Articles | Volume 17, issue 23
https://doi.org/10.5194/bg-17-6051-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-17-6051-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reviews and syntheses: Present, past, and future of the oxygen minimum zone in the northern Indian Ocean
Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstr. 6, 28359
Bremen, Germany
Greg Cowie
School of Geosciences, University of Edinburgh, James Hutton Road,
Edinburgh EH9 3FE, Scotland, UK
Birgit Gaye
Institute for Geology, Universität Hamburg, Bundesstraße 55, 20146
Hamburg, Germany
Joaquim Goes
Marine Biology, Department of Marine Biology and Paleoenvironment, Lamont–Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades,
New York 10964, USA
Helga do Rosário Gomes
Marine Biology, Department of Marine Biology and Paleoenvironment, Lamont–Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades,
New York 10964, USA
Raleigh R. Hood
Horn Point Laboratory, University of Maryland Center for Environmental
Science, P.O. Box 775, Cambridge, MD 21613, USA
Zouhair Lachkar
Center for Prototype Climate Modeling (CPCM), NYU, Abu Dhabi, UAE
Henrike Schmidt
GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Duesternbrooker Weg 20,
24105 Kiel, Germany
Joachim Segschneider
Institute of Geosciences, Christian-Albrechts-Universität zu Kiel (CAU),
Ludewig-Meyn-Straße 10, 24118 Kiel, Germany
Arvind Singh
Geosciences Division, Physical Research Laboratory (PRL) Navrangpura,
Ahmedabad 380 009, India
Related authors
Alexandra Klemme, Thorsten Warneke, Heinrich Bovensmann, Matthias Weigelt, Jürgen Müller, Tim Rixen, Justus Notholt, and Claus Lämmerzahl
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-37, https://doi.org/10.5194/hess-2023-37, 2023
Preprint under review for HESS
Short summary
Short summary
Gravimetric satellite data can be used to estimate groundwater depletion. The impact of mass loss by river sediment transport on such estimates has not been considered in the past. We derive this impact for the sediment-rich Ganges-Brahmaputra-Meghna (GBM) river system, where it accounts for 4-2 % of the overall mass decrease currently attributed to groundwater depletion. In the GBM mountain regions, correction for sediment transport reduces the estimated groundwater depletion by 14 %.
Alexandra Klemme, Tim Rixen, Denise Müller-Dum, Moritz Müller, Justus Notholt, and Thorsten Warneke
Biogeosciences, 19, 2855–2880, https://doi.org/10.5194/bg-19-2855-2022, https://doi.org/10.5194/bg-19-2855-2022, 2022
Short summary
Short summary
Tropical peat-draining rivers contain high amounts of carbon. Surprisingly, measured carbon dioxide (CO2) emissions from those rivers are comparatively moderate. We compiled data from 10 Southeast Asian rivers and found that CO2 production within these rivers is hampered by low water pH, providing a natural threshold for CO2 emissions. Furthermore, we find that enhanced carbonate input, e.g. caused by human activities, suspends this natural threshold and causes increased CO2 emissions.
Birgit Gaye, Niko Lahajnar, Natalie Harms, Sophie Anna Luise Paul, Tim Rixen, and Kay-Christian Emeis
Biogeosciences, 19, 807–830, https://doi.org/10.5194/bg-19-807-2022, https://doi.org/10.5194/bg-19-807-2022, 2022
Short summary
Short summary
Amino acids were analyzed in a large number of samples of particulate and dissolved organic matter from coastal regions and the open ocean. A statistical analysis produced two new biogeochemical indicators. An indicator of sinking particle and sediment degradation (SDI) traces the degradation of organic matter from the surface waters into the sediments. A second indicator shows the residence time of suspended matter in the ocean (RTI).
Nicole Burdanowitz, Tim Rixen, Birgit Gaye, and Kay-Christian Emeis
Clim. Past, 17, 1735–1749, https://doi.org/10.5194/cp-17-1735-2021, https://doi.org/10.5194/cp-17-1735-2021, 2021
Short summary
Short summary
To study the interaction of the westerlies and Indian summer monsoon (ISM) during the Holocene, we used paleoenvironmental reconstructions using a sediment core from the northeast Arabian Sea. We found a climatic transition period between 4.6 and 3 ka BP during which the ISM shifted southwards and the influence of Westerlies became prominent. Our data indicate a stronger influence of agriculture activities and enhanced soil erosion, adding to Bond event impact after this transition period.
Shan Jiang, Moritz Müller, Jie Jin, Ying Wu, Kun Zhu, Guosen Zhang, Aazani Mujahid, Tim Rixen, Mohd Fakharuddin Muhamad, Edwin Sien Aun Sia, Faddrine Holt Ajon Jang, and Jing Zhang
Biogeosciences, 16, 2821–2836, https://doi.org/10.5194/bg-16-2821-2019, https://doi.org/10.5194/bg-16-2821-2019, 2019
Short summary
Short summary
Three cruises were conducted in the Rajang River estuary, Malaysia. The results revealed that the decomposition of terrestrial organic matter and the subsequent soil leaching were the main sources of dissolved inorganic nitrogen (DIN) in the fresh river water. Porewater exchange and ammonification enhanced DIN concentrations in the estuary water, while intensities of DIN addition varied between seasons. The riverine DIN flux could reach 101.5 ton(N) / d, supporting the coastal primary producers.
Tim Rixen, Birgit Gaye, Kay-Christian Emeis, and Venkitasubramani Ramaswamy
Biogeosciences, 16, 485–503, https://doi.org/10.5194/bg-16-485-2019, https://doi.org/10.5194/bg-16-485-2019, 2019
Short summary
Short summary
Data obtained from sediment trap experiments in the Indian Ocean indicate that lithogenic matter ballast increases organic carbon flux rates on average by 45 % and by up to 62 % at trap locations in the river-influenced regions of the Indian Ocean. Such a strong lithogenic matter ballast effect implies that land use changes and the associated enhanced transport of lithogenic matter may significantly affect the CO2 uptake of the organic carbon pump in the receiving ocean areas.
Denise Müller-Dum, Thorsten Warneke, Tim Rixen, Moritz Müller, Antje Baum, Aliki Christodoulou, Joanne Oakes, Bradley D. Eyre, and Justus Notholt
Biogeosciences, 16, 17–32, https://doi.org/10.5194/bg-16-17-2019, https://doi.org/10.5194/bg-16-17-2019, 2019
Short summary
Short summary
Southeast Asian peat-draining rivers are potentially strong sources of carbon to the atmosphere due to the large amounts of organic carbon stored in those ecosystems. We present the first assessment of CO2 emissions from the Rajang River, the largest peat-draining river in Malaysia. The peatlands’ influence on the CO2 emissions from the Rajang River was smaller than expected, probably due to their proximity to the coast. Therefore, the Rajang was only a moderate source of CO2 to the atmosphere.
Celeste Sánchez-Noguera, Ines Stuhldreier, Jorge Cortés, Carlos Jiménez, Álvaro Morales, Christian Wild, and Tim Rixen
Biogeosciences, 15, 2349–2360, https://doi.org/10.5194/bg-15-2349-2018, https://doi.org/10.5194/bg-15-2349-2018, 2018
Short summary
Short summary
The Papagayo upwelling system is a natural laboratory for studying ecosystems' response to ocean acidification (OA). We measured pH and pCO2 in situ with high temporal resolution and compared them with data available from upwelling season. Local coral reefs are exposed to acidic and undersaturated waters in upwelling and non-upwelling events. These restrictive conditions occur alongside local stressors, potentially decreasing reefs' resilience and increasing their vulnerability under future OA.
Birgit Gaye, Anna Böll, Joachim Segschneider, Nicole Burdanowitz, Kay-Christian Emeis, Venkitasubramani Ramaswamy, Niko Lahajnar, Andreas Lückge, and Tim Rixen
Biogeosciences, 15, 507–527, https://doi.org/10.5194/bg-15-507-2018, https://doi.org/10.5194/bg-15-507-2018, 2018
Short summary
Short summary
The Arabian Sea has one of the most severe oxygen minima of the world's oceans between about 100 and 1200 m of water depth and is therefore a major oceanic nitrogen sink. Stable nitrogen isotopic ratios in sediments record changes in oxygen concentrations and were studied for the last 25 kyr. Oxygen concentrations dropped at the end of the last glacial and became further reduced during the Holocene, probably due to the increasing age of the low-oxygen water mass.
Tim Rixen, Birgit Gaye, Kay-Christian Emeis, and Venkitasubramani Ramaswamy
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-317, https://doi.org/10.5194/bg-2017-317, 2017
Manuscript not accepted for further review
Short summary
Short summary
Sediment trap experiments showed that in the river-influenced regions of the Indian Ocean lithogenic matter supplied from land controls the organic carbon export into the deep sea via its ballast effect in sinking particles. Carbonate produced by plankton is the main ballast material in the open ocean. The ballast effect increases the CO2 uptake of the organic carbon pump by enhancing the amount of nutrients used to bind CO2 and by favouring the sedimentation of organic matter.
Denise Müller, Hermann W. Bange, Thorsten Warneke, Tim Rixen, Moritz Müller, Aazani Mujahid, and Justus Notholt
Biogeosciences, 13, 2415–2428, https://doi.org/10.5194/bg-13-2415-2016, https://doi.org/10.5194/bg-13-2415-2016, 2016
Short summary
Short summary
Estuaries act as sources of the greenhouse gases nitrous oxide (N2O) and methane (CH4) to the atmosphere. We provide first measurements of N2O and CH4 in two estuaries in north-western Borneo, a region which is dominated by peatlands. We show that N2O and CH4 concentrations in these estuaries are moderate despite high organic carbon loads, that nutrient enhancement does not lead to enhanced N2O emissions, and that the wet season dominates the variability of the emissions in these systems.
D. Müller, T. Warneke, T. Rixen, M. Müller, A. Mujahid, H. W. Bange, and J. Notholt
Biogeosciences, 13, 691–705, https://doi.org/10.5194/bg-13-691-2016, https://doi.org/10.5194/bg-13-691-2016, 2016
Short summary
Short summary
We studied organic carbon and the dissolved greenhouse gases carbon dioxide (CO2) and carbon monoxide (CO) in two estuaries in Sarawak, Malaysia, whose coast is covered by carbon-rich peatlands. The estuaries received terrestrial organic carbon from peat-draining tributaries. A large fraction was converted to CO2 and a minor fraction to CO. Both gases were released to the atmosphere. This shows how these estuaries function as efficient filters between land and ocean in this important region.
D. Müller, T. Warneke, T. Rixen, M. Müller, S. Jamahari, N. Denis, A. Mujahid, and J. Notholt
Biogeosciences, 12, 5967–5979, https://doi.org/10.5194/bg-12-5967-2015, https://doi.org/10.5194/bg-12-5967-2015, 2015
Short summary
Short summary
Tropical peatlands are an important source of organic carbon to rivers. However, due to the remoteness of these ecosystems, data are scarce. We present the first combined assessment of both lateral organic carbon fluxes and CO2 emissions from an undisturbed tropical peat-draining river. Compared to the organic carbon concentrations, CO2 fluxes to the atmosphere were actually relatively moderate, which we attributed to the short water residence time.
T. Rixen, A. Baum, B. Gaye, and B. Nagel
Biogeosciences, 11, 5733–5747, https://doi.org/10.5194/bg-11-5733-2014, https://doi.org/10.5194/bg-11-5733-2014, 2014
A. Flohr, A. K. van der Plas, K.-C. Emeis, V. Mohrholz, and T. Rixen
Biogeosciences, 11, 885–897, https://doi.org/10.5194/bg-11-885-2014, https://doi.org/10.5194/bg-11-885-2014, 2014
B. Gaye, B. Nagel, K. Dähnke, T. Rixen, N. Lahajnar, and K.-C. Emeis
Biogeosciences, 10, 7689–7702, https://doi.org/10.5194/bg-10-7689-2013, https://doi.org/10.5194/bg-10-7689-2013, 2013
Alexandra Klemme, Thorsten Warneke, Heinrich Bovensmann, Matthias Weigelt, Jürgen Müller, Tim Rixen, Justus Notholt, and Claus Lämmerzahl
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-37, https://doi.org/10.5194/hess-2023-37, 2023
Preprint under review for HESS
Short summary
Short summary
Gravimetric satellite data can be used to estimate groundwater depletion. The impact of mass loss by river sediment transport on such estimates has not been considered in the past. We derive this impact for the sediment-rich Ganges-Brahmaputra-Meghna (GBM) river system, where it accounts for 4-2 % of the overall mass decrease currently attributed to groundwater depletion. In the GBM mountain regions, correction for sediment transport reduces the estimated groundwater depletion by 14 %.
Alexandra Klemme, Tim Rixen, Denise Müller-Dum, Moritz Müller, Justus Notholt, and Thorsten Warneke
Biogeosciences, 19, 2855–2880, https://doi.org/10.5194/bg-19-2855-2022, https://doi.org/10.5194/bg-19-2855-2022, 2022
Short summary
Short summary
Tropical peat-draining rivers contain high amounts of carbon. Surprisingly, measured carbon dioxide (CO2) emissions from those rivers are comparatively moderate. We compiled data from 10 Southeast Asian rivers and found that CO2 production within these rivers is hampered by low water pH, providing a natural threshold for CO2 emissions. Furthermore, we find that enhanced carbonate input, e.g. caused by human activities, suspends this natural threshold and causes increased CO2 emissions.
Shichao Tian, Birgit Gaye, Jianhui Tang, Yongming Luo, Wenguo Li, Niko Lahajnar, Kirstin Dähnke, Tina Sanders, Tianqi Xiong, Weidong Zhai, and Kay-Christian Emeis
Biogeosciences, 19, 2397–2415, https://doi.org/10.5194/bg-19-2397-2022, https://doi.org/10.5194/bg-19-2397-2022, 2022
Short summary
Short summary
We constrain the nitrogen budget and in particular the internal sources and sinks of nitrate in the Bohai Sea by using a mass-based and dual stable isotope approach based on δ15N and δ18O of nitrate. Based on available mass fluxes and isotope data an updated nitrogen budget is proposed. Compared to previous estimates, it is more complete and includes the impact of the interior cycle (nitrification) on the nitrate pool. The main external nitrogen sources are rivers contributing 19.2 %–25.6 %.
Birgit Gaye, Niko Lahajnar, Natalie Harms, Sophie Anna Luise Paul, Tim Rixen, and Kay-Christian Emeis
Biogeosciences, 19, 807–830, https://doi.org/10.5194/bg-19-807-2022, https://doi.org/10.5194/bg-19-807-2022, 2022
Short summary
Short summary
Amino acids were analyzed in a large number of samples of particulate and dissolved organic matter from coastal regions and the open ocean. A statistical analysis produced two new biogeochemical indicators. An indicator of sinking particle and sediment degradation (SDI) traces the degradation of organic matter from the surface waters into the sediments. A second indicator shows the residence time of suspended matter in the ocean (RTI).
Helen E. Phillips, Amit Tandon, Ryo Furue, Raleigh Hood, Caroline C. Ummenhofer, Jessica A. Benthuysen, Viviane Menezes, Shijian Hu, Ben Webber, Alejandra Sanchez-Franks, Deepak Cherian, Emily Shroyer, Ming Feng, Hemantha Wijesekera, Abhisek Chatterjee, Lisan Yu, Juliet Hermes, Raghu Murtugudde, Tomoki Tozuka, Danielle Su, Arvind Singh, Luca Centurioni, Satya Prakash, and Jerry Wiggert
Ocean Sci., 17, 1677–1751, https://doi.org/10.5194/os-17-1677-2021, https://doi.org/10.5194/os-17-1677-2021, 2021
Short summary
Short summary
Over the past decade, understanding of the Indian Ocean has progressed through new observations and advances in theory and models of the oceanic and atmospheric circulation. This review brings together new understanding of the ocean–atmosphere system in the Indian Ocean, describing Indian Ocean circulation patterns, air–sea interactions, climate variability, and the critical role of the Indian Ocean as a clearing house for anthropogenic heat.
Puthenveettil Narayana Menon Vinayachandran, Yukio Masumoto, Michael J. Roberts, Jenny A. Huggett, Issufo Halo, Abhisek Chatterjee, Prakash Amol, Garuda V. M. Gupta, Arvind Singh, Arnab Mukherjee, Satya Prakash, Lynnath E. Beckley, Eric Jorden Raes, and Raleigh Hood
Biogeosciences, 18, 5967–6029, https://doi.org/10.5194/bg-18-5967-2021, https://doi.org/10.5194/bg-18-5967-2021, 2021
Short summary
Short summary
Upwelling in the coastal ocean triggers biological productivity and thus enhances fisheries. Therefore, understanding the phenomenon of upwelling and the underlying mechanisms is important. In this paper, the present understanding of the upwelling along the coastline of the Indian Ocean from the coast of Africa all the way up to the coast of Australia is reviewed. The review provides a synthesis of the physical processes associated with upwelling and its impact on the marine ecosystem.
Zouhair Lachkar, Michael Mehari, Muchamad Al Azhar, Marina Lévy, and Shafer Smith
Biogeosciences, 18, 5831–5849, https://doi.org/10.5194/bg-18-5831-2021, https://doi.org/10.5194/bg-18-5831-2021, 2021
Short summary
Short summary
This study documents and quantifies a significant recent oxygen decline in the upper layers of the Arabian Sea and explores its drivers. Using a modeling approach we show that the fast local warming of sea surface is the main factor causing this oxygen drop. Concomitant summer monsoon intensification contributes to this trend, although to a lesser extent. These changes exacerbate oxygen depletion in the subsurface, threatening marine habitats and altering the local biogeochemistry.
Henrike Schmidt, Julia Getzlaff, Ulrike Löptien, and Andreas Oschlies
Ocean Sci., 17, 1303–1320, https://doi.org/10.5194/os-17-1303-2021, https://doi.org/10.5194/os-17-1303-2021, 2021
Short summary
Short summary
Oxygen-poor regions in the open ocean restrict marine habitats. Global climate simulations show large uncertainties regarding the prediction of these areas. We analyse the representation of the simulated oxygen minimum zones in the Arabian Sea using 10 climate models. We give an overview of the main deficiencies that cause the model–data misfit in oxygen concentrations. This detailed process analysis shall foster future model improvements regarding the oxygen minimum zone in the Arabian Sea.
Nicole Burdanowitz, Tim Rixen, Birgit Gaye, and Kay-Christian Emeis
Clim. Past, 17, 1735–1749, https://doi.org/10.5194/cp-17-1735-2021, https://doi.org/10.5194/cp-17-1735-2021, 2021
Short summary
Short summary
To study the interaction of the westerlies and Indian summer monsoon (ISM) during the Holocene, we used paleoenvironmental reconstructions using a sediment core from the northeast Arabian Sea. We found a climatic transition period between 4.6 and 3 ka BP during which the ISM shifted southwards and the influence of Westerlies became prominent. Our data indicate a stronger influence of agriculture activities and enhanced soil erosion, adding to Bond event impact after this transition period.
Derara Hailegeorgis, Zouhair Lachkar, Christoph Rieper, and Nicolas Gruber
Biogeosciences, 18, 303–325, https://doi.org/10.5194/bg-18-303-2021, https://doi.org/10.5194/bg-18-303-2021, 2021
Short summary
Short summary
Using a Lagrangian modeling approach, this study provides a quantitative analysis of water and nitrogen offshore transport in the Canary Current System. We investigate the timescales, reach and structure of offshore transport and demonstrate that the Canary upwelling is a key source of nutrients to the open North Atlantic Ocean. Our findings stress the need for improving the representation of the Canary system and other eastern boundary upwelling systems in global coarse-resolution models.
Henrike Schmidt, Rena Czeschel, and Martin Visbeck
Ocean Sci., 16, 1459–1474, https://doi.org/10.5194/os-16-1459-2020, https://doi.org/10.5194/os-16-1459-2020, 2020
Short summary
Short summary
Our investigations give detailed insight on the seasonally changing current system at intermediate depth in the Arabian Sea that is influenced by the monsoon. The changing currents influence the oxygen transport in the interior ocean and thus allow us to draw conclusions on the maintenance and seasonal variability of the upper part of the oxygen minimum zone in the Arabian Sea.
Shan Jiang, Moritz Müller, Jie Jin, Ying Wu, Kun Zhu, Guosen Zhang, Aazani Mujahid, Tim Rixen, Mohd Fakharuddin Muhamad, Edwin Sien Aun Sia, Faddrine Holt Ajon Jang, and Jing Zhang
Biogeosciences, 16, 2821–2836, https://doi.org/10.5194/bg-16-2821-2019, https://doi.org/10.5194/bg-16-2821-2019, 2019
Short summary
Short summary
Three cruises were conducted in the Rajang River estuary, Malaysia. The results revealed that the decomposition of terrestrial organic matter and the subsequent soil leaching were the main sources of dissolved inorganic nitrogen (DIN) in the fresh river water. Porewater exchange and ammonification enhanced DIN concentrations in the estuary water, while intensities of DIN addition varied between seasons. The riverine DIN flux could reach 101.5 ton(N) / d, supporting the coastal primary producers.
Natalie C. Harms, Niko Lahajnar, Birgit Gaye, Tim Rixen, Kirstin Dähnke, Markus Ankele, Ulrich Schwarz-Schampera, and Kay-Christian Emeis
Biogeosciences, 16, 2715–2732, https://doi.org/10.5194/bg-16-2715-2019, https://doi.org/10.5194/bg-16-2715-2019, 2019
Short summary
Short summary
The Indian Ocean subtropical gyre is a large oligotrophic area that is likely to adjust to continued warming by increasing stratification, reduced nutrient supply and decreasing biological production. In this study, we investigated concentrations of nutrients and stable isotopes of nitrate. We determine the lateral influence of water masses entering the gyre from the northern Indian Ocean and from the Southern Ocean and quantify the input of nitrogen by N2 fixation into the surface layer.
Malte Heinemann, Joachim Segschneider, and Birgit Schneider
Geosci. Model Dev., 12, 1869–1883, https://doi.org/10.5194/gmd-12-1869-2019, https://doi.org/10.5194/gmd-12-1869-2019, 2019
Short summary
Short summary
Ocean CO2 uptake played a crucial role for the global cooling during ice ages. Dust formation, e.g. by ice scraping over bedrock, potentially contributed to this CO2 uptake because (1) the iron in the dust is a fertilizer and (2) the heavy dust particles can accelerate sinking organic matter (ballasting hypothesis). This study tests the glacial dust ballasting hypothesis for the first time, using an ocean model. It turns out, however, that the ballasting effect probably played a minor role.
Henrike Schmidt, Rena Czeschel, and Martin Visbeck
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-168, https://doi.org/10.5194/bg-2019-168, 2019
Manuscript not accepted for further review
Short summary
Short summary
Our investigations give a detailed insight on the changing current system at intermediate depth in the Arabian Sea and allow to draw conclusions on ventilation pathways of the oxygen minimum zone and its seasonal variability. In response to the monsoon system the boundary currents change direction and feature a regionally varying ventilation pattern.
Tim Rixen, Birgit Gaye, Kay-Christian Emeis, and Venkitasubramani Ramaswamy
Biogeosciences, 16, 485–503, https://doi.org/10.5194/bg-16-485-2019, https://doi.org/10.5194/bg-16-485-2019, 2019
Short summary
Short summary
Data obtained from sediment trap experiments in the Indian Ocean indicate that lithogenic matter ballast increases organic carbon flux rates on average by 45 % and by up to 62 % at trap locations in the river-influenced regions of the Indian Ocean. Such a strong lithogenic matter ballast effect implies that land use changes and the associated enhanced transport of lithogenic matter may significantly affect the CO2 uptake of the organic carbon pump in the receiving ocean areas.
Denise Müller-Dum, Thorsten Warneke, Tim Rixen, Moritz Müller, Antje Baum, Aliki Christodoulou, Joanne Oakes, Bradley D. Eyre, and Justus Notholt
Biogeosciences, 16, 17–32, https://doi.org/10.5194/bg-16-17-2019, https://doi.org/10.5194/bg-16-17-2019, 2019
Short summary
Short summary
Southeast Asian peat-draining rivers are potentially strong sources of carbon to the atmosphere due to the large amounts of organic carbon stored in those ecosystems. We present the first assessment of CO2 emissions from the Rajang River, the largest peat-draining river in Malaysia. The peatlands’ influence on the CO2 emissions from the Rajang River was smaller than expected, probably due to their proximity to the coast. Therefore, the Rajang was only a moderate source of CO2 to the atmosphere.
Joachim Segschneider, Birgit Schneider, and Vyacheslav Khon
Biogeosciences, 15, 3243–3266, https://doi.org/10.5194/bg-15-3243-2018, https://doi.org/10.5194/bg-15-3243-2018, 2018
Short summary
Short summary
To gain a better understanding of climate and marine biogeochemistry variations over the last 9500 years (the Holocene), we performed non-accelerated model simulations with a global coupled climate and biogeochemistry model forced by orbital parameters and atmospheric greenhouse gases. One main outcome is an increase in the volume of the eastern equatorial Pacific oxygen minimum zone, driven by a slowdown of the large-scale circulation.
Celeste Sánchez-Noguera, Ines Stuhldreier, Jorge Cortés, Carlos Jiménez, Álvaro Morales, Christian Wild, and Tim Rixen
Biogeosciences, 15, 2349–2360, https://doi.org/10.5194/bg-15-2349-2018, https://doi.org/10.5194/bg-15-2349-2018, 2018
Short summary
Short summary
The Papagayo upwelling system is a natural laboratory for studying ecosystems' response to ocean acidification (OA). We measured pH and pCO2 in situ with high temporal resolution and compared them with data available from upwelling season. Local coral reefs are exposed to acidic and undersaturated waters in upwelling and non-upwelling events. These restrictive conditions occur alongside local stressors, potentially decreasing reefs' resilience and increasing their vulnerability under future OA.
Birgit Gaye, Anna Böll, Joachim Segschneider, Nicole Burdanowitz, Kay-Christian Emeis, Venkitasubramani Ramaswamy, Niko Lahajnar, Andreas Lückge, and Tim Rixen
Biogeosciences, 15, 507–527, https://doi.org/10.5194/bg-15-507-2018, https://doi.org/10.5194/bg-15-507-2018, 2018
Short summary
Short summary
The Arabian Sea has one of the most severe oxygen minima of the world's oceans between about 100 and 1200 m of water depth and is therefore a major oceanic nitrogen sink. Stable nitrogen isotopic ratios in sediments record changes in oxygen concentrations and were studied for the last 25 kyr. Oxygen concentrations dropped at the end of the last glacial and became further reduced during the Holocene, probably due to the increasing age of the low-oxygen water mass.
Zouhair Lachkar, Marina Lévy, and Shafer Smith
Biogeosciences, 15, 159–186, https://doi.org/10.5194/bg-15-159-2018, https://doi.org/10.5194/bg-15-159-2018, 2018
Short summary
Short summary
This study provides a new contribution to our understanding of the coupling between the oxygen minimum zones (OMZs) and climate. It explores how idealized changes in summer and winter Indian monsoon winds affect the productivity of the Arabian Sea and the size and intensity of its OMZ. We find that intensification of Indian monsoon winds can amplify climate warming on decadal to centennial timescales.
Tim Rixen, Birgit Gaye, Kay-Christian Emeis, and Venkitasubramani Ramaswamy
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-317, https://doi.org/10.5194/bg-2017-317, 2017
Manuscript not accepted for further review
Short summary
Short summary
Sediment trap experiments showed that in the river-influenced regions of the Indian Ocean lithogenic matter supplied from land controls the organic carbon export into the deep sea via its ballast effect in sinking particles. Carbonate produced by plankton is the main ballast material in the open ocean. The ballast effect increases the CO2 uptake of the organic carbon pump by enhancing the amount of nutrients used to bind CO2 and by favouring the sedimentation of organic matter.
Elisa Lovecchio, Nicolas Gruber, Matthias Münnich, and Zouhair Lachkar
Biogeosciences, 14, 3337–3369, https://doi.org/10.5194/bg-14-3337-2017, https://doi.org/10.5194/bg-14-3337-2017, 2017
Short summary
Short summary
We find that a big portion of the phytoplankton, zooplankton, and detrital organic matter produced near the northern African coast is laterally transported towards the open North Atlantic. This offshore flux sustains a relevant part of the biological activity in the open sea and reaches as far as the middle of the North Atlantic. Our results, obtained with a state-of-the-art model, highlight the fundamental role of the narrow but productive coastal ocean in sustaining global marine life.
Alex R. Baker, Maria Kanakidou, Katye E. Altieri, Nikos Daskalakis, Gregory S. Okin, Stelios Myriokefalitakis, Frank Dentener, Mitsuo Uematsu, Manmohan M. Sarin, Robert A. Duce, James N. Galloway, William C. Keene, Arvind Singh, Lauren Zamora, Jean-Francois Lamarque, Shih-Chieh Hsu, Shital S. Rohekar, and Joseph M. Prospero
Atmos. Chem. Phys., 17, 8189–8210, https://doi.org/10.5194/acp-17-8189-2017, https://doi.org/10.5194/acp-17-8189-2017, 2017
Short summary
Short summary
Man's activities have greatly increased the amount of nitrogen emitted into the atmosphere. Some of this nitrogen is transported to the world's oceans, where it may affect microscopic marine plants and cause ecological problems. The huge size of the oceans makes direct monitoring of nitrogen inputs impossible, so computer models must be used to assess this issue. We find that current models reproduce observed nitrogen deposition to the oceans reasonably well and recommend future improvements.
Roland Séférian, Marion Gehlen, Laurent Bopp, Laure Resplandy, James C. Orr, Olivier Marti, John P. Dunne, James R. Christian, Scott C. Doney, Tatiana Ilyina, Keith Lindsay, Paul R. Halloran, Christoph Heinze, Joachim Segschneider, Jerry Tjiputra, Olivier Aumont, and Anastasia Romanou
Geosci. Model Dev., 9, 1827–1851, https://doi.org/10.5194/gmd-9-1827-2016, https://doi.org/10.5194/gmd-9-1827-2016, 2016
Short summary
Short summary
This paper explores how the large diversity in spin-up protocols used for ocean biogeochemistry in CMIP5 models contributed to inter-model differences in modeled fields. We show that a link between spin-up duration and skill-score metrics emerges from both individual IPSL-CM5A-LR's results and an ensemble of CMIP5 models. Our study suggests that differences in spin-up protocols constitute a source of inter-model uncertainty which would require more attention in future intercomparison exercises.
Denise Müller, Hermann W. Bange, Thorsten Warneke, Tim Rixen, Moritz Müller, Aazani Mujahid, and Justus Notholt
Biogeosciences, 13, 2415–2428, https://doi.org/10.5194/bg-13-2415-2016, https://doi.org/10.5194/bg-13-2415-2016, 2016
Short summary
Short summary
Estuaries act as sources of the greenhouse gases nitrous oxide (N2O) and methane (CH4) to the atmosphere. We provide first measurements of N2O and CH4 in two estuaries in north-western Borneo, a region which is dominated by peatlands. We show that N2O and CH4 concentrations in these estuaries are moderate despite high organic carbon loads, that nutrient enhancement does not lead to enhanced N2O emissions, and that the wet season dominates the variability of the emissions in these systems.
Isaac D. Irby, Marjorie A. M. Friedrichs, Carl T. Friedrichs, Aaron J. Bever, Raleigh R. Hood, Lyon W. J. Lanerolle, Ming Li, Lewis Linker, Malcolm E. Scully, Kevin Sellner, Jian Shen, Jeremy Testa, Hao Wang, Ping Wang, and Meng Xia
Biogeosciences, 13, 2011–2028, https://doi.org/10.5194/bg-13-2011-2016, https://doi.org/10.5194/bg-13-2011-2016, 2016
Short summary
Short summary
A comparison of eight hydrodynamic-oxygen models revealed that while models have difficulty resolving key drivers of dissolved oxygen (DO) variability, all models exhibit skill in reproducing the variability of DO itself. Further, simple oxygen models and complex biogeochemical models reproduced observed DO variability similarly well. Future advances in hypoxia simulations will depend more on the ability to reproduce the depth of the mixed layer than the degree of the vertical density gradient.
D. Müller, T. Warneke, T. Rixen, M. Müller, A. Mujahid, H. W. Bange, and J. Notholt
Biogeosciences, 13, 691–705, https://doi.org/10.5194/bg-13-691-2016, https://doi.org/10.5194/bg-13-691-2016, 2016
Short summary
Short summary
We studied organic carbon and the dissolved greenhouse gases carbon dioxide (CO2) and carbon monoxide (CO) in two estuaries in Sarawak, Malaysia, whose coast is covered by carbon-rich peatlands. The estuaries received terrestrial organic carbon from peat-draining tributaries. A large fraction was converted to CO2 and a minor fraction to CO. Both gases were released to the atmosphere. This shows how these estuaries function as efficient filters between land and ocean in this important region.
A. Singh, S. E. Baer, U. Riebesell, A. C. Martiny, and M. W. Lomas
Biogeosciences, 12, 6389–6403, https://doi.org/10.5194/bg-12-6389-2015, https://doi.org/10.5194/bg-12-6389-2015, 2015
Short summary
Short summary
Stoichiometry of macronutrients in the subtropical ocean is important to understand how biogeochemical cycles are coupled. We observed that elemental stoichiometry was much higher in the dissolved organic-matter pools than in the particulate organic matter pools. In addition ratios vary with depth due to changes in growth rates of specific phytoplankton groups, namely cyanobacteria. These data will improve biogeochemical models by placing observational constraints on these ratios.
D. Müller, T. Warneke, T. Rixen, M. Müller, S. Jamahari, N. Denis, A. Mujahid, and J. Notholt
Biogeosciences, 12, 5967–5979, https://doi.org/10.5194/bg-12-5967-2015, https://doi.org/10.5194/bg-12-5967-2015, 2015
Short summary
Short summary
Tropical peatlands are an important source of organic carbon to rivers. However, due to the remoteness of these ecosystems, data are scarce. We present the first combined assessment of both lateral organic carbon fluxes and CO2 emissions from an undisturbed tropical peat-draining river. Compared to the organic carbon concentrations, CO2 fluxes to the atmosphere were actually relatively moderate, which we attributed to the short water residence time.
C. Le Quéré, R. Moriarty, R. M. Andrew, G. P. Peters, P. Ciais, P. Friedlingstein, S. D. Jones, S. Sitch, P. Tans, A. Arneth, T. A. Boden, L. Bopp, Y. Bozec, J. G. Canadell, L. P. Chini, F. Chevallier, C. E. Cosca, I. Harris, M. Hoppema, R. A. Houghton, J. I. House, A. K. Jain, T. Johannessen, E. Kato, R. F. Keeling, V. Kitidis, K. Klein Goldewijk, C. Koven, C. S. Landa, P. Landschützer, A. Lenton, I. D. Lima, G. Marland, J. T. Mathis, N. Metzl, Y. Nojiri, A. Olsen, T. Ono, S. Peng, W. Peters, B. Pfeil, B. Poulter, M. R. Raupach, P. Regnier, C. Rödenbeck, S. Saito, J. E. Salisbury, U. Schuster, J. Schwinger, R. Séférian, J. Segschneider, T. Steinhoff, B. D. Stocker, A. J. Sutton, T. Takahashi, B. Tilbrook, G. R. van der Werf, N. Viovy, Y.-P. Wang, R. Wanninkhof, A. Wiltshire, and N. Zeng
Earth Syst. Sci. Data, 7, 47–85, https://doi.org/10.5194/essd-7-47-2015, https://doi.org/10.5194/essd-7-47-2015, 2015
Short summary
Short summary
Carbon dioxide (CO2) emissions from human activities (burning fossil fuels and cement production, deforestation and other land-use change) are set to rise again in 2014.
This study (updated yearly) makes an accurate assessment of anthropogenic CO2 emissions and their redistribution between the atmosphere, ocean, and terrestrial biosphere in order to better understand the global carbon cycle, support the development of climate policies, and project future climate change.
P. G. Strutton, V. J. Coles, R. R. Hood, R. J. Matear, M. J. McPhaden, and H. E. Phillips
Biogeosciences, 12, 2367–2382, https://doi.org/10.5194/bg-12-2367-2015, https://doi.org/10.5194/bg-12-2367-2015, 2015
Short summary
Short summary
In 2010, a first-of-its-kind deployment of biological sensors on a mooring in the central Indian Ocean revealed interesting variability in chlorophyll (a proxy for ocean productivity) at timescales of about 2 weeks. Using the mooring data with satellite observations and a biogeochemical model, it was determined that local wind mixing and entrainment, rather than mixed Rossby gravity waves, were likely responsible for much of the observed variability.
F. Fendereski, M. Vogt, M. R. Payne, Z. Lachkar, N. Gruber, A. Salmanmahiny, and S. A. Hosseini
Biogeosciences, 11, 6451–6470, https://doi.org/10.5194/bg-11-6451-2014, https://doi.org/10.5194/bg-11-6451-2014, 2014
T. Rixen, A. Baum, B. Gaye, and B. Nagel
Biogeosciences, 11, 5733–5747, https://doi.org/10.5194/bg-11-5733-2014, https://doi.org/10.5194/bg-11-5733-2014, 2014
W. Koeve, O. Duteil, A. Oschlies, P. Kähler, and J. Segschneider
Geosci. Model Dev., 7, 2393–2408, https://doi.org/10.5194/gmd-7-2393-2014, https://doi.org/10.5194/gmd-7-2393-2014, 2014
M. R. Stukel, V. J. Coles, M. T. Brooks, and R. R. Hood
Biogeosciences, 11, 3259–3278, https://doi.org/10.5194/bg-11-3259-2014, https://doi.org/10.5194/bg-11-3259-2014, 2014
C. Le Quéré, G. P. Peters, R. J. Andres, R. M. Andrew, T. A. Boden, P. Ciais, P. Friedlingstein, R. A. Houghton, G. Marland, R. Moriarty, S. Sitch, P. Tans, A. Arneth, A. Arvanitis, D. C. E. Bakker, L. Bopp, J. G. Canadell, L. P. Chini, S. C. Doney, A. Harper, I. Harris, J. I. House, A. K. Jain, S. D. Jones, E. Kato, R. F. Keeling, K. Klein Goldewijk, A. Körtzinger, C. Koven, N. Lefèvre, F. Maignan, A. Omar, T. Ono, G.-H. Park, B. Pfeil, B. Poulter, M. R. Raupach, P. Regnier, C. Rödenbeck, S. Saito, J. Schwinger, J. Segschneider, B. D. Stocker, T. Takahashi, B. Tilbrook, S. van Heuven, N. Viovy, R. Wanninkhof, A. Wiltshire, and S. Zaehle
Earth Syst. Sci. Data, 6, 235–263, https://doi.org/10.5194/essd-6-235-2014, https://doi.org/10.5194/essd-6-235-2014, 2014
E. J. D'Sa, J. I. Goes, H. Gomes, and C. Mouw
Biogeosciences, 11, 3225–3244, https://doi.org/10.5194/bg-11-3225-2014, https://doi.org/10.5194/bg-11-3225-2014, 2014
A. Flohr, A. K. van der Plas, K.-C. Emeis, V. Mohrholz, and T. Rixen
Biogeosciences, 11, 885–897, https://doi.org/10.5194/bg-11-885-2014, https://doi.org/10.5194/bg-11-885-2014, 2014
G. Turi, Z. Lachkar, and N. Gruber
Biogeosciences, 11, 671–690, https://doi.org/10.5194/bg-11-671-2014, https://doi.org/10.5194/bg-11-671-2014, 2014
B. Gaye, B. Nagel, K. Dähnke, T. Rixen, N. Lahajnar, and K.-C. Emeis
Biogeosciences, 10, 7689–7702, https://doi.org/10.5194/bg-10-7689-2013, https://doi.org/10.5194/bg-10-7689-2013, 2013
V. Cocco, F. Joos, M. Steinacher, T. L. Frölicher, L. Bopp, J. Dunne, M. Gehlen, C. Heinze, J. Orr, A. Oschlies, B. Schneider, J. Segschneider, and J. Tjiputra
Biogeosciences, 10, 1849–1868, https://doi.org/10.5194/bg-10-1849-2013, https://doi.org/10.5194/bg-10-1849-2013, 2013
F. Joos, R. Roth, J. S. Fuglestvedt, G. P. Peters, I. G. Enting, W. von Bloh, V. Brovkin, E. J. Burke, M. Eby, N. R. Edwards, T. Friedrich, T. L. Frölicher, P. R. Halloran, P. B. Holden, C. Jones, T. Kleinen, F. T. Mackenzie, K. Matsumoto, M. Meinshausen, G.-K. Plattner, A. Reisinger, J. Segschneider, G. Shaffer, M. Steinacher, K. Strassmann, K. Tanaka, A. Timmermann, and A. J. Weaver
Atmos. Chem. Phys., 13, 2793–2825, https://doi.org/10.5194/acp-13-2793-2013, https://doi.org/10.5194/acp-13-2793-2013, 2013
J. Segschneider, A. Beitsch, C. Timmreck, V. Brovkin, T. Ilyina, J. Jungclaus, S. J. Lorenz, K. D. Six, and D. Zanchettin
Biogeosciences, 10, 669–687, https://doi.org/10.5194/bg-10-669-2013, https://doi.org/10.5194/bg-10-669-2013, 2013
P. Wang, A. B. Burd, M. A. Moran, R. R. Hood, V. J. Coles, and P. L. Yager
Biogeosciences Discuss., https://doi.org/10.5194/bgd-10-815-2013, https://doi.org/10.5194/bgd-10-815-2013, 2013
Revised manuscript not accepted
C. Hauri, N. Gruber, M. Vogt, S. C. Doney, R. A. Feely, Z. Lachkar, A. Leinweber, A. M. P. McDonnell, M. Munnich, and G.-K. Plattner
Biogeosciences, 10, 193–216, https://doi.org/10.5194/bg-10-193-2013, https://doi.org/10.5194/bg-10-193-2013, 2013
Related subject area
Biogeochemistry: Open Ocean
Reconstructing ocean carbon storage with CMIP6 Earth system models and synthetic Argo observations
Using machine learning and Biogeochemical-Argo (BGC-Argo) floats to assess biogeochemical models and optimize observing system design
The representation of alkalinity and the carbonate pump from CMIP5 to CMIP6 Earth system models and implications for the carbon cycle
Model estimates of metazoans' contributions to the biological carbon pump
Tracing differences in iron supply to the Mid-Atlantic Ridge valley between hydrothermal vent sites: implications for the addition of iron to the deep ocean
Nitrite cycling in the primary nitrite maxima of the eastern tropical North Pacific
Hotspots and drivers of compound marine heatwaves and low net primary production extremes
Ecosystem impacts of marine heat waves in the northeast Pacific
Responses of fossil coccolith morphology to preservation conditions in the deep ocean
Tracing the role of Arctic shelf processes in Si and N cycling and export through the Fram Strait: insights from combined silicon and nitrate isotopes
Controls on the relative abundances and rates of nitrifying microorganisms in the ocean
The response of diazotrophs to nutrient amendment in the South China Sea and western North Pacific
Influence of GEOTRACES data distribution and misfit function choice on objective parameter retrieval in a marine zinc cycle model
Physiological flexibility of phytoplankton impacts modelled chlorophyll and primary production across the North Pacific Ocean
Observation-constrained estimates of the global ocean carbon sink from Earth system models
Early winter barium excess in the southern Indian Ocean as an annual remineralisation proxy (GEOTRACES GIPr07 cruise)
Controlling factors on the global distribution of a representative marine non-cyanobacterial diazotroph phylotype (Gamma A)
Summer trends and drivers of sea surface fCO2 and pH changes observed in the southern Indian Ocean over the last two decades (1998–2019)
Global nutrient cycling by commercially targeted marine fish
Major processes of the dissolved cobalt cycle in the North and equatorial Pacific Ocean
The impact of the South-East Madagascar Bloom on the oceanic CO2 sink
Nitrite regeneration in the oligotrophic Atlantic Ocean
Bridging the gaps between particulate backscattering measurements and modeled particulate organic carbon in the ocean
Biological production in two contrasted regions of the Mediterranean Sea during the oligotrophic period: an estimate based on the diel cycle of optical properties measured by BioGeoChemical-Argo profiling floats
Acidification of the Nordic Seas
Reconstruction of global surface ocean pCO2 using region-specific predictors based on a stepwise FFNN regression algorithm
Biogeochemical controls on ammonium accumulation in the surface layer of the Southern Ocean
Oxygen export to the deep ocean following Labrador Sea Water formation
N2 fixation in the Mediterranean Sea related to the composition of the diazotrophic community and impact of dust under present and future environmental conditions
Dissolution of a submarine carbonate platform by a submerged lake of acidic seawater
Seasonal flux patterns and carbon transport from low-oxygen eddies at the Cape Verde Ocean Observatory: lessons learned from a time series sediment trap study (2009–2016)
Subsurface iron accumulation and rapid aluminum removal in the Mediterranean following African dust deposition
Long-distance particle transport to the central Ionian Sea
Deep chlorophyll maximum and nutricline in the Mediterranean Sea: emerging properties from a multi-platform assimilated biogeochemical model experiment
Phosphorus cycling in the upper waters of the Mediterranean Sea (PEACETIME cruise): relative contribution of external and internal sources
Fast local warming is the main driver of recent deoxygenation in the northern Arabian Sea
Influence of atmospheric deposition on biogeochemical cycles in an oligotrophic ocean system
Impact of dust addition on the metabolism of Mediterranean plankton communities and carbon export under present and future conditions of pH and temperature
Comparing CLE-AdCSV applications using SA and TAC to determine the Fe-binding characteristics of model ligands in seawater
Impact of dust addition on Mediterranean plankton communities under present and future conditions of pH and temperature: an experimental overview
Reviews and syntheses: Trends in primary production in the Bay of Bengal – is it at a tipping point?
Incorporating the stable carbon isotope 13C in the ocean biogeochemical component of the Max Planck Institute Earth System Model
Seasonal cycling of zinc and cobalt in the south-eastern Atlantic along the GEOTRACES GA10 section
Carbon export and fate beneath a dynamic upwelled filament off the California coast
Contrasted release of insoluble elements (Fe, Al, rare earth elements, Th, Pa) after dust deposition in seawater: a tank experiment approach
On the barium–oxygen consumption relationship in the Mediterranean Sea: implications for mesopelagic marine snow remineralization
Compound high-temperature and low-chlorophyll extremes in the ocean over the satellite period
Can machine learning extract the mechanisms controlling phytoplankton growth from large-scale observations? – A proof-of-concept study
Reviews and syntheses: The biogeochemical cycle of silicon in the modern ocean
Oxygen budget of the north-western Mediterranean deep- convection region
Katherine E. Turner, Doug M. Smith, Anna Katavouta, and Richard G. Williams
Biogeosciences, 20, 1671–1690, https://doi.org/10.5194/bg-20-1671-2023, https://doi.org/10.5194/bg-20-1671-2023, 2023
Short summary
Short summary
We present a new method for reconstructing ocean carbon using climate models and temperature and salinity observations. To test this method, we reconstruct modelled carbon using synthetic observations consistent with current sampling programmes. Sensitivity tests show skill in reconstructing carbon trends and variability within the upper 2000 m. Our results indicate that this method can be used for a new global estimate for ocean carbon content.
Alexandre Mignot, Hervé Claustre, Gianpiero Cossarini, Fabrizio D'Ortenzio, Elodie Gutknecht, Julien Lamouroux, Paolo Lazzari, Coralie Perruche, Stefano Salon, Raphaëlle Sauzède, Vincent Taillandier, and Anna Teruzzi
Biogeosciences, 20, 1405–1422, https://doi.org/10.5194/bg-20-1405-2023, https://doi.org/10.5194/bg-20-1405-2023, 2023
Short summary
Short summary
Numerical models of ocean biogeochemistry are becoming a major tool to detect and predict the impact of climate change on marine resources and monitor ocean health. Here, we demonstrate the use of the global array of BGC-Argo floats for the assessment of biogeochemical models. We first detail the handling of the BGC-Argo data set for model assessment purposes. We then present 23 assessment metrics to quantify the consistency of BGC model simulations with respect to BGC-Argo data.
Alban Planchat, Lester Kwiatkowski, Laurent Bopp, Olivier Torres, James R. Christian, Momme Butenschön, Tomas Lovato, Roland Séférian, Matthew A. Chamberlain, Olivier Aumont, Michio Watanabe, Akitomo Yamamoto, Andrew Yool, Tatiana Ilyina, Hiroyuki Tsujino, Kristen M. Krumhardt, Jörg Schwinger, Jerry Tjiputra, John P. Dunne, and Charles Stock
Biogeosciences, 20, 1195–1257, https://doi.org/10.5194/bg-20-1195-2023, https://doi.org/10.5194/bg-20-1195-2023, 2023
Short summary
Short summary
Ocean alkalinity is critical to the uptake of atmospheric carbon and acidification in surface waters. We review the representation of alkalinity and the associated calcium carbonate cycle in Earth system models. While many parameterizations remain present in the latest generation of models, there is a general improvement in the simulated alkalinity distribution. This improvement is related to an increase in the export of biotic calcium carbonate, which closer resembles observations.
Jérôme Pinti, Tim DeVries, Tommy Norin, Camila Serra-Pompei, Roland Proud, David A. Siegel, Thomas Kiørboe, Colleen M. Petrik, Ken H. Andersen, Andrew S. Brierley, and André W. Visser
Biogeosciences, 20, 997–1009, https://doi.org/10.5194/bg-20-997-2023, https://doi.org/10.5194/bg-20-997-2023, 2023
Short summary
Short summary
Large numbers of marine organisms such as zooplankton and fish perform daily vertical migration between the surface (at night) and the depths (in the daytime). This fascinating migration is important for the carbon cycle, as these organisms actively bring carbon to depths where it is stored away from the atmosphere for a long time. Here, we quantify the contributions of different animals to this carbon drawdown and storage and show that fish are important to the biological carbon pump.
Alastair J. M. Lough, Alessandro Tagliabue, Clément Demasy, Joseph A. Resing, Travis Mellett, Neil J. Wyatt, and Maeve C. Lohan
Biogeosciences, 20, 405–420, https://doi.org/10.5194/bg-20-405-2023, https://doi.org/10.5194/bg-20-405-2023, 2023
Short summary
Short summary
Iron is a key nutrient for ocean primary productivity. Hydrothermal vents are a source of iron to the oceans, but the size of this source is poorly understood. This study examines the variability in iron inputs between hydrothermal vents in different geological settings. The vents studied release different amounts of Fe, resulting in plumes with similar dissolved iron concentrations but different particulate concentrations. This will help to refine modelling of iron-limited ocean productivity.
Nicole M. Travis, Colette L. Kelly, Margaret R. Mulholland, and Karen L. Casciotti
Biogeosciences, 20, 325–347, https://doi.org/10.5194/bg-20-325-2023, https://doi.org/10.5194/bg-20-325-2023, 2023
Short summary
Short summary
The primary nitrite maximum is a ubiquitous upper ocean feature where nitrite accumulates, but we still do not understand its formation and the co-occurring microbial processes involved. Using correlative methods and rates measurements, we found strong spatial patterns between environmental conditions and depths of the nitrite maxima, but not the maximum concentrations. Nitrification was the dominant source of nitrite, with occasional high nitrite production from phytoplankton near the coast.
Natacha Le Grix, Jakob Zscheischler, Keith B. Rodgers, Ryohei Yamaguchi, and Thomas L. Frölicher
Biogeosciences, 19, 5807–5835, https://doi.org/10.5194/bg-19-5807-2022, https://doi.org/10.5194/bg-19-5807-2022, 2022
Short summary
Short summary
Compound events threaten marine ecosystems. Here, we investigate the potentially harmful combination of marine heatwaves with low phytoplankton productivity. Using satellite-based observations, we show that these compound events are frequent in the low latitudes. We then investigate the drivers of these compound events using Earth system models. The models share similar drivers in the low latitudes but disagree in the high latitudes due to divergent factors limiting phytoplankton production.
Abigale M. Wyatt, Laure Resplandy, and Adrian Marchetti
Biogeosciences, 19, 5689–5705, https://doi.org/10.5194/bg-19-5689-2022, https://doi.org/10.5194/bg-19-5689-2022, 2022
Short summary
Short summary
Marine heat waves (MHWs) are a frequent event in the northeast Pacific, with a large impact on the region's ecosystems. Large phytoplankton in the North Pacific Transition Zone are greatly affected by decreased nutrients, with less of an impact in the Alaskan Gyre. For small phytoplankton, MHWs increase the spring small phytoplankton population in both regions thanks to reduced light limitation. In both zones, this results in a significant decrease in the ratio of large to small phytoplankton.
Amanda Gerotto, Hongrui Zhang, Renata Hanae Nagai, Heather M. Stoll, Rubens César Lopes Figueira, Chuanlian Liu, and Iván Hernández-Almeida
EGUsphere, https://doi.org/10.5194/egusphere-2022-1329, https://doi.org/10.5194/egusphere-2022-1329, 2022
Short summary
Short summary
This study demonstrates, based on morphological attributes of coccolitophores, that dissolution effects primarily affect the morphology of coccoliths preserved in the deep ocean. In the South China Sea surface sediments, bottom water calcite saturation plays a major role in the variation of the coccoliths' shape factor (ks), which has the potential, based on the current calibration, to quantitatively reconstruct past carbonate dissolution changes.
Margot C. F. Debyser, Laetitia Pichevin, Robyn E. Tuerena, Paul A. Dodd, Antonia Doncila, and Raja S. Ganeshram
Biogeosciences, 19, 5499–5520, https://doi.org/10.5194/bg-19-5499-2022, https://doi.org/10.5194/bg-19-5499-2022, 2022
Short summary
Short summary
We focus on the exchange of key nutrients for algae production between the Arctic and Atlantic oceans through the Fram Strait. We show that the export of dissolved silicon here is controlled by the availability of nitrate which is influenced by denitrification on Arctic shelves. We suggest that any future changes in the river inputs of silica and changes in denitrification due to climate change will impact the amount of silicon exported, with impacts on Atlantic algal productivity and ecology.
Emily J. Zakem, Barbara Bayer, Wei Qin, Alyson E. Santoro, Yao Zhang, and Naomi M. Levine
Biogeosciences, 19, 5401–5418, https://doi.org/10.5194/bg-19-5401-2022, https://doi.org/10.5194/bg-19-5401-2022, 2022
Short summary
Short summary
We use a microbial ecosystem model to quantitatively explain the mechanisms controlling observed relative abundances and nitrification rates of ammonia- and nitrite-oxidizing microorganisms in the ocean. We also estimate how much global carbon fixation can be associated with chemoautotrophic nitrification. Our results improve our understanding of the controls on nitrification, laying the groundwork for more accurate predictions in global climate models.
Zuozhu Wen, Thomas J. Browning, Rongbo Dai, Wenwei Wu, Weiying Li, Xiaohua Hu, Wenfang Lin, Lifang Wang, Xin Liu, Zhimian Cao, Haizheng Hong, and Dalin Shi
Biogeosciences, 19, 5237–5250, https://doi.org/10.5194/bg-19-5237-2022, https://doi.org/10.5194/bg-19-5237-2022, 2022
Short summary
Short summary
Fe and P are key factors controlling the biogeography and activity of marine N2-fixing microorganisms. We found lower abundance and activity of N2 fixers in the northern South China Sea than around the western boundary of the North Pacific, and N2 fixation rates switched from Fe–P co-limitation to P limitation. We hypothesize the Fe supply rates and Fe utilization strategies of each N2 fixer are important in regulating spatial variability in community structure across the study area.
Claudia Eisenring, Sophy E. Oliver, Samar Khatiwala, and Gregory F. de Souza
Biogeosciences, 19, 5079–5106, https://doi.org/10.5194/bg-19-5079-2022, https://doi.org/10.5194/bg-19-5079-2022, 2022
Short summary
Short summary
Given the sparsity of observational constraints on micronutrients such as zinc (Zn), we assess the sensitivities of a framework for objective parameter optimisation in an oceanic Zn cycling model. Our ensemble of optimisations towards synthetic data with varying kinds of uncertainty shows that deficiencies related to model complexity and the choice of the misfit function generally have a greater impact on the retrieval of model Zn uptake behaviour than does the limitation of data coverage.
Yoshikazu Sasai, Sherwood Lan Smith, Eko Siswanto, Hideharu Sasaki, and Masami Nonaka
Biogeosciences, 19, 4865–4882, https://doi.org/10.5194/bg-19-4865-2022, https://doi.org/10.5194/bg-19-4865-2022, 2022
Short summary
Short summary
We have investigated the adaptive response of phytoplankton growth to changing light, nutrients, and temperature over the North Pacific using two physical-biological models. We compare modeled chlorophyll and primary production from an inflexible control model (InFlexPFT), which assumes fixed carbon (C):nitrogen (N):chlorophyll (Chl) ratios, to a recently developed flexible phytoplankton functional type model (FlexPFT), which incorporates photoacclimation and variable C:N:Chl ratios.
Jens Terhaar, Thomas L. Frölicher, and Fortunat Joos
Biogeosciences, 19, 4431–4457, https://doi.org/10.5194/bg-19-4431-2022, https://doi.org/10.5194/bg-19-4431-2022, 2022
Short summary
Short summary
Estimates of the ocean sink of anthropogenic carbon vary across various approaches. We show that the global ocean carbon sink can be estimated by three parameters, two of which approximate the ocean ventilation in the Southern Ocean and the North Atlantic, and one of which approximates the chemical capacity of the ocean to take up carbon. With observations of these parameters, we estimate that the global ocean carbon sink is 10 % larger than previously assumed, and we cut uncertainties in half.
Natasha René van Horsten, Hélène Planquette, Géraldine Sarthou, Thomas James Ryan-Keogh, Nolwenn Lemaitre, Thato Nicholas Mtshali, Alakendra Roychoudhury, and Eva Bucciarelli
Biogeosciences, 19, 3209–3224, https://doi.org/10.5194/bg-19-3209-2022, https://doi.org/10.5194/bg-19-3209-2022, 2022
Short summary
Short summary
The remineralisation proxy, barite, was measured along 30°E in the southern Indian Ocean during early austral winter. To our knowledge this is the first reported Southern Ocean winter study. Concentrations throughout the water column were comparable to observations during spring to autumn. By linking satellite primary production to this proxy a possible annual timescale is proposed. These findings also suggest possible carbon remineralisation from satellite data on a basin scale.
Zhibo Shao and Ya-Wei Luo
Biogeosciences, 19, 2939–2952, https://doi.org/10.5194/bg-19-2939-2022, https://doi.org/10.5194/bg-19-2939-2022, 2022
Short summary
Short summary
Non-cyanobacterial diazotrophs (NCDs) may be an important player in fixing N2 in the ocean. By conducting meta-analyses, we found that a representative marine NCD phylotype, Gamma A, tends to inhabit ocean environments with high productivity, low iron concentration and high light intensity. It also appears to be more abundant inside cyclonic eddies. Our study suggests a niche differentiation of NCDs from cyanobacterial diazotrophs as the latter prefers low-productivity and high-iron oceans.
Coraline Leseurre, Claire Lo Monaco, Gilles Reverdin, Nicolas Metzl, Jonathan Fin, Claude Mignon, and Léa Benito
Biogeosciences, 19, 2599–2625, https://doi.org/10.5194/bg-19-2599-2022, https://doi.org/10.5194/bg-19-2599-2022, 2022
Short summary
Short summary
Decadal trends of fugacity of CO2 (fCO2), total alkalinity (AT), total carbon (CT) and pH in surface waters are investigated in different domains of the southern Indian Ocean (45°S–57°S) from ongoing and station observations regularly conducted in summer over the period 1998–2019. The fCO2 increase and pH decrease are mainly driven by anthropogenic CO2 estimated just below the summer mixed layer, as well as by a warming south of the polar front or in the fertilized waters near Kerguelen Island.
Priscilla Le Mézo, Jérôme Guiet, Kim Scherrer, Daniele Bianchi, and Eric Galbraith
Biogeosciences, 19, 2537–2555, https://doi.org/10.5194/bg-19-2537-2022, https://doi.org/10.5194/bg-19-2537-2022, 2022
Short summary
Short summary
This study quantifies the role of commercially targeted fish biomass in the cycling of three important nutrients (N, P, and Fe), relative to nutrients otherwise available in water and to nutrients required by primary producers, and the impact of fishing. We use a model of commercially targeted fish biomass constrained by fish catch and stock assessment data to assess the contributions of fish at the global scale, at the time of the global peak catch and prior to industrial fishing.
Rebecca Chmiel, Nathan Lanning, Allison Laubach, Jong-Mi Lee, Jessica Fitzsimmons, Mariko Hatta, William Jenkins, Phoebe Lam, Matthew McIlvin, Alessandro Tagliabue, and Mak Saito
Biogeosciences, 19, 2365–2395, https://doi.org/10.5194/bg-19-2365-2022, https://doi.org/10.5194/bg-19-2365-2022, 2022
Short summary
Short summary
Dissolved cobalt is present in trace amounts in seawater and is a necessary nutrient for marine microbes. On a transect from the Alaskan coast to Tahiti, we measured seawater concentrations of dissolved cobalt. Here, we describe several interesting features of the Pacific cobalt cycle including cobalt sources along the Alaskan coast and Hawaiian vents, deep-ocean particle formation, cobalt activity in low-oxygen regions, and how our samples compare to a global biogeochemical model’s predictions.
Nicolas Metzl, Claire Lo Monaco, Coraline Leseurre, Céline Ridame, Jonathan Fin, Claude Mignon, Marion Gehlen, and Thi Tuyet Trang Chau
Biogeosciences, 19, 1451–1468, https://doi.org/10.5194/bg-19-1451-2022, https://doi.org/10.5194/bg-19-1451-2022, 2022
Short summary
Short summary
During an oceanographic cruise conducted in January 2020 in the south-western Indian Ocean, we observed very low CO2 concentrations associated with a strong phytoplankton bloom that occurred south-east of Madagascar. This biological event led to a strong regional CO2 ocean sink not previously observed.
Darren R. Clark, Andrew P. Rees, Charissa M. Ferrera, Lisa Al-Moosawi, Paul J. Somerfield, Carolyn Harris, Graham D. Quartly, Stephen Goult, Glen Tarran, and Gennadi Lessin
Biogeosciences, 19, 1355–1376, https://doi.org/10.5194/bg-19-1355-2022, https://doi.org/10.5194/bg-19-1355-2022, 2022
Short summary
Short summary
Measurements of microbial processes were made in the sunlit open ocean during a research cruise (AMT19) between the UK and Chile. These help us to understand how microbial communities maintain the function of remote ecosystems. We find that the nitrogen cycling microbes which produce nitrite respond to changes in the environment. Our insights will aid the development of models that aim to replicate and ultimately project how marine environments may respond to ongoing climate change.
Martí Galí, Marcus Falls, Hervé Claustre, Olivier Aumont, and Raffaele Bernardello
Biogeosciences, 19, 1245–1275, https://doi.org/10.5194/bg-19-1245-2022, https://doi.org/10.5194/bg-19-1245-2022, 2022
Short summary
Short summary
Part of the organic matter produced by plankton in the upper ocean is exported to the deep ocean. This process, known as the biological carbon pump, is key for the regulation of atmospheric carbon dioxide and global climate. However, the dynamics of organic particles below the upper ocean layer are not well understood. Here we compared the measurements acquired by autonomous robots in the top 1000 m of the ocean to a numerical model, which can help improve future climate projections.
Marie Barbieux, Julia Uitz, Alexandre Mignot, Collin Roesler, Hervé Claustre, Bernard Gentili, Vincent Taillandier, Fabrizio D'Ortenzio, Hubert Loisel, Antoine Poteau, Edouard Leymarie, Christophe Penkerc'h, Catherine Schmechtig, and Annick Bricaud
Biogeosciences, 19, 1165–1194, https://doi.org/10.5194/bg-19-1165-2022, https://doi.org/10.5194/bg-19-1165-2022, 2022
Short summary
Short summary
This study assesses marine biological production in two Mediterranean systems representative of vast desert-like (oligotrophic) areas encountered in the global ocean. We use a novel approach based on non-intrusive high-frequency in situ measurements by two profiling robots, the BioGeoChemical-Argo (BGC-Argo) floats. Our results indicate substantial yet variable production rates and contribution to the whole water column of the subsurface layer, typically considered steady and non-productive.
Filippa Fransner, Friederike Fröb, Jerry Tjiputra, Nadine Goris, Siv K. Lauvset, Ingunn Skjelvan, Emil Jeansson, Abdirahman Omar, Melissa Chierici, Elizabeth Jones, Agneta Fransson, Sólveig R. Ólafsdóttir, Truls Johannessen, and Are Olsen
Biogeosciences, 19, 979–1012, https://doi.org/10.5194/bg-19-979-2022, https://doi.org/10.5194/bg-19-979-2022, 2022
Short summary
Short summary
Ocean acidification, a direct consequence of the CO2 release by human activities, is a serious threat to marine ecosystems. In this study, we conduct a detailed investigation of the acidification of the Nordic Seas, from 1850 to 2100, by using a large set of samples taken during research cruises together with numerical model simulations. We estimate the effects of changes in different environmental factors on the rate of acidification and its potential effects on cold-water corals.
Guorong Zhong, Xuegang Li, Jinming Song, Baoxiao Qu, Fan Wang, Yanjun Wang, Bin Zhang, Xiaoxia Sun, Wuchang Zhang, Zhenyan Wang, Jun Ma, Huamao Yuan, and Liqin Duan
Biogeosciences, 19, 845–859, https://doi.org/10.5194/bg-19-845-2022, https://doi.org/10.5194/bg-19-845-2022, 2022
Short summary
Short summary
A predictor selection algorithm was constructed to decrease the predicting error in the surface ocean partial pressure of CO2 (pCO2) mapping by finding better combinations of pCO2 predictors in different regions. Compared with previous research using the same combination of predictors in all regions, using different predictors selected by the algorithm in different regions can effectively decrease pCO2 predicting errors.
Shantelle Smith, Katye E. Altieri, Mhlangabezi Mdutyana, David R. Walker, Ruan G. Parrott, Sedick Gallie, Kurt A. M. Spence, Jessica M. Burger, and Sarah E. Fawcett
Biogeosciences, 19, 715–741, https://doi.org/10.5194/bg-19-715-2022, https://doi.org/10.5194/bg-19-715-2022, 2022
Short summary
Short summary
Ammonium is a crucial yet poorly understood component of the Southern Ocean nitrogen cycle. We attribute our finding of consistently high ammonium concentrations in the winter mixed layer to limited ammonium consumption and sustained ammonium production, conditions under which the Southern Ocean becomes a source of carbon dioxide to the atmosphere. From similar data collected over an annual cycle, we propose a seasonal cycle for ammonium in shallow polar waters – a first for the Southern Ocean.
Jannes Koelling, Dariia Atamanchuk, Johannes Karstensen, Patricia Handmann, and Douglas W. R. Wallace
Biogeosciences, 19, 437–454, https://doi.org/10.5194/bg-19-437-2022, https://doi.org/10.5194/bg-19-437-2022, 2022
Short summary
Short summary
In this study, we investigate oxygen variability in the deep western boundary current in the Labrador Sea from multiyear moored records. We estimate that about half of the oxygen taken up in the interior Labrador Sea by air–sea gas exchange during deep water formation is exported southward the same year. Our results underline the complexity of the oxygen uptake and export in the Labrador Sea and highlight the important role this region plays in supplying oxygen to the deep ocean.
Céline Ridame, Julie Dinasquet, Søren Hallstrøm, Estelle Bigeard, Lasse Riemann, France Van Wambeke, Matthieu Bressac, Elvira Pulido-Villena, Vincent Taillandier, Fréderic Gazeau, Antonio Tovar-Sanchez, Anne-Claire Baudoux, and Cécile Guieu
Biogeosciences, 19, 415–435, https://doi.org/10.5194/bg-19-415-2022, https://doi.org/10.5194/bg-19-415-2022, 2022
Short summary
Short summary
We show that in the Mediterranean Sea spatial variability in N2 fixation is related to the diazotrophic community composition reflecting different nutrient requirements among species. Nutrient supply by Saharan dust is of great importance to diazotrophs, as shown by the strong stimulation of N2 fixation after a simulated dust event under present and future climate conditions; the magnitude of stimulation depends on the degree of limitation related to the diazotrophic community composition.
Matthew P. Humphreys, Erik H. Meesters, Henk de Haas, Szabina Karancz, Louise Delaigue, Karel Bakker, Gerard Duineveld, Siham de Goeyse, Andreas F. Haas, Furu Mienis, Sharyn Ossebaar, and Fleur C. van Duyl
Biogeosciences, 19, 347–358, https://doi.org/10.5194/bg-19-347-2022, https://doi.org/10.5194/bg-19-347-2022, 2022
Short summary
Short summary
A series of submarine sinkholes were recently discovered on Luymes Bank, part of Saba Bank, a carbonate platform in the Caribbean Netherlands. Here, we investigate the waters inside these sinkholes for the first time. One of the sinkholes contained a body of dense, low-oxygen and low-pH water, which we call the
acid lake. We use measurements of seawater chemistry to work out what processes were responsible for forming the acid lake and discuss the consequences for the carbonate platform.
Gerhard Fischer, Oscar E. Romero, Johannes Karstensen, Karl-Heinz Baumann, Nasrollah Moradi, Morten Iversen, Götz Ruhland, Marco Klann, and Arne Körtzinger
Biogeosciences, 18, 6479–6500, https://doi.org/10.5194/bg-18-6479-2021, https://doi.org/10.5194/bg-18-6479-2021, 2021
Short summary
Short summary
Low-oxygen eddies in the eastern subtropical North Atlantic can form an oasis for phytoplankton growth. Here we report on particle flux dynamics at the oligotrophic Cape Verde Ocean Observatory. We observed consistent flux patterns during the passages of low-oxygen eddies. We found distinct flux peaks in late winter, clearly exceeding background fluxes. Our findings suggest that the low-oxygen eddies sequester higher organic carbon than expected for oligotrophic settings.
Matthieu Bressac, Thibaut Wagener, Nathalie Leblond, Antonio Tovar-Sánchez, Céline Ridame, Vincent Taillandier, Samuel Albani, Sophie Guasco, Aurélie Dufour, Stéphanie H. M. Jacquet, François Dulac, Karine Desboeufs, and Cécile Guieu
Biogeosciences, 18, 6435–6453, https://doi.org/10.5194/bg-18-6435-2021, https://doi.org/10.5194/bg-18-6435-2021, 2021
Short summary
Short summary
Phytoplankton growth is limited by the availability of iron in about 50 % of the ocean. Atmospheric deposition of desert dust represents a key source of iron. Here, we present direct observations of dust deposition in the Mediterranean Sea. A key finding is that the input of iron from dust primarily occurred in the deep ocean, while previous studies mainly focused on the ocean surface. This new insight will enable us to better represent controls on global marine productivity in models.
Léo Berline, Andrea Michelangelo Doglioli, Anne Petrenko, Stéphanie Barrillon, Boris Espinasse, Frederic A. C. Le Moigne, François Simon-Bot, Melilotus Thyssen, and François Carlotti
Biogeosciences, 18, 6377–6392, https://doi.org/10.5194/bg-18-6377-2021, https://doi.org/10.5194/bg-18-6377-2021, 2021
Short summary
Short summary
While the Ionian Sea is considered a nutrient-depleted and low-phytoplankton biomass area, it is a crossroad for water mass circulation. In the central Ionian Sea, we observed a strong contrast in particle distribution across a ~100 km long transect. Using remote sensing and Lagrangian simulations, we suggest that this contrast finds its origin in the long-distance transport of particles from the north, west and east of the Ionian Sea, where phytoplankton production was more intense.
Anna Teruzzi, Giorgio Bolzon, Laura Feudale, and Gianpiero Cossarini
Biogeosciences, 18, 6147–6166, https://doi.org/10.5194/bg-18-6147-2021, https://doi.org/10.5194/bg-18-6147-2021, 2021
Short summary
Short summary
During summer, maxima of phytoplankton chlorophyll concentration (DCM) occur in the subsurface of the Mediterranean Sea and can play a relevant role in carbon sequestration into the ocean interior. A numerical model based on in situ and satellite observations provides insights into the range of DCM conditions across the relatively small Mediterranean Sea and shows a western DCM that is 25 % shallower and with a higher phytoplankton chlorophyll concentration than in the eastern Mediterranean.
Elvira Pulido-Villena, Karine Desboeufs, Kahina Djaoudi, France Van Wambeke, Stéphanie Barrillon, Andrea Doglioli, Anne Petrenko, Vincent Taillandier, Franck Fu, Tiphanie Gaillard, Sophie Guasco, Sandra Nunige, Sylvain Triquet, and Cécile Guieu
Biogeosciences, 18, 5871–5889, https://doi.org/10.5194/bg-18-5871-2021, https://doi.org/10.5194/bg-18-5871-2021, 2021
Short summary
Short summary
We report on phosphorus dynamics in the surface layer of the Mediterranean Sea. Highly sensitive phosphate measurements revealed vertical gradients above the phosphacline. The relative contribution of diapycnal fluxes to total external supply of phosphate to the mixed layer decreased towards the east, where atmospheric deposition dominated. Taken together, external sources of phosphate contributed little to total supply, which was mainly sustained by enzymatic hydrolysis of organic phosphorus.
Zouhair Lachkar, Michael Mehari, Muchamad Al Azhar, Marina Lévy, and Shafer Smith
Biogeosciences, 18, 5831–5849, https://doi.org/10.5194/bg-18-5831-2021, https://doi.org/10.5194/bg-18-5831-2021, 2021
Short summary
Short summary
This study documents and quantifies a significant recent oxygen decline in the upper layers of the Arabian Sea and explores its drivers. Using a modeling approach we show that the fast local warming of sea surface is the main factor causing this oxygen drop. Concomitant summer monsoon intensification contributes to this trend, although to a lesser extent. These changes exacerbate oxygen depletion in the subsurface, threatening marine habitats and altering the local biogeochemistry.
France Van Wambeke, Vincent Taillandier, Karine Desboeufs, Elvira Pulido-Villena, Julie Dinasquet, Anja Engel, Emilio Marañón, Céline Ridame, and Cécile Guieu
Biogeosciences, 18, 5699–5717, https://doi.org/10.5194/bg-18-5699-2021, https://doi.org/10.5194/bg-18-5699-2021, 2021
Short summary
Short summary
Simultaneous in situ measurements of (dry and wet) atmospheric deposition and biogeochemical stocks and fluxes in the sunlit waters of the open Mediterranean Sea revealed complex physical and biological processes occurring within the mixed layer. Nitrogen (N) budgets were computed to compare the sources and sinks of N in the mixed layer. The transitory effect observed after a wet dust deposition impacted the microbial food web down to the deep chlorophyll maximum.
Frédéric Gazeau, France Van Wambeke, Emilio Marañón, Maria Pérez-Lorenzo, Samir Alliouane, Christian Stolpe, Thierry Blasco, Nathalie Leblond, Birthe Zäncker, Anja Engel, Barbara Marie, Julie Dinasquet, and Cécile Guieu
Biogeosciences, 18, 5423–5446, https://doi.org/10.5194/bg-18-5423-2021, https://doi.org/10.5194/bg-18-5423-2021, 2021
Short summary
Short summary
Our study shows that the impact of dust deposition on primary production depends on the initial composition and metabolic state of the tested community and is constrained by the amount of nutrients added, to sustain both the fast response of heterotrophic prokaryotes and the delayed one of phytoplankton. Under future environmental conditions, heterotrophic metabolism will be more impacted than primary production, therefore reducing the capacity of surface waters to sequester anthropogenic CO2.
Loes J. A. Gerringa, Martha Gledhill, Indah Ardiningsih, Niels Muntjewerf, and Luis M. Laglera
Biogeosciences, 18, 5265–5289, https://doi.org/10.5194/bg-18-5265-2021, https://doi.org/10.5194/bg-18-5265-2021, 2021
Short summary
Short summary
For 3 decades, competitive ligand exchange–adsorptive cathodic stripping voltammetry was used to estimate the Fe-binding capacity of organic matter in seawater. In this paper the performance of the competing ligands is compared through the analysis of a series of model ligands.
The main finding of this paper is that the determined speciation parameters are not independent of the application, making interpretation of Fe speciation data more complex than it was thought before.
Frédéric Gazeau, Céline Ridame, France Van Wambeke, Samir Alliouane, Christian Stolpe, Jean-Olivier Irisson, Sophie Marro, Jean-Michel Grisoni, Guillaume De Liège, Sandra Nunige, Kahina Djaoudi, Elvira Pulido-Villena, Julie Dinasquet, Ingrid Obernosterer, Philippe Catala, and Cécile Guieu
Biogeosciences, 18, 5011–5034, https://doi.org/10.5194/bg-18-5011-2021, https://doi.org/10.5194/bg-18-5011-2021, 2021
Short summary
Short summary
This paper shows that the impacts of Saharan dust deposition in different Mediterranean basins are as strong as those observed in coastal waters but differed substantially between the three tested stations, differences attributed to variable initial metabolic states. A stronger impact of warming and acidification on mineralization suggests a decreased capacity of Mediterranean surface communities to sequester CO2 following the deposition of atmospheric particles in the coming decades.
Carolin R. Löscher
Biogeosciences, 18, 4953–4963, https://doi.org/10.5194/bg-18-4953-2021, https://doi.org/10.5194/bg-18-4953-2021, 2021
Short summary
Short summary
The Bay of Bengal (BoB) is classically seen as an ocean region with low primary production, which has been predicted to decrease even further. Here, the importance of such a trend is used to explore what could happen to the BoB's low-oxygen core waters if primary production decreases. Lower biological production leads to less oxygen loss in deeper waters by respiration; thus it could be that oxygen will not further decrease and the BoB will not become anoxic, different to other low-oxygen areas.
Bo Liu, Katharina D. Six, and Tatiana Ilyina
Biogeosciences, 18, 4389–4429, https://doi.org/10.5194/bg-18-4389-2021, https://doi.org/10.5194/bg-18-4389-2021, 2021
Short summary
Short summary
We incorporate a new representation of the stable carbon isotope 13C in a global ocean biogeochemistry model. The model well reproduces the present-day 13C observations. We find a recent observation-based estimate of the oceanic 13C Suess effect (the decrease in 13C/12C ratio due to uptake of anthropogenic CO2; 13CSE) possibly underestimates 13CSE by 0.1–0.26 per mil. The new model will aid in better understanding the past ocean state via comparison to 13C/12C measurements from sediment cores.
Neil J. Wyatt, Angela Milne, Eric P. Achterberg, Thomas J. Browning, Heather A. Bouman, E. Malcolm S. Woodward, and Maeve C. Lohan
Biogeosciences, 18, 4265–4280, https://doi.org/10.5194/bg-18-4265-2021, https://doi.org/10.5194/bg-18-4265-2021, 2021
Short summary
Short summary
Using data collected during two expeditions to the South Atlantic Ocean, we investigated how the interaction between external sources and biological activity influenced the availability of the trace metals zinc and cobalt. This is important as both metals play essential roles in the metabolism and growth of phytoplankton and thus influence primary productivity of the oceans. We found seasonal changes in both processes that helped explain upper-ocean trace metal cycling.
Hannah L. Bourne, James K. B. Bishop, Elizabeth J. Connors, and Todd J. Wood
Biogeosciences, 18, 3053–3086, https://doi.org/10.5194/bg-18-3053-2021, https://doi.org/10.5194/bg-18-3053-2021, 2021
Short summary
Short summary
To learn how the biological carbon pump works in productive coastal upwelling systems, four autonomous carbon flux explorers measured carbon flux through the twilight zone beneath an offshore-flowing filament of biologically productive water. Strikingly different particle classes dominated the carbon fluxes during successive stages of the filament evolution over 30 d. Both flux and transfer efficiency were far greater than expected, suggesting an outsized filament impact in California waters.
Matthieu Roy-Barman, Lorna Foliot, Eric Douville, Nathalie Leblond, Fréderic Gazeau, Matthieu Bressac, Thibaut Wagener, Céline Ridame, Karine Desboeufs, and Cécile Guieu
Biogeosciences, 18, 2663–2678, https://doi.org/10.5194/bg-18-2663-2021, https://doi.org/10.5194/bg-18-2663-2021, 2021
Short summary
Short summary
The release of insoluble elements such as aluminum (Al), iron (Fe), rare earth elements (REEs), thorium (Th) and protactinium (Pa) when Saharan dust falls over the Mediterranean Sea was studied during tank experiments under present and future climate conditions. Each element exhibited different dissolution kinetics and dissolution fractions (always lower than a few percent). Changes in temperature and/or pH under greenhouse conditions lead to a lower Th release and a higher light REE release.
Stéphanie H. M. Jacquet, Dominique Lefèvre, Christian Tamburini, Marc Garel, Frédéric A. C. Le Moigne, Nagib Bhairy, and Sophie Guasco
Biogeosciences, 18, 2205–2212, https://doi.org/10.5194/bg-18-2205-2021, https://doi.org/10.5194/bg-18-2205-2021, 2021
Short summary
Short summary
We present new data concerning the relation between biogenic barium (Baxs, a tracer of carbon remineralization at mesopelagic depths), O2 consumption and prokaryotic heterotrophic production (PHP) in the Mediterranean Sea. The purpose of this paper is to improve our understanding of the relation between Baxs, PHP and O2 and to test the validity of the Dehairs transfer function in the Mediterranean Sea. This relation has never been tested in the Mediterranean Sea.
Natacha Le Grix, Jakob Zscheischler, Charlotte Laufkötter, Cecile S. Rousseaux, and Thomas L. Frölicher
Biogeosciences, 18, 2119–2137, https://doi.org/10.5194/bg-18-2119-2021, https://doi.org/10.5194/bg-18-2119-2021, 2021
Short summary
Short summary
Marine ecosystems could suffer severe damage from the co-occurrence of a marine heat wave with extremely low chlorophyll concentration. Here, we provide a first assessment of compound marine heat wave and
low-chlorophyll events in the global ocean from 1998 to 2018. We reveal hotspots of these compound events in the equatorial Pacific and in the Arabian Sea and show that they mostly occur in summer at high latitudes and their frequency is modulated by large-scale modes of climate variability.
Christopher Holder and Anand Gnanadesikan
Biogeosciences, 18, 1941–1970, https://doi.org/10.5194/bg-18-1941-2021, https://doi.org/10.5194/bg-18-1941-2021, 2021
Short summary
Short summary
A challenge for marine ecologists in studying phytoplankton is linking small-scale relationships found in a lab to broader relationships observed on large scales in the environment. We investigated whether machine learning (ML) could help connect these small- and large-scale relationships. ML was able to provide qualitative information about the small-scale processes from large-scale information. This method could help identify important relationships from observations in future research.
Paul J. Tréguer, Jill N. Sutton, Mark Brzezinski, Matthew A. Charette, Timothy Devries, Stephanie Dutkiewicz, Claudia Ehlert, Jon Hawkings, Aude Leynaert, Su Mei Liu, Natalia Llopis Monferrer, María López-Acosta, Manuel Maldonado, Shaily Rahman, Lihua Ran, and Olivier Rouxel
Biogeosciences, 18, 1269–1289, https://doi.org/10.5194/bg-18-1269-2021, https://doi.org/10.5194/bg-18-1269-2021, 2021
Short summary
Short summary
Silicon is the second most abundant element of the Earth's crust. In this review, we show that silicon inputs and outputs, to and from the world ocean, are 57 % and 37 % higher, respectively, than previous estimates. These changes are significant, modifying factors such as the geochemical residence time of silicon, which is now about 8000 years and 2 times faster than previously assumed. We also update the total biogenic silica pelagic production and provide an estimate for sponge production.
Caroline Ulses, Claude Estournel, Marine Fourrier, Laurent Coppola, Fayçal Kessouri, Dominique Lefèvre, and Patrick Marsaleix
Biogeosciences, 18, 937–960, https://doi.org/10.5194/bg-18-937-2021, https://doi.org/10.5194/bg-18-937-2021, 2021
Short summary
Short summary
We analyse the seasonal cycle of O2 and estimate an annual O2 budget in the north-western Mediterranean deep-convection region, using a numerical model. We show that this region acts as a large sink of atmospheric O2 and as a major source of O2 for the western Mediterranean Sea. The decrease in the deep convection intensity predicted in recent projections may have important consequences on the overall uptake of O2 in the Mediterranean Sea and on the O2 exchanges with the Atlantic Ocean.
Cited articles
Acharya, S. S. and Panigrahi, M. K.: Eastward shift and maintenance of
Arabian Sea oxygen minimum zone: Understanding the paradox, Deep-Sea
Res. Pt. I, 115, 240–252, 2016.
Agnihotri, R., Bhattacharya, S. K., Sarin, M. M., and Somayajulu, B. L. K.:
Changes in surface productivity and subsurface denitrification during the
Holocene: a multiproxy study from the eastern Arabian Sea, The Holocene, 13,
701–713, 2003.
Al Azhar, M., Lachkar, Z., Lévy, M., and Smith, S.: Oxygen Minimum Zone
Contrasts Between the Arabian Sea and the Bay of Bengal Implied by
Differences in Remineralization Depth, Geophys. Res. Lett., 44,
11106–111114, 2017.
Al-Azri, A. R., Al-Hashmi, K. A., Al-Habsi, H., Al-Azri, N., and
Al-Khusaibi, S.: Abundance of harmful algal blooms in the coastal waters of
Oman: 2006–2011, Aquat. Ecosyst. Health, 18, 269–281,
2015.
Al-Hashmi, K. A., Smith, S. L., Claereboudt, M., Piontkovski, S. A., and
Al-Azri, A.: Dynamics of potentially harmful phytoplankton in a
semi-enclosed bay in the Sea of Oman, B. Mar. Sci.e, 91,
141–166, 2015.
Altabet, M. A.: Isotopic Tracers of the Marine Nitrogen Cycle: Present and
Past, in: Marine Organic Matter: Biomarkers, Isotopes and DNA, The Handbook
of Environmental Chemistry, edited by: Volkman, J. K., Springer, Berlin,
Heidelberg, 2006.
Altabet, M. A., Francois, R., Murray, D. W., and Prell, W. L.:
Climate-related variations in denitrification in the Arabian Sea from
sediment 15N ∕ 14N ratios, Nature, 373, 506–509, 1995.
Altabet, M. A., Murray, D. W., and Prell, W. L.: Climatically linked
oscillations in Arabian Sea denitrification over the past 1 m.y.:
Implications for the marine N cycle, Paleoceanography, 14, 732–743, 1999.
Altabet, M. A., Higginson, M. J., and Murray, D. W.: The effect of
millennial-scale changes in Arabian Sea denitrification on atmospheric
CO2, Nature, 415, 159–162, 2002.
Altieri, A. H., Harrison, S. B., Seemann, J., Collin, R., Diaz, R. J., and
Knowlton, N.: Tropical dead zones and mass mortalities on coral reefs,
P. Natl. Acad. Sci., 114, 3660, https://doi.org/10.1073/pnas.1621517114, 2017.
Andersson, J. H., Woulds, C., Schwartz, M., Cowie, G. L., Levin, L. A., Soetaert, K., and Middelburg, J. J.: Short-term fate of phytodetritus in sediments across the Arabian Sea Oxygen Minimum Zone, Biogeosciences, 5, 43–53, https://doi.org/10.5194/bg-5-43-2008, 2008.
Antoine, D., André, J.-M., and Morel, A.: Oceanic primary production –
2. Estimation at global scale from satellite (coastal zone color scanner)
chlorophyll, Global Biogeochem. Cy., 10, 57–69, 1996.
Armstrong, R. A., Lee, C., Hedges, J. I., Honjo, S., and Wakeham, S.: A new,
mechanistic model for organic carbon fluxes in the ocean: based on the
quantitative association of POC with ballast minerals, Deep-Sea Res.,
49, 219–236, 2002.
Aumont, O., Maier-Reimer, E., Blain, S., and Monfray, P.: An ecosystem model
of the global ocean including Fe, Si, P colimitations, Global Biogeochem.
Cy., 17, 1060, https://doi.org/10.1029/2001GB001745, 2003.
Aumont, O., Ethé, C., Tagliabue, A., Bopp, L., and Gehlen, M.: PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies, Geosci. Model Dev., 8, 2465–2513, https://doi.org/10.5194/gmd-8-2465-2015, 2015.
Aumont, O., Maury, O., Lefort, S., and Bopp, L.: Evaluating the Potential
Impacts of the Diurnal Vertical Migration by Marine Organisms on Marine
Biogeochemistry, Global Biogeochem. Cy., 32, 1622–1643, 2018.
Babbin, A. R., Keil, R. G., Devol, A. H., and Ward, B. B.: Organic Matter
Stoichiometry, Flux, and Oxygen Control Nitrogen Loss in the Ocean, Science,
344, 406–408, 2014.
Bahl, A., Gnanadesikan, A., and Pradal, M. A.: Variations in Ocean
Deoxygenation Across Earth System Models: Isolating the Role of
Parameterized Lateral Mixing, Global Biogeochem. Cy., 33, 703–724,
2019.
Bange, H. W., Rixen, T., Johansen, A. M., Siefert, R. L., Ramesh, R.,
Ittekkot, V., Hoffmann, M. R., and Andreae, M. O.: A revised nitrogen budget
for the Arabian Sea, Global Biogeochem. Cy., 14, 1283–1297, 2000.
Banse, K.: New views on the degradation and disposition of organic particles
as collected by sediment traps in the open sea, Deep-Sea Res., 37,
1177–1195, 1990.
Banse, K.: Grazing and Zooplankton Production as Key Controls of
Phytoplankton Production in the Open Ocean, Oceanography, 7, 13–20, 1994.
Banse, K., Naqvi, S. W. A., Narvekar, P. V., Postel, J. R., and Jayakumar, D. A.: Oxygen minimum zone of the open Arabian Sea: variability of oxygen and nitrite from daily to decadal timescales, Biogeosciences, 11, 2237–2261, https://doi.org/10.5194/bg-11-2237-2014, 2014.
Bauer, S., Hitchcock, G. L., and Olson, D. B.: Influence of
monsoonally-forced Ekman dynamics upon surface layer depth and plankton
biomass distribution in the Arabian Sea, Deep-Sea Res., 38, 531–553,
1991.
Behrenfeld, M. J. and Falkowski, P. G.: Photosynthetic rates derived from
satellite-based chlorophyll concentration, Limnol. Oceanogr., 42,
1–20, 1997.
Bettencourt, J. H., López, C., Hernández-García, E., Montes,
I., Sudre, J., Dewitte, B., Paulmier, A., and Garçon, V.: Boundaries of
the Peruvian oxygen minimum zone shaped by coherent mesoscale dynamics,
Nat. Geosci., 8, 937–940, 2015.
Bianchi, D., Galbraith, E. D., Carozza, D. A., Mislan, K. A. S., and Stock,
C. A.: Intensification of open-ocean oxygen depletion by vertically
migrating animals, Nat. Geosci., 6, 545–548, 2013.
Bianchi, D., Weber, T. S., Kiko, R., and Deutsch, C.: Global niche of marine
anaerobic metabolisms expanded by particle microenvironments, Nat.
Geosci., 11, 263–268, 2018.
Billett, D. S. M., Bett, B. J., Jacobs, C. L., Rouse, I. P., and Wigham, B.
D.: Mass deposition of jellyfish in the deep Arabian Sea, Limnol.d
Oceanogr., 51, 2077–2083, 2006.
Böll, A., Schulz, H., Munz, P., Rixen, T., Gaye, B., and Emeis, K.-C.:
Contrasting sea surface temperature of summer and winter monsoon variability
in the northern Arabian Sea over the last 25 ka, Palaeogeogr.
Palaeocl., 426, 10–21, 2015.
Böning, P. and Bard, E.: Millenial/centennial-scale thermocline
ventilation changes in the Indian Ocean as reflected by aragonite
preservation and geochemical variations in the Arabian Sea sediments,
Geochim. Cosmochim. Ac., 73, 6771–6788, 2009.
Bopp, L., Resplandy, L., Orr, J. C., Doney, S. C., Dunne, J. P., Gehlen, M., Halloran, P., Heinze, C., Ilyina, T., Séférian, R., Tjiputra, J., and Vichi, M.: Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models, Biogeosciences, 10, 6225–6245, https://doi.org/10.5194/bg-10-6225-2013, 2013.
Bopp, L., Resplandy, L., Untersee, A., Le Mezo, P., and Kageyama, M.: Ocean
(de)oxygenation from the Last Glacial Maximum to the twenty-first century:
insights from Earth System models, Philos. Trans. Roy.
Soc. A, 375, 20160323, https://doi.org/10.5194/bg-10-6225-2013,
2017.
Böttger-Schnack, R.: Vertical structure of small metazoan plankton,
especially noncalanoid copepods, I. Deep Arabian Sea, J. Plank.
Res., 18, 1073–1101, 1996.
Bourbonnais, A., Altabet, M. A., Charoenpong, C. N., Larkum, J., Hu, H.,
Bange, H. W., and Stramma, L.: N-loss isotope effects in the Peru oxygen
minimum zone studied using a mesoscale eddy as a natural tracer experiment,
Global Biogeochem. Cy., 29, 793–811, 2015.
Boyer, T. P., Antonov, J. I., Baranova, O. K., Coleman, C., Garcia, H. E.,
Grodsky, A., Johnson, D. R., Locarnini, R. A., Mishonov, A. V., O'Brien, T.
D., Paver, C. R., Reagan, J. R., Seidov, D., Smolyar, I. V., and Zweng, M.
M.: World Ocean Database 2013, Silver Spring, MD, NOAA Printing Officce, (NOAA Atlas NESDIS, 72), 208 pp., available at: http://hdl.handle.net/11329/357 (last access: 21 January 2018), 2013.
Brandes, J. A., Devol, A. H., Yoshinari, T., Jayakumar, A., and Naqvi, S. W.
A.: Isotopic composition of nitrate in the central Arabian Sea and eastern
tropical North Pacific: A tracer for mixing and nitrogen cycles, Limnol.
Oceanogr., 43, 1680–1689, 1998.
Brandt, P., Hormann, V., Körtzinger, A., Visbeck, M., Krahmann, G.,
Stramma, L., Lumpkin, R., and Schmid, C.: Changes in the ventilation of the
oxygen minimum zone of the tropical North Atlantic, J. Phys.
Oceanogr., 40, 1784–1801, 2010.
Brandt, P., Bange, H. W., Banyte, D., Dengler, M., Didwischus, S.-H., Fischer, T., Greatbatch, R. J., Hahn, J., Kanzow, T., Karstensen, J., Körtzinger, A., Krahmann, G., Schmidtko, S., Stramma, L., Tanhua, T., and Visbeck, M.: On the role of circulation and mixing in the ventilation of oxygen minimum zones with a focus on the eastern tropical North Atlantic, Biogeosciences, 12, 489–512, https://doi.org/10.5194/bg-12-489-2015, 2015.
Breitburg, D., Levin, L. A., Oschlies, A., Grégoire, M., Chavez, F. P.,
Conley, D. J., Garçon, V., Gilbert, D., Gutiérrez, D., Isensee, K.,
Jacinto, G. S., Limburg, K. E., Montes, I., Naqvi, S. W. A., Pitcher, G. C.,
Rabalais, N. N., Roman, M. R., Rose, K. A., Seibel, B. A., Telszewski, M.,
Yasuhara, M., and Zhang, J.: Declining oxygen in the global ocean and
coastal waters, Science, 359, eaam7240, https://doi.org/10.1126/science.aam7240, 2018.
Bristow, L. A., Dalsgaard, T., Tiano, L., Mills, D. B., Bertagnolli, A. D.,
Wright, J. J., Hallam, S. J., Ulloa, O., Canfield, D. E., Revsbech, N. P.,
and Thamdrup, B.: Ammonium and nitrite oxidation at nanomolar oxygen
concentrations in oxygen minimum zone waters, P. Natl.
Acad. Sci., 113, 10601, https://doi.org/10.1073/pnas.1600359113, 2016.
Bristow, L. A., Callbeck, C. M., Larsen, M., Altabet, M. A., Dekaezemacker,
J., Forth, M., Gauns, M., Glud, R. N., Kuypers, M. M. M., Lavik, G.,
Milucka, J., Naqvi, S. W. A., Pratihary, A., Revsbech, N. P., Thamdrup, B.,
Treusch, A. H., and Canfield, D. E.: N2 production rates limited by nitrite
availability in the Bay of Bengal oxygen minimum zone, Nat. Geosci.,
10, 24–29, 2017.
Brock, J. C., McClain, C. R., Luther, M. E., and Hay, W. W.: The
Phytplankton Bloom in the Northwestern Arabian Sea During the Southwest
Monsoon of 1979, J. Geophys. Res., 96, 20623–20642, 1991.
Brock, J. C., McClain, C. R., and Hay, W. W.: A Southwest Monsoon
Hydrographic Climatology for the Northwestern Arabian Sea, Journal of
Geophysical Research, 97, 9455-9465, 1992.
Brocks, J. J., Jarrett, A. J. M., Sirantoine, E., Hallmann, C., Hoshino, Y.,
and Liyanage, T.: The rise of algae in Cryogenian oceans and the emergence
of animals, Nature, 548, 578–581, https://doi.org/10.1038/nature23457, 2017.
Broecker, W. S. and Peng, T.-H.: Tracers in the sea, Lamont-Doherty
Geological Observatory, Columbia University, Palisades, New York, 690 pp., 1982.
Bruce, J. G.: Some details of upwelling off the Somali and Arabian Coasts,
J. Mar. Res., 32, 419–423, 1974.
Burd, A. B., Hansell, D. A., Steinberg, D. K., Anderson, T. R., Arístegui, J., Baltar, F., Beaupré, S. R., Buesseler,
K. O., DeHairs, F., Jackson, G. A., Kadko, D. C., Koppelmann, R., Lampitt,
R. S., Nagata, T., Reinthaler, T., Robinson, C., Robison, B. H., Tamburini,
C., and Tanaka, T.: Assessing the apparent imbalance between geochemical and
biochemical indicators of meso- and bathypelagic biological activity: What
the @$,ôØ! is wrong with present calculations of
carbon budgets?, Deep-Sea Res. Pt. II,
57, 1557–1571, 2010.
Burdanowitz, N., Gaye, B., Hilbig, L., Lahajnar, N., Lückge, A., Rixen,
T., and Emeis, K.-C.: Holocene monsoon and sea level-related changes of
sedimentation in the northeastern Arabian Sea, Deep-Sea Res. Pt. II, 166, 6–18, https://doi.org/10.1016/j.dsr2.2019.03.003, 2019.
Cabré, A., Marinov, I., Bernardello, R., and Bianchi, D.: Oxygen minimum zones in the tropical Pacific across CMIP5 models: mean state differences and climate change trends, Biogeosciences, 12, 5429–5454, https://doi.org/10.5194/bg-12-5429-2015, 2015.
Canfield, D.: Oxygen, a four billion year history, Princeton University
Press, Prniceton, New Jersey, USA, 2014.
Canfield, D. E., Kraft, B., Löscher, C. R., Boyle, R. A., Thamdrup, B.,
and Stewart, F. J.: The regulation of oxygen to low concentrations in marine
oxygen-minimum zones, J. Mar. Res., 77, 297–324, 2019.
Carruthers, J. N., Gogate, S. S., Naidu, J. R., and Laevastu, T.: Shorewards
Upslope of the Layer of Minimum Oxygen Off Bombay: Its Influence on Marine
Biology, Especially Fisheries, Nature, 183, 1084–1087, 1959.
Cavan, E. L., Trimmer, M., Shelley, F., and Sanders, R.: Remineralization of
particulate organic carbon in an ocean oxygen minimum zone, Nat.
Commun., 8, 14847, https://doi.org/10.1038/ncomms14847, 2017.
Chelton, D. B., Gaube, P., Schlax, M. G., Early, J. J., and Samelson, R. M.:
The Influence of Nonlinear Mesoscale Eddies on Near-Surface Oceanic
Chlorophyll, Science, 334, 328, https://doi.org/10.1126/science.1208897, 2011.
Chen, G., Wang, D., and Hou, Y.: The features and interannual variability
mechanism of mesoscale eddies in the Bay of Bengal, Cont. Shelf
Res., 47, 178–185, 2012.
Cline, J. D. and Kaplan, I. R.: Isotopic fractionation of dissolved nitrate
during denitrification in the eastern tropical north pacific ocean, Mar.e
Chem., 3, 271–299, 1975.
Cocco, V., Joos, F., Steinacher, M., Frölicher, T. L., Bopp, L., Dunne, J., Gehlen, M., Heinze, C., Orr, J., Oschlies, A., Schneider, B., Segschneider, J., and Tjiputra, J.: Oxygen and indicators of stress for marine life in multi-model global warming projections, Biogeosciences, 10, 1849–1868, https://doi.org/10.5194/bg-10-1849-2013, 2013.
Contreras-Rosales, L. A., Schefuß, E., Meyer, V., Palamenghi, L.,
Lückge, A., and Jennerjahn, T. C.: Origin and fate of sedimentary
organic matter in the northern Bay of Bengal during the last 18 ka, Glob.
Planet. Change, 146, 53–66, 2016.
Couespel, D., Lévy, M., and Bopp, L.: Major Contribution of Reduced
Upper Ocean Oxygen Mixing to Global Ocean Deoxygenation in an Earth System
Model, Geophys. Res. Lett., 46, 12239–12249, 2019.
Cowie, G.: The biogeochemistry of Arabian Sea surficial sediments: A review
of recent studies, Prog. Oceanogr., 65, 260–289, 2005.
Cowie, G. L., Calvert, S. E., Pedersen, T. F., Schulz, H., and von Rad, U.:
Organic content and preservational controls in surficial shelf and slope
sediments from the Arabian Sea (Pakistan margin), Mar. Geol., 161,
23–38, 1999.
Cowie, G. L. and Levin, L. A.: Benthic biological and biogeochemical
patterns and processes across an oxygen minimum zone (Pakistan margin, NE
Arabian Sea), Deep-Sea Res. Pt. II,
56, 261–270, 2009.
Cowie, G. L., Mowbray, S., Lewis, M., Matheson, H., and McKenzie, R.: Carbon
and nitrogen elemental and stable isotopic compositions of surficial
sediments from the Pakistan margin of the Arabian Sea, Deep-Sea Res.
Pt. II, 56, 271–282, 2009.
Crusius, J., Calvert, S., Pedersen, T., and Sage, D.: Rhenium and molybdenum
enrichments in sediments as indicators of oxic, suboxic and sulfidic
conditions of deposition, Earth Planet. Sc. Lett., 145, 65–78,
1996.
Currie, R. I., Fisher, A. E., and Hargreaves, P. M.: Arabian Sea Upwelling.
in: Biology of the Indian Ocean, edited by: Zeitschel, B., Ecological Studies 3,
Springer Verlag, Berlin, 1973.
d'Ovidio, F., De Monte, S., Penna, A. D., Cotté, C., and Guinet, C.:
Ecological implications of eddy retention in the open ocean: a Lagrangian
approach, J. Phys. A, 46, 254023, https://doi.org/10.1088/1751-8113/46/25/254023,
2013.
Dalsgaard, T., Canfield, D. E., Petersen, J., Thamdrup, B., and
Acuna-Gonzalez, J.: N2 production by the anammox reaction in the anoxic
water column of Golfo Dulce, Costa Rica, Nature, 422, 606–608, 2003.
Dalsgaard, T., Stewart, F. J., Thamdrup, B., De Brabandere, L., Revsbech, N.
P., Ulloa, O., Canfield, D. E., and DeLong, E. F.: Oxygen at Nanomolar
Levels Reversibly Suppresses Process Rates and Gene Expression in Anammox
and Denitrification in the Oxygen Minimum Zone off Northern Chile, mBio, 5,
e01966-01914, https://doi.org/10.1128/mBio.01966-14, 2014.
Das, M., Singh, R. K., Gupta, A. K., and Bhaumik, A. K.: Holocene
strengthening of the Oxygen Minimum Zone in the northwestern Arabian Sea
linked to changes in intermediate water circulation or Indian monsoon
intensity?, Paleogeogr. Paleoclimatol., 483, 125–135, 2017.
del Giorgio, P. A. and Duarte, C. M.: Respiration in the open ocean, Nature,
420, 379–384, 2002.
Deuser, W. G., Ross, E. H., and Mlodzinska, Z. J.: Evidence for and rate of
denitrification in the Arabian Sea, Deep-Sea Res., 25, 431–445, 1978.
Diaz, R. J. and Rosenberg, R.: Spreading Dead Zones and Consequences for
Marine Ecosystems, Science, 321, 926–929, 2008.
Diaz, R. J., Rosenberg, R., and Sturdivant, K.: Hypoxia in estuaries and
semi-enclosed seas, in: Ocean deoxygenation: Everyone's problem, edited by: Laffoley,
D. and Baxter, J. M., IUCN, Gland, Switzerland 2019.
Dietrich, G.: Aufbau und Bewegung von Golfstrom und Agulhasstrom,
Naturwissenschaften, 24, 225–230, 1936.
Duteil, O., Koeve, W., Oschlies, A., Aumont, O., Bianchi, D., Bopp, L., Galbraith, E., Matear, R., Moore, J. K., Sarmiento, J. L., and Segschneider, J.: Preformed and regenerated phosphate in ocean general circulation models: can right total concentrations be wrong?, Biogeosciences, 9, 1797–1807, https://doi.org/10.5194/bg-9-1797-2012, 2012.
Ekau, W., Auel, H., Pörtner, H.-O., and Gilbert, D.: Impacts of hypoxia on the structure and processes in pelagic communities (zooplankton, macro-invertebrates and fish), Biogeosciences, 7, 1669–1699, https://doi.org/10.5194/bg-7-1669-2010, 2010.
Emerson, S.: Annual net community production and the biological carbon flux
in the ocean, Global Biogeochem. Cy., 28, 14–28, 2014.
Eppley, R. W. and Peterson, B. J.: Particulate organic matter flux and
planktonic new production in the deep ocean, Nature, 282, 677–680, 1979.
Escribano, R.: Zooplankton interactions with the oxygen minimum zone in the
eastern south pacific, Gayana (Concepción), 70, 19–21, 2006.
Eugster, O. and Gruber, N.: A probabilistic estimate of global marine
N-fixation and denitrification, Global Biogeochem. Cy., 26, GB4013, https://doi.org/10.1029/2012GB004300, 2012.
Falkowski, P. G., Katz, M. E., Knoll, A. H., Quigg, A., Raven, J. A.,
Schofield, O., and Taylor, F. J. R.: The Evolution of Modern Eukaryotic
Phytoplankton, Science, 305, 354–360, 2004.
Fassbender, A. J., Bourbonnais, A., Clayton, S., Gaube, P., Omand, M.,
Franks, P. J. S., Altabet, M. A., and McGillicuddy Jr., D. J.: Interpreting
mosaics of ocean biogeochemistry, EOS, 99, https://doi.org/10.1029/2018EO109707, 2018.
Fiedler, B., Grundle, D. S., Schütte, F., Karstensen, J., Löscher, C. R., Hauss, H., Wagner, H., Loginova, A., Kiko, R., Silva, P., Tanhua, T., and Körtzinger, A.: Oxygen utilization and downward carbon flux in an oxygen-depleted eddy in the eastern tropical North Atlantic, Biogeosciences, 13, 5633–5647, https://doi.org/10.5194/bg-13-5633-2016, 2016.
Filippelli, G. and Cowie, G.: Carbon and Phosphorus Cycling in Arabian Sea
Sediments across the Oxygen Minimum Zone, J. Oceanogr. Mar.e
Res., 5, 171, https://doi.org/10.4172/2572-3103.1000171, 2017.
Fu, W., Primeau, F., Keith Moore, J., Lindsay, K., and Randerson, J. T.:
Reversal of Increasing Tropical Ocean Hypoxia Trends With Sustained Climate
Warming, Global Biogeochem. Cy., 32, 551–564, 2018.
Ganeshram, R. S., Pedersen, T. F., Calvert, S. E., and Murray, J. W.: Large
changes in oceanic nutrient inventories from glacial to interglacial
periods, Nature, 376, 755–758, 1995.
Garcia, H. E., Locarnini, R. A., Boyer, T. P., Antonov, J. I., Zweng, M. M.,
Baranova, O. K., and Johnson, D. R.: World Ocean Atlas 2009, in: NOAA Atlas
NESDIS 71, edited by: Levitus, S., U.S. Government Printing Office, Washington,
D.C., 2010.
Garcia, H. E., Locarnini, R. A., Boyer, T. P., Antonov, J. I., Baranova, O. K., Zweng, M. M., Reagan, J. R., and Johnson, D. R.: World Ocean Atlas 2013, Vol. 3, Dissolved Oxygen, Apparent Oxygen Utilization, and Oxygen Saturation, edited by: S. Levitus, A. Mishonov Technical Ed., NOAA Atlas NESDIS 75, 27 pp., 2014.
Garrison, D. L., Gowing, M. M., and Hughes, M. P.: Nano- and microplankton
in the northern Arabian Sea during the Southwest Monsoon, August-September
1995 A US-JGOFS study, Deep-Sea Res. Pt. II, 45, 2269–2299, 1998.
Garrison, D. L., Gowing, M. M., Hughes, M. P., Campbell, L., Caron, D. A.,
Dennett, M. R., Shalapyonok, A., Olson, R. J., Landry, M. R., and Brown, S.
L.: Microbial food web structure in the Arabian Sea: a US JGOFS study, Deep-Sea Res. Pt. II, 47, 1387–1422, 2000.
Gaye, B., Nagel, B., Dähnke, K., Rixen, T., and Emeis, K.-C.: Evidence
of parallel denitrification and nitrite oxidation in the ODZ of the Arabian
Sea from paired stable isotopes of nitrate and nitrite, Global
Biogeochem. Cy., 27, GB004115, https://doi.org/10.1002/2011gb004115, 2013.
Gaye, B., Böll, A., Segschneider, J., Burdanowitz, N., Emeis, K.-C., Ramaswamy, V., Lahajnar, N., Lückge, A., and Rixen, T.: Glacial–interglacial changes and Holocene variations in Arabian Sea denitrification, Biogeosciences, 15, 507–527, https://doi.org/10.5194/bg-15-507-2018, 2018.
Gaye-Haake, B., Lahajnar, N., Emeis, K.-C., Unger, D., Rixen, T., Suthhof,
A., Ramaswamy, V., Schulz, H., Paropkari, A. L., Guptha, M. V. S., and
Ittekkot, V.: Stable nitrogen isotopic ratios of sinking particles and
sediments from the northern Indian Ocean, Mar. Chem., 96, 243–255,
2005.
Gilson, H. C.: The nitrogen cycle, Scientific Reports John Murray Expedition 1933–1934, Vol. 2, 21–81, 1937.
Gnanadesikan, A., Dunne, J. P., and John, J.: Understanding why the volume of suboxic waters does not increase over centuries of global warming in an Earth System Model, Biogeosciences, 9, 1159–1172, https://doi.org/10.5194/bg-9-1159-2012, 2012.
Gnanadesikan, A., Bianchi, D., and Pradal, M.-A.: Critical role for
mesoscale eddy diffusion in supplying oxygen to hypoxic ocean waters,
Geophys. Res. Lett., 40, 5194–5198, 2013.
Goes, J. I. and Gomes, H.: An ecosystem in transition: the emergence of
mixotrophy in the Arabian Sea, in: Aquatic Microbial Ecology and
Biogeochemistry: A Dual Perspective, edited by: Glibert, P. and Kana, T.,
Springer International Publishing, p. 245, 2016.
Goes, J. I., Tian, H., Gomes, H. d. R., Anderson, O. R., Al-Hashmi, K.,
deRada, S., Luo, H., Al-Kharusi, L., Al-Azri, A., and Martinson, D. G.:
Ecosystem state change in the Arabian Sea fuelled by the recent loss of snow
over the Himalayan-Tibetan Plateau region, Sci. Rep., 10, 7422, https://doi.org/10.1038/s41598-020-64360-2,
2020.
Gomes, d. R. H., Goes, J. I., Matondkar, S. G. P., Buskey, E. J., Basu, S.,
Parab, S., and Thoppil, P.: Massive outbreaks of Noctiluca scintillans
blooms in the Arabian Sea due to spread of hypoxia, Nat. Commun.,
5, 4862, https://doi.org/10.1038/ncomms5862, 2014.
Gomes, H., Goes, J. I., Matondkar, S. G. P., Parab, S. G., Al-Azri, A., and
Thoppil, P. G.: Unusual Blooms of the Green Noctiluca Miliaris (Dinophyceae) in the Arabian
Sea during the Winter Monsoon, in: Indian Ocean: Biogeochemical Processes
and Ecological Variability, edited by: Wiggert, J. D., Hood, R. R., Naqvi, S. W. A.,
Smith, S. L., and Brink, K. H., AGU Book Series, American Geophysical
Union, 2009.
Gonzalez, R. R. and Quiñones, R. A.: Ldh activity in Euphausia mucronata
and Calanus chilensis: implications for vertical migration behaviour,
J. Plank. Res., 24, 1349–1356, 2002.
Gooday, A. J., Levin, L. A., Aranda da Silva, A., Bett, B. J., Cowie, G. L.,
Dissard, D., Gage, J. D., Hughes, D. J., Jeffreys, R., Lamont, P. A.,
Larkin, K. E., Murty, S. J., Schumacher, S., Whitcraft, C., and Woulds, C.:
Faunal responses to oxygen gradients on the Pakistan margin: A comparison of
foraminiferans, macrofauna and megafauna, Deep-Sea Res. Pt. II, 56, 488–502, 2009.
Goswami, S. C., Saparia, J. S., and Bhargava, R. M. S.(Eds.): Zooplankton standing stock
assessment and fishery resources in the Indian seas, Oxford & IBH
Publishing Co., New Delhi, 217–225, 1992.
Gruber, N.: The dynamics of the marine nitrogen cycle and its influence on
atmospheric CO2, in: Carbon-Climate Interactions, edited by: Follows, M. and Oguz, T., NATO ASI Series, New York, 2004.
Gruber, N., Lachkar, Z., Frenzel, H., Marchesiello, P., Munnich, M.,
McWilliams, J. C., Nagai, T., and Plattner, G.-K.: Eddy-induced reduction of
biological production in eastern boundary upwelling systems, Nat. Geosci.,
4, 787–792, 2011.
Gupta, G. V. M., Sudheesh, V., Sudharma, K. V., Saravanane, N., Dhanya, V.,
Dhanya, K. R., Lakshmi, G., Sudhakar, M., and Naqvi, S. W. A.: Evolution to
decay of upwelling and associated biogeochemistry over the southeastern
Arabian Sea shelf, J. Geophys. Res.-Biogeo., 121,
159–175, 2016.
Haake, B. and Ittekkot, V.: Die Wind-getriebene “biologische Pumpe” und der
Kohlenstoffentzug im Ozean, Naturwissenschaften, 77, 75–79, 1990.
Hamm, C. E.: Interactive aggregation and sedimentation of diatoms and
clay-sized lithogenic material, Limnol. Oceanogr., 47, 1790–1795,
2002.
Haq, S. M., Khan, J. A., and Chugtai, S.: The Distribution and Abundance of
Zooplankton along the Coast of Pakistan during Postmonsoon and Premonsoon
Periods, in: The Biology of the Indian Ocean, edited by: Zeitzschel, B. and Gerlach, S.
A., Springer Berlin Heidelberg, Berlin, Heidelberg, 1973.
Harrison, P. J., Piontkovski, S., and Al-Hashmi, K.: Understanding how
physical-biological coupling influences harmful algal blooms, low oxygen and
fish kills in the Sea of Oman and the Western Arabian Sea, Mar. Pollut.
Bull., , 114, 25–34, https://doi.org/10.1016/j.marpolbul.2016.11.008, 2017.
Helly, J. J. and Levin, L. A.: Global distribution of naturally occurring
marine hypoxia on continental margins, Deep-Sea Res. Pt. I, 51, 1159–1168, 2004.
Henschke, N., Everett, J. D., Richardson, A. J., and Suthers, I. M.:
Rethinking the Role of Salps in the Ocean, Trends Ecol. Evol.,
31, 720–733, 2016.
Herring, P. J., Fasham, M. J. R., Weeks, A. R., Hemmings, J. C. P., Roe, H.
S. J., Pugh, P. R., Holley, S., Crisp, N. A., and Angel, M. V.: Across-slope
relations between the biological populations, the euphotic zone and the
oxygen minimum layer off the coast of Oman during the southwest monsoon
(August, 1994), Prog. Oceanogr., 41, 69–109, 1998.
Higginson, M. J., Altabet, M. A., Murray, D. W., Murray, R. W., and Herbert,
T. D.: Geochemical evidence for abrupt changes in relative strength of the
Arabian monsoons during a stadial/interstadial climate transition,
Geochim. Cosmochim. Ac., 68, 3807–3826, 2004.
Himmler, T., Smrzka, D., Zwicker, J., Kasten, S., Shapiro, R. S., Bohrmann,
G., and Peckmann, J.: Stromatolites below the photic zone in the northern
Arabian Sea formed by calcifying chemotrophic microbial mats, Geology, 46,
339–342, 2018.
Hood, R. R., Beckley, L. E., and Wiggert, J. D.: Biogeochemical and
ecological impacts of boundary currents in the Indian Ocean, Prog.
Oceanogr., 156, 290–325, 2017.
Howell, E. A., Doney, S. C., Fine, R. A., and Olson, D. B.: Geochemical
estimates of denitrification in the Arabian Sea and the Bay of Bengal during
WOCE, Geophys. Res. Lett., 24, 2549–2552, 1997.
Hunter, W. R., Levin, L. A., Kitazato, H., and Witte, U.: Macrobenthic assemblage structure and organismal stoichiometry control faunal processing of particulate organic carbon and nitrogen in oxygen minimum zone sediments, Biogeosciences, 9, 993–1006, https://doi.org/10.5194/bg-9-993-2012, 2012.
Hupe, A. and Karstensen, J.: Redfield stoichiometry in Arabian Sea
subsurface waters, Global Biogeochem. Cy., 14, 357–372, 2000.
Ingole, B. S., Sautya, S., Sivadas, S., Singh, R., and Nanajkar, M.:
Macrofaunal community structure in the western Indian continental margin
including the oxygen minimum zone, Mar. Ecol., 31, 148–166, 2010.
Ito, T., Minobe, S., Long, M. C., and Deutsch, C.: Upper ocean O2 trends:
1958–2015, Geophys. Res. Lett., 44, 4214–4223, 2017.
Ittekkot, V.: The abiotically driven biological pump in the ocean and
short-term fluctuations in atmospheric CO2 contents, Glob.
Planet. Change, 8, 17–25, 1993.
Ivanenkov, V. N. and Rozanov, A. G.: Hydrogen sulphide contamination of the
intermediate water layers of the Arabian Sea and the Bay of Bengal,
Okeanologiya, 1, 443–449, 1961.
Ivanochko, T. S., Ganeshram, R. S., Brummer, G.-J. A., Ganssen, G., Jung, S.
J. A., Moreton, S. G., and Kroon, D.: Variations in tropical convection as
an amplifier of global climate change at the millennial scale, Earth
Planet. Sc. Lett., 235, 302–314, 2005.
Jeffreys, R. M., Wolff, G. A., and Cowie, G. L.: Influence of oxygen on
heterotrophic reworking of sedimentary lipids at the Pakistan margin, Deep-Sea Res. Pt. II, 56, 358–375, 2009.
Jeffreys, R. M., Levin, L. A., Lamont, P. A., Woulds, C., Whitcraft, C. R.,
Mendoza, G. F., Wolff, G. A., and Cowie, G. L.: Living on the edge:
single-species dominance at the Pakistan oxygen minimum zone boundary,
Mar. Ecol. Prog. Ser., 470, 79–99, 2012.
Jensen, M. M., Lam, P., Revsbech, N. P., Nagel, B., Gaye, B., Jetten, M. S.
M., and Kuypers, M. M. M.: Intensive nitrogen loss over the Omani Shelf due
to anammox coupled with dissimilatory nitrite reduction to ammonium, ISME J.,
5, 1660–1670, 2011.
Jilbert, T., Slomp, C. P., Gustafsson, B. G., and Boer, W.: Beyond the Fe-P-redox connection: preferential regeneration of phosphorus from organic matter as a key control on Baltic Sea nutrient cycles, Biogeosciences, 8, 1699–1720, https://doi.org/10.5194/bg-8-1699-2011, 2011.
Johnson, K. S., Riser, S. C., and Ravichandran, M.: Oxygen variability
controls denitrification in the bay of Bengal oxygen minimum zone,
Geophys. Res. Lett., 46, 804–811, 2019.
Kalvelage, T., Jensen, M. M., Contreras, S., Revsbech, N. P., Lam, P.,
Günter, M., LaRoche, J., Lavik, G., and Kuypers, M. M. M.: Oxygen
Sensitivity of Anammox and Coupled N-Cycle Processes in Oxygen Minimum
Zones, PLOS ONE, 6, e29299, https://doi.org/10.1371/journal.pone.0029299, 2011.
Karlson, K., Bonsdorff, E., and Rosenberg, R.: The Impact of Benthic
Macrofauna for Nutrient Fluxes from Baltic Sea Sediments, AMBIO, 36, 161–167, 167, 2007.
Karstensen, J., Stramma, L., and Visbeck, M.: Oxygen minimum zones in the
eastern tropical Atlantic and Pacific oceans, Prog. Oceanogr., 77,
331–350, 2008.
Karstensen, J., Schütte, F., Pietri, A., Krahmann, G., Fiedler, B., Grundle, D., Hauss, H., Körtzinger, A., Löscher, C. R., Testor, P., Vieira, N., and Visbeck, M.: Upwelling and isolation in oxygen-depleted anticyclonic modewater eddies and implications for nitrate cycling, Biogeosciences, 14, 2167–2181, https://doi.org/10.5194/bg-14-2167-2017, 2017.
Keeling, R. F., Körtzinger, A., and Gruber, N.: Ocean Deoxygenation in a
Warming World, Annu. Rev. Mar. Sci., 2, 199–229, 2009.
Kendall, C., Elliott, E. M., and Wankel, S. D.: Tracing anthropogenic inputs
of nitrogen to ecosystems, in: Stable Isotopes in Ecology and Environmental
Science, edited by: Michener, R. H. and Lajtha, K., Blackwell Publshing, 2007.
Kessarkar, P. M., Naqvi, S. W. A., Thamban, M., Fernandes, L. L., Siebert,
C., Rao, V. P., Kawahata, H., Ittekkot, V., and Frank, M.: Variations in
Denitrification and Ventilation Within the Arabian Sea Oxygen Minimum Zone
During the Holocene, Geochem. Geophy. Geosy., 19, 2179–2193,
2018.
Koho, K. A., Nierop, K. G. J., Moodley, L., Middelburg, J. J., Pozzato, L., Soetaert, K., van der Plicht, J., and Reichart, G.-J.: Microbial bioavailability regulates organic matter preservation in marine sediments, Biogeosciences, 10, 1131–1141, https://doi.org/10.5194/bg-10-1131-2013, 2013.
Kraal, P., Slomp, C. P., Reed, D. C., Reichart, G.-J., and Poulton, S. W.: Sedimentary phosphorus and iron cycling in and below the oxygen minimum zone of the northern Arabian Sea, Biogeosciences, 9, 2603–2624, https://doi.org/10.5194/bg-9-2603-2012, 2012.
Kumar, D., M., Naqvi, S. W. A., George, M. D., and Jayakumar, A.: A sink for
atmospheric carbon dioxide in the northeastern Indian Ocean, J.
Geophys. Res., 101, 18121–18125, 1996.
Kumar, S. P., Nuncio, M., Ramaiah, N., Sardesai, S., Narvekar, J.,
Fernandes, V., and Paul, J. T.: Eddy-mediated biological productivity in the
Bay of Bengal during fall and spring intermonsoons, Deep-Sea Res. Pt.
I, 54, 1619–1640, 2007.
Kurian, S., Kessarkar, P. M., Purnachandra Rao, V., Reshma, K., Sarkar, A.,
Pattan, J. N., and Naqvi, S. W. A.: Controls on organic matter distribution
in oxygen minimum zone sediments from the continental slope off western
India, J. Mar. Syst., 207, 103–118, https://doi.org/10.1016/j.jmarsys.2018.09.003, 2018. 103118, 2018.
Kuypers, M. M. M., Sleikers, A. O., Lavik, G., Schmid, M., Jorgensen, B. B.,
Kuenen, J. G., Damsté, J. S. S., Strous, M., and Jetten, M. S. M.:
Anaerobic ammonium oxidation by anammox bacteria in the Black Sea, Nature,
422, 608–611, 2001.
Kwiatkowski, L., Torres, O., Bopp, L., Aumont, O., Chamberlain, M., Christian, J. R., Dunne, J. P., Gehlen, M., Ilyina, T., John, J. G., Lenton, A., Li, H., Lovenduski, N. S., Orr, J. C., Palmieri, J., Santana-Falcón, Y., Schwinger, J., Séférian, R., Stock, C. A., Tagliabue, A., Takano, Y., Tjiputra, J., Toyama, K., Tsujino, H., Watanabe, M., Yamamoto, A., Yool, A., and Ziehn, T.: Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections, Biogeosciences, 17, 3439–3470, https://doi.org/10.5194/bg-17-3439-2020, 2020.
Lachkar, Z., Smith, S., Lévy, M., and Pauluis, O.: Eddies reduce
denitrification and compress habitats in the Arabian Sea, Geophys.
Res. Lett., 43, 9148–9156, 2016.
Lachkar, Z., Lévy, M., and Smith, S.: Intensification and deepening of the Arabian Sea oxygen minimum zone in response to increase in Indian monsoon wind intensity, Biogeosciences, 15, 159–186, https://doi.org/10.5194/bg-15-159-2018, 2018.
Lachkar, Z., Lévy, M., and Smith, K. S.: Strong Intensification of the
Arabian Sea Oxygen Minimum Zone in Response to Arabian Gulf Warming,
Geophys. Res. Lett., 46, 5420–5429, 2019.
Laufkötter, C., John, J. G., Stock, C. A., and Dunne, J. P.: Temperature
and oxygen dependence of the remineralization of organic matter, Global
Biogeochem. Cy., 31, 1038–1050, 2017.
Law, G. T. W., Cowie, G. L., Breuer, E. R., Schwartz, M. C., Martyn Harvey,
S., Woulds, C., Shimmield, T. M., Shimmield, G. B., and Doig, K. A.: Rates
and Regulation of Microbially Mediated Aerobic and Anaerobic Carbon
Oxidation Reactions in Continental Margin Sediments from the Northeastern
Arabian Sea (Pakistan Margin), Indian Ocean Biogeochemical Processes and
Ecological Variability, in: Geophysical Monograph Series, 299–319, https://doi.org/10.1029/2008GM000765,
2009.
Lengger, S. K., Rush, D., Mayser, J. P., Blewett, J., Schwartz-Narbonne, R., Talbot, H. M., Middelburg, J. J., Jetten, M. S. M., Schouten, S., Sinninghe Damsté, J. S., and Pancost, R. D.: Dark carbon fixation in the Arabian Sea oxygen minimum zone contributes to sedimentary organic carbon (SOM), Global Biogeochem. Cy., 33, 1715–1732, https://doi.org/10.1029/2019GB006282, 2019.
Lengger, S., Rush, D., Mayser, J. P., Blewett, J., Schwartz-Narbonne, R.,
Talbot, H., Middelburg, J. J., Jetten, M. S. M., Schouten, S., Sinninghe
Damsté, J. S., and Pancost, R. D.: Dark carbon fixation contributes to
sedimentary organic carbon in the Arabian Sea oxygen minimum zone, Global
Biogeochem. Cy., 33, 1715–1732, https://doi.org/10.1029/2019GB006282, 2020.
Lenton, T. M. and Watson, A. J.: Revolutions that made the Earth, Oxford
University Press, Oxford, 196 pp., 2011.
Levin, L. A., Huggett, C. L., and Wishner, K. F.: Control of deep-sea
benthic community structure by oxygen and organic-matter gradients in the
eastern Pacific Ocean, J. Mar. Res., 49, 763–800, 1991.
Levin, L. A., Ekau, W., Gooday, A. J., Jorissen, F., Middelburg, J. J., Naqvi, S. W. A., Neira, C., Rabalais, N. N., and Zhang, J.: Effects of natural and human-induced hypoxia on coastal benthos, Biogeosciences, 6, 2063–2098, https://doi.org/10.5194/bg-6-2063-2009, 2009a.
Levin, L. A., Whitcraft, C. R., Mendoza, G. F., Gonzalez, J. P., and Cowie,
G.: Oxygen and organic matter thresholds for benthic faunal activity on the
Pakistan margin oxygen minimum zone (700–1100 m), Deep-Sea Res. Pt. II, 56, 449–471, 2009b.
Levin, L. A., Gage, J. D., Martin, C., and Lamont, P. A.: Macrobenthic
community structure within and beneath the oxygen minimum zone, NW Arabian
Sea, Deep-Sea Res. Pt. II, 47,
189–226, 2000.
Longhurst, A. R.: Vertical distribution of zooplankton in relation to the
eastern Pacific oxygen minimum, Deep-Sea Res. Oceanogr.c
Abstract., 14, 51–63, 1967.
Lotliker, A. A., Baliarsingh, S. K., Trainer, V. L., Wells, M. L., Wilson,
C., Udaya Bhaskar, T. V. S., Samanta, A., and Shahimol, S. R.:
Characterization of oceanic Noctiluca blooms not associated with hypoxia in
the Northeastern Arabian Sea, Harmful Algae, 74, 46–57, 2018.
Lucas, C. H., Jones, D. O. B., Hollyhead, C. J., Condon, R. H., Duarte, C.
M., Graham, W. M., Robinson, K. L., Pitt, K. A., Schildhauer, M., and
Regetz, J.: Gelatinous zooplankton biomass in the global oceans: geographic
variation and environmental drivers, Glob. Ecol. Biogeogr., 23,
701–714, 2014.
Lyons, T. W., Reinhard, C. T., and Planavsky, N. J.: The rise of oxygen in
Earth/'s early ocean and atmosphere, Nature, 506, 307–315, 2014.
Mahesh, B. S. and Banakar, V. K.: Change in the intensity of low-salinity
water inflow from the Bay of Bengal into the Eastern Arabian Sea from the
Last Glacial Maximum to the Holocene: Implications for monsoon variations,
Paleogeogr. Paleocl., 397, 31–37, 2014.
Mariotti, A., Germon, J. C., Hubert, P., Kaiser, P., Letolle, R., Tardieux,
A., and Tardieux, P.: Experimental determination of nitrogen kinetic isotope
fractionation: Some principles; illustration for the denitrification and
nitrification processes, Plant Soil, 62, 413–430, 1981.
Martin, B., Koppelmann, R., and Kassatov, P.: Ecological relevance of salps
and doliolids in the northern Benguela Upwelling System, J. Plank.
Res., 39, 290–304, 2017.
McCartney, M. S.: Subantarctic Mode Water, in: A Voyage of Discovery: George
Deacon 70th Anniversary Volume, edited by: Angel, M. V., Supplement to Deep-Sea
Research, Pergamon Press, Oxford, UK, 1977.
McCreary Jr., J. P., Yu, Z., Hood, R. R., Vinaychandran, P. N., Furue, R.,
Ishida, A., and Richards, K. J.: Dynamics of the Indian-Ocean oxygen minimum
zones, Prog. Oceanogr., 112/113, 15–37, 2013.
McElroy, M. B.: Marine biological controls on atmospheric CO2 and
climate, Nature, 302, 328–329, 1983.
McGillicuddy, D. J.: Mechanisms of Physical-Biological-Biogeochemical
Interaction at the Oceanic Mesoscale, Annu. Rev. Mar. Sci.e, 8,
125–159, 2016.
Middelburg, J. J.: Chemoautotrophy in the ocean, Geophys. Res.h
Lett., 38, L24604, https://doi.org/10.1029/2011gl049725, 2011.
Middelburg, J. J. and Levin, L. A.: Coastal hypoxia and sediment biogeochemistry, Biogeosciences, 6, 1273–1293, https://doi.org/10.5194/bg-6-1273-2009, 2009.
Möbius, J., Gaye, B., Lahajnar, N., Bahlmann, E., and Emeis, K.-C.:
Influence of diagenesis on sedimentary 15∘ N in the Arabian Sea over the last
130 kyr, Mar. Geol., 284, 127–138, 2011.
Morcos, S. A. and AbdAllah, A. M.: Oceanography of the Gulf of Aden: John Murray–Mabahiss Expedition 1933–1934 Revisited, Egypt. J. Aquat. Res., 38, 77–91, https://doi.org/10.1016/j.ejar.2012.12.001, 2012.
Naidu, P. D. and Govil, P.: New evidence on the sequence of deglacial
warming in the tropical Indian Ocean, J. Quaternary Sci., 25,
1138–1143, 2010.
Naqvi, S. A. S.: Evidence for ocean deoxygenation and its patterns: Indian
Ocean, in: Ocean deoxygenation: Everyone's problem, edited by: Laffoley, D. and Baxter,
J. M., IUCN, Gland, Switzerland, 2019.
Naqvi, S. W. A. and Shailaja, M. S.: Activity of the respiratory electron
transport system and respiration rates within the oxygen minimum layer of
the Arabian Sea, Deep-Sea Res. Pt. II, 40, 687–695, 1993.
Naqvi, S. W. A., Noronha, R. J., and Reddy, C. V. G.: Denitrification in the
Arabian Sea, Deep-Sea Res., 29, 459–469, 1982.
Naqvi, S. W. A., Yoshinari, T., Jayakumar, A., Altabet, M. A., Narvekar, P.
V., Devol, A. H., Brandes, J. A., and Codispoti, L. A.: Budgetary and
biogeochemical implications of N2O isotope signatures in the Arabian
Sea, Nature, 394, 462–464, 1998.
Naqvi, S. W. A., Jayakumar, D. A., Narvekar, P. V., Naik, H., Sarma, V. V.
S. S., D'Souza, W., Joseph, S., and George, M. D.: Increased marine
production of N2O due to intensifying anoxia on the Indian continental
shelf, Nature, 408, 346–349, 2000.
Naqvi, S. W. A., Moffett, J. W., Gauns, M. U., Narvekar, P. V., Pratihary, A. K., Naik, H., Shenoy, D. M., Jayakumar, D. A., Goepfert, T. J., Patra, P. K., Al-Azri, A., and Ahmed, S. I.: The Arabian Sea as a high-nutrient, low-chlorophyll region during the late Southwest Monsoon, Biogeosciences, 7, 2091–2100, https://doi.org/10.5194/bg-7-2091-2010, 2010.
Naqvi, W. A.: Geographical extent of denitrification in the Arabian Sea in
relation to some physical processes, Oceanol. Ac., 14, 281–290, 1991.
Olson, D. B., Hitchcock, G. L., Fine, R. A., and Warren, B. A.: Maintenance
of the low-oxygen layer in the central Arabian Sea, Deep-Sea Res. Pt. II,
40, 673–685, 1993.
Oschlies, A., Duteil, O., Getzlaff, J., Koeve, W., Landolfi, A., and
Schmidtko, S.: Patterns of deoxygenation: sensitivity to natural and
anthropogenic drivers, Philosophical Transactions of the Royal Society A:
Mathematical, Phys. Eng. Sci., 375, 20160325, https://doi.org/10.1098/rsta.2016.0325, 2017.
Oschlies, A., Brandt, P., Stramma, L., and Schmidtko, S.: Drivers and
mechanisms of ocean deoxygenation, Nat. Geosci., 11, 467–473, 2018.
Oschlies, A. and Garcon, V.: Eddy-induced enhancement of primary production
in a model of the North Atlantic Ocean, Nature, 394, 266–269, https://doi.org/10.1038/28373 1998.
Oschlies, A., Schulz, K. G., Riebesell, U., and Schmittner, A.: Simulated
21st century's increase in oceanic suboxia by CO2-enhanced biotic
carbon export, Global Biogeochem. Cy., 22, GB4008, https://doi.org/10.1029/2007gb003147, 2008.
Oschlies, A., Koeve, W., Landolfi, A., and Kähler, P.: Loss of fixed
nitrogen causes net oxygen gain in a warmer future ocean, Nat.
Commun., 10, 2805, https://doi.org/10.1038/s41467-019-10813-w, 2019.
Palter, J. B. and Trossman, D. S.: The Sensitivity of Future Ocean Oxygen to
Changes in Ocean Circulation, Global Biogeochem. Cy., 32, 738–751,
2018.
Park, W., Keenlyside, N., Latif, M., Stroh, A., Redler, R., Roeckner, E.,
and Madec, G.: Tropical Pacific Climate and Its Response to Global Warming
in the Kiel Climate Model, J. Climate, 22, 71–92, 2009.
Pichevin, L., Bard, E., Martinez, P., and Billy, I.: Evidence of ventilation
changes in the Arabian Sea during the late Quaternary: Implication for
denitrification and nitrous oxide emission, Global Biogeochem. Cy.,
21, GB4008, https://doi.org/10.1029/2006gb002852, 2007.
Piontkovski, S. A. and Al-Oufi, H. S.: The Omani shelf hypoxia and the
warming Arabian Sea, Int. J. Environ. Stud., 72,
256–264, 2015.
Piontkovski, S. A., Queste, B. Y., Al-Hashmi, K. A., Al-Shaaibi, A.,
Bryantseva, Y. V., and Popova, E. A.: Subsurface algal blooms of the
northwestern Arabian Sea, Mar. Ecol. Prog. Ser.s, 566, 67–78, 2017.
Pozzato, L., van Oevelen, D., Moodley, L., Soetaert, K., and Middelburg, J.
J.: Carbon processing at the deep-sea floor of the Arabian Sea oxygen
minimum zone: A tracer approach, J. Sea Res., 78, 45–58, 2013.
Prakash, S., Ramesh, R., Sheshshayee, M. S., Dwivedi, R. M., and Raman, M.:
Quantification of new production during a winter Noctiluca scintillans bloom in the Arabian Sea,
Geophys. Res. Lett., 35, L08604, https://doi.org/10.1029/2008gl033819, 2008.
Prakash, S., Roy, R., and Lotliker, A.: Revisiting the Noctiluca scintillans
paradox in northern Arabian Sea, Current Sci., 113, 1429–1434, 2017.
Prasanna Kumar, S., Nuncio, M., Narvekar, J., Kumar, A., Sardesai, d. S., De
Souza, S., Gauns, M., Ramaiah, N., and Madhupratap, M.: Are eddies nature's
trigger to enhance biological productivity in the Bay of Bengal?,
Geophys. Res. Lett., 31, L07309, https://doi.org/10.1029/2003GL019274, 2004.
Pratihary, A. K., Naqvi, S. W. A., Narvenkar, G., Kurian, S., Naik, H., Naik, R., and Manjunatha, B. R.: Benthic mineralization and nutrient exchange over the inner continental shelf of western India, Biogeosciences, 11, 2771–2791, https://doi.org/10.5194/bg-11-2771-2014, 2014.
Queste, B. Y., Vic, C., Heywood, K. J., and Piontkovski, S. A.: Physical
Controls on Oxygen Distribution and Denitrification Potential in the North
West Arabian Sea, Geophys. Res. Lett., 45, 4143–4152, 2018.
Raman, A. V., Damodaran, R., Levin, L. A., Ganesh, T., Rao, Y. K. V.,
Nanduri, S., and Madhusoodhanan, R.: Macrobenthos relative to the oxygen
minimum zone on the East Indian margin, Bay of Bengal, Mar. Ecol., 36,
679–700, 2015.
Ramaswamy, V., Nair, R. R., Manganini, S., Haake, B., and Ittekkot, V.:
Lithogenic fluxes to the deep Arabian Sea measured by sediment traps, Deep-Sea Res., 38, 169–184, 1991.
Rao, C. K., Naqvi, S. W. A., Kumar, M. D., Varaprasad, S. J. D., Jayakumar,
D. A., George, M. D., and Singbal, S. Y. S.: Hydrochemistry of the Bay of
Bengal: possible reasons for a different water-column cycling of carbon and
nitrogen from the Arabian Sea, Mar. Chem., 47, 279–290, 1994.
Rao, R. R., Molinari, R. L., and Festa, J. F.: Evolution of the
Climatological Near-Surface Thermal Structure of the Tropical Indian Ocean –
1. Description of Mean Monthly Mixed Layer Depth, and Sea Surface
Temperature, Surface Current, and Surface Meteorological Fields, J.
Geophys. Res., 94, 10801–10815, 1989.
Resplandy, L.: Will ocean zones with low oxygen levels expand or shrink?,
Nature, 557, 314–315, 2018.
Resplandy, L., Lévy, M., Madec, G., Pous, S., Aumont, O., and Kumar, D.:
Contribution of mesoscale processes to nutrient budgets in the Arabian Sea,
J. Geophys. Res.-Ocean., 116, C11007, https://doi.org/10.1029/2011JC007006, 2011.
Resplandy, L., Lévy, M., Bopp, L., Echevin, V., Pous, S., Sarma, V. V. S. S., and Kumar, D.: Controlling factors of the oxygen balance in the Arabian Sea's OMZ, Biogeosciences, 9, 5095–5109, https://doi.org/10.5194/bg-9-5095-2012, 2012.
Resplandy, L., Lévy, M., and McGillicuddy Jr., D. J.: Effects of
Eddy-Driven Subduction on Ocean Biological Carbon Pump, Global
Biogeochem. Cy., 33, 1071–1084, 2019.
Rixen, T. and Ittekkot, V.: Nitrogen deficits in the Arabian Sea,
implications from a three component mixing analysis, Deep-Sea Res. Pt. II,
1879–1891, 2005.
Rixen, T., Haake, B., and Ittekkot, V.: Sedimentation in the western Arabian
Sea: the role of coastal and open-ocean upwelling, Deep-Sea Res. Pt. II, 47,
2155–2178, 2000.
Rixen, T., Goyet, C., and Ittekkot, V.: Diatoms and their influence on the biologically mediated uptake of atmospheric CO2 in the Arabian Sea upwelling system, Biogeosciences, 3, 1–13, https://doi.org/10.5194/bg-3-1-2006, 2006.
Rixen, T., Gaye, B., and Emeis, K.-C.: The monsoon, carbon fluxes, and the
organic carbon pump in the northern Indian Ocean, Prog. Oceanogr.,
175, 24–39, 2019a.
Rixen, T., Gaye, B., Emeis, K.-C., and Ramaswamy, V.: The ballast effect of lithogenic matter and its influences on the carbon fluxes in the Indian Ocean, Biogeosciences, 16, 485–503, https://doi.org/10.5194/bg-16-485-2019, 2019b.
Rixen, T., Baum, A., Gaye, B., and Nagel, B.: Seasonal and interannual variations in the nitrogen cycle in the Arabian Sea, Biogeosciences, 11, 5733–5747, https://doi.org/10.5194/bg-11-5733-2014, 2014.
Rosenberg, R.: Marine benthic faunal successional stages and related
sediment activity, Sci. Mar., 66, 107–119, 2001.
Saltzman, J. and Wishner, K. F.: Zooplankton ecology in the eastern tropical
Pacific oxygen minimum zone above a seamount: 2. Vertical distribution of
copepods, Deep-Sea Res. Pt. I, 44,
931–954, 1997.
Sánchez-Baracaldo, P.: Origin of marine planktonic cyanobacteria,
Sci. Rep., 5, 17418, https://doi.org/10.1038/srep17418, 2015.
Saraswathy, M. and Iyer, H. K.: Ecology of Pleuromamma indica Wolfenden (Copepoda – Calanoida)
in the Indian Ocean, Indian J. Mar. Sci., 15, 219–222, 1986.
Sarkar, A., Sengupta, S., McArthur, J. M., Bera, M. K., Bushan, R., Samanta,
A., and Agrawal, S.: Evolution of Ganges-Brahmaputra western delta plain:
clues from sedimentology and carbon isotopes, Quaternary Sci. Rev.,
28, 2564–2581, 2009.
Sarma, V. and Udaya Bhaskar, T.: Ventilation of oxygen to oxygen minimum
zone due to anticyclonic eddies in the Bay of Bengal, J. Geophys.
Res.-Biogeo., 123, 2145–2153, 2018.
Sarma, V., Jagadeesan, L., Dalabehera, H., Rao, D., Kumar, G., Durgadevi,
D., Yadav, K., Behera, S., and Priya, M.: Role of eddies on intensity of
oxygen minimum zone in the Bay of Bengal, Cont. Shelf Res., 168,
48–53, 2018.
Sastry, J. S. and D'Souza, R. S.: Upwelling & Upward Mixing in the
Arabian Sea, Indian J. Mar. Sci., 1, 17–27, 1972.
Schlitzer, R.: Applying the adjoint method for biogeochemical modeling,
Export of particulate organic matter in the World Ocean, in: Inverse Methods
in Biogeochemical Cycles, edited by: Kasibhata, P., AGU Monograph, AGU, 2000.
Schlitzer, R.: Carbon export fluxes in the Southern Ocean: results from
inverse modeling and comparison with satellite-based estimates, Deep-Sea
Res. Pt. II, 49, 1623–1644, 2002.
Schmidt, H., Czeschel, R., and Visbeck, M.: Seasonal variability of the circulation in the Arabian Sea at intermediate depth and its link to the Oxygen Minimum Zone, Ocean Sci. Discuss., https://doi.org/10.5194/os-2020-9, in review, 2020.
Schmidtko, S., Stramma, L., and Visbeck, M.: Decline in global oceanic
oxygen content during the past five decades, Nature, 542, 335–339, https://doi.org/10.1038/nature21399, 2017.
Schott, F. and McCreary Jr., J. P.: The monsoon circulation of the Indian
Ocean, Prog. Oceanogr., 51, 1–123, 2001.
Schott, G.: Geographie des Indischen und Stillen Ozeans, Boysen, Hamburg,
Germany, 1935.
Schunck, H., Lavik, G., Desai, D. K., Großkopf, T., Kalvelage, T.,
Löscher, C. R., Paulmier, A., Contreras, S., Siegel, H., Holtappels, M.,
Rosenstiel, P., Schilhabel, M. B., Graco, M., Schmitz, R. A., Kuypers, M. M.
M., and LaRoche, J.: Giant Hydrogen Sulfide Plume in the Oxygen Minimum Zone
off Peru Supports Chemolithoautotrophy, PLOS ONE, 8, e68661, https://doi.org/10.1371/journal.pone.0068661, 2013.
Schütte, F., Karstensen, J., Krahmann, G., Hauss, H., Fiedler, B., Brandt, P., Visbeck, M., and Körtzinger, A.: Characterization of “dead-zone” eddies in the eastern tropical North Atlantic, Biogeosciences, 13, 5865–5881, https://doi.org/10.5194/bg-13-5865-2016, 2016.
Schwartz, M. C., Woulds, C., and Cowie, G. L.: Sedimentary denitrification
rates across the Arabian Sea oxygen minimum zone, Deep-Sea Res. Pt. II, 56, 324–332, 2009.
Séférian, R., Berthet, S., Yool, A., Palmiéri, J., Bopp, L.,
Tagliabue, A., Kwiatkowski, L., Aumont, O., Christian, J., Dunne, J.,
Gehlen, M., Ilyina, T., John, J. G., Li, H., Long, M. C., Luo, J. Y.,
Nakano, H., Romanou, A., Schwinger, J., Stock, C., Santana-Falcón, Y.,
Takano, Y., Tjiputra, J., Tsujino, H., Watanabe, M., Wu, T., Wu, F., and
Yamamoto, A.: Tracking Improvement in Simulated Marine Biogeochemistry
Between CMIP5 and CMIP6, Curr. Clim. Change Rep., 6, 95–119, 2020.
Segschneider, J. and Bendtsen, J.: Temperature-dependent remineralization in
a warming ocean increases surface pCO2 through changes in marine ecosystem
composition, Global Biogeochem. Cy., 27, 1214–1225, 2013.
Segschneider, J., Schneider, B., and Khon, V.: Climate and marine biogeochemistry during the Holocene from transient model simulations, Biogeosciences, 15, 3243–3266, https://doi.org/10.5194/bg-15-3243-2018, 2018.
Seiwell, H. R.: The minimum oxygen concentration in the western basin of the
North Atlantic, Papers Phys. Oceanogr. Meteorol., 5, 3–18,
1937.
Sen Gupta, R. and Naqvi, S. W. A.: Chemical Oceanography of the Indian
Ocean, North of the Equator, Deep-Sea Res., 31, 671–706, 1984.
Sewell, R. B. S. and Fage, L.: Minimum Oxygen Layer in the Ocean, Nature,
162, 949–951, 1948.
Shenoy, D. M., Suresh, I., Uskaikar, H., Kurian, S., Vidya, P. J.,
Shirodkar, G., Gauns, M. U., and Naqvi, S. W. A.: Variability of dissolved
oxygen in the Arabian Sea Oxygen Minimum Zone and its driving mechanisms,
J. Mar. Syst., 204, 103310, https://doi.org/10.1016/j.jmarsys.2020.103310, 2020.
Shetye, S. R. and Shenoi, S. S. C.: Seasonal cycle of surface circulation in
the coastal North Indian Ocean, P. Indian A.
S.-Earth, 97, 53–62, 1988.
Shetye, S. R., Gouveia, A. D., Shenoi, S. S. C., Sundar, D., Michael, G. S.,
Almeida, A. M., and Santanam, K.: Hydrography and circulation off the west
coast of India during the Southwest Monsoon 1987, J. Mar.
Res., 48, 359–378, 1990.
Sigman, D. M., Granger, J., DiFiore, P. J., Lehmann, M. F., Ho, R., Cane,
G., and van Geen, A.: Coupled nitrogen and oxygen isotope measurements of
nitrate along the eastern North Pacific margin, Global Biogeochem.
Cy., 19, GB4022, https://doi.org/10.1029/2005GB002458, 2005.
Singh, A., Gandhi, N., Ramesh, R., and Prakash, S.: Role of cyclonic eddy in
enhancing primary and new production in the Bay of Bengal, J. Sea
Res., 97, 5–13, 2015.
Smallwood, B. J., Wolff, G. A., Bett, B. J., Smith, C. R., Hoover, D., Gage,
J. D., and Patience, A.: Megafauna Can Control the Quality of Organic Matter
in Marine Sediments, Naturwissenschaften, 86, 320–324, 1999.
Smith, C. R., A. Levin, L., Hoover, D. J., McMurtry, G., and Gage, J. D.:
Variations in bioturbation across the oxygen minimum zone in the northwest
Arabian Sea, Deep-Sea Res. Pt. II, 47,
227–257, 2000.
Smith, S. L.: Understanding the Arabian Sea: Reflections on the 1994–1996
Arabian Sea Expedition, Deep-Sea Res. Pt. II, 48, 1385–1402, 2001.
Smith, S. L. and Madhupratap, M.: Mesozooplankton of the Arabian Sea:
Patterns influenced by seasons, upwelling, and oxygen concentrations,
Prog. Oceanogr., 65, 214–239, 2005.
Smith, S. L., Roman, M., Prusova, I., Wishner, K., Gowing, M., Codispoti, L.
A., Barber, R., Marra, J., and Flagg, C.: Seasonal response of zooplankton
to monsoonal reversals in the Arabian Sea, Deep-Sea Res. Pt. II, 45, 2369–2403, 1998a.
Smith, S. L., Codispoti, L. A., Morrison, J. M., and Barber, R. T.: The
1994–1996 Arabian Sea Expedition: An integrated, interdisciplinary
investigation of the response of the northwestern Indian Ocean to monsoonal
forcing, Deep-Sea Res. Pt. II, 45,
1905–1915, 1998b.
Smith, T. M., Reynolds, R. W., Peterson, T. C., and Lawrimore, J.:
Improvements to NOAA's historival merged land-ocean surface temperature
analysis (1880–2006), J. Climate, 21, 2283–2296, 2008.
Sokoll, S., Holtappels, M., Lam, P., Collins, G., Schlüter, M., Lavik,
G., and Kuypers, M.: Benthic Nitrogen Loss in the Arabian Sea Off Pakistan,
Front. Microbiol., 3, 1–17, 2012.
Somasundar, K., Rajendran, A., Dileep Kumar, M., and Sen Gupta, R.: Carbon
and nitrogen budgets of the Arabian Sea, Mar. Chem., 30, 363–377,
1990.
Somes, C. J., Oschlies, A., and Schmittner, A.: Isotopic constraints on the pre-industrial oceanic nitrogen budget, Biogeosciences, 10, 5889–5910, https://doi.org/10.5194/bg-10-5889-2013, 2013.
Stramma, L., Fischer, J., and Schott, F.: The flow field off southwest India
at 8∘ N during the southwest monsoon of August 1993, J. Mar.
Res., 54, 55-72, 1996.
Stramma, L., Johnson, G. C., Sprintall, J., and Mohrholz, V.: Expanding
oxygen-minimum zones in the tropical oceans, Science, 320, 655–658, 2008.
Stramma, L., Johnson, G. C., Firing, E., and Schmidtko, S.: Eastern Pacific
oxygen minimum zones: Supply paths and multidecadal changes, J. Geophys.
Res., 115, C09011, https://doi.org/10.1029/2009jc005976, 2010a.
Stramma, L., Schmidtko, S., Levin, L. A., and Johnson, G. C.: Ocean oxygen
minima expansions and their biological impacts, Deep-Sea Res. Pt. I, 57, 587–595, 2010b.
Sudheesh, V., Gupta, G. V. M., Sudharma, K. V., Naik, H., Shenoy, D. M.,
Sudhakar, M., and Naqvi, S. W. A.: Upwelling intensity modulates N2O
concentrations over the western Indian shelf, J. Geophys.
Res.-Ocean., 121, 8551–8565, 2016.
Suess, E.: Particulate organic carbon flux in the oceans – surface
productivity and oxygen utilization, Nature, 288, 260–263, 1980.
Suthhof, A., Ittekkot, V., and Gaye-Haake, B.: Millenial-scale oscillation
of denitrification intensitiy in the Arabian Sea during the late Quaternary
and its potential influence on atmospheric N2O and global climate,
Global Biogeochem. Cy., 15, 637–650, 2001.
Sverdrup, H. U.: On the Explanation of the Oxygen Minima and Maxima in the
Oceans1), ICES J. Mar. Sci., 13, 163–172, 1938.
Sverdrup, H. U., Johnson, M. W., and Flemming, R. H.: The Oceans, their
physics chemistry and general biology, Prentice-Hall, Englewood Cliffs,
N.J., 1942.
Swallow, J. C.: Some aspects of the physical oceanography of the Indian
Ocean, Deep-Sea Res. Pt. A, 31, 639–650,
1984.
Sweetman, A. K., Chelsky, A., Pitt, K. A., Andrade, H., van Oevelen, D., and
Renaud, P. E.: Jellyfish decomposition at the seafloor rapidly alters
biogeochemical cycling and carbon flow through benthic food-webs, Limnol. Oceanogr., 61, 1449–1461, 2016.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and the Experiment Design, Bull. Am. Meteorol. Soc., 93, 485–498 https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
Tesdal, J.-E., Galbraith, E. D., and Kienast, M.: Nitrogen isotopes in bulk marine sediment: linking seafloor observations with subseafloor records, Biogeosciences, 10, 101–118, https://doi.org/10.5194/bg-10-101-2013, 2013.
Thamdrup, B., Dalsgaard, T., and Revsbech, N. P.: Widespread functional
anoxia in the oxygen minimum zone of the Eastern South Pacific, Deep-Sea
Res. Pt. I, 65, 36–45, 2012.
Ulloa, O., Canfield, D. E., DeLong, E. F., Letelier, R. M., and Stewart, F.
J.: Microbial oceanography of anoxic oxygen minimum zones, P.
Natl. Acad. Sci., 109, 15996, https://doi.org/10.1073/pnas.1205009109, 2012.
Unger, D., Schaefer, P., Ittekkot, V., and Gaye, B.: Nitrogen isotopic
composition of sinking particles from the southern Bay of Bengal: Evidence
for variable nitrogen sources, Deep-Sea Res., 1, 53, 1658–1676, 2006.
Van Mooy, B. A. S., Keil, R. G., and Devol, A. H.: Impact of suboxia on
sinking particulate organic carbon: Enhanced carbon flux and preferential
degradation of amino acids via denitrification, Geochim. Cosmochim.
Ac., 66, 457–465, 2002.
Vaquer-Sunyer, R. and Duarte, C. M.: Thresholds of hypoxia for marine
biodiversity, P. Natl. Acad. Sci., 105, 15452, https://doi.org/10.1073/pnas.0803833105,
2008.
Vic, C., Roullet, G., Capet, X., Carton, X., Molemaker, M. J., and Gula, J.:
Eddy topography interactions and the fate of the Persian Gulf Outflow,
J. Geophys. Res.-Ocean., 120, 6700–6717, 2015.
Vinogradov, M. E. and Voronina, N. M.: Influence of the oxygen deficit on
the distribution of plankton in the Arabian Sea, Deep-Sea Res.
Oceanogr. Abstracts, 9, 523–530, 1962.
Voss, M., Deutsch, B., Elmgren, R., Humborg, C., Kuuppo, P., Pastuszak, M., Rolff, C., and Schulte, U.: Source identification of nitrate by means of isotopic tracers in the Baltic Sea catchments, Biogeosciences, 3, 663–676, https://doi.org/10.5194/bg-3-663-2006, 2006.
Wang, L., Lin, X., Goes, J. I., and Lin, S.: Phylogenetic Analyses of Three
Genes of Pedinomonas noctilucae, the Green Endosymbiont of the Marine
Dinoflagellate Noctiluca scintillans, Reveal its Affiliation to the Order
Marsupiomonadales (Chlorophyta, Pedinophyceae) under the Reinstated Name
Protoeuglena noctilucae, Protist, 167, 205–216, 2016.
Ward, B. B., Devol, A. H., Rich, J. J., Chang, B. X., Bulow, S. E., Naik,
H., Pratihary, A., and Jayakumar, A.: Denitrification as the dominant
nitrogen loss process in the Arabian Sea, Nature, 461, 78–81, 2009.
Weeks, S. J., Currie, B., and Bakun, A.: Massive emissions of toxic gas in
the Atlantic, Nature, 415, 493–494, 2002.
White, C. M., Woulds, C., Cowie, G. L., Stott, A., and Kitazato, H.:
Resilience of benthic ecosystem C-cycling to future changes in dissolved
oxygen availability, Deep-Sea Res. Pt. II, 161, 29–37, 2019.
Wishner, K. F., Ashjian, C. J., Gelfman, C., Gowing, M. M., Kann, L., Levin,
L. A., Mullineaux, L. S., and Saltzman, J.: Pelagic and benthic ecology of
the lower interface of the Eastern Tropical Pacific oxygen minimum zone,
Deep-Sea Res. Pt. I, 42, 93–115, 1995.
Wishner, K. F., Gowing, M. M., and Gelfman, C.: Mesozooplankton biomass in
the upper 1000 m in the Arabian Sea: overall seasonal and geographic
patterns, and relationship to oxygen gradients, Deep-Sea Res. Pt. II, 45, 2405–2432, 1998.
Wishner, K. F., Gelfman, C., Gowing, M. M., Outram, D. M., Rapien, M., and
Williams, R. L.: Vertical zonation and distributions of calanoid copepods
through the lower oxycline of the Arabian Sea oxygen minimum zone, Prog. Oceanogr., 78, 163–191, 2008.
Woulds, C., Cowie, G. L., Levin, L. A., Andersson, J. H., Middelburg, J. J.,
Vandewiele, S., Lamont, P. A., Larkin, K. E., Gooday, A. J., Schumacher, S.,
Whitcraft, C., Jeffreys, R. M., and Schwartz, M.: Oxygen as a control on sea
floor biological communities and their roles in sedimentary carbon cycling,
Limnol. Oceanogr., 52, 1698–1709, 2007.
Woulds, C., Andersson, J. H., Cowie, G. L., Middelburg, J. J., and Levin, L.
A.: The short-term fate of organic carbon in marine sediments: Comparing the
Pakistan margin to other regions, Deep-Sea Res. Pt. II, 56, 393–402, 2009.
Wyrtki, K.: Physical Oceanography of the Indian Ocean, in: The Biology of
the Indian Ocean, edited by: Zeitschel, B., Springer Verlag, Berlin, Heidelberg,
New York, 1973.
You, Y.: Seasonal variations of thermocline circulation and ventilation in
the Indian Ocean, J. Geophys. Res., 102, 10391–10422,
1997.
Short summary
The northern Indian Ocean hosts an extensive oxygen minimum zone (OMZ), which intensified due to human-induced global changes. This includes the occurrence of anoxic events on the Indian shelf and affects benthic ecosystems and the pelagic ecosystem structure in the Arabian Sea. Consequences for biogeochemical cycles are unknown, which, in addition to the poor representation of mesoscale features, reduces the reliability of predictions of the future OMZ development in the northern Indian Ocean.
The northern Indian Ocean hosts an extensive oxygen minimum zone (OMZ), which intensified due to...
Altmetrics
Final-revised paper
Preprint