R. S., Pedersen, T. F., Calvert, S. E., and Murray, J. W.: Large
changes in oceanic nutrient inventories from glacial to interglacial
periods, Nature, 376, 755–758, 1995.
Garcia, H. E., Locarnini, R. A., Boyer, T. P., Antonov, J. I., Zweng, M. M.,
Baranova, O. K., and Johnson, D. R.: World Ocean Atlas 2009, in: NOAA Atlas
NESDIS 71, edited by: Levitus, S., U.S. Government Printing Office, Washington,
D.C., 2010.
Garcia, H. E., Locarnini, R. A., Boyer, T. P., Antonov, J. I., Baranova, O. K., Zweng, M. M., Reagan, J. R., and Johnson, D. R.: World Ocean Atlas 2013, Vol. 3, Dissolved Oxygen, Apparent Oxygen Utilization, and Oxygen Saturation, edited by: S. Levitus, A. Mishonov Technical Ed., NOAA Atlas NESDIS 75, 27 pp., 2014.
Garrison, D. L., Gowing, M. M., and Hughes, M. P.: Nano- and microplankton
in the northern Arabian Sea during the Southwest Monsoon, August-September
1995 A US-JGOFS study, Deep-Sea Res. Pt. II, 45, 2269–2299, 1998.
Garrison, D. L., Gowing, M. M., Hughes, M. P., Campbell, L., Caron, D. A.,
Dennett, M. R., Shalapyonok, A., Olson, R. J., Landry, M. R., and Brown, S.
L.: Microbial food web structure in the Arabian Sea: a US JGOFS study, Deep-Sea Res. Pt. II, 47, 1387–1422, 2000.
Gaye, B., Nagel, B., Dähnke, K., Rixen, T., and Emeis, K.-C.: Evidence
of parallel denitrification and nitrite oxidation in the ODZ of the Arabian
Sea from paired stable isotopes of nitrate and nitrite, Global
Biogeochem. Cy., 27, GB004115, https://doi.org/10.1002/2011gb004115, 2013.
Gaye, B., Böll, A., Segschneider, J., Burdanowitz, N., Emeis, K.-C., Ramaswamy, V., Lahajnar, N., Lückge, A., and Rixen, T.: Glacial–interglacial changes and Holocene variations in Arabian Sea denitrification, Biogeosciences, 15, 507–527, https://doi.org/10.5194/bg-15-507-2018, 2018.
Gaye-Haake, B., Lahajnar, N., Emeis, K.-C., Unger, D., Rixen, T., Suthhof,
A., Ramaswamy, V., Schulz, H., Paropkari, A. L., Guptha, M. V. S., and
Ittekkot, V.: Stable nitrogen isotopic ratios of sinking particles and
sediments from the northern Indian Ocean, Mar. Chem., 96, 243–255,
2005.
Gilson, H. C.: The nitrogen cycle, Scientific Reports John Murray Expedition 1933–1934, Vol. 2, 21–81, 1937.
Gnanadesikan, A., Dunne, J. P., and John, J.: Understanding why the volume of suboxic waters does not increase over centuries of global warming in an Earth System Model, Biogeosciences, 9, 1159–1172, https://doi.org/10.5194/bg-9-1159-2012, 2012.
Gnanadesikan, A., Bianchi, D., and Pradal, M.-A.: Critical role for
mesoscale eddy diffusion in supplying oxygen to hypoxic ocean waters,
Geophys. Res. Lett., 40, 5194–5198, 2013.
Goes, J. I. and Gomes, H.: An ecosystem in transition: the emergence of
mixotrophy in the Arabian Sea, in: Aquatic Microbial Ecology and
Biogeochemistry: A Dual Perspective, edited by: Glibert, P. and Kana, T.,
Springer International Publishing, p. 245, 2016.
Goes, J. I., Tian, H., Gomes, H. d. R., Anderson, O. R., Al-Hashmi, K.,
deRada, S., Luo, H., Al-Kharusi, L., Al-Azri, A., and Martinson, D. G.:
Ecosystem state change in the Arabian Sea fuelled by the recent loss of snow
over the Himalayan-Tibetan Plateau region, Sci. Rep., 10, 7422, https://doi.org/10.1038/s41598-020-64360-2,
2020.
Gomes, d. R. H., Goes, J. I., Matondkar, S. G. P., Buskey, E. J., Basu, S.,
Parab, S., and Thoppil, P.: Massive outbreaks of Noctiluca scintillans
blooms in the Arabian Sea due to spread of hypoxia, Nat. Commun.,
5, 4862, https://doi.org/10.1038/ncomms5862, 2014.
Gomes, H., Goes, J. I., Matondkar, S. G. P., Parab, S. G., Al-Azri, A., and
Thoppil, P. G.: Unusual Blooms of the Green Noctiluca Miliaris (Dinophyceae) in the Arabian
Sea during the Winter Monsoon, in: Indian Ocean: Biogeochemical Processes
and Ecological Variability, edited by: Wiggert, J. D., Hood, R. R., Naqvi, S. W. A.,
Smith, S. L., and Brink, K. H., AGU Book Series, American Geophysical
Union, 2009.
Gonzalez, R. R. and Quiñones, R. A.: Ldh activity in Euphausia mucronata
and Calanus chilensis: implications for vertical migration behaviour,
J. Plank. Res., 24, 1349–1356, 2002.
Gooday, A. J., Levin, L. A., Aranda da Silva, A., Bett, B. J., Cowie, G. L.,
Dissard, D., Gage, J. D., Hughes, D. J., Jeffreys, R., Lamont, P. A.,
Larkin, K. E., Murty, S. J., Schumacher, S., Whitcraft, C., and Woulds, C.:
Faunal responses to oxygen gradients on the Pakistan margin: A comparison of
foraminiferans, macrofauna and megafauna, Deep-Sea Res. Pt. II, 56, 488–502, 2009.
Goswami, S. C., Saparia, J. S., and Bhargava, R. M. S.(Eds.): Zooplankton standing stock
assessment and fishery resources in the Indian seas, Oxford & IBH
Publishing Co., New Delhi, 217–225, 1992.
Gruber, N.: The dynamics of the marine nitrogen cycle and its influence on
atmospheric CO2, in: Carbon-Climate Interactions, edited by: Follows, M. and Oguz, T., NATO ASI Series, New York, 2004.
Gruber, N., Lachkar, Z., Frenzel, H., Marchesiello, P., Munnich, M.,
McWilliams, J. C., Nagai, T., and Plattner, G.-K.: Eddy-induced reduction of
biological production in eastern boundary upwelling systems, Nat. Geosci.,
4, 787–792, 2011.
Gupta, G. V. M., Sudheesh, V., Sudharma, K. V., Saravanane, N., Dhanya, V.,
Dhanya, K. R., Lakshmi, G., Sudhakar, M., and Naqvi, S. W. A.: Evolution to
decay of upwelling and associated biogeochemistry over the southeastern
Arabian Sea shelf, J. Geophys. Res.-Biogeo., 121,
159–175, 2016.
Haake, B. and Ittekkot, V.: Die Wind-getriebene “biologische Pumpe” und der
Kohlenstoffentzug im Ozean, Naturwissenschaften, 77, 75–79, 1990.
Hamm, C. E.: Interactive aggregation and sedimentation of diatoms and
clay-sized lithogenic material, Limnol. Oceanogr., 47, 1790–1795,
2002.
Haq, S. M., Khan, J. A., and Chugtai, S.: The Distribution and Abundance of
Zooplankton along the Coast of Pakistan during Postmonsoon and Premonsoon
Periods, in: The Biology of the Indian Ocean, edited by: Zeitzschel, B. and Gerlach, S.
A., Springer Berlin Heidelberg, Berlin, Heidelberg, 1973.
Harrison, P. J., Piontkovski, S., and Al-Hashmi, K.: Understanding how
physical-biological coupling influences harmful algal blooms, low oxygen and
fish kills in the Sea of Oman and the Western Arabian Sea, Mar. Pollut.
Bull., , 114, 25–34, https://doi.org/10.1016/j.marpolbul.2016.11.008, 2017.
Helly, J. J. and Levin, L. A.: Global distribution of naturally occurring
marine hypoxia on continental margins, Deep-Sea Res. Pt. I, 51, 1159–1168, 2004.
Henschke, N., Everett, J. D., Richardson, A. J., and Suthers, I. M.:
Rethinking the Role of Salps in the Ocean, Trends Ecol. Evol.,
31, 720–733, 2016.
Herring, P. J., Fasham, M. J. R., Weeks, A. R., Hemmings, J. C. P., Roe, H.
S. J., Pugh, P. R., Holley, S., Crisp, N. A., and Angel, M. V.: Across-slope
relations between the biological populations, the euphotic zone and the
oxygen minimum layer off the coast of Oman during the southwest monsoon
(August, 1994), Prog. Oceanogr., 41, 69–109, 1998.
Higginson, M. J., Altabet, M. A., Murray, D. W., Murray, R. W., and Herbert,
T. D.: Geochemical evidence for abrupt changes in relative strength of the
Arabian monsoons during a stadial/interstadial climate transition,
Geochim. Cosmochim. Ac., 68, 3807–3826, 2004.
Himmler, T., Smrzka, D., Zwicker, J., Kasten, S., Shapiro, R. S., Bohrmann,
G., and Peckmann, J.: Stromatolites below the photic zone in the northern
Arabian Sea formed by calcifying chemotrophic microbial mats, Geology, 46,
339–342, 2018.
Hood, R. R., Beckley, L. E., and Wiggert, J. D.: Biogeochemical and
ecological impacts of boundary currents in the Indian Ocean, Prog.
Oceanogr., 156, 290–325, 2017.
Howell, E. A., Doney, S. C., Fine, R. A., and Olson, D. B.: Geochemical
estimates of denitrification in the Arabian Sea and the Bay of Bengal during
WOCE, Geophys. Res. Lett., 24, 2549–2552, 1997.
Hunter, W. R., Levin, L. A., Kitazato, H., and Witte, U.: Macrobenthic assemblage structure and organismal stoichiometry control faunal processing of particulate organic carbon and nitrogen in oxygen minimum zone sediments, Biogeosciences, 9, 993–1006, https://doi.org/10.5194/bg-9-993-2012, 2012.
Hupe, A. and Karstensen, J.: Redfield stoichiometry in Arabian Sea
subsurface waters, Global Biogeochem. Cy., 14, 357–372, 2000.
Ingole, B. S., Sautya, S., Sivadas, S., Singh, R., and Nanajkar, M.:
Macrofaunal community structure in the western Indian continental margin
including the oxygen minimum zone, Mar. Ecol., 31, 148–166, 2010.
Ito, T., Minobe, S., Long, M. C., and Deutsch, C.: Upper ocean O2 trends:
1958–2015, Geophys. Res. Lett., 44, 4214–4223, 2017.
Ittekkot, V.: The abiotically driven biological pump in the ocean and
short-term fluctuations in atmospheric CO2 contents, Glob.
Planet. Change, 8, 17–25, 1993.
Ivanenkov, V. N. and Rozanov, A. G.: Hydrogen sulphide contamination of the
intermediate water layers of the Arabian Sea and the Bay of Bengal,
Okeanologiya, 1, 443–449, 1961.
Ivanochko, T. S., Ganeshram, R. S., Brummer, G.-J. A., Ganssen, G., Jung, S.
J. A., Moreton, S. G., and Kroon, D.: Variations in tropical convection as
an amplifier of global climate change at the millennial scale, Earth
Planet. Sc. Lett., 235, 302–314, 2005.
Jeffreys, R. M., Wolff, G. A., and Cowie, G. L.: Influence of oxygen on
heterotrophic reworking of sedimentary lipids at the Pakistan margin, Deep-Sea Res. Pt. II, 56, 358–375, 2009.
Jeffreys, R. M., Levin, L. A., Lamont, P. A., Woulds, C., Whitcraft, C. R.,
Mendoza, G. F., Wolff, G. A., and Cowie, G. L.: Living on the edge:
single-species dominance at the Pakistan oxygen minimum zone boundary,
Mar. Ecol. Prog. Ser., 470, 79–99, 2012.
Jensen, M. M., Lam, P., Revsbech, N. P., Nagel, B., Gaye, B., Jetten, M. S.
M., and Kuypers, M. M. M.: Intensive nitrogen loss over the Omani Shelf due
to anammox coupled with dissimilatory nitrite reduction to ammonium, ISME J.,
5, 1660–1670, 2011.
Jilbert, T., Slomp, C. P., Gustafsson, B. G., and Boer, W.: Beyond the Fe-P-redox connection: preferential regeneration of phosphorus from organic matter as a key control on Baltic Sea nutrient cycles, Biogeosciences, 8, 1699–1720, https://doi.org/10.5194/bg-8-1699-2011, 2011.
Johnson, K. S., Riser, S. C., and Ravichandran, M.: Oxygen variability
controls denitrification in the bay of Bengal oxygen minimum zone,
Geophys. Res. Lett., 46, 804–811, 2019.
Kalvelage, T., Jensen, M. M., Contreras, S., Revsbech, N. P., Lam, P.,
Günter, M., LaRoche, J., Lavik, G., and Kuypers, M. M. M.: Oxygen
Sensitivity of Anammox and Coupled N-Cycle Processes in Oxygen Minimum
Zones, PLOS ONE, 6, e29299, https://doi.org/10.1371/journal.pone.0029299, 2011.
Karlson, K., Bonsdorff, E., and Rosenberg, R.: The Impact of Benthic
Macrofauna for Nutrient Fluxes from Baltic Sea Sediments, AMBIO, 36, 161–167, 167, 2007.
Karstensen, J., Stramma, L., and Visbeck, M.: Oxygen minimum zones in the
eastern tropical Atlantic and Pacific oceans, Prog. Oceanogr., 77,
331–350, 2008.
Karstensen, J., Schütte, F., Pietri, A., Krahmann, G., Fiedler, B., Grundle, D., Hauss, H., Körtzinger, A., Löscher, C. R., Testor, P., Vieira, N., and Visbeck, M.: Upwelling and isolation in oxygen-depleted anticyclonic modewater eddies and implications for nitrate cycling, Biogeosciences, 14, 2167–2181, https://doi.org/10.5194/bg-14-2167-2017, 2017.
Keeling, R. F., Körtzinger, A., and Gruber, N.: Ocean Deoxygenation in a
Warming World, Annu. Rev. Mar. Sci., 2, 199–229, 2009.
Kendall, C., Elliott, E. M., and Wankel, S. D.: Tracing anthropogenic inputs
of nitrogen to ecosystems, in: Stable Isotopes in Ecology and Environmental
Science, edited by: Michener, R. H. and Lajtha, K., Blackwell Publshing, 2007.
Kessarkar, P. M., Naqvi, S. W. A., Thamban, M., Fernandes, L. L., Siebert,
C., Rao, V. P., Kawahata, H., Ittekkot, V., and Frank, M.: Variations in
Denitrification and Ventilation Within the Arabian Sea Oxygen Minimum Zone
During the Holocene, Geochem. Geophy. Geosy., 19, 2179–2193,
2018.
Koho, K. A., Nierop, K. G. J., Moodley, L., Middelburg, J. J., Pozzato, L., Soetaert, K., van der Plicht, J., and Reichart, G.-J.: Microbial bioavailability regulates organic matter preservation in marine sediments, Biogeosciences, 10, 1131–1141, https://doi.org/10.5194/bg-10-1131-2013, 2013.
Kraal, P., Slomp, C. P., Reed, D. C., Reichart, G.-J., and Poulton, S. W.: Sedimentary phosphorus and iron cycling in and below the oxygen minimum zone of the northern Arabian Sea, Biogeosciences, 9, 2603–2624, https://doi.org/10.5194/bg-9-2603-2012, 2012.
Kumar, D., M., Naqvi, S. W. A., George, M. D., and Jayakumar, A.: A sink for
atmospheric carbon dioxide in the northeastern Indian Ocean, J.
Geophys. Res., 101, 18121–18125, 1996.
Kumar, S. P., Nuncio, M., Ramaiah, N., Sardesai, S., Narvekar, J.,
Fernandes, V., and Paul, J. T.: Eddy-mediated biological productivity in the
Bay of Bengal during fall and spring intermonsoons, Deep-Sea Res. Pt.
I, 54, 1619–1640, 2007.
Kurian, S., Kessarkar, P. M., Purnachandra Rao, V., Reshma, K., Sarkar, A.,
Pattan, J. N., and Naqvi, S. W. A.: Controls on organic matter distribution
in oxygen minimum zone sediments from the continental slope off western
India, J. Mar. Syst., 207, 103–118, https://doi.org/10.1016/j.jmarsys.2018.09.003, 2018. 103118, 2018.
Kuypers, M. M. M., Sleikers, A. O., Lavik, G., Schmid, M., Jorgensen, B. B.,
Kuenen, J. G., Damsté, J. S. S., Strous, M., and Jetten, M. S. M.:
Anaerobic ammonium oxidation by anammox bacteria in the Black Sea, Nature,
422, 608–611, 2001.
Kwiatkowski, L., Torres, O., Bopp, L., Aumont, O., Chamberlain, M., Christian, J. R., Dunne, J. P., Gehlen, M., Ilyina, T., John, J. G., Lenton, A., Li, H., Lovenduski, N. S., Orr, J. C., Palmieri, J., Santana-Falcón, Y., Schwinger, J., Séférian, R., Stock, C. A., Tagliabue, A., Takano, Y., Tjiputra, J., Toyama, K., Tsujino, H., Watanabe, M., Yamamoto, A., Yool, A., and Ziehn, T.: Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections, Biogeosciences, 17, 3439–3470, https://doi.org/10.5194/bg-17-3439-2020, 2020.
Lachkar, Z., Smith, S., Lévy, M., and Pauluis, O.: Eddies reduce
denitrification and compress habitats in the Arabian Sea, Geophys.
Res. Lett., 43, 9148–9156, 2016.
Lachkar, Z., Lévy, M., and Smith, S.: Intensification and deepening of the Arabian Sea oxygen minimum zone in response to increase in Indian monsoon wind intensity, Biogeosciences, 15, 159–186, https://doi.org/10.5194/bg-15-159-2018, 2018.
Lachkar, Z., Lévy, M., and Smith, K. S.: Strong Intensification of the
Arabian Sea Oxygen Minimum Zone in Response to Arabian Gulf Warming,
Geophys. Res. Lett., 46, 5420–5429, 2019.
Laufkötter, C., John, J. G., Stock, C. A., and Dunne, J. P.: Temperature
and oxygen dependence of the remineralization of organic matter, Global
Biogeochem. Cy., 31, 1038–1050, 2017.
Law, G. T. W., Cowie, G. L., Breuer, E. R., Schwartz, M. C., Martyn Harvey,
S., Woulds, C., Shimmield, T. M., Shimmield, G. B., and Doig, K. A.: Rates
and Regulation of Microbially Mediated Aerobic and Anaerobic Carbon
Oxidation Reactions in Continental Margin Sediments from the Northeastern
Arabian Sea (Pakistan Margin), Indian Ocean Biogeochemical Processes and
Ecological Variability, in: Geophysical Monograph Series, 299–319, https://doi.org/10.1029/2008GM000765,
2009.
Lengger, S. K., Rush, D., Mayser, J. P., Blewett, J., Schwartz-Narbonne, R., Talbot, H. M., Middelburg, J. J., Jetten, M. S. M., Schouten, S., Sinninghe Damsté, J. S., and Pancost, R. D.: Dark carbon fixation in the Arabian Sea oxygen minimum zone contributes to sedimentary organic carbon (SOM), Global Biogeochem. Cy., 33, 1715–1732, https://doi.org/10.1029/2019GB006282, 2019.
Lengger, S., Rush, D., Mayser, J. P., Blewett, J., Schwartz-Narbonne, R.,
Talbot, H., Middelburg, J. J., Jetten, M. S. M., Schouten, S., Sinninghe
Damsté, J. S., and Pancost, R. D.: Dark carbon fixation contributes to
sedimentary organic carbon in the Arabian Sea oxygen minimum zone, Global
Biogeochem. Cy., 33, 1715–1732, https://doi.org/10.1029/2019GB006282, 2020.
Lenton, T. M. and Watson, A. J.: Revolutions that made the Earth, Oxford
University Press, Oxford, 196 pp., 2011.
Levin, L. A., Huggett, C. L., and Wishner, K. F.: Control of deep-sea
benthic community structure by oxygen and organic-matter gradients in the
eastern Pacific Ocean, J. Mar. Res., 49, 763–800, 1991.
Levin, L. A., Ekau, W., Gooday, A. J., Jorissen, F., Middelburg, J. J., Naqvi, S. W. A., Neira, C., Rabalais, N. N., and Zhang, J.: Effects of natural and human-induced hypoxia on coastal benthos, Biogeosciences, 6, 2063–2098, https://doi.org/10.5194/bg-6-2063-2009, 2009a.
Levin, L. A., Whitcraft, C. R., Mendoza, G. F., Gonzalez, J. P., and Cowie,
G.: Oxygen and organic matter thresholds for benthic faunal activity on the
Pakistan margin oxygen minimum zone (700–1100 m), Deep-Sea Res. Pt. II, 56, 449–471, 2009b.
Levin, L. A., Gage, J. D., Martin, C., and Lamont, P. A.: Macrobenthic
community structure within and beneath the oxygen minimum zone, NW Arabian
Sea, Deep-Sea Res. Pt. II, 47,
189–226, 2000.
Longhurst, A. R.: Vertical distribution of zooplankton in relation to the
eastern Pacific oxygen minimum, Deep-Sea Res. Oceanogr.c
Abstract., 14, 51–63, 1967.
Lotliker, A. A., Baliarsingh, S. K., Trainer, V. L., Wells, M. L., Wilson,
C., Udaya Bhaskar, T. V. S., Samanta, A., and Shahimol, S. R.:
Characterization of oceanic Noctiluca blooms not associated with hypoxia in
the Northeastern Arabian Sea, Harmful Algae, 74, 46–57, 2018.
Lucas, C. H., Jones, D. O. B., Hollyhead, C. J., Condon, R. H., Duarte, C.
M., Graham, W. M., Robinson, K. L., Pitt, K. A., Schildhauer, M., and
Regetz, J.: Gelatinous zooplankton biomass in the global oceans: geographic
variation and environmental drivers, Glob. Ecol. Biogeogr., 23,
701–714, 2014.
Lyons, T. W., Reinhard, C. T., and Planavsky, N. J.: The rise of oxygen in
Earth/'s early ocean and atmosphere, Nature, 506, 307–315, 2014.
Mahesh, B. S. and Banakar, V. K.: Change in the intensity of low-salinity
water inflow from the Bay of Bengal into the Eastern Arabian Sea from the
Last Glacial Maximum to the Holocene: Implications for monsoon variations,
Paleogeogr. Paleocl., 397, 31–37, 2014.
Mariotti, A., Germon, J. C., Hubert, P., Kaiser, P., Letolle, R., Tardieux,
A., and Tardieux, P.: Experimental determination of nitrogen kinetic isotope
fractionation: Some principles; illustration for the denitrification and
nitrification processes, Plant Soil, 62, 413–430, 1981.
Martin, B., Koppelmann, R., and Kassatov, P.: Ecological relevance of salps
and doliolids in the northern Benguela Upwelling System, J. Plank.
Res., 39, 290–304, 2017.
McCartney, M. S.: Subantarctic Mode Water, in: A Voyage of Discovery: George
Deacon 70th Anniversary Volume, edited by: Angel, M. V., Supplement to Deep-Sea
Research, Pergamon Press, Oxford, UK, 1977.
McCreary Jr., J. P., Yu, Z., Hood, R. R., Vinaychandran, P. N., Furue, R.,
Ishida, A., and Richards, K. J.: Dynamics of the Indian-Ocean oxygen minimum
zones, Prog. Oceanogr., 112/113, 15–37, 2013.
McElroy, M. B.: Marine biological controls on atmospheric CO2 and
climate, Nature, 302, 328–329, 1983.
McGillicuddy, D. J.: Mechanisms of Physical-Biological-Biogeochemical
Interaction at the Oceanic Mesoscale, Annu. Rev. Mar. Sci.e, 8,
125–159, 2016.
Middelburg, J. J.: Chemoautotrophy in the ocean, Geophys. Res.h
Lett., 38, L24604, https://doi.org/10.1029/2011gl049725, 2011.
Middelburg, J. J. and Levin, L. A.: Coastal hypoxia and sediment biogeochemistry, Biogeosciences, 6, 1273–1293, https://doi.org/10.5194/bg-6-1273-2009, 2009.
Möbius, J., Gaye, B., Lahajnar, N., Bahlmann, E., and Emeis, K.-C.:
Influence of diagenesis on sedimentary 15∘ N in the Arabian Sea over the last
130 kyr, Mar. Geol., 284, 127–138, 2011.
Morcos, S. A. and AbdAllah, A. M.: Oceanography of the Gulf of Aden: John Murray–Mabahiss Expedition 1933–1934 Revisited, Egypt. J. Aquat. Res., 38, 77–91, https://doi.org/10.1016/j.ejar.2012.12.001, 2012.
Naidu, P. D. and Govil, P.: New evidence on the sequence of deglacial
warming in the tropical Indian Ocean, J. Quaternary Sci., 25,
1138–1143, 2010.
Naqvi, S. A. S.: Evidence for ocean deoxygenation and its patterns: Indian
Ocean, in: Ocean deoxygenation: Everyone's problem, edited by: Laffoley, D. and Baxter,
J. M., IUCN, Gland, Switzerland, 2019.
Naqvi, S. W. A. and Shailaja, M. S.: Activity of the respiratory electron
transport system and respiration rates within the oxygen minimum layer of
the Arabian Sea, Deep-Sea Res. Pt. II, 40, 687–695, 1993.
Naqvi, S. W. A., Noronha, R. J., and Reddy, C. V. G.: Denitrification in the
Arabian Sea, Deep-Sea Res., 29, 459–469, 1982.
Naqvi, S. W. A., Yoshinari, T., Jayakumar, A., Altabet, M. A., Narvekar, P.
V., Devol, A. H., Brandes, J. A., and Codispoti, L. A.: Budgetary and
biogeochemical implications of N2O isotope signatures in the Arabian
Sea, Nature, 394, 462–464, 1998.
Naqvi, S. W. A., Jayakumar, D. A., Narvekar, P. V., Naik, H., Sarma, V. V.
S. S., D'Souza, W., Joseph, S., and George, M. D.: Increased marine
production of N2O due to intensifying anoxia on the Indian continental
shelf, Nature, 408, 346–349, 2000.
Naqvi, S. W. A., Moffett, J. W., Gauns, M. U., Narvekar, P. V., Pratihary, A. K., Naik, H., Shenoy, D. M., Jayakumar, D. A., Goepfert, T. J., Patra, P. K., Al-Azri, A., and Ahmed, S. I.: The Arabian Sea as a high-nutrient, low-chlorophyll region during the late Southwest Monsoon, Biogeosciences, 7, 2091–2100, https://doi.org/10.5194/bg-7-2091-2010, 2010.
Naqvi, W. A.: Geographical extent of denitrification in the Arabian Sea in
relation to some physical processes, Oceanol. Ac., 14, 281–290, 1991.
Olson, D. B., Hitchcock, G. L., Fine, R. A., and Warren, B. A.: Maintenance
of the low-oxygen layer in the central Arabian Sea, Deep-Sea Res. Pt. II,
40, 673–685, 1993.
Oschlies, A., Duteil, O., Getzlaff, J., Koeve, W., Landolfi, A., and
Schmidtko, S.: Patterns of deoxygenation: sensitivity to natural and
anthropogenic drivers, Philosophical Transactions of the Royal Society A:
Mathematical, Phys. Eng. Sci., 375, 20160325, https://doi.org/10.1098/rsta.2016.0325, 2017.
Oschlies, A., Brandt, P., Stramma, L., and Schmidtko, S.: Drivers and
mechanisms of ocean deoxygenation, Nat. Geosci., 11, 467–473, 2018.
Oschlies, A. and Garcon, V.: Eddy-induced enhancement of primary production
in a model of the North Atlantic Ocean, Nature, 394, 266–269, https://doi.org/10.1038/28373 1998.
Oschlies, A., Schulz, K. G., Riebesell, U., and Schmittner, A.: Simulated
21st century's increase in oceanic suboxia by CO2-enhanced biotic
carbon export, Global Biogeochem. Cy., 22, GB4008, https://doi.org/10.1029/2007gb003147, 2008.
Oschlies, A., Koeve, W., Landolfi, A., and Kähler, P.: Loss of fixed
nitrogen causes net oxygen gain in a warmer future ocean, Nat.
Commun., 10, 2805, https://doi.org/10.1038/s41467-019-10813-w, 2019.
Palter, J. B. and Trossman, D. S.: The Sensitivity of Future Ocean Oxygen to
Changes in Ocean Circulation, Global Biogeochem. Cy., 32, 738–751,
2018.
Park, W., Keenlyside, N., Latif, M., Stroh, A., Redler, R., Roeckner, E.,
and Madec, G.: Tropical Pacific Climate and Its Response to Global Warming
in the Kiel Climate Model, J. Climate, 22, 71–92, 2009.
Pichevin, L., Bard, E., Martinez, P., and Billy, I.: Evidence of ventilation
changes in the Arabian Sea during the late Quaternary: Implication for
denitrification and nitrous oxide emission, Global Biogeochem. Cy.,
21, GB4008, https://doi.org/10.1029/2006gb002852, 2007.
Piontkovski, S. A. and Al-Oufi, H. S.: The Omani shelf hypoxia and the
warming Arabian Sea, Int. J. Environ. Stud., 72,
256–264, 2015.
Piontkovski, S. A., Queste, B. Y., Al-Hashmi, K. A., Al-Shaaibi, A.,
Bryantseva, Y. V., and Popova, E. A.: Subsurface algal blooms of the
northwestern Arabian Sea, Mar. Ecol. Prog. Ser.s, 566, 67–78, 2017.
Pozzato, L., van Oevelen, D., Moodley, L., Soetaert, K., and Middelburg, J.
J.: Carbon processing at the deep-sea floor of the Arabian Sea oxygen
minimum zone: A tracer approach, J. Sea Res., 78, 45–58, 2013.
Prakash, S., Ramesh, R., Sheshshayee, M. S., Dwivedi, R. M., and Raman, M.:
Quantification of new production during a winter Noctiluca scintillans bloom in the Arabian Sea,
Geophys. Res. Lett., 35, L08604, https://doi.org/10.1029/2008gl033819, 2008.
Prakash, S., Roy, R., and Lotliker, A.: Revisiting the Noctiluca scintillans
paradox in northern Arabian Sea, Current Sci., 113, 1429–1434, 2017.
Prasanna Kumar, S., Nuncio, M., Narvekar, J., Kumar, A., Sardesai, d. S., De
Souza, S., Gauns, M., Ramaiah, N., and Madhupratap, M.: Are eddies nature's
trigger to enhance biological productivity in the Bay of Bengal?,
Geophys. Res. Lett., 31, L07309, https://doi.org/10.1029/2003GL019274, 2004.
Pratihary, A. K., Naqvi, S. W. A., Narvenkar, G., Kurian, S., Naik, H., Naik, R., and Manjunatha, B. R.: Benthic mineralization and nutrient exchange over the inner continental shelf of western India, Biogeosciences, 11, 2771–2791, https://doi.org/10.5194/bg-11-2771-2014, 2014.
Queste, B. Y., Vic, C., Heywood, K. J., and Piontkovski, S. A.: Physical
Controls on Oxygen Distribution and Denitrification Potential in the North
West Arabian Sea, Geophys. Res. Lett., 45, 4143–4152, 2018.
Raman, A. V., Damodaran, R., Levin, L. A., Ganesh, T., Rao, Y. K. V.,
Nanduri, S., and Madhusoodhanan, R.: Macrobenthos relative to the oxygen
minimum zone on the East Indian margin, Bay of Bengal, Mar. Ecol., 36,
679–700, 2015.
Ramaswamy, V., Nair, R. R., Manganini, S., Haake, B., and Ittekkot, V.:
Lithogenic fluxes to the deep Arabian Sea measured by sediment traps, Deep-Sea Res., 38, 169–184, 1991.
Rao, C. K., Naqvi, S. W. A., Kumar, M. D., Varaprasad, S. J. D., Jayakumar,
D. A., George, M. D., and Singbal, S. Y. S.: Hydrochemistry of the Bay of
Bengal: possible reasons for a different water-column cycling of carbon and
nitrogen from the Arabian Sea, Mar. Chem., 47, 279–290, 1994.
Rao, R. R., Molinari, R. L., and Festa, J. F.: Evolution of the
Climatological Near-Surface Thermal Structure of the Tropical Indian Ocean –
1. Description of Mean Monthly Mixed Layer Depth, and Sea Surface
Temperature, Surface Current, and Surface Meteorological Fields, J.
Geophys. Res., 94, 10801–10815, 1989.
Resplandy, L.: Will ocean zones with low oxygen levels expand or shrink?,
Nature, 557, 314–315, 2018.
Resplandy, L., Lévy, M., Madec, G., Pous, S., Aumont, O., and Kumar, D.:
Contribution of mesoscale processes to nutrient budgets in the Arabian Sea,
J. Geophys. Res.-Ocean., 116, C11007, https://doi.org/10.1029/2011JC007006, 2011.
Resplandy, L., Lévy, M., Bopp, L., Echevin, V., Pous, S., Sarma, V. V. S. S., and Kumar, D.: Controlling factors of the oxygen balance in the Arabian Sea's OMZ, Biogeosciences, 9, 5095–5109, https://doi.org/10.5194/bg-9-5095-2012, 2012.
Resplandy, L., Lévy, M., and McGillicuddy Jr., D. J.: Effects of
Eddy-Driven Subduction on Ocean Biological Carbon Pump, Global
Biogeochem. Cy., 33, 1071–1084, 2019.
Rixen, T. and Ittekkot, V.: Nitrogen deficits in the Arabian Sea,
implications from a three component mixing analysis, Deep-Sea Res. Pt. II,
1879–1891, 2005.
Rixen, T., Haake, B., and Ittekkot, V.: Sedimentation in the western Arabian
Sea: the role of coastal and open-ocean upwelling, Deep-Sea Res. Pt. II, 47,
2155–2178, 2000.
Rixen, T., Goyet, C., and Ittekkot, V.: Diatoms and their influence on the biologically mediated uptake of atmospheric CO2 in the Arabian Sea upwelling system, Biogeosciences, 3, 1–13, https://doi.org/10.5194/bg-3-1-2006, 2006.
Rixen, T., Gaye, B., and Emeis, K.-C.: The monsoon, carbon fluxes, and the
organic carbon pump in the northern Indian Ocean, Prog. Oceanogr.,
175, 24–39, 2019a.
Rixen, T., Gaye, B., Emeis, K.-C., and Ramaswamy, V.: The ballast effect of lithogenic matter and its influences on the carbon fluxes in the Indian Ocean, Biogeosciences, 16, 485–503, https://doi.org/10.5194/bg-16-485-2019, 2019b.
Rixen, T., Baum, A., Gaye, B., and Nagel, B.: Seasonal and interannual variations in the nitrogen cycle in the Arabian Sea, Biogeosciences, 11, 5733–5747, https://doi.org/10.5194/bg-11-5733-2014, 2014.
Rosenberg, R.: Marine benthic faunal successional stages and related
sediment activity, Sci. Mar., 66, 107–119, 2001.
Saltzman, J. and Wishner, K. F.: Zooplankton ecology in the eastern tropical
Pacific oxygen minimum zone above a seamount: 2. Vertical distribution of
copepods, Deep-Sea Res. Pt. I, 44,
931–954, 1997.
Sánchez-Baracaldo, P.: Origin of marine planktonic cyanobacteria,
Sci. Rep., 5, 17418, https://doi.org/10.1038/srep17418, 2015.
Saraswathy, M. and Iyer, H. K.: Ecology of Pleuromamma indica Wolfenden (Copepoda – Calanoida)
in the Indian Ocean, Indian J. Mar. Sci., 15, 219–222, 1986.
Sarkar, A., Sengupta, S., McArthur, J. M., Bera, M. K., Bushan, R., Samanta,
A., and Agrawal, S.: Evolution of Ganges-Brahmaputra western delta plain:
clues from sedimentology and carbon isotopes, Quaternary Sci. Rev.,
28, 2564–2581, 2009.
Sarma, V. and Udaya Bhaskar, T.: Ventilation of oxygen to oxygen minimum
zone due to anticyclonic eddies in the Bay of Bengal, J. Geophys.
Res.-Biogeo., 123, 2145–2153, 2018.
Sarma, V., Jagadeesan, L., Dalabehera, H., Rao, D., Kumar, G., Durgadevi,
D., Yadav, K., Behera, S., and Priya, M.: Role of eddies on intensity of
oxygen minimum zone in the Bay of Bengal, Cont. Shelf Res., 168,
48–53, 2018.
Sastry, J. S. and D'Souza, R. S.: Upwelling & Upward Mixing in the
Arabian Sea, Indian J. Mar. Sci., 1, 17–27, 1972.
Schlitzer, R.: Applying the adjoint method for biogeochemical modeling,
Export of particulate organic matter in the World Ocean, in: Inverse Methods
in Biogeochemical Cycles, edited by: Kasibhata, P., AGU Monograph, AGU, 2000.
Schlitzer, R.: Carbon export fluxes in the Southern Ocean: results from
inverse modeling and comparison with satellite-based estimates, Deep-Sea
Res. Pt. II, 49, 1623–1644, 2002.
Schmidt, H., Czeschel, R., and Visbeck, M.: Seasonal variability of the circulation in the Arabian Sea at intermediate depth and its link to the Oxygen Minimum Zone, Ocean Sci. Discuss., https://doi.org/10.5194/os-2020-9, in review, 2020.
Schmidtko, S., Stramma, L., and Visbeck, M.: Decline in global oceanic
oxygen content during the past five decades, Nature, 542, 335–339, https://doi.org/10.1038/nature21399, 2017.
Schott, F. and McCreary Jr., J. P.: The monsoon circulation of the Indian
Ocean, Prog. Oceanogr., 51, 1–123, 2001.
Schott, G.: Geographie des Indischen und Stillen Ozeans, Boysen, Hamburg,
Germany, 1935.
Schunck, H., Lavik, G., Desai, D. K., Großkopf, T., Kalvelage, T.,
Löscher, C. R., Paulmier, A., Contreras, S., Siegel, H., Holtappels, M.,
Rosenstiel, P., Schilhabel, M. B., Graco, M., Schmitz, R. A., Kuypers, M. M.
M., and LaRoche, J.: Giant Hydrogen Sulfide Plume in the Oxygen Minimum Zone
off Peru Supports Chemolithoautotrophy, PLOS ONE, 8, e68661, https://doi.org/10.1371/journal.pone.0068661, 2013.
Schütte, F., Karstensen, J., Krahmann, G., Hauss, H., Fiedler, B., Brandt, P., Visbeck, M., and Körtzinger, A.: Characterization of “dead-zone” eddies in the eastern tropical North Atlantic, Biogeosciences, 13, 5865–5881, https://doi.org/10.5194/bg-13-5865-2016, 2016.
Schwartz, M. C., Woulds, C., and Cowie, G. L.: Sedimentary denitrification
rates across the Arabian Sea oxygen minimum zone, Deep-Sea Res. Pt. II, 56, 324–332, 2009.
Séférian, R., Berthet, S., Yool, A., Palmiéri, J., Bopp, L.,
Tagliabue, A., Kwiatkowski, L., Aumont, O., Christian, J., Dunne, J.,
Gehlen, M., Ilyina, T., John, J. G., Li, H., Long, M. C., Luo, J. Y.,
Nakano, H., Romanou, A., Schwinger, J., Stock, C., Santana-Falcón, Y.,
Takano, Y., Tjiputra, J., Tsujino, H., Watanabe, M., Wu, T., Wu, F., and
Yamamoto, A.: Tracking Improvement in Simulated Marine Biogeochemistry
Between CMIP5 and CMIP6, Curr. Clim. Change Rep., 6, 95–119, 2020.
Segschneider, J. and Bendtsen, J.: Temperature-dependent remineralization in
a warming ocean increases surface pCO2 through changes in marine ecosystem
composition, Global Biogeochem. Cy., 27, 1214–1225, 2013.
Segschneider, J., Schneider, B., and Khon, V.: Climate and marine biogeochemistry during the Holocene from transient model simulations, Biogeosciences, 15, 3243–3266, https://doi.org/10.5194/bg-15-3243-2018, 2018.
Seiwell, H. R.: The minimum oxygen concentration in the western basin of the
North Atlantic, Papers Phys. Oceanogr. Meteorol., 5, 3–18,
1937.
Sen Gupta, R. and Naqvi, S. W. A.: Chemical Oceanography of the Indian
Ocean, North of the Equator, Deep-Sea Res., 31, 671–706, 1984.
Sewell, R. B. S. and Fage, L.: Minimum Oxygen Layer in the Ocean, Nature,
162, 949–951, 1948.
Shenoy, D. M., Suresh, I., Uskaikar, H., Kurian, S., Vidya, P. J.,
Shirodkar, G., Gauns, M. U., and Naqvi, S. W. A.: Variability of dissolved
oxygen in the Arabian Sea Oxygen Minimum Zone and its driving mechanisms,
J. Mar. Syst., 204, 103310, https://doi.org/10.1016/j.jmarsys.2020.103310, 2020.
Shetye, S. R. and Shenoi, S. S. C.: Seasonal cycle of surface circulation in
the coastal North Indian Ocean, P. Indian A.
S.-Earth, 97, 53–62, 1988.
Shetye, S. R., Gouveia, A. D., Shenoi, S. S. C., Sundar, D., Michael, G. S.,
Almeida, A. M., and Santanam, K.: Hydrography and circulation off the west
coast of India during the Southwest Monsoon 1987, J. Mar.
Res., 48, 359–378, 1990.
Sigman, D. M., Granger, J., DiFiore, P. J., Lehmann, M. F., Ho, R., Cane,
G., and van Geen, A.: Coupled nitrogen and oxygen isotope measurements of
nitrate along the eastern North Pacific margin, Global Biogeochem.
Cy., 19, GB4022, https://doi.org/10.1029/2005GB002458, 2005.
Singh, A., Gandhi, N., Ramesh, R., and Prakash, S.: Role of cyclonic eddy in
enhancing primary and new production in the Bay of Bengal, J. Sea
Res., 97, 5–13, 2015.
Smallwood, B. J., Wolff, G. A., Bett, B. J., Smith, C. R., Hoover, D., Gage,
J. D., and Patience, A.: Megafauna Can Control the Quality of Organic Matter
in Marine Sediments, Naturwissenschaften, 86, 320–324, 1999.
Smith, C. R., A. Levin, L., Hoover, D. J., McMurtry, G., and Gage, J. D.:
Variations in bioturbation across the oxygen minimum zone in the northwest
Arabian Sea, Deep-Sea Res. Pt. II, 47,
227–257, 2000.
Smith, S. L.: Understanding the Arabian Sea: Reflections on the 1994–1996
Arabian Sea Expedition, Deep-Sea Res. Pt. II, 48, 1385–1402, 2001.
Smith, S. L. and Madhupratap, M.: Mesozooplankton of the Arabian Sea:
Patterns influenced by seasons, upwelling, and oxygen concentrations,
Prog. Oceanogr., 65, 214–239, 2005.
Smith, S. L., Roman, M., Prusova, I., Wishner, K., Gowing, M., Codispoti, L.
A., Barber, R., Marra, J., and Flagg, C.: Seasonal response of zooplankton
to monsoonal reversals in the Arabian Sea, Deep-Sea Res. Pt. II, 45, 2369–2403, 1998a.
Smith, S. L., Codispoti, L. A., Morrison, J. M., and Barber, R. T.: The
1994–1996 Arabian Sea Expedition: An integrated, interdisciplinary
investigation of the response of the northwestern Indian Ocean to monsoonal
forcing, Deep-Sea Res. Pt. II, 45,
1905–1915, 1998b.
Smith, T. M., Reynolds, R. W., Peterson, T. C., and Lawrimore, J.:
Improvements to NOAA's historival merged land-ocean surface temperature
analysis (1880–2006), J. Climate, 21, 2283–2296, 2008.
Sokoll, S., Holtappels, M., Lam, P., Collins, G., Schlüter, M., Lavik,
G., and Kuypers, M.: Benthic Nitrogen Loss in the Arabian Sea Off Pakistan,
Front. Microbiol., 3, 1–17, 2012.
Somasundar, K., Rajendran, A., Dileep Kumar, M., and Sen Gupta, R.: Carbon
and nitrogen budgets of the Arabian Sea, Mar. Chem., 30, 363–377,
1990.
Somes, C. J., Oschlies, A., and Schmittner, A.: Isotopic constraints on the pre-industrial oceanic nitrogen budget, Biogeosciences, 10, 5889–5910, https://doi.org/10.5194/bg-10-5889-2013, 2013.
Stramma, L., Fischer, J., and Schott, F.: The flow field off southwest India
at 8∘ N during the southwest monsoon of August 1993, J. Mar.
Res., 54, 55-72, 1996.
Stramma, L., Johnson, G. C., Sprintall, J., and Mohrholz, V.: Expanding
oxygen-minimum zones in the tropical oceans, Science, 320, 655–658, 2008.
Stramma, L., Johnson, G. C., Firing, E., and Schmidtko, S.: Eastern Pacific
oxygen minimum zones: Supply paths and multidecadal changes, J. Geophys.
Res., 115, C09011, https://doi.org/10.1029/2009jc005976, 2010a.
Stramma, L., Schmidtko, S., Levin, L. A., and Johnson, G. C.: Ocean oxygen
minima expansions and their biological impacts, Deep-Sea Res. Pt. I, 57, 587–595, 2010b.
Sudheesh, V., Gupta, G. V. M., Sudharma, K. V., Naik, H., Shenoy, D. M.,
Sudhakar, M., and Naqvi, S. W. A.: Upwelling intensity modulates N2O
concentrations over the western Indian shelf, J. Geophys.
Res.-Ocean., 121, 8551–8565, 2016.
Suess, E.: Particulate organic carbon flux in the oceans – surface
productivity and oxygen utilization, Nature, 288, 260–263, 1980.
Suthhof, A., Ittekkot, V., and Gaye-Haake, B.: Millenial-scale oscillation
of denitrification intensitiy in the Arabian Sea during the late Quaternary
and its potential influence on atmospheric N2O and global climate,
Global Biogeochem. Cy., 15, 637–650, 2001.
Sverdrup, H. U.: On the Explanation of the Oxygen Minima and Maxima in the
Oceans1), ICES J. Mar. Sci., 13, 163–172, 1938.
Sverdrup, H. U., Johnson, M. W., and Flemming, R. H.: The Oceans, their
physics chemistry and general biology, Prentice-Hall, Englewood Cliffs,
N.J., 1942.
Swallow, J. C.: Some aspects of the physical oceanography of the Indian
Ocean, Deep-Sea Res. Pt. A, 31, 639–650,
1984.
Sweetman, A. K., Chelsky, A., Pitt, K. A., Andrade, H., van Oevelen, D., and
Renaud, P. E.: Jellyfish decomposition at the seafloor rapidly alters
biogeochemical cycling and carbon flow through benthic food-webs, Limnol. Oceanogr., 61, 1449–1461, 2016.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and the Experiment Design, Bull. Am. Meteorol. Soc., 93, 485–498 https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
Tesdal, J.-E., Galbraith, E. D., and Kienast, M.: Nitrogen isotopes in bulk marine sediment: linking seafloor observations with subseafloor records, Biogeosciences, 10, 101–118, https://doi.org/10.5194/bg-10-101-2013, 2013.
Thamdrup, B., Dalsgaard, T., and Revsbech, N. P.: Widespread functional
anoxia in the oxygen minimum zone of the Eastern South Pacific, Deep-Sea
Res. Pt. I, 65, 36–45, 2012.
Ulloa, O., Canfield, D. E., DeLong, E. F., Letelier, R. M., and Stewart, F.
J.: Microbial oceanography of anoxic oxygen minimum zones, P.
Natl. Acad. Sci., 109, 15996, https://doi.org/10.1073/pnas.1205009109, 2012.
Unger, D., Schaefer, P., Ittekkot, V., and Gaye, B.: Nitrogen isotopic
composition of sinking particles from the southern Bay of Bengal: Evidence
for variable nitrogen sources, Deep-Sea Res., 1, 53, 1658–1676, 2006.
Van Mooy, B. A. S., Keil, R. G., and Devol, A. H.: Impact of suboxia on
sinking particulate organic carbon: Enhanced carbon flux and preferential
degradation of amino acids via denitrification, Geochim. Cosmochim.
Ac., 66, 457–465, 2002.
Vaquer-Sunyer, R. and Duarte, C. M.: Thresholds of hypoxia for marine
biodiversity, P. Natl. Acad. Sci., 105, 15452, https://doi.org/10.1073/pnas.0803833105,
2008.
Vic, C., Roullet, G., Capet, X., Carton, X., Molemaker, M. J., and Gula, J.:
Eddy topography interactions and the fate of the Persian Gulf Outflow,
J. Geophys. Res.-Ocean., 120, 6700–6717, 2015.
Vinogradov, M. E. and Voronina, N. M.: Influence of the oxygen deficit on
the distribution of plankton in the Arabian Sea, Deep-Sea Res.
Oceanogr. Abstracts, 9, 523–530, 1962.
Voss, M., Deutsch, B., Elmgren, R., Humborg, C., Kuuppo, P., Pastuszak, M., Rolff, C., and Schulte, U.: Source identification of nitrate by means of isotopic tracers in the Baltic Sea catchments, Biogeosciences, 3, 663–676, https://doi.org/10.5194/bg-3-663-2006, 2006.
Wang, L., Lin, X., Goes, J. I., and Lin, S.: Phylogenetic Analyses of Three
Genes of Pedinomonas noctilucae, the Green Endosymbiont of the Marine
Dinoflagellate Noctiluca scintillans, Reveal its Affiliation to the Order
Marsupiomonadales (Chlorophyta, Pedinophyceae) under the Reinstated Name
Protoeuglena noctilucae, Protist, 167, 205–216, 2016.
Ward, B. B., Devol, A. H., Rich, J. J., Chang, B. X., Bulow, S. E., Naik,
H., Pratihary, A., and Jayakumar, A.: Denitrification as the dominant
nitrogen loss process in the Arabian Sea, Nature, 461, 78–81, 2009.
Weeks, S. J., Currie, B., and Bakun, A.: Massive emissions of toxic gas in
the Atlantic, Nature, 415, 493–494, 2002.
White, C. M., Woulds, C., Cowie, G. L., Stott, A., and Kitazato, H.:
Resilience of benthic ecosystem C-cycling to future changes in dissolved
oxygen availability, Deep-Sea Res. Pt. II, 161, 29–37, 2019.
Wishner, K. F., Ashjian, C. J., Gelfman, C., Gowing, M. M., Kann, L., Levin,
L. A., Mullineaux, L. S., and Saltzman, J.: Pelagic and benthic ecology of
the lower interface of the Eastern Tropical Pacific oxygen minimum zone,
Deep-Sea Res. Pt. I, 42, 93–115, 1995.
Wishner, K. F., Gowing, M. M., and Gelfman, C.: Mesozooplankton biomass in
the upper 1000 m in the Arabian Sea: overall seasonal and geographic
patterns, and relationship to oxygen gradients, Deep-Sea Res. Pt. II, 45, 2405–2432, 1998.
Wishner, K. F., Gelfman, C., Gowing, M. M., Outram, D. M., Rapien, M., and
Williams, R. L.: Vertical zonation and distributions of calanoid copepods
through the lower oxycline of the Arabian Sea oxygen minimum zone, Prog. Oceanogr., 78, 163–191, 2008.
Woulds, C., Cowie, G. L., Levin, L. A., Andersson, J. H., Middelburg, J. J.,
Vandewiele, S., Lamont, P. A., Larkin, K. E., Gooday, A. J., Schumacher, S.,
Whitcraft, C., Jeffreys, R. M., and Schwartz, M.: Oxygen as a control on sea
floor biological communities and their roles in sedimentary carbon cycling,
Limnol. Oceanogr., 52, 1698–1709, 2007.
Woulds, C., Andersson, J. H., Cowie, G. L., Middelburg, J. J., and Levin, L.
A.: The short-term fate of organic carbon in marine sediments: Comparing the
Pakistan margin to other regions, Deep-Sea Res. Pt. II, 56, 393–402, 2009.
Wyrtki, K.: Physical Oceanography of the Indian Ocean, in: The Biology of
the Indian Ocean, edited by: Zeitschel, B., Springer Verlag, Berlin, Heidelberg,
New York, 1973.
You, Y.: Seasonal variations of thermocline circulation and ventilation in
the Indian Ocean, J. Geophys. Res., 102, 10391–10422,
1997.
Short summary
The northern Indian Ocean hosts an extensive oxygen minimum zone (OMZ), which intensified due to human-induced global changes. This includes the occurrence of anoxic events on the Indian shelf and affects benthic ecosystems and the pelagic ecosystem structure in the Arabian Sea. Consequences for biogeochemical cycles are unknown, which, in addition to the poor representation of mesoscale features, reduces the reliability of predictions of the future OMZ development in the northern Indian Ocean.
The northern Indian Ocean hosts an extensive oxygen minimum zone (OMZ), which intensified due to...
Altmetrics
Final-revised paper
Preprint