Articles | Volume 17, issue 3
https://doi.org/10.5194/bg-17-635-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-17-635-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The Arctic picoeukaryote Micromonas pusilla benefits from ocean acidification under constant and dynamic light
Emily White
CORRESPONDING AUTHOR
Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und
Meeresforschung, 27570 Bremerhaven, Germany
Clara J. M. Hoppe
Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und
Meeresforschung, 27570 Bremerhaven, Germany
Björn Rost
Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und
Meeresforschung, 27570 Bremerhaven, Germany
Fachbereich Biologie/Chemie, Universität Bremen, Leobener Strasse, 28359 Bremen, Germany
Related authors
No articles found.
Hanne H. Christiansen, Ilkka S. O. Matero, Lisa Baddeley, Kim Holmén, Clara J. M. Hoppe, Maarten J. J. E. Loonen, Rune Storvold, Vito Vitale, Agata Zaborska, and Heikki Lihavainen
Earth Syst. Dynam., 15, 933–946, https://doi.org/10.5194/esd-15-933-2024, https://doi.org/10.5194/esd-15-933-2024, 2024
Short summary
Short summary
We provide an overview of the state and future of Earth system science in Svalbard as a synthesis of the recommendations made by the scientific community active in the archipelago. This work helped identify foci for developments of the observing system and a path forward to reach the full interdisciplinarity needed to operate at Earth system science scale. Better understanding of the processes in Svalbard will benefit both process-level understanding and Earth system models.
Azzurra Spagnesi, Elena Barbaro, Matteo Feltracco, Federico Scoto, Marco Vecchiato, Massimiliano Vardè, Mauro Mazzola, François Yves Burgay, Federica Bruschi, Clara Jule Marie Hoppe, Allison Bailey, Andrea Gambaro, Carlo Barbante, and Andrea Spolaor
EGUsphere, https://doi.org/10.5194/egusphere-2024-1393, https://doi.org/10.5194/egusphere-2024-1393, 2024
Short summary
Short summary
Svalbard is a relevant area to evaluate changes in local environmental processes induced by Arctic Amplification (AA). By comparing the snow chemical composition of the 2019–20 season with 2018–19 and 2020–21, we provide an overview of the potential impacts of AA on the Svalbard snowpack, and associated changes in aerosol production process, influenced by a complex interplay between atmospheric patterns, local and oceanic conditions that jointly drive snowpack impurity amounts and composition.
Karen M. Brandenburg, Björn Rost, Dedmer B. Van de Waal, Mirja Hoins, and Appy Sluijs
Biogeosciences, 19, 3305–3315, https://doi.org/10.5194/bg-19-3305-2022, https://doi.org/10.5194/bg-19-3305-2022, 2022
Short summary
Short summary
Reconstructions of past CO2 concentrations rely on proxy estimates, with one line of proxies relying on the CO2-dependence of stable carbon isotope fractionation in marine phytoplankton. Culturing experiments provide insights into which processes may impact this. We found, however, that the methods with which these culturing experiments are performed also influence 13C fractionation. Caution should therefore be taken when extrapolating results from these experiments to proxy applications.
Clara Jule Marie Hoppe, Clara M. Flintrop, and Björn Rost
Biogeosciences, 15, 4353–4365, https://doi.org/10.5194/bg-15-4353-2018, https://doi.org/10.5194/bg-15-4353-2018, 2018
Short summary
Short summary
Responses of the Arctic microalgae Micromonas pusilla to different pCO2 levels were investigated at two temperatures. We observed that warming and ocean acidification (OA) synergistically increased growth rates. Furthermore, elevated temperature shifted the pCO2 optimum of biomass production to higher levels. This seem to be caused by more efficient photosynthesis under warmer and more acidic conditions. Our findings explain the dominance of picoeukaryotes frequently observed in OA experiments.
Related subject area
Biodiversity and Ecosystem Function: Marine
Multifactorial effects of warming, low irradiance, and low salinity on Arctic kelps
Early life stages of fish under ocean alkalinity enhancement in coastal plankton communities
Planktonic foraminifera assemblage composition and flux dynamics inferred from an annual sediment trap record in the central Mediterranean Sea
Reefal ostracod assemblages from the Zanzibar Archipelago (Tanzania)
Composite calcite and opal test in Foraminifera (Rhizaria)
Influence of oxygen minimum zone on macrobenthic community structure in the northern Benguela Upwelling System: a macro-nematode perspective
Phytoplankton adaptation to steady or changing environments affects marine ecosystem functioning
Simulated terrestrial runoff shifts the metabolic balance of a coastal Mediterranean plankton community towards heterotrophy
Contrasting carbon cycling in the benthic food webs between a river-fed, high-energy canyon and an upper continental slope
A critical trade-off between nitrogen quota and growth allows Coccolithus braarudii life cycle phases to exploit varying environment
Structural complexity and benthic metabolism: resolving the links between carbon cycling and biodiversity in restored seagrass meadows
Building your own mountain: the effects, limits, and drawbacks of cold-water coral ecosystem engineering
Phytoplankton response to increased nickel in the context of ocean alkalinity enhancement
Year-long benthic measurements of environmental conditions indicate high sponge biomass is related to strong bottom currents over the Northern Labrador shelf
Diversity and density relationships between lebensspuren and tracemaking organisms: a study case from abyssal northwest Pacific
Technical note: An autonomous flow-through salinity and temperature perturbation mesocosm system for multi-stressor experiments
Reviews and syntheses: The clam before the storm – a meta-analysis showing the effect of combined climate change stressors on bivalves
A step towards measuring connectivity in the deep sea: elemental fingerprints of mollusk larval shells discriminate hydrothermal vent sites
Seasonal foraging behavior of Weddell seals relation to oceanographic environmental conditions in the Ross Sea, Antarctica
Spawner weight and ocean temperature drive Allee effect dynamics in Atlantic cod, Gadus morhua: inherent and emergent density regulation
Bacterioplankton dark CO2 fixation in oligotrophic waters
The bottom mixed layer depth as an indicator of subsurface Chlorophyll a distribution
Ideas and perspectives: The fluctuating nature of oxygen shapes the ecology of aquatic habitats and their biogeochemical cycles – the aquatic oxyscape
Impact of deoxygenation and warming on global marine species in the 21st century
Ecological divergence of a mesocosm in an eastern boundary upwelling system assessed with multi-marker environmental DNA metabarcoding
Unique benthic foraminiferal communities (stained) in diverse environments of sub-Antarctic fjords, South Georgia
Upwelled plankton community modulates surface bloom succession and nutrient availability in a natural plankton assemblage
First phytoplankton community assessment of the Kong Håkon VII Hav, Southern Ocean, during austral autumn
Early life stages of a Mediterranean coral are vulnerable to ocean warming and acidification
Mediterranean seagrasses as carbon sinks: methodological and regional differences
Contrasting vertical distributions of recent planktic foraminifera off Indonesia during the southeast monsoon: implications for paleoceanographic reconstructions
The onset of the spring phytoplankton bloom in the coastal North Sea supports the Disturbance Recovery Hypothesis
Species richness and functional attributes of fish assemblages across a large-scale salinity gradient in shallow coastal areas
Modeling the growth and sporulation dynamics of the macroalga Ulva in mixed-age populations in cultivation and the formation of green tides
Spatial changes in community composition and food web structure of mesozooplankton across the Adriatic basin (Mediterranean Sea)
Predicting mangrove forest dynamics across a soil salinity gradient using an individual-based vegetation model linked with plant hydraulics
Will daytime community calcification reflect reef accretion on future, degraded coral reefs?
Modeling polar marine ecosystem functions guided by bacterial physiological and taxonomic traits
Quantifying functional consequences of habitat degradation on a Caribbean coral reef
Enhanced chlorophyll-a concentration in the wake of Sable Island, eastern Canada, revealed by two decades of satellite observations: a response to grey seal population dynamics?
Population dynamics and reproduction strategies of planktonic foraminifera in the open ocean
The Bouraké semi-enclosed lagoon (New Caledonia) – a natural laboratory to study the lifelong adaptation of a coral reef ecosystem to extreme environmental conditions
Atypical, high-diversity assemblages of foraminifera in a mangrove estuary in northern Brazil
Permanent ectoplasmic structures in deep-sea Cibicides and Cibicidoides taxa – long-term observations at in situ pressure
Ideas and perspectives: Ushering the Indian Ocean into the UN Decade of Ocean Science for Sustainable Development (UNDOSSD) through marine ecosystem research and operational services – an early career's take
Persistent effects of sand extraction on habitats and associated benthic communities in the German Bight
Spatial patterns of ectoenzymatic kinetics in relation to biogeochemical properties in the Mediterranean Sea and the concentration of the fluorogenic substrate used
A 2-decade (1988–2009) record of diatom fluxes in the Mauritanian coastal upwelling: impact of low-frequency forcing and a two-step shift in the species composition
Review and syntheses: Impacts of turbidity flows on deep-sea benthic communities
Ideas and perspectives: When ocean acidification experiments are not the same, repeatability is not tested
Anaïs Lebrun, Cale A. Miller, Marc Meynadier, Steeve Comeau, Pierre Urrutti, Samir Alliouane, Robert Schlegel, Jean-Pierre Gattuso, and Frédéric Gazeau
Biogeosciences, 21, 4605–4620, https://doi.org/10.5194/bg-21-4605-2024, https://doi.org/10.5194/bg-21-4605-2024, 2024
Short summary
Short summary
We tested the effects of warming, low salinity, and low irradiance on Arctic kelps. We show that growth rates were similar across species and treatments. Alaria esculenta is adapted to low-light conditions. Saccharina latissima exhibited nitrogen limitation, suggesting coastal erosion and permafrost thawing could be beneficial. Laminaria digitata did not respond to the treatments. Gene expression of Hedophyllum nigripes and S. latissima indicated acclimation to the experimental treatments.
Silvan Urs Goldenberg, Ulf Riebesell, Daniel Brüggemann, Gregor Börner, Michael Sswat, Arild Folkvord, Maria Couret, Synne Spjelkavik, Nicolás Sánchez, Cornelia Jaspers, and Marta Moyano
Biogeosciences, 21, 4521–4532, https://doi.org/10.5194/bg-21-4521-2024, https://doi.org/10.5194/bg-21-4521-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is being evaluated as a carbon dioxide removal technology for climate change mitigation. With an experiment on species communities, we show that larval and juvenile fish can be resilient to the resulting perturbation of seawater. Fish may hence recruit successfully and continue to support fisheries' production in regions of OAE. Our findings help to establish an environmentally safe operating space for this ocean-based solution.
Thibauld M. Béjard, Andrés S. Rigual-Hernández, Javier P. Tarruella, José-Abel Flores, Anna Sanchez-Vidal, Irene Llamas-Cano, and Francisco J. Sierro
Biogeosciences, 21, 4051–4076, https://doi.org/10.5194/bg-21-4051-2024, https://doi.org/10.5194/bg-21-4051-2024, 2024
Short summary
Short summary
The Mediterranean Sea is regarded as a climate change hotspot. Documenting the population of planktonic foraminifera is crucial. In the Sicily Channel, fluxes are higher during winter and positively linked with chlorophyll a concentration and cool temperatures. A comparison with other Mediterranean sites shows the transitional aspect of the studied zone. Finally, modern populations significantly differ from those in the sediment, highlighting a possible effect of environmental change.
Skye Yunshu Tian, Martin Langer, Moriaki Yasuhara, and Chih-Lin Wei
Biogeosciences, 21, 3523–3536, https://doi.org/10.5194/bg-21-3523-2024, https://doi.org/10.5194/bg-21-3523-2024, 2024
Short summary
Short summary
Through the first large-scale study of meiobenthic ostracods from the diverse and productive reef ecosystem in the Zanzibar Archipelago, Tanzania, we found that the diversity and composition of ostracod assemblages as controlled by benthic habitats and human impacts were indicative of overall reef health, and we highlighted the usefulness of ostracods as a model proxy to monitor and understand the degradation of reef ecosystems from the coral-dominated phase to the algae-dominated phase.
Julien Richirt, Satoshi Okada, Yoshiyuki Ishitani, Katsuyuki Uematsu, Akihiro Tame, Kaya Oda, Noriyuki Isobe, Toyoho Ishimura, Masashi Tsuchiya, and Hidetaka Nomaki
Biogeosciences, 21, 3271–3288, https://doi.org/10.5194/bg-21-3271-2024, https://doi.org/10.5194/bg-21-3271-2024, 2024
Short summary
Short summary
We report the first benthic foraminifera with a composite test (i.e. shell) made of opal, which coats the inner part of the calcitic layer. Using comprehensive techniques, we describe the morphology and the composition of this novel opal layer and provide evidence that the opal is precipitated by the foraminifera itself. We explore the potential precipitation process and function(s) of this composite test and further discuss the possible implications for palaeoceanographic reconstructions.
Said Mohamed Hashim, Beth Wangui Waweru, and Agnes Muthumbi
Biogeosciences, 21, 2995–3006, https://doi.org/10.5194/bg-21-2995-2024, https://doi.org/10.5194/bg-21-2995-2024, 2024
Short summary
Short summary
The study investigates the impact of decreasing oxygen in the ocean on macrofaunal communities using the BUS as an example. It identifies distinct shifts in community composition and feeding guilds across oxygen zones, with nematodes dominating dysoxic areas. These findings underscore the complex responses of benthic organisms to oxygen gradients, crucial for understanding ecosystem dynamics in hypoxic environments and their implications for marine biodiversity and sustainability.
Isabell Hochfeld and Jana Hinners
EGUsphere, https://doi.org/10.5194/egusphere-2024-1246, https://doi.org/10.5194/egusphere-2024-1246, 2024
Short summary
Short summary
Ecosystem models disagree on future changes in marine ecosystem functioning. We suspect that the lack of phytoplankton adaptation represents a major uncertainty factor, given the key role that phytoplankton play in marine ecosystems. Using an evolutionary ecosystem model, we found that phytoplankton adaptation can notably change simulated ecosystem dynamics. Future models should include phytoplankton adaptation, otherwise they can systematically overestimate future ecosystem-level changes.
Tanguy Soulié, Francesca Vidussi, Justine Courboulès, Marie Heydon, Sébastien Mas, Florian Voron, Carolina Cantoni, Fabien Joux, and Behzad Mostajir
Biogeosciences, 21, 1887–1902, https://doi.org/10.5194/bg-21-1887-2024, https://doi.org/10.5194/bg-21-1887-2024, 2024
Short summary
Short summary
Due to climate change, it is projected that extreme rainfall events, which bring terrestrial matter into coastal seas, will occur more frequently in the Mediterranean region. To test the effects of runoffs of terrestrial matter on plankton communities from Mediterranean coastal waters, an in situ mesocosm experiment was conducted. The simulated runoff affected key processes mediated by plankton, such as primary production and respiration, suggesting major consequences of such events.
Chueh-Chen Tung, Yu-Shih Lin, Jian-Xiang Liao, Tzu-Hsuan Tu, James T. Liu, Li-Hung Lin, Pei-Ling Wang, and Chih-Lin Wei
Biogeosciences, 21, 1729–1756, https://doi.org/10.5194/bg-21-1729-2024, https://doi.org/10.5194/bg-21-1729-2024, 2024
Short summary
Short summary
This study contrasts seabed food webs between a river-fed, high-energy canyon and the nearby slope. We show higher organic carbon (OC) flows through the canyon than the slope. Bacteria dominated the canyon, while seabed fauna contributed more to the slope food web. Due to frequent perturbation, the canyon had a lower faunal stock and OC recycling. Only 4 % of the seabed OC flux enters the canyon food web, suggesting a significant role of the river-fed canyon in transporting OC to the deep sea.
Joost de Vries, Fanny Monteiro, Gerald Langer, Colin Brownlee, and Glen Wheeler
Biogeosciences, 21, 1707–1727, https://doi.org/10.5194/bg-21-1707-2024, https://doi.org/10.5194/bg-21-1707-2024, 2024
Short summary
Short summary
Calcifying phytoplankton (coccolithophores) utilize a life cycle in which they can grow and divide into two different phases. These two phases (HET and HOL) vary in terms of their physiology and distributions, with many unknowns about what the key differences are. Using a combination of lab experiments and model simulations, we find that nutrient storage is a critical difference between the two phases and that this difference allows them to inhabit different nitrogen input regimes.
Theodor Kindeberg, Karl Michael Attard, Jana Hüller, Julia Müller, Cintia Organo Quintana, and Eduardo Infantes
Biogeosciences, 21, 1685–1705, https://doi.org/10.5194/bg-21-1685-2024, https://doi.org/10.5194/bg-21-1685-2024, 2024
Short summary
Short summary
Seagrass meadows are hotspots for biodiversity and productivity, and planting seagrass is proposed as a tool for mitigating biodiversity loss and climate change. We assessed seagrass planted in different years and found that benthic oxygen and carbon fluxes increased as the seabed developed from bare sediments to a mature seagrass meadow. This increase was partly linked to the diversity of colonizing algae which increased the light-use efficiency of the seagrass meadow community.
Anna-Selma van der Kaaden, Sandra R. Maier, Siluo Chen, Laurence H. De Clippele, Evert de Froe, Theo Gerkema, Johan van de Koppel, Furu Mienis, Christian Mohn, Max Rietkerk, Karline Soetaert, and Dick van Oevelen
Biogeosciences, 21, 973–992, https://doi.org/10.5194/bg-21-973-2024, https://doi.org/10.5194/bg-21-973-2024, 2024
Short summary
Short summary
Combining hydrodynamic simulations and annotated videos, we separated which hydrodynamic variables that determine reef cover are engineered by cold-water corals and which are not. Around coral mounds, hydrodynamic zones seem to create a typical reef zonation, restricting corals from moving deeper (the expected response to climate warming). But non-engineered downward velocities in winter (e.g. deep winter mixing) seem more important for coral reef growth than coral engineering.
Xiaoke Xin, Giulia Faucher, and Ulf Riebesell
Biogeosciences, 21, 761–772, https://doi.org/10.5194/bg-21-761-2024, https://doi.org/10.5194/bg-21-761-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is a promising approach to remove CO2 by accelerating natural rock weathering. However, some of the alkaline substances contain trace metals which could be toxic to marine life. By exposing three representative phytoplankton species to Ni released from alkaline materials, we observed varying responses of phytoplankton to nickel concentrations, suggesting caution should be taken and toxic thresholds should be avoided in OAE with Ni-rich materials.
Evert de Froe, Igor Yashayaev, Christian Mohn, Johanne Vad, Furu Mienis, Gerard Duineveld, Ellen Kenchington, Erica Head, Steve Ross, Sabena Blackbird, George Wolff, Murray Roberts, Barry MacDonald, Graham Tulloch, and Dick van Oevelen
EGUsphere, https://doi.org/10.31223/X58968, https://doi.org/10.31223/X58968, 2024
Short summary
Short summary
Deep-sea sponge grounds are distributed globally and are considered hotspots of biological diversity and biogeochemical cycling. To date, little is known about the environmental constraints that control where deep-sea sponge grounds occur and what conditions favor high sponge biomass. Here, we characterize oceanographic conditions at two contrasting sponge grounds. Our results imply that sponges and associated fauna benefit from strong tidal currents and favorable regional ocean currents.
Olmo Miguez-Salas, Angelika Brandt, Henry Knauber, and Torben Riehl
Biogeosciences, 21, 641–655, https://doi.org/10.5194/bg-21-641-2024, https://doi.org/10.5194/bg-21-641-2024, 2024
Short summary
Short summary
In the deep sea, the interaction between benthic fauna (tracemakers) and substrate can be preserved as traces (i.e. lebensspuren), which are common features of seafloor landscapes, rendering them promising proxies for inferring biodiversity from marine images. No general correlation was observed between traces and benthic fauna. However, a local correlation was observed between specific stations depending on unknown tracemakers, tracemaker behaviour, and lebensspuren morphotypes.
Cale A. Miller, Pierre Urrutti, Jean-Pierre Gattuso, Steeve Comeau, Anaïs Lebrun, Samir Alliouane, Robert W. Schlegel, and Frédéric Gazeau
Biogeosciences, 21, 315–333, https://doi.org/10.5194/bg-21-315-2024, https://doi.org/10.5194/bg-21-315-2024, 2024
Short summary
Short summary
This work describes an experimental system that can replicate and manipulate environmental conditions in marine or aquatic systems. Here, we show how the temperature and salinity of seawater delivered from a fjord is manipulated to experimental tanks on land. By constantly monitoring temperature and salinity in each tank via a computer program, the system continuously adjusts automated flow valves to ensure the seawater in each tank matches the targeted experimental conditions.
Rachel A. Kruft Welton, George Hoppit, Daniela N. Schmidt, James D. Witts, and Benjamin C. Moon
Biogeosciences, 21, 223–239, https://doi.org/10.5194/bg-21-223-2024, https://doi.org/10.5194/bg-21-223-2024, 2024
Short summary
Short summary
We conducted a meta-analysis of known experimental literature examining how marine bivalve growth rates respond to climate change. Growth is usually negatively impacted by climate change. Bivalve eggs/larva are generally more vulnerable than either juveniles or adults. Available data on the bivalve response to climate stressors are biased towards early growth stages (commercially important in the Global North), and many families have only single experiments examining climate change impacts.
Vincent Mouchi, Christophe Pecheyran, Fanny Claverie, Cécile Cathalot, Marjolaine Matabos, Yoan Germain, Olivier Rouxel, Didier Jollivet, Thomas Broquet, and Thierry Comtet
Biogeosciences, 21, 145–160, https://doi.org/10.5194/bg-21-145-2024, https://doi.org/10.5194/bg-21-145-2024, 2024
Short summary
Short summary
The impact of deep-sea mining will depend critically on the ability of larval dispersal of hydrothermal mollusks to connect and replenish natural populations. However, assessing connectivity is extremely challenging, especially in the deep sea. Here, we investigate the potential of using the chemical composition of larval shells to discriminate larval origins between multiple hydrothermal sites in the southwest Pacific. Our results confirm that this method can be applied with high accuracy.
Hyunjae Chung, Jikang Park, Mijin Park, Yejin Kim, Unyoung Chun, Sukyoung Yun, Won Sang Lee, Seung-Tae Yoon, and Won Young Lee
EGUsphere, https://doi.org/10.5194/egusphere-2023-2757, https://doi.org/10.5194/egusphere-2023-2757, 2024
Short summary
Short summary
Understanding how marine animals adapt to spatial and temporal shifts in oceanographic conditions is of utmost importance. In this paper, we investigated the influence of changes in seawater properties on the seasonal behavior of Weddell seals in the Ross Sea, Antarctica. Our findings could serve as a baseline and establish a foundational understanding for future research, particularly concerning the impact of marine environmental changes on the ecosystem of the Ross Sea Marine Protected Area.
Anna-Marie Winter, Nadezda Vasilyeva, and Artem Vladimirov
Biogeosciences, 20, 3683–3716, https://doi.org/10.5194/bg-20-3683-2023, https://doi.org/10.5194/bg-20-3683-2023, 2023
Short summary
Short summary
There is an increasing number of fish in poor state, and many do not recover, even when fishing pressure is ceased. An Allee effect can hinder population recovery because it suppresses the fish's productivity at low abundance. With a model fitted to 17 Atlantic cod stocks, we find that ocean warming and fishing can cause an Allee effect. If present, the Allee effect hinders fish recovery. This shows that Allee effects are dynamic, not uncommon, and calls for precautionary management measures.
Afrah Alothman, Daffne López-Sandoval, Carlos M. Duarte, and Susana Agustí
Biogeosciences, 20, 3613–3624, https://doi.org/10.5194/bg-20-3613-2023, https://doi.org/10.5194/bg-20-3613-2023, 2023
Short summary
Short summary
This study investigates bacterial dissolved inorganic carbon (DIC) fixation in the Red Sea, an oligotrophic ecosystem, using stable-isotope labeling and spectroscopy. The research reveals that bacterial DIC fixation significantly contributes to total DIC fixation, in the surface and deep water. The study demonstrates that as primary production decreases, the role of bacterial DIC fixation increases, emphasizing its importance with photosynthesis in estimating oceanic carbon dioxide production.
Arianna Zampollo, Thomas Cornulier, Rory O'Hara Murray, Jacqueline Fiona Tweddle, James Dunning, and Beth E. Scott
Biogeosciences, 20, 3593–3611, https://doi.org/10.5194/bg-20-3593-2023, https://doi.org/10.5194/bg-20-3593-2023, 2023
Short summary
Short summary
This paper highlights the use of the bottom mixed layer depth (BMLD: depth between the end of the pycnocline and the mixed layer below) to investigate subsurface Chlorophyll a (a proxy of primary production) in temperate stratified shelf waters. The strict correlation between subsurface Chl a and BMLD becomes relevant in shelf-productive waters where multiple stressors (e.g. offshore infrastructure) will change the stratification--mixing balance and related carbon fluxes.
Marco Fusi, Sylvain Rigaud, Giovanna Guadagnin, Alberto Barausse, Ramona Marasco, Daniele Daffonchio, Julie Régis, Louison Huchet, Capucine Camin, Laura Pettit, Cristina Vina-Herbon, and Folco Giomi
Biogeosciences, 20, 3509–3521, https://doi.org/10.5194/bg-20-3509-2023, https://doi.org/10.5194/bg-20-3509-2023, 2023
Short summary
Short summary
Oxygen availability in marine water and freshwater is very variable at daily and seasonal scales. The dynamic nature of oxygen fluctuations has important consequences for animal and microbe physiology and ecology, yet it is not fully understood. In this paper, we showed the heterogeneous nature of the aquatic oxygen landscape, which we defined here as the
oxyscape, and we addressed the importance of considering the oxyscape in the modelling and managing of aquatic ecosystems.
Anne L. Morée, Tayler M. Clarke, William W. L. Cheung, and Thomas L. Frölicher
Biogeosciences, 20, 2425–2454, https://doi.org/10.5194/bg-20-2425-2023, https://doi.org/10.5194/bg-20-2425-2023, 2023
Short summary
Short summary
Ocean temperature and oxygen shape marine habitats together with species’ characteristics. We calculated the impacts of projected 21st-century warming and oxygen loss on the contemporary habitat volume of 47 marine species and described the drivers of these impacts. Most species lose less than 5 % of their habitat at 2 °C of global warming, but some species incur losses 2–3 times greater than that. We also calculate which species may be most vulnerable to climate change and why this is the case.
Markus A. Min, David M. Needham, Sebastian Sudek, Nathan Kobun Truelove, Kathleen J. Pitz, Gabriela M. Chavez, Camille Poirier, Bente Gardeler, Elisabeth von der Esch, Andrea Ludwig, Ulf Riebesell, Alexandra Z. Worden, and Francisco P. Chavez
Biogeosciences, 20, 1277–1298, https://doi.org/10.5194/bg-20-1277-2023, https://doi.org/10.5194/bg-20-1277-2023, 2023
Short summary
Short summary
Emerging molecular methods provide new ways of understanding how marine communities respond to changes in ocean conditions. Here, environmental DNA was used to track the temporal evolution of biological communities in the Peruvian coastal upwelling system and in an adjacent enclosure where upwelling was simulated. We found that the two communities quickly diverged, with the open ocean being one found during upwelling and the enclosure evolving to one found under stratified conditions.
Wojciech Majewski, Witold Szczuciński, and Andrew J. Gooday
Biogeosciences, 20, 523–544, https://doi.org/10.5194/bg-20-523-2023, https://doi.org/10.5194/bg-20-523-2023, 2023
Short summary
Short summary
We studied foraminifera living in the fjords of South Georgia, a sub-Antarctic island sensitive to climate change. As conditions in water and on the seafloor vary, different associations of these microorganisms dominate far inside, in the middle, and near fjord openings. Assemblages in inner and middle parts of fjords are specific to South Georgia, but they may become widespread with anticipated warming. These results are important for interpretating fossil records and monitoring future change.
Allanah Joy Paul, Lennart Thomas Bach, Javier Arístegui, Elisabeth von der Esch, Nauzet Hernández-Hernández, Jonna Piiparinen, Laura Ramajo, Kristian Spilling, and Ulf Riebesell
Biogeosciences, 19, 5911–5926, https://doi.org/10.5194/bg-19-5911-2022, https://doi.org/10.5194/bg-19-5911-2022, 2022
Short summary
Short summary
We investigated how different deep water chemistry and biology modulate the response of surface phytoplankton communities to upwelling in the Peruvian coastal zone. Our results show that the most influential drivers were the ratio of inorganic nutrients (N : P) and the microbial community present in upwelling source water. These led to unexpected and variable development in the phytoplankton assemblage that could not be predicted by the amount of inorganic nutrients alone.
Hanna M. Kauko, Philipp Assmy, Ilka Peeken, Magdalena Różańska-Pluta, Józef M. Wiktor, Gunnar Bratbak, Asmita Singh, Thomas J. Ryan-Keogh, and Sebastien Moreau
Biogeosciences, 19, 5449–5482, https://doi.org/10.5194/bg-19-5449-2022, https://doi.org/10.5194/bg-19-5449-2022, 2022
Short summary
Short summary
This article studies phytoplankton (microscopic
plantsin the ocean capable of photosynthesis) in Kong Håkon VII Hav in the Southern Ocean. Different species play different roles in the ecosystem, and it is therefore important to assess the species composition. We observed that phytoplankton blooms in this area are formed by large diatoms with strong silica armors, which can lead to high silica (and sometimes carbon) export to depth and be important prey for krill.
Chloe Carbonne, Steeve Comeau, Phoebe T. W. Chan, Keyla Plichon, Jean-Pierre Gattuso, and Núria Teixidó
Biogeosciences, 19, 4767–4777, https://doi.org/10.5194/bg-19-4767-2022, https://doi.org/10.5194/bg-19-4767-2022, 2022
Short summary
Short summary
For the first time, our study highlights the synergistic effects of a 9-month warming and acidification combined stress on the early life stages of a Mediterranean azooxanthellate coral, Astroides calycularis. Our results predict a decrease in dispersion, settlement, post-settlement linear extention, budding and survival under future global change and that larvae and recruits of A. calycularis are stages of interest for this Mediterranean coral resistance, resilience and conservation.
Iris E. Hendriks, Anna Escolano-Moltó, Susana Flecha, Raquel Vaquer-Sunyer, Marlene Wesselmann, and Núria Marbà
Biogeosciences, 19, 4619–4637, https://doi.org/10.5194/bg-19-4619-2022, https://doi.org/10.5194/bg-19-4619-2022, 2022
Short summary
Short summary
Seagrasses are marine plants with the capacity to act as carbon sinks due to their high primary productivity, using carbon for growth. This capacity can play a key role in climate change mitigation. We compiled and published data showing that two Mediterranean seagrass species have different metabolic rates, while the study method influences the rates of the measurements. Most communities act as carbon sinks, while the western basin might be more productive than the eastern Mediterranean.
Raúl Tapia, Sze Ling Ho, Hui-Yu Wang, Jeroen Groeneveld, and Mahyar Mohtadi
Biogeosciences, 19, 3185–3208, https://doi.org/10.5194/bg-19-3185-2022, https://doi.org/10.5194/bg-19-3185-2022, 2022
Short summary
Short summary
We report census counts of planktic foraminifera in depth-stratified plankton net samples off Indonesia. Our results show that the vertical distribution of foraminifera species routinely used in paleoceanographic reconstructions varies in hydrographically distinct regions, likely in response to food availability. Consequently, the thermal gradient based on mixed layer and thermocline dwellers also differs for these regions, suggesting potential implications for paleoceanographic reconstructions.
Ricardo González-Gil, Neil S. Banas, Eileen Bresnan, and Michael R. Heath
Biogeosciences, 19, 2417–2426, https://doi.org/10.5194/bg-19-2417-2022, https://doi.org/10.5194/bg-19-2417-2022, 2022
Short summary
Short summary
In oceanic waters, the accumulation of phytoplankton biomass in winter, when light still limits growth, is attributed to a decrease in grazing as the mixed layer deepens. However, in coastal areas, it is not clear whether winter biomass can accumulate without this deepening. Using 21 years of weekly data, we found that in the Scottish coastal North Sea, the seasonal increase in light availability triggers the accumulation of phytoplankton biomass in winter, when light limitation is strongest.
Birgit Koehler, Mårten Erlandsson, Martin Karlsson, and Lena Bergström
Biogeosciences, 19, 2295–2312, https://doi.org/10.5194/bg-19-2295-2022, https://doi.org/10.5194/bg-19-2295-2022, 2022
Short summary
Short summary
Understanding species richness patterns remains a challenge for biodiversity management. We estimated fish species richness over a coastal salinity gradient (3–32) with a method that allowed comparing data from various sources. Species richness was 3-fold higher at high vs. low salinity, and salinity influenced species’ habitat preference, mobility and feeding type. If climate change causes upper-layer freshening of the Baltic Sea, further shifts along the identified patterns may be expected.
Uri Obolski, Thomas Wichard, Alvaro Israel, Alexander Golberg, and Alexander Liberzon
Biogeosciences, 19, 2263–2271, https://doi.org/10.5194/bg-19-2263-2022, https://doi.org/10.5194/bg-19-2263-2022, 2022
Short summary
Short summary
The algal genus Ulva plays a major role in coastal ecosystems worldwide and is a promising prospect as an seagriculture crop. A substantial hindrance to cultivating Ulva arises from sudden sporulation, leading to biomass loss. This process is not yet well understood. Here, we characterize the dynamics of Ulva growth, considering the potential impact of sporulation inhibitors, using a mathematical model. Our findings are an essential step towards understanding the dynamics of Ulva growth.
Emanuela Fanelli, Samuele Menicucci, Sara Malavolti, Andrea De Felice, and Iole Leonori
Biogeosciences, 19, 1833–1851, https://doi.org/10.5194/bg-19-1833-2022, https://doi.org/10.5194/bg-19-1833-2022, 2022
Short summary
Short summary
Zooplankton play a key role in marine ecosystems, forming the base of the marine food web and a link between primary producers and higher-order consumers, such as fish. This aspect is crucial in the Adriatic basin, one of the most productive and overexploited areas of the Mediterranean Sea. A better understanding of community and food web structure and their response to water mass changes is essential under a global warming scenario, as zooplankton are sensitive to climate change.
Masaya Yoshikai, Takashi Nakamura, Rempei Suwa, Sahadev Sharma, Rene Rollon, Jun Yasuoka, Ryohei Egawa, and Kazuo Nadaoka
Biogeosciences, 19, 1813–1832, https://doi.org/10.5194/bg-19-1813-2022, https://doi.org/10.5194/bg-19-1813-2022, 2022
Short summary
Short summary
This study presents a new individual-based vegetation model to investigate salinity control on mangrove productivity. The model incorporates plant hydraulics and tree competition and predicts unique and complex patterns of mangrove forest structures that vary across soil salinity gradients. The presented model does not hold an empirical expression of salinity influence on productivity and thus may provide a better understanding of mangrove forest dynamics in future climate change.
Coulson A. Lantz, William Leggat, Jessica L. Bergman, Alexander Fordyce, Charlotte Page, Thomas Mesaglio, and Tracy D. Ainsworth
Biogeosciences, 19, 891–906, https://doi.org/10.5194/bg-19-891-2022, https://doi.org/10.5194/bg-19-891-2022, 2022
Short summary
Short summary
Coral bleaching events continue to drive the degradation of coral reefs worldwide. In this study we measured rates of daytime coral reef community calcification and photosynthesis during a reef-wide bleaching event. Despite a measured decline in coral health across several taxa, there was no change in overall daytime community calcification and photosynthesis. These findings highlight potential limitations of these community-level metrics to reflect actual changes in coral health.
Hyewon Heather Kim, Jeff S. Bowman, Ya-Wei Luo, Hugh W. Ducklow, Oscar M. Schofield, Deborah K. Steinberg, and Scott C. Doney
Biogeosciences, 19, 117–136, https://doi.org/10.5194/bg-19-117-2022, https://doi.org/10.5194/bg-19-117-2022, 2022
Short summary
Short summary
Heterotrophic marine bacteria are tiny organisms responsible for taking up organic matter in the ocean. Using a modeling approach, this study shows that characteristics (taxonomy and physiology) of bacteria are associated with a subset of ecological processes in the coastal West Antarctic Peninsula region, a system susceptible to global climate change. This study also suggests that bacteria will become more active, in particular large-sized cells, in response to changing climates in the region.
Alice E. Webb, Didier M. de Bakker, Karline Soetaert, Tamara da Costa, Steven M. A. C. van Heuven, Fleur C. van Duyl, Gert-Jan Reichart, and Lennart J. de Nooijer
Biogeosciences, 18, 6501–6516, https://doi.org/10.5194/bg-18-6501-2021, https://doi.org/10.5194/bg-18-6501-2021, 2021
Short summary
Short summary
The biogeochemical behaviour of shallow reef communities is quantified to better understand the impact of habitat degradation and species composition shifts on reef functioning. The reef communities investigated barely support reef functions that are usually ascribed to conventional coral reefs, and the overall biogeochemical behaviour is found to be similar regardless of substrate type. This suggests a decrease in functional diversity which may therefore limit services provided by this reef.
Emmanuel Devred, Andrea Hilborn, and Cornelia Elizabeth den Heyer
Biogeosciences, 18, 6115–6132, https://doi.org/10.5194/bg-18-6115-2021, https://doi.org/10.5194/bg-18-6115-2021, 2021
Short summary
Short summary
A theoretical model of grey seal seasonal abundance on Sable Island (SI) coupled with chlorophyll-a concentration [chl-a] measured by satellite revealed the impact of seal nitrogen fertilization on the surrounding waters of SI, Canada. The increase in seals from about 100 000 in 2003 to about 360 000 in 2018 during the breeding season is consistent with an increase in [chl-a] leeward of SI. The increase in seal abundance explains 8 % of the [chl-a] increase.
Julie Meilland, Michael Siccha, Maike Kaffenberger, Jelle Bijma, and Michal Kucera
Biogeosciences, 18, 5789–5809, https://doi.org/10.5194/bg-18-5789-2021, https://doi.org/10.5194/bg-18-5789-2021, 2021
Short summary
Short summary
Planktonic foraminifera population dynamics has long been assumed to be controlled by synchronous reproduction and ontogenetic vertical migration (OVM). Due to contradictory observations, this concept became controversial. We here test it in the Atlantic ocean for four species of foraminifera representing the main clades. Our observations support the existence of synchronised reproduction and OVM but show that more than half of the population does not follow the canonical trajectory.
Federica Maggioni, Mireille Pujo-Pay, Jérome Aucan, Carlo Cerrano, Barbara Calcinai, Claude Payri, Francesca Benzoni, Yves Letourneur, and Riccardo Rodolfo-Metalpa
Biogeosciences, 18, 5117–5140, https://doi.org/10.5194/bg-18-5117-2021, https://doi.org/10.5194/bg-18-5117-2021, 2021
Short summary
Short summary
Based on current experimental evidence, climate change will affect up to 90 % of coral reefs worldwide. The originality of this study arises from our recent discovery of an exceptional study site where environmental conditions (temperature, pH, and oxygen) are even worse than those forecasted for the future.
While these conditions are generally recognized as unfavorable for marine life, we found a rich and abundant coral reef thriving under such extreme environmental conditions.
Nisan Sariaslan and Martin R. Langer
Biogeosciences, 18, 4073–4090, https://doi.org/10.5194/bg-18-4073-2021, https://doi.org/10.5194/bg-18-4073-2021, 2021
Short summary
Short summary
Analyses of foraminiferal assemblages from the Mamanguape mangrove estuary (northern Brazil) revealed highly diverse, species-rich, and structurally complex biotas. The atypical fauna resembles shallow-water offshore assemblages and are interpreted to be the result of highly saline ocean waters penetrating deep into the estuary. The findings contrast with previous studies, have implications for the fossil record, and provide novel perspectives for reconstructing mangrove environments.
Jutta E. Wollenburg, Jelle Bijma, Charlotte Cremer, Ulf Bickmeyer, and Zora Mila Colomba Zittier
Biogeosciences, 18, 3903–3915, https://doi.org/10.5194/bg-18-3903-2021, https://doi.org/10.5194/bg-18-3903-2021, 2021
Short summary
Short summary
Cultured at in situ high-pressure conditions Cibicides and Cibicidoides taxa develop lasting ectoplasmic structures that cannot be retracted or resorbed. An ectoplasmic envelope surrounds their test and may protect the shell, e.g. versus carbonate aggressive bottom water conditions. Ectoplasmic roots likely anchor the specimens in areas of strong bottom water currents, trees enable them to elevate themselves above ground, and twigs stabilize and guide the retractable pseudopodial network.
Kumar Nimit
Biogeosciences, 18, 3631–3635, https://doi.org/10.5194/bg-18-3631-2021, https://doi.org/10.5194/bg-18-3631-2021, 2021
Short summary
Short summary
The Indian Ocean Rim hosts many of the underdeveloped and emerging economies that depend on ocean resources for the livelihood of millions. Operational ocean information services cater to the requirements of resource managers and end-users to efficiently harness resources, mitigate threats and ensure safety. This paper outlines existing tools and explores the ongoing research that has the potential to convert the findings into operational services in the near- to midterm.
Finn Mielck, Rune Michaelis, H. Christian Hass, Sarah Hertel, Caroline Ganal, and Werner Armonies
Biogeosciences, 18, 3565–3577, https://doi.org/10.5194/bg-18-3565-2021, https://doi.org/10.5194/bg-18-3565-2021, 2021
Short summary
Short summary
Marine sand mining is becoming more and more important to nourish fragile coastlines that face global change. We investigated the largest sand extraction site in the German Bight. The study reveals that after more than 35 years of mining, the excavation pits are still detectable on the seafloor while the sediment composition has largely changed. The organic communities living in and on the seafloor were strongly decimated, and no recovery is observable towards previous conditions.
France Van Wambeke, Elvira Pulido, Philippe Catala, Julie Dinasquet, Kahina Djaoudi, Anja Engel, Marc Garel, Sophie Guasco, Barbara Marie, Sandra Nunige, Vincent Taillandier, Birthe Zäncker, and Christian Tamburini
Biogeosciences, 18, 2301–2323, https://doi.org/10.5194/bg-18-2301-2021, https://doi.org/10.5194/bg-18-2301-2021, 2021
Short summary
Short summary
Michaelis–Menten kinetics were determined for alkaline phosphatase, aminopeptidase and β-glucosidase in the Mediterranean Sea. Although the ectoenzymatic-hydrolysis contribution to heterotrophic prokaryotic needs was high in terms of N, it was low in terms of C. This study points out the biases in interpretation of the relative differences in activities among the three tested enzymes in regard to the choice of added concentrations of fluorogenic substrates.
Oscar E. Romero, Simon Ramondenc, and Gerhard Fischer
Biogeosciences, 18, 1873–1891, https://doi.org/10.5194/bg-18-1873-2021, https://doi.org/10.5194/bg-18-1873-2021, 2021
Short summary
Short summary
Upwelling intensity along NW Africa varies on the interannual to decadal timescale. Understanding its changes is key for the prediction of future changes of CO2 sequestration in the northeastern Atlantic. Based on a multiyear (1988–2009) sediment trap experiment at the site CBmeso, fluxes and the species composition of the diatom assemblage are presented. Our data help in establishing the scientific basis for forecasting and modeling future states of this ecosystem and its decadal changes.
Katharine T. Bigham, Ashley A. Rowden, Daniel Leduc, and David A. Bowden
Biogeosciences, 18, 1893–1908, https://doi.org/10.5194/bg-18-1893-2021, https://doi.org/10.5194/bg-18-1893-2021, 2021
Short summary
Short summary
Turbidity flows – underwater avalanches – are large-scale physical disturbances believed to have profound impacts on productivity and diversity of benthic communities in the deep sea. We reviewed published studies and found that current evidence for changes in productivity is ambiguous at best, but the influence on regional and local diversity is clearer. We suggest study design criteria that may lead to a better understanding of large-scale disturbance effects on deep-sea benthos.
Phillip Williamson, Hans-Otto Pörtner, Steve Widdicombe, and Jean-Pierre Gattuso
Biogeosciences, 18, 1787–1792, https://doi.org/10.5194/bg-18-1787-2021, https://doi.org/10.5194/bg-18-1787-2021, 2021
Short summary
Short summary
The reliability of ocean acidification research was challenged in early 2020 when a high-profile paper failed to corroborate previously observed impacts of high CO2 on the behaviour of coral reef fish. We now know the reason why: the
replicatedstudies differed in many ways. Open-minded and collaborative assessment of all research results, both negative and positive, remains the best way to develop process-based understanding of the impacts of ocean acidification on marine organisms.
Cited articles
AMAP: AMAP Assessment 2018: Arctic Ocean Acidifcation, Arctic Monitoring and
Assessment Programme (AMAP), Tromsø, Norway, 187 pp., 2018.
Apel, K. and Hirt, H.: Reactive oxygen species: metabolism, oxidative
stress, and signal transduction, Annu. Rev. Plant Biol., 55, 373–399,
https://doi.org/10.1146/annurev.arplant.55.031903.141701, 2004.
Arrigo, K. R., van Dijken, G., and Pabi, S.: Impact of a shrinking Arctic
ice cover on marine primary production, Geophys. Res. Lett., 35, L19603,
https://doi.org/10.1029/2008GL035028, 2008.
Asada, K.: The water-water cycle in chloroplasts: Scavenging of Active
Oxygens and Dissipation of Excess Photons, Annu. Rev. Plant Phys., 50, 601–639, https://doi.org/10.1146/annurev.arplant.50.1.601, 1999.
Bach, L. T., Mackinder, L. C., Schulz, K. G., Wheeler, G., Schroeder, D. C.,
Brownlee, C., and Riebesell, U.: Dissecting the impact of CO2 and pH on
the mechanisms of photosynthesis and calcification in the coccolithophore
Emiliania huxleyi, New. Phytol., 199, 121–134, https://doi.org/10.1111/nph.12225, 2013.
Bach, L. T., Alvarez-Fernandez, S., Hornick, T., Stuhr, A., and Riebesell,
U.: Simulated ocean acidification reveals winners and losers in coastal
phytoplankton, PloS One, 12, e0188198, https://doi.org/10.1371/journal.pone.0188198, 2017.
Badger, M. R., Andrews, T. J., Whitney, S. M., Ludwig, M., Yellowlees, D.
C., Leggat, W., and Price, G. D.: The diversity and coevolution of Rubisco,
plastids, pyrenoids, and chloroplast-based CO2-concentrating mechanisms
in algae, Can. J. Bot., 76, 1052–1071, https://doi.org/10.1139/b98-074, 1998.
Bates, N. R. and Mathis, J. T.: The Arctic Ocean marine carbon cycle: evaluation of air-sea CO2 exchanges, ocean acidification impacts and potential feedbacks, Biogeosciences, 6, 2433–2459, https://doi.org/10.5194/bg-6-2433-2009, 2009.
Behrenfeld, M. J., Prasil, O., Kolber, Z. S., Babin, M., and Falkowski, P.
G.: Compensatory changes in photosystem II electron turnover rates protect
photosynthesis from photoinhibition, Photosynth. Res., 58, 259–268,
https://doi.org/10.1023/A:1006138630573, 1998.
Behrenfeld, M. J., Halsey, K. H., and Milligan, A. J.: Evolved physiological
responses of phytoplankton to their integrated growth environment, Philos.
T. R. Soc. Lon. B, 363, 2687–2703,
https://doi.org/10.1098/rstb.2008.0019, 2008.
Benov, L., Sztejnberg, L., and Fridovich, I.: Critical evaluation of the use
of hydroethidine as a measure of superoxide anion radical, Free Radical Bio.
Med., 25, 826–831, https://doi.org/10.1016/S0891-5849(98)00163-4, 1998.
Blankenship, R. E.: Molecular mechanisms of photosynthesis, 2nd Edn., Wiley
Blackwell, USA, 2014.
Boelen, P., van de Poll, W. H., van der Strate, H. J., Neven, I. A.,
Beardall, J., and Buma, A. G.: Neither elevated nor reduced CO2 affects
the photophysiological performance of the marine Antarctic diatom
Chaetoceros brevis, J. Exp. Mar. Biol. Ecol., 406, 38–45, https://doi.org/10.1016/j.jembe.2011.06.012,
2011.
Brading, P., Warner, M. E., Davey, P., Smith, D. J., Achterberg, E. P., and
Suggett, D. J.: Differential effects of ocean acidification on growth and
photosynthesis among phylotypes of Symbiodinium (Dinophyceae), Limnol. Oceanogr., 56,
927–938, https://doi.org/10.4319/lo.2011.56.3.0927, 2011.
Brewer, P. G., Bradshaw, A., and Williams, R.: Measurements of total carbon
dioxide and alkalinity in the North Atlantic Ocean in 1981, in: The changing
carbon cycle, Springer, New York, NY, 348–370, https://doi.org/10.1007/978-1-4757-1915-4_18, 1986.
Brussaard, C. P. D., Noordeloos, A. A. M., Witte, H., Collenteur, M. C. J., Schulz, K., Ludwig, A., and Riebesell, U.: Arctic microbial community dynamics influenced by elevated CO2 levels, Biogeosciences, 10, 719–731, https://doi.org/10.5194/bg-10-719-2013, 2013.
Burkhardt, S., Amoroso, G., Riebesell, U., and Sültemeyer, D.: CO2
and uptake in marine diatoms acclimated to different
CO2 concentrations, Limnol. Oceanogr., 46, 1378–1391,
https://doi.org/10.4319/lo.2001.46.6.1378, 2001.
Denman, K. L. and Gargett, A. E.: Time and space scales of vertical mixing
and advection of phytoplankton in the upper ocean, Limnol. Oceanogr., 28,
801–815, https://doi.org/10.4319/lo.1983.28.5.0801, 1983.
Dickson, A. G. and Millero, F. J.: A comparison of the equilibrium
constants for the dissociation of carbonic acid in seawater media, Deep-Sea
Res., 34, 1733–1743,
https://doi.org/10.1016/0198-0149(87)90021-5, 1987.
Dickson, A. G., Sabine, C. L., and Christian, J. R.: Guide to best practices
for ocean CO2 measurements, North Pacific Marine Science Organization,
Sidney, British Columbia, 2007.
Engel, A., Schulz, K. G., Riebesell, U., Bellerby, R., Delille, B., and Schartau, M.: Effects of CO2 on particle size distribution and phytoplankton abundance during a mesocosm bloom experiment (PeECE II), Biogeosciences, 5, 509–521, https://doi.org/10.5194/bg-5-509-2008, 2008.
Falkowski, P. G.: Light-shade adaptation in marine phytoplankton, in:
Primary productivity in the sea, Vol. 19, Springer, Boston, USA, 1980.
Falkowski, P. G. and Raven, J. A.: Aquatic photosynthesis, 2nd Edn.,
Princeton University Press, USA, 2013.
Fu, F.-X., Warner, M. E., Zhang, Y., Feng, Y., and Hutchins, D. A.: Effects
of Increased Temperature and CO2 on Photosynthesis, Growth, and
Elemental Ratios in Marine Synechococcus and Prochlorococcus (Cyanobacteria), J. Phycol., 43, 485–496,
https://doi.org/10.1111/j.1529-8817.2007.00355.x, 2007.
Gao, K., Helbling, E. W., Häder, D. P., and Hutchins, D. A.: Responses
of marine primary producers to interactions between ocean acidification,
solar radiation, and warming, Mar. Ecol.-Prog. Ser., 470, 167–189,
https://doi.org/10.3354/meps10043, 2012.
Granskog, M. A., Stedmon, C. A., Dodd, P. A., Amon, R. M. W., Pavlov, A. K.,
de Steur, L., and Hansen, E.: Characteristics of colored dissolved organic
matter (CDOM) in the Arctic outflow in the Fram Strait: Assessing the
changes and fate of terrigenous CDOM in the Arctic Ocean, J. Geophys. Res.-Oceans, 117, C12021, https://doi.org/10.1029/2012jc008075, 2012.
Guillard, R. R. and Ryther, J. H.: Studies of marine planktonic diatoms. I.
Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran, Can. J. Microbiol., 8, 229–239, https://doi.org/10.1139/m62-029,
1962.
Hopkinson, B. M., Dupont, C. L., Allen, A. E., and Morel, F. M.: Efficiency
of the CO2-concentrating mechanism of diatoms, P. Natl. Acad. Sci.
USA, 108, 3830–3837, https://doi.org/10.1073/pnas.1018062108, 2011.
Hoppe, C. J., Holtz, L. M., Trimborn, S., and Rost, B.: Ocean acidification
decreases the light-use efficiency in an Antarctic diatom under dynamic but
not constant light, New Phytol., 207, 159–171, https://doi.org/10.1111/nph.13334, 2015.
Hoppe, C. J. M., Langer, G., Rokitta, S. D., Wolf-Gladrow, D. A., and Rost, B.: Implications of observed inconsistencies in carbonate chemistry measurements for ocean acidification studies, Biogeosciences, 9, 2401–2405, https://doi.org/10.5194/bg-9-2401-2012, 2012.
Hoppe, C. J., Schuback, N., Semeniuk, D. M., Maldonado, M. T., and Rost, B.:
Functional Redundancy Facilitates Resilience of Subarctic Phytoplankton
Assemblages toward Ocean Acidification and High Irradiance, Front. Mar.
Sci., 4, 229, https://doi.org/10.3389/fmars.2017.00229, 2017.
Hoppe, C. J. M., Flintrop, C. M., and Rost, B.: The Arctic picoeukaryote Micromonas pusilla benefits synergistically from warming and ocean acidification, Biogeosciences, 15, 4353–4365, https://doi.org/10.5194/bg-15-4353-2018, 2018.
Houghton, J., Ding, Y., and Griggs, D.: Climate Change: Scientific Basis,
IPCC TAR Working Group 1, The Press Syndicate of Cambridge University, UK,
2001.
Hu, A. and Bates, S. C.: Internal climate variability and projected future
regional steric and dynamic sea level rise, Nat. Commun., 9, 1068,
https://doi.org/10.1038/s41467-018-03474-8, 2018.
Huisman, J.: Population dynamics of light-limited phytoplankton: microcosm
experiments, Ecology, 80, 202–210, https://doi.org/10.1890/0012-9658(1999)080[0202:PDOLLP]2.0.CO;2, 1999.
Iglesias-Rodriguez, M., Nimer, N., and Merrett, M.: Carbon
dioxide-concentrating mechanism and the development of extracellular
carbonic anhydrase in the marine picoeukaryote Micromonas pusilla, New Phytol., 140, 685–690,
https://doi.org/10.1046/j.1469-8137.1998.00309.x, 1998.
Jin, P., Gao, K., Villafañe, V. E., Campbell, D. A., and Helbling, W.:
Ocean acidification alters the photosynthetic responses of a
coccolithophorid to fluctuating UV and visible radiation, Plant Physiol.,
162, 2084–2094, https://doi.org/10.1104/pp.113.219543, 2013.
Kim, D., Watanabe, M., Nakayasu, Y., and Kohata, K.: Production of
superoxide anion and hydrogen peroxide associated with cell growth of
Chattonella antiqua, Aquat. Microb. Ecol., 35, 57–64, https://doi.org/10.3354/ame035057, 2004.
Kim, J.-H., Kim, K. Y., Kang, E. J., Lee, K., Kim, J.-M., Park, K.-T., Shin, K., Hyun, B., and Jeong, H. J.: Enhancement of photosynthetic carbon assimilation efficiency by phytoplankton in the future coastal ocean, Biogeosciences, 10, 7525–7535, https://doi.org/10.5194/bg-10-7525-2013, 2013.
Klughammer, C. and Schreiber, U.: Complementary PS II quantum yields
calculated from simple fluorescence parameters measured by PAM fluorometry
and the Saturation Pulse method, PAM Appl. Notes, 1, 27–35, 2008.
Knap, A., Michaels, A., Close, A., Ducklow, H., and Dickson, A.: Protocols
for the Joint Global Ocean Flux Study (JGOFS) Core Measurements, UNESCO,
Paris, France, 170 pp., 1996.
Köhler, J., Wang, L., Guislain, A., and Shatwell, T.: Influence of
vertical mixing on light-dependency of phytoplankton growth, Limnol.
Oceanogr., 63, 1156–1167, https://doi.org/10.1002/lno.10761, 2018.
Kolber, Z. S., Prášil, O., and Falkowski, P. G.: Measurements of
variable chlorophyll fluorescence using fast repetition rate techniques:
defining methodology and experimental protocols, BBA-Bioenergetics, 1367, 88–106, https://doi.org/10.1016/S0005-2728(98)00135-2, 1998.
Kramer, D. M., Johnson, G., Kiirats, O., and Edwards, G. E.: New fluorescence
parameters for the determination of QA redox state and excitation energy
fluxes, Photosynth. Res., 79, 209–218,
https://doi.org/10.1023/B:PRES.0000015391.99477.0d, 2004.
Li, W. K., McLaughlin, F. A., Lovejoy, C., and Carmack, E. C.: Smallest
algae thrive as the Arctic Ocean freshens, Science, 326, 539–539,
https://doi.org/10.1126/science.1179798, 2009.
Litchman, E.: Growth rates of phytoplankton under fluctuating light,
Freshwater Biol., 44, 223–235, https://doi.org/10.1046/j.1365-2427.2000.00559.x, 2000.
Litchman, E., Klausmeier, C. A., and Bossard, P.: Phytoplankton nutrient
competition under dynamic light regimes, Limnol. Oceanogr., 49, 1457–1462,
https://doi.org/10.4319/lo.2004.49.4_part_2.1457, 2004.
Lohbeck, K. T., Riebesell, U., and Reusch, T. B.: Adaptive evolution of a
key phytoplankton species to ocean acidification, Nat. Geosci., 5, 346,
https://doi.org/10.1038/ngeo1441, 2012.
Lovejoy, C., Vincent, W. F., Bonilla, S., Roy, S., Martineau, M. J.,
Terrado, R., Potvin, M., Massana, R., and Pedrós-Alió, C.:
Distribution, phylogeny, and growth of cold-adapted picoprasinophytes in
Arctic Seas, J. Phycol., 43, 78–89, https://doi.org/10.1111/j.1529-8817.2006.00310.x,
2007.
Maat, D. S., Crawfurd, K. J., Timmermans, K. R., and Brussaard, C. P.:
Elevated pCO2 and phosphate limitation favor Micromonas pusilla through stimulated growth
and reduced viral impact, Appl. Environ. Microb., 80, 3119–3127,
https://doi.org/10.1128/AEM.03639-13., 2014.
MacIntyre, H. L., Kana, T. M., and Geider, R. J.: The effect of water motion
on short-term rates of photosynthesis by marine phytoplankton, Trends Plant
Sci., 5, 12–17, https://doi.org/10.1016/S1360-1385(99)01504-6, 2000.
Marquardt, M., Vader, A., Stübner, E. I., Reigstad, M., and Gabrielsen,
T. M.: Strong seasonality of marine microbial eukaryotes in a high-arctic
fjord (Isfjorden, in West Spitsbergen, Norway), Appl. Environ.
Microb., 82, 1868–1880, https://doi.org/10.1128/AEM.03208-15, 2016.
McKie-Krisberg, Z. M. and Sanders, R. W.: Phagotrophy by the picoeukaryotic
green alga Micromonas: implications for Arctic Oceans, ISME J., 8, 1953–1961,
https://doi.org/10.1038/ismej.2014.16, 2014.
Meakin, N. G. and Wyman, M.: Rapid shifts in picoeukaryote community
structure in response to ocean acidification, ISME J., 5, 1397–1405,
https://doi.org/10.1038/ismej.2011.18, 2011.
Mehrbach, C., Culberson, C., Hawley, J., and Pytkowicx, R.: Measurement of
the apparent dissociation constants of carbonic acid in seawater at
atmospheric pressure, Limnol. Oceanogr., 18, 897–907,
https://doi.org/10.4319/lo.1973.18.6.0897, 1973.
Miller, G. H., Alley, R. B., Brigham-Grette, J., Fitzpatrick, J. J., Polyak,
L., Serreze, M. C., and White, J. W.: Arctic amplification: can the past
constrain the future?, Quaternary Sci. Rev., 29, 1779–1790,
https://doi.org/10.1016/j.quascirev.2010.02.008, 2010.
Mills, M. M., Kropuenske, L. R., Van Dijken, G. L., Alderkamp, A. C., Berg,
G. M., Robinson, D. H., Welschmeyer, N. A., and Arrigo, K. R.:
Photophysiology in two southern ocean phytoplankton taxa: Photosynthesis of
Phaeocystis Antarctica (prymnesiophyceae) and Fragilariopsis Cylindrus (bacillariophyceae) under simulated mixed-layer
irradiance, J. Phycol., 46, 1114–1127, https://doi.org/10.1111/j.1529-8817.2010.00923.x,
2010.
Newbold, L. K., Oliver, A. E., Booth, T., Tiwari, B., Desantis, T., Maguire,
M., Andersen, G., van der Gast, C. J., and Whiteley, A. S.: The response of
marine picoplankton to ocean acidification, Environ. Microbiol., 14,
2293–2307, https://doi.org/10.1111/j.1462-2920.2012.02762.x, 2012.
Nöthig, E.-M., Bracher, A., Engel, A., Metfies, K., Niehoff, B., Peeken,
I., Bauerfeind, E., Cherkasheva, A., Gäbler-Schwarz, S., and Hardge, K.:
Summertime plankton ecology in Fram Strait – a compilation of long-and
short-term observations, Polar Res., 34, 23349, https://doi.org/10.3402/polar.v34.23349,
2015.
Oxborough, K. and Baker, N. R.: Resolving chlorophyll a fluorescence images of
photosynthetic efficiency into photochemical and non-photochemical
components – calculation of qP and ; without measuring ,
Photosynth. Res., 54, 135–142, https://doi.org/10.1023/A:1005936823310, 1997.
Oxborough, K., Moore, C. M., Suggett, D. J., Lawson, T., Chan, H. G., and
Geider, R. J.: Direct estimation of functional PSII reaction center
concentration and PSII electron flux on a volume basis: a new approach to
the analysis of Fast Repetition Rate fluorometry (FRRf) data, Limnol.
Oceanogr.-Meth., 10, 142–154, https://doi.org/10.4319/lom.2012.10.142, 2012.
Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W.,
Christ, R., Church, J. A., Clarke, L., Dahe, Q., and Dasgupta, P.: Climate
change 2014: synthesis report. Contribution of Working Groups I, II and III
to the fifth assessment report of the Intergovernmental Panel on Climate
Change, IPCC, Geneva, Switzerland, 2014.
Palmer, M. A., Van Dijken, G. L., Mitchell, B. G., Seegers, B. J., Lowry, K.
E., Mills, M. M., and Arrigo, K. R.: Light and nutrient control of
photosynthesis in natural phytoplankton populations from the Chukchi and
Beaufort seas, Arctic Ocean, Limnol. Oceanogr., 58, 2185–2205,
https://doi.org/10.4319/lo.2013.58.6.2185, 2013.
Peterson, B. J., Holmes, R. M., McClelland, J. W., Vorosmarty, C. J.,
Lammers, R. B., Shiklomanov, A. I., Shiklomanov, I. A., and Rahmstorf, S.:
Increasing river discharge to the Arctic Ocean, Science, 298, 2171–2173,
https://doi.org/10.1126/science.1077445, 2002.
Pierrot, D., Lewis, E., and Wallace, D.: MS Excel program developed for
CO2 system calculations, ORNL/CDIAC-105a. Carbon Dioxide Information
Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak
Ridge, Tennessee, 2006.
Pörtner, H.-O., Karl, D. M., Boyd, P. W., Cheung, W., Lluch-Cota, S. E.,
Nojiri, Y., Schmidt, D. N., Zavialov, P. O., Alheit, J., and Aristegui, J.:
Ocean systems, in: Climate change 2014: impacts, adaptation, and
vulnerability. Part A: global and sectoral aspects, Contribution of working
group II to the fifth assessment report of the intergovernmental panel on
climate change, Cambridge University Press, 411–484, Cambridge, UK and NY,
USA, 2014.
Prado, R., Rioboo, C., Herrero, C., Suarez-Bregua, P., and Cid, A.: Flow
cytometric analysis to evaluate physiological alterations in
herbicide-exposed Chlamydomonas moewusii cells, Ecotoxicology, 21, 409–420,
https://doi.org/10.1007/s10646-011-0801-3, 2012.
Ragni, M., Airs, R. L., Leonardos, N., and Geider, R. J.: Photoinhibition of
PSII in Emiliania Huxleyi (Haptophyta) under High Light Stress: The Roles of Photoacclimation,
Photoprotection, and Photorepair, J. Phycol., 44, 670–683,
https://doi.org/10.1111/j.1529-8817.2008.00524.x, 2008.
Reinfelder, J. R.: Carbon concentrating mechanisms in eukaryotic marine
phytoplankton, Annu. Rev. Mar. Sci., 3, 291–315,
https://doi.org/10.1146/annurev-marine-120709-142720, 2011.
Riebesell, U. and Gattuso, J.-P.: Lessons learned from ocean acidification
research, Nat. Clim. Change, 5, 12–14, 2015.
Riebesell, U. and Tortell, P. D.: Effects of ocean acidification on pelagic
organisms and ecosystems, Ocean acidification, Oxford University Press,
Oxford, UK, 2011.
Rokitta, S. D., John, U., and Rost, B.: Ocean acidification affects
redox-balance and ion-homeostasis in the life-cycle stages of Emiliania huxleyi, PLoS One, 7,
1–10, e52212, https://doi.org/10.1371/journal.pone.0052212, 2012.
Rost, B., Riebesell, U., and Sültemeyer, D.: Carbon acquisition of
marine phytoplankton: effect of photoperiod length, Limnol. Oceanogr., 51,
12–20, https://doi.org/10.4319/lo.2006.51.1.0012, 2006.
Rost, B., Zondervan, I., and Wolf-Gladrow, D.: Sensitivity of phytoplankton
to future changes in ocean carbonate chemistry: current knowledge,
contradictions and research directions, Mar. Ecol.-Prog. Ser., 373, 227–237,
https://doi.org/10.3354/meps07776, 2008.
Schaum, C. E. and Collins, S.: Plasticity predicts evolution in a marine
alga, Proc. Biol. Sci., 281, 20141486, https://doi.org/10.1098/rspb.2014.1486, 2014.
Schaum, E., Rost, B., Millar, A. J., and Collins, S.: Variation in plastic
responses of a globally distributed picoplankton species to ocean
acidification, Nat. Clim. Change, 3, 298–302, https://doi.org/10.1038/nclimate1774,
2012.
Schuback, N., Hoppe, C. J., Tremblay, J. É., Maldonado, M. T., and
Tortell, P. D.: Primary productivity and the coupling of photosynthetic
electron transport and carbon fixation in the Arctic Ocean, Limnol.
Oceanogr., 62, 898–921, https://doi.org/10.1002/lno.10475, 2017.
Schulz, K. G., Bach, L. T., Bellerby, R. G., Bermúdez, R.,
Büdenbender, J., Boxhammer, T., Czerny, J., Engel, A., Ludwig, A., and
Meyerhöfer, M.: Phytoplankton blooms at increasing levels of atmospheric
carbon dioxide: Experimental evidence for negative effects on
prymnesiophytes and positive on small picoeukaryotes, Front. Mar. Sci., 4,
64, https://doi.org/10.3389/fmars.2017.00064, 2017.
Screen, J. A. and Simmonds, I.: The central role of diminishing sea ice in
recent Arctic temperature amplification, Nature, 464, 1334,
https://doi.org/10.1038/nature09051, 2010.
Shatwell, T., Nicklisch, A., and Köhler, J.: Temperature and photoperiod
effects on phytoplankton growing under simulated mixed layer light
fluctuations, Limnol. Oceanogr., 57, 541–553, https://doi.org/10.4319/lo.2012.57.2.0541,
2012.
Steinacher, M., Joos, F., Frölicher, T. L., Bopp, L., Cadule, P., Cocco, V., Doney, S. C., Gehlen, M., Lindsay, K., Moore, J. K., Schneider, B., and Segschneider, J.: Projected 21st century decrease in marine productivity: a multi-model analysis, Biogeosciences, 7, 979–1005, https://doi.org/10.5194/bg-7-979-2010, 2010.
Stoll, M., Bakker, K., Nobbe, G., and Haese, R.: Continuous-flow analysis of
dissolved inorganic carbon content in seawater, Anal. Chem., 73, 4111–4116,
https://doi.org/10.1021/ac010303r, 2001.
Su, W., Jakob, T., and Wilhelm, C.: The Impact of Nonphotochemical Quenching
of Fluorescence on the Photon Balance in Diatoms under Dynamic Light
Conditions, J. Phycol., 48, 336–346, https://doi.org/10.1111/j.1529-8817.2012.01128.x,
2012.
Suggett, D. J., Le Floc'H, E., Harris, G. N., Leonardos, N., and Geider, R.
J.: Different strategies of photoacclimation by two strains of Emiliania huxleyi (Haptophyta),
J. Phycol., 43, 1209–1222, https://doi.org/10.1111/j.1529-8817.2007.00406.x, 2007.
Talmy, D., Blackford, J., Hardman-Mountford, N. J., Dumbrell, A. J., and
Geider, R. J.: An optimality model of photoadaptation in contrasting aquatic
light regimes, Limnol. Oceanogr., 58, 1802–1818,
https://doi.org/10.4319/lo.2013.58.5.1802, 2013.
Tremblay, J.-É., Anderson, L. G., Matrai, P., Coupel, P., Bélanger,
S., Michel, C., and Reigstad, M.: Global and regional drivers of nutrient
supply, primary production and CO2 drawdown in the changing Arctic
Ocean, Prog. Oceanogr., 139, 171–196, https://doi.org/10.1016/j.pocean.2015.08.009,
2015.
Trenberth, K., Jones, P., Ambenje, P., Bojariu, R., Easterling, D., Klein
Tank, A., Parker, D., Rahimzadeh, F., Renwick, J., and Rusticucci, M.:
Observations: surface and atmospheric climate change, in: Climate Change
2007: The Physical Science Basis. Contribution of Working Group I to the
Fourth Assessment Report of the Intergovernmental Panel on Climate Change,
Cambridge University Press, 235–336, Cambridge, UK and NY, USA, 2007.
Trimborn, S., Thoms, S., Petrou, K., Kranz, S. A., and Rost, B.:
Photophysiological responses of Southern Ocean phytoplankton to changes in
CO2 concentrations: short-term versus acclimation effects, J. Exp. Mar.
Biol. Ecol., 451, 44–54, https://doi.org/10.1016/j.jembe.2013.11.001, 2014.
Uppström, L. R.: The boron/chlorinity ratio of deep-sea water from the
Pacific Ocean, Deep-Sea Res. Oceanogr. Abstr., 21, 161–162,
https://doi.org/10.1016/0011-7471(74)90074-6, 1974.
Van Leeuwe, M. and Stefels, J.: Photosynthetic responses in Phaeocystis
antarctica towards varying light and iron conditions, in: Phaeocystis, major link in
the biogeochemical cycling of climate-relevant elements, Springer, 61–70,
https://doi.org/10.1007/978-1-4020-6214-8_6, 2007.
Wagner, H., Jakob, T., and Wilhelm, C.: Balancing the energy flow from
captured light to biomass under fluctuating light conditions, New Phytol.,
169, 95–108, https://doi.org/10.1111/j.1469-8137.2005.01550.x, 2006.
Wassmann, P. and Reigstad, M.: Future Arctic Ocean seasonal ice zones and
implications for pelagic-benthic coupling, Oceanography, 24, 220–231,
https://doi.org/10.5670/oceanog.2011.74, 2011.
Webb, W. L., Newton, M., and Starr, D.: Carbon dioxide exchange of Alnus rubra: A
mathematical model, Oecologia, 17, 281–291, https://doi.org/10.1007/BF00345747, 1974.
White, E., Hoppe, C. J., and Rost, B.: The Arctic picoeukaryote Micromonas pusilla benefits from
Ocean Acidification under constant and dynamic light, PANGAEA,
https://doi.org/10.1594/PANGAEA.908691, 2019.
Worden, A. Z., Follows, M. J., Giovannoni, S. J., Wilken, S., Zimmerman, A.
E., and Keeling, P. J.: Rethinking the marine carbon cycle: factoring in the
multifarious lifestyles of microbes, Science, 347, 1257594,
https://doi.org/10.1126/science.1257594, 2015.
Xu, K., Grant-Burt, J. L., Donaher, N., and Campbell, D. A.: Connectivity among
Photosystem II centers in phytoplankters: Patterns and responses, BBA-Bioenergetics, 1858, 459–474,
https://doi.org/10.1016/j.bbabio.2017.03.003, 2017.
Short summary
The Arctic picoeukaryote Micromonas pusilla was acclimated to two pCO2 levels under a constant and a dynamic light, simulating more realistic light fields. M. pusilla was able to benefit from ocean acidification with an increase in growth rate, irrespective of the light regime. In dynamic light M. pusilla optimised its photophysiology for effective light usage during both low- and high-light periods. This highlights M. pusilla is likely to cope well with future conditions in the Arctic Ocean.
The Arctic picoeukaryote Micromonas pusilla was acclimated to two pCO2 levels under a constant...
Altmetrics
Final-revised paper
Preprint