Articles | Volume 17, issue 24
https://doi.org/10.5194/bg-17-6457-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-17-6457-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Vertical mobility of pyrogenic organic matter in soils: a column experiment
Marcus Schiedung
Department of Geography, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
Severin-Luca Bellè
Department of Geography, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
Gabriel Sigmund
Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
Karsten Kalbitz
Institute of Soil Science and Site Ecology, Technische Universität Dresden, Pienner Straße 19, 01737 Tharandt, Germany
Department of Geography, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
Laboratoire de Géologie, CNRS – École normale supérieure, PSL University, Institut Pierre Simon Laplace, Rue Lhomond 24, 75005 Paris, France
CEREEP‐Ecotron Ile De France, ENS, CNRS, PSL University, Chemin de busseau 11, 77140 Saint‐Pierre‐lès‐Nemours, France
Related authors
Severin-Luca Bellè, Asmeret Asefaw Berhe, Frank Hagedorn, Cristina Santin, Marcus Schiedung, Ilja van Meerveld, and Samuel Abiven
Biogeosciences, 18, 1105–1126, https://doi.org/10.5194/bg-18-1105-2021, https://doi.org/10.5194/bg-18-1105-2021, 2021
Short summary
Short summary
Controls of pyrogenic carbon (PyC) redistribution under rainfall are largely unknown. However, PyC mobility can be substantial after initial rain in post-fire landscapes. We conducted a controlled simulation experiment on plots where PyC was applied on the soil surface. We identified redistribution of PyC by runoff and splash and vertical movement in the soil depending on soil texture and PyC characteristics (material and size). PyC also induced changes in exports of native soil organic carbon.
Conrad Jackisch, Kai Germer, Thomas Graeff, Ines Andrä, Katrin Schulz, Marcus Schiedung, Jaqueline Haller-Jans, Jonas Schneider, Julia Jaquemotte, Philipp Helmer, Leander Lotz, Andreas Bauer, Irene Hahn, Martin Šanda, Monika Kumpan, Johann Dorner, Gerrit de Rooij, Stefan Wessel-Bothe, Lorenz Kottmann, Siegfried Schittenhelm, and Wolfgang Durner
Earth Syst. Sci. Data, 12, 683–697, https://doi.org/10.5194/essd-12-683-2020, https://doi.org/10.5194/essd-12-683-2020, 2020
Short summary
Short summary
Soil water content and matric potential are central hydrological state variables. A large variety of automated probes and sensor systems for field monitoring exist. In a field experiment under idealised conditions we compared 15 systems for soil moisture and 14 systems for matric potential. The individual records of one system agree well with the others. Most records are also plausible. However, the absolute values of the different measuring systems span a very large range of possible truths.
Amicie A. Delahaie, Lauric Cécillon, Marija Stojanova, Samuel Abiven, Pierre Arbelet, Dominique Arrouays, François Baudin, Antonio Bispo, Line Boulonne, Claire Chenu, Jussi Heinonsalo, Claudy Jolivet, Kristiina Karhu, Manuel Martin, Lorenza Pacini, Christopher Poeplau, Céline Ratié, Pierre Roudier, Nicolas P. A. Saby, Florence Savignac, and Pierre Barré
SOIL, 10, 795–812, https://doi.org/10.5194/soil-10-795-2024, https://doi.org/10.5194/soil-10-795-2024, 2024
Short summary
Short summary
This paper compares the soil organic carbon fractions obtained from a new thermal fractionation scheme and a well-known physical fractionation scheme on an unprecedented dataset of French topsoil samples. For each fraction, we use a machine learning model to determine its environmental drivers (pedology, climate, and land cover). Our results suggest that these two fractionation schemes provide different fractions, which means they provide complementary information.
Sebastian Doetterl, Rodrigue K. Asifiwe, Geert Baert, Fernando Bamba, Marijn Bauters, Pascal Boeckx, Benjamin Bukombe, Georg Cadisch, Matthew Cooper, Landry N. Cizungu, Alison Hoyt, Clovis Kabaseke, Karsten Kalbitz, Laurent Kidinda, Annina Maier, Moritz Mainka, Julia Mayrock, Daniel Muhindo, Basile B. Mujinya, Serge M. Mukotanyi, Leon Nabahungu, Mario Reichenbach, Boris Rewald, Johan Six, Anna Stegmann, Laura Summerauer, Robin Unseld, Bernard Vanlauwe, Kristof Van Oost, Kris Verheyen, Cordula Vogel, Florian Wilken, and Peter Fiener
Earth Syst. Sci. Data, 13, 4133–4153, https://doi.org/10.5194/essd-13-4133-2021, https://doi.org/10.5194/essd-13-4133-2021, 2021
Short summary
Short summary
The African Tropics are hotspots of modern-day land use change and are of great relevance for the global carbon cycle. Here, we present data collected as part of the DFG-funded project TropSOC along topographic, land use, and geochemical gradients in the eastern Congo Basin and the Albertine Rift. Our database contains spatial and temporal data on soil, vegetation, environmental properties, and land management collected from 136 pristine tropical forest and cropland plots between 2017 and 2020.
Maximilian Kirsten, Robert Mikutta, Didas N. Kimaro, Karl-Heinz Feger, and Karsten Kalbitz
SOIL, 7, 363–375, https://doi.org/10.5194/soil-7-363-2021, https://doi.org/10.5194/soil-7-363-2021, 2021
Short summary
Short summary
Mineralogical combinations of aluminous clay and pedogenic Fe oxides revealed significant effects on soil structure and related organic carbon (OC) storage.
The mineralogical combination resulting in the largest aggregate stability does not better preserve OC during conversion of forests into croplands.
Structural changes in the direction of smaller mean weight diameters do not cancel out the stabilizing effect of soil minerals.
Mathieu Chassé, Suzanne Lutfalla, Lauric Cécillon, François Baudin, Samuel Abiven, Claire Chenu, and Pierre Barré
Biogeosciences, 18, 1703–1718, https://doi.org/10.5194/bg-18-1703-2021, https://doi.org/10.5194/bg-18-1703-2021, 2021
Short summary
Short summary
Evolution of organic carbon content in soils could be a major driver of atmospheric greenhouse gas concentrations over the next century. Understanding factors controlling carbon persistence in soil is a challenge. Our study of unique long-term bare-fallow samples, depleted in labile organic carbon, helps improve the separation, evaluation and characterization of carbon pools with distinct residence time in soils and gives insight into the mechanisms explaining soil organic carbon persistence.
Severin-Luca Bellè, Asmeret Asefaw Berhe, Frank Hagedorn, Cristina Santin, Marcus Schiedung, Ilja van Meerveld, and Samuel Abiven
Biogeosciences, 18, 1105–1126, https://doi.org/10.5194/bg-18-1105-2021, https://doi.org/10.5194/bg-18-1105-2021, 2021
Short summary
Short summary
Controls of pyrogenic carbon (PyC) redistribution under rainfall are largely unknown. However, PyC mobility can be substantial after initial rain in post-fire landscapes. We conducted a controlled simulation experiment on plots where PyC was applied on the soil surface. We identified redistribution of PyC by runoff and splash and vertical movement in the soil depending on soil texture and PyC characteristics (material and size). PyC also induced changes in exports of native soil organic carbon.
Laurent K. Kidinda, Folasade K. Olagoke, Cordula Vogel, Karsten Kalbitz, and Sebastian Doetterl
SOIL Discuss., https://doi.org/10.5194/soil-2020-80, https://doi.org/10.5194/soil-2020-80, 2020
Preprint withdrawn
Short summary
Short summary
In deeply weathered tropical rainforest soils of Africa, we found that patterns of microbial processes differ between soils developed from geochemically contrasting parent materials due to differences in resource availability. Across investigated geochemical regions and soil depths, soil microbes were P-limited rather than N-limited. Topsoil microbes were more C-limited than their subsoil counterparts but inversely P-limited.
Lilli Zeh, Marie Theresa Igel, Judith Schellekens, Juul Limpens, Luca Bragazza, and Karsten Kalbitz
Biogeosciences, 17, 4797–4813, https://doi.org/10.5194/bg-17-4797-2020, https://doi.org/10.5194/bg-17-4797-2020, 2020
Patrick Liebmann, Patrick Wordell-Dietrich, Karsten Kalbitz, Robert Mikutta, Fabian Kalks, Axel Don, Susanne K. Woche, Leena R. Dsilva, and Georg Guggenberger
Biogeosciences, 17, 3099–3113, https://doi.org/10.5194/bg-17-3099-2020, https://doi.org/10.5194/bg-17-3099-2020, 2020
Short summary
Short summary
We studied the contribution of litter-derived carbon (C) in the formation of subsoil organic matter (OM). Soil core sampling, 13C field labeling, density fractionation, and water extractions were used to track its contribution to different functional OM fractions down to the deep subsoil. We show that while migrating down the soil profile, OM undergoes a sequence of repeated sorption, microbial processing, and desorption. However, the contribution of litter-derived C to subsoil OM is small.
Marijn Van de Broek, Shiva Ghiasi, Charlotte Decock, Andreas Hund, Samuel Abiven, Cordula Friedli, Roland A. Werner, and Johan Six
Biogeosciences, 17, 2971–2986, https://doi.org/10.5194/bg-17-2971-2020, https://doi.org/10.5194/bg-17-2971-2020, 2020
Short summary
Short summary
Four wheat cultivars were labeled with 13CO2 to quantify the effect of rooting depth and root biomass on the belowground transfer of organic carbon. We found no clear relation between the time since cultivar development and the amount of carbon inputs to the soil. Therefore, the hypothesis that wheat cultivars with a larger root biomass and deeper roots promote carbon stabilization was rejected. The amount of root biomass that will be stabilized in the soil on the long term is, however, unknown.
Conrad Jackisch, Kai Germer, Thomas Graeff, Ines Andrä, Katrin Schulz, Marcus Schiedung, Jaqueline Haller-Jans, Jonas Schneider, Julia Jaquemotte, Philipp Helmer, Leander Lotz, Andreas Bauer, Irene Hahn, Martin Šanda, Monika Kumpan, Johann Dorner, Gerrit de Rooij, Stefan Wessel-Bothe, Lorenz Kottmann, Siegfried Schittenhelm, and Wolfgang Durner
Earth Syst. Sci. Data, 12, 683–697, https://doi.org/10.5194/essd-12-683-2020, https://doi.org/10.5194/essd-12-683-2020, 2020
Short summary
Short summary
Soil water content and matric potential are central hydrological state variables. A large variety of automated probes and sensor systems for field monitoring exist. In a field experiment under idealised conditions we compared 15 systems for soil moisture and 14 systems for matric potential. The individual records of one system agree well with the others. Most records are also plausible. However, the absolute values of the different measuring systems span a very large range of possible truths.
Songyu Yang, Boris Jansen, Samira Absalah, Rutger L. van Hall, Karsten Kalbitz, and Erik L. H. Cammeraat
SOIL, 6, 1–15, https://doi.org/10.5194/soil-6-1-2020, https://doi.org/10.5194/soil-6-1-2020, 2020
Short summary
Short summary
Soils store large carbon and are important for global warming. We do not know what factors are important for soil carbon storage in the alpine Andes or how they work. We studied how rainfall affects soil carbon storage related to soil structure. We found soil structure is not important, but soil carbon storage and stability controlled by rainfall is dependent on rocks under the soils. The results indicate that we should pay attention to the rocks when we study soil carbon storage in the Andes.
Jeroen H. T. Zethof, Martin Leue, Cordula Vogel, Shane W. Stoner, and Karsten Kalbitz
SOIL, 5, 383–398, https://doi.org/10.5194/soil-5-383-2019, https://doi.org/10.5194/soil-5-383-2019, 2019
Short summary
Short summary
A widely overlooked source of carbon (C) in the soil environment is organic C of geogenic origin, e.g. graphite. Appropriate methods are not available to quantify graphite and to differentiate it from other organic and inorganic C sources in soils. Therefore, we examined Fourier transform infrared spectroscopy, thermogravimetric analysis and the smart combustion method for their ability to identify and quantify graphitic C in soils. The smart combustion method showed the most promising results.
Nicolette Tamara Regina Johanna Maria Jonkman, Esmee Daniëlle Kooijman, Karsten Kalbitz, Nicky Rosa Maria Pouw, and Boris Jansen
SOIL, 5, 303–313, https://doi.org/10.5194/soil-5-303-2019, https://doi.org/10.5194/soil-5-303-2019, 2019
Short summary
Short summary
In the urban gardens of Kisumu we interviewed female farmers to determine the sources and scope of their agricultural knowledge. We assessed the impact of the knowledge by comparing the influence of two types of management on soil nutrients. While one type of management was more effective in terms of preserving soil nutrients, the other management type had socioeconomic benefits. Both environmental and socioeconomic effects have to be considered in agricultural training to increase their impact.
Thimo Klotzbücher, Karsten Kalbitz, Chiara Cerli, Peter J. Hernes, and Klaus Kaiser
SOIL, 2, 325–335, https://doi.org/10.5194/soil-2-325-2016, https://doi.org/10.5194/soil-2-325-2016, 2016
Short summary
Short summary
Uncertainties concerning stabilization of organic compounds in soil limit our basic understanding on soil organic matter (SOM) formation and our ability to model and manage effects of global change on SOM stocks. One controversially debated aspect is the contribution of aromatic litter components, such as lignin and tannins, to stable SOM forms. Here, we summarize and discuss the inconsistencies and propose research options to clear them.
M. S. Studer, R. T. W. Siegwolf, M. Leuenberger, and S. Abiven
Biogeosciences, 12, 1865–1879, https://doi.org/10.5194/bg-12-1865-2015, https://doi.org/10.5194/bg-12-1865-2015, 2015
Short summary
Short summary
We present a new technique to label organic matter (OM) at its place of formation by the application of 13C, 18O and 2H through the gaseous phase. The label diffused into leaves was incorporated into assimilates and was detected in plant tissues. This technique can be applied in soil sciences, e.g. to trace the decomposition pathways of soil OM inputs, or in plant physiology and palaeoclimatic reconstruction, e.g. to further investigate the origin of the 18O and 2H signal in tree ring cellulose.
B. Maestrini, S. Abiven, N. Singh, J. Bird, M. S. Torn, and M. W. I. Schmidt
Biogeosciences, 11, 5199–5213, https://doi.org/10.5194/bg-11-5199-2014, https://doi.org/10.5194/bg-11-5199-2014, 2014
M. S. Studer, R. T. W. Siegwolf, and S. Abiven
Biogeosciences, 11, 1637–1648, https://doi.org/10.5194/bg-11-1637-2014, https://doi.org/10.5194/bg-11-1637-2014, 2014
Related subject area
Biogeochemistry: Soils
Diverse organic carbon dynamics captured by radiocarbon analysis of distinct compound classes in a grassland soil
The effects of land use on soil carbon stocks in the UK
Technical note: A validated correction method to quantify organic and inorganic carbon in soils using Rock-Eval® thermal analysis
Vegetation patterns associated with nutrient availability and supply in high-elevation tropical Andean ecosystems
A new approach to continuous monitoring of carbon use efficiency and biosynthesis in soil microbes from measurement of CO2 and O2
Technical note: An open-source, low-cost system for continuous monitoring of low nitrate concentrations in soil and open water
A Synthesis of Sphagnum Litterbag Experiments: Initial Leaching Losses Bias Decomposition Rate Estimates
Long-term fertilization increases soil but not plant or microbial N in a Chihuahuan Desert grassland
Factors controlling spatiotemporal variability of soil carbon accumulation and stock estimates in a tidal salt marsh
Effect of straw retention and mineral fertilization on P speciation and P-transformation microorganisms in water extractable colloids of a Vertisol
Moisture and temperature effects on the radiocarbon signature of respired carbon dioxide to assess stability of soil carbon in the Tibetan Plateau
Non-mycorrhizal root-associated fungi increase soil C stocks and stability via diverse mechanisms
Nine years of warming and nitrogen addition in the Tibetan grassland promoted loss of soil organic carbon but did not alter the bulk change in chemical structure
Soil priming effects and involved microbial community along salt gradients
Adjustments to the Rock-Eval® thermal analysis for soil organic and inorganic carbon quantification
Ecosystem-specific patterns and drivers of global reactive iron mineral-associated organic carbon
Dark septate endophytic fungi associated with pioneer grass inhabiting volcanic deposits and their functions in promoting plant growth
Global patterns and drivers of phosphorus fractions in natural soils
Reviews and syntheses: Iron – a driver of nitrogen bioavailability in soils?
How well does ramped thermal oxidation quantify the age distribution of soil carbon? Assessing thermal stability of physically and chemically fractionated soil organic matter
Differential temperature sensitivity of intracellular metabolic processes and extracellular soil enzyme activities
Mapping soil organic carbon fractions for Australia, their stocks, and uncertainty
Technical note: The recovery rate of free particulate organic matter from soil samples is strongly affected by the method of density fractionation
Deforestation for agriculture leads to soil warming and enhanced litter decomposition in subarctic soils
Temperature sensitivity of soil organic carbon respiration along a forested elevation gradient in the Rwenzori Mountains, Uganda
The influence of elevated CO2 and soil depth on rhizosphere activity and nutrient availability in a mature Eucalyptus woodland
The paradox of assessing greenhouse gases from soils for nature-based solutions
Management-induced changes in soil organic carbon on global croplands
Pore network modeling as a new tool for determining gas diffusivity in peat
Temperature sensitivity of dark CO2 fixation in temperate forest soils
Effects of precipitation seasonality, irrigation, vegetation cycle and soil type on enhanced weathering – modeling of cropland case studies across four sites
Stable isotope profiles of soil organic carbon in forested and grassland landscapes in the Lake Alaotra basin (Madagascar): insights in past vegetation changes
Reviews and syntheses: The promise of big diverse soil data, moving current practices towards future potential
Dynamics of rare earth elements and associated major and trace elements during Douglas-fir (Pseudotsuga menziesii) and European beech (Fagus sylvatica L.) litter degradation
To what extent can soil moisture and soil Cu contamination stresses affect nitrous species emissions? Estimation through calibration of a nitrification–denitrification model
Carbon, nitrogen, and phosphorus stoichiometry of organic matter in Swedish forest soils and its relationship with climate, tree species, and soil texture
Soil geochemistry as a driver of soil organic matter composition: insights from a soil chronosequence
Leaching of inorganic and organic phosphorus and nitrogen in contrasting beech forest soils – seasonal patterns and effects of fertilization
Age and chemistry of dissolved organic carbon reveal enhanced leaching of ancient labile carbon at the permafrost thaw zone
Soil organic carbon stabilization mechanisms and temperature sensitivity in old terraced soils
Effect of organic carbon addition on paddy soil organic carbon decomposition under different irrigation regimes
Soil profile connectivity can impact microbial substrate use, affecting how soil CO2 effluxes are controlled by temperature
Additional carbon inputs to reach a 4 per 1000 objective in Europe: feasibility and projected impacts of climate change based on Century simulations of long-term arable experiments
Cycling and retention of nitrogen in European beech (Fagus sylvatica L.) ecosystems under elevated fructification frequency
Mercury mobility, colloid formation and methylation in a polluted Fluvisol as affected by manure application and flooding–draining cycle
Simulating measurable ecosystem carbon and nitrogen dynamics with the mechanistically defined MEMS 2.0 model
Similar importance of edaphic and climatic factors for controlling soil organic carbon stocks of the world
Representing methane emissions from wet tropical forest soils using microbial functional groups constrained by soil diffusivity
Long-term bare-fallow soil fractions reveal thermo-chemical properties controlling soil organic carbon dynamics
Geochemical zones and environmental gradients for soils from the central Transantarctic Mountains, Antarctica
Katherine E. Grant, Marisa N. Repasch, Kari M. Finstad, Julia D. Kerr, Maxwell Marple, Christopher J. Larson, Taylor A. B. Broek, Jennifer Pett-Ridge, and Karis J. McFarlane
Biogeosciences, 21, 4395–4411, https://doi.org/10.5194/bg-21-4395-2024, https://doi.org/10.5194/bg-21-4395-2024, 2024
Short summary
Short summary
Soils store organic carbon composed of multiple compounds from plants and microbes for different lengths of time. To understand how soils store these different carbon types, we measure the time each carbon fraction is in a grassland soil profile. Our results show that the length of time each individual soil fraction is in our soil changes. Our approach allows a detailed look at the different components in soils. This study can help improve our understanding of soil dynamics.
Peter Levy, Laura Bentley, Peter Danks, Bridget Emmett, Angus Garbutt, Stephen Heming, Peter Henrys, Aidan Keith, Inma Lebron, Niall McNamara, Richard Pywell, John Redhead, David Robinson, and Alexander Wickenden
Biogeosciences, 21, 4301–4315, https://doi.org/10.5194/bg-21-4301-2024, https://doi.org/10.5194/bg-21-4301-2024, 2024
Short summary
Short summary
We collated a large data set (15 790 soil cores) on soil carbon stock in different land uses. Soil carbon stocks were highest in woodlands and lowest in croplands. The variability in the effects was large. This has important implications for agri-environment schemes seeking to sequester carbon in the soil by altering land use because the effect of a given intervention is very hard to verify.
Marija Stojanova, Pierre Arbelet, François Baudin, Nicolas Bouton, Giovanni Caria, Lorenza Pacini, Nicolas Proix, Edouard Quibel, Achille Thin, and Pierre Barré
Biogeosciences, 21, 4229–4237, https://doi.org/10.5194/bg-21-4229-2024, https://doi.org/10.5194/bg-21-4229-2024, 2024
Short summary
Short summary
Because of its importance for climate regulation and soil health, many studies focus on carbon dynamics in soils. However, quantifying organic and inorganic carbon remains an issue in carbonated soils. In this technical note, we propose a validated correction method to quantify organic and inorganic carbon in soils using Rock-Eval® thermal analysis. With this correction, the Rock-Eval® method has the potential to become the standard method for quantifying carbon in carbonate soils.
Armando Molina, Veerle Vanacker, Oliver Chadwick, Santiago Zhiminaicela, Marife Corre, and Edzo Veldkamp
Biogeosciences, 21, 3075–3091, https://doi.org/10.5194/bg-21-3075-2024, https://doi.org/10.5194/bg-21-3075-2024, 2024
Short summary
Short summary
The tropical Andes contains unique landscapes where forest patches are surrounded by tussock grasses and cushion-forming plants. The aboveground vegetation composition informs us about belowground nutrient availability: patterns in plant-available nutrients resulted from strong biocycling of cations and removal of soil nutrients by plant uptake or leaching. Future changes in vegetation distribution will affect soil water and solute fluxes and the aquatic ecology of Andean rivers and lakes.
Kyle E. Smart, Daniel O. Breecker, Christopher B. Blackwood, and Timothy M. Gallagher
EGUsphere, https://doi.org/10.5194/egusphere-2024-1757, https://doi.org/10.5194/egusphere-2024-1757, 2024
Short summary
Short summary
When microbes consume carbon within soils, it is important to know how much carbon is respired and lost as carbon dioxide versus how much is used to make new biomass. We used a new approach of monitoring carbon dioxide and oxygen to track the fate of consumed carbon during a series of laboratory experiments where sugar was added to moistened soil. Our approach allowed us to estimate how much sugar was converted to dead microbial biomass, which is more likely to be preserved in soils.
Sahiti Bulusu, Cristina Prieto García, Helen E. Dahlke, and Elad Levintal
Biogeosciences, 21, 3007–3013, https://doi.org/10.5194/bg-21-3007-2024, https://doi.org/10.5194/bg-21-3007-2024, 2024
Short summary
Short summary
Do-it-yourself hardware is a new way to improve measurement resolution. We present a low-cost, automated system for field measurements of low nitrate concentrations in soil porewater and open water bodies. All data hardware components cost USD 1100, which is much cheaper than other available commercial solutions. We provide the complete building guide to reduce technical barriers, which we hope will allow easier reproducibility and set up new soil and environmental monitoring applications.
Henning Teickner, Edzer Pebesma, and Klaus-Holger Knorr
EGUsphere, https://doi.org/10.5194/egusphere-2024-1686, https://doi.org/10.5194/egusphere-2024-1686, 2024
Short summary
Short summary
Decomposition rates for Sphagnum mosses, the main peat forming plants in northern peatlands, are often derived from litterbag experiments. Here, we estimate initial leaching losses from available Sphagnum litterbag experiments and analyze how decomposition rates are biased when initial leaching losses are ignored. Our analyses indicate that initial leaching losses range between 3 to 18 mass-% and that this may result in overestimated mass losses when extrapolated to several decades.
Violeta Mendoza-Martinez, Scott L. Collins, and Jennie R. McLaren
Biogeosciences, 21, 2655–2667, https://doi.org/10.5194/bg-21-2655-2024, https://doi.org/10.5194/bg-21-2655-2024, 2024
Short summary
Short summary
We examine the impacts of multi-decadal nitrogen additions on a dryland ecosystem N budget, including the soil, microbial, and plant N pools. After 26 years, there appears to be little impact on the soil microbial or plant community and only minimal increases in N pools within the soil. While perhaps encouraging from a conservation standpoint, we calculate that greater than 95 % of the nitrogen added to the system is not retained and is instead either lost deeper in the soil or emitted as gas.
Sean Fettrow, Andrew Wozniak, Holly A. Michael, and Angelia L. Seyfferth
Biogeosciences, 21, 2367–2384, https://doi.org/10.5194/bg-21-2367-2024, https://doi.org/10.5194/bg-21-2367-2024, 2024
Short summary
Short summary
Salt marshes play a big role in global carbon (C) storage, and C stock estimates are used to predict future changes. However, spatial and temporal gradients in C burial rates over the landscape exist due to variations in water inundation, dominant plant species and stage of growth, and tidal action. We quantified soil C concentrations in soil cores across time and space beside several porewater biogeochemical variables and discussed the controls on variability in soil C in salt marsh ecosystems.
Shanshan Bai, Yifei Ge, Dongtan Yao, Yifan Wang, Jinfang Tan, Shuai Zhang, Yutao Peng, and Xiaoqian Jiang
EGUsphere, https://doi.org/10.5194/egusphere-2024-983, https://doi.org/10.5194/egusphere-2024-983, 2024
Short summary
Short summary
Mineral fertilization led to increases in total P, available P, high-activity inorganic P fractions and organic P, but decreased the abundances of P cycling genes by decreasing soil pH and increasing P in bulk soil. Straw retention brought increases for organic C, total P, available P concentrations in water-extractable colloids (WECs). Abundances of phoD gene and phoD-harbouring Proteobacteria in WECs increased under straw retention, suggesting that the P mineralizing capacity increased.
Andrés Tangarife-Escobar, Georg Guggenberger, Xiaojuan Feng, Guohua Dai, Carolina Urbina-Malo, Mina Azizi-Rad, and Carlos A. Sierra
Biogeosciences, 21, 1277–1299, https://doi.org/10.5194/bg-21-1277-2024, https://doi.org/10.5194/bg-21-1277-2024, 2024
Short summary
Short summary
Soil organic matter stability depends on future temperature and precipitation scenarios. We used radiocarbon (14C) data and model predictions to understand how the transit time of carbon varies under environmental change in grasslands and peatlands. Soil moisture affected the Δ14C of peatlands, while temperature did not have any influence. Our models show the correspondence between Δ14C and transit time and could allow understanding future interactions between terrestrial and atmospheric carbon
Emiko K. Stuart, Laura Castañeda-Gómez, Wolfram Buss, Jeff R. Powell, and Yolima Carrillo
Biogeosciences, 21, 1037–1059, https://doi.org/10.5194/bg-21-1037-2024, https://doi.org/10.5194/bg-21-1037-2024, 2024
Short summary
Short summary
We inoculated wheat plants with various types of fungi whose impacts on soil carbon are poorly understood. After several months of growth, we examined both their impacts on soil carbon and the underlying mechanisms using multiple methods. Overall the fungi benefitted the storage of carbon in soil, mainly by improving the stability of pre-existing carbon, but several pathways were involved. This study demonstrates their importance for soil carbon storage and, therefore, climate change mitigation.
Huimin Sun, Michael W. I. Schmidt, Jintao Li, Jinquan Li, Xiang Liu, Nicholas O. E. Ofiti, Shurong Zhou, and Ming Nie
Biogeosciences, 21, 575–589, https://doi.org/10.5194/bg-21-575-2024, https://doi.org/10.5194/bg-21-575-2024, 2024
Short summary
Short summary
A soil organic carbon (SOC) molecular structure suggested that the easily decomposable and stabilized SOC is similarly affected after 9-year warming and N treatments despite large changes in SOC stocks. Given the long residence time of some SOC, the similar loss of all measurable chemical forms of SOC under global change treatments could have important climate consequences.
Haoli Zhang, Doudou Chang, Zhifeng Zhu, Chunmei Meng, and Kaiyong Wang
Biogeosciences, 21, 1–11, https://doi.org/10.5194/bg-21-1-2024, https://doi.org/10.5194/bg-21-1-2024, 2024
Short summary
Short summary
Soil salinity mediates microorganisms and soil processes like soil organic carbon (SOC) cycling. We observed that negative priming effects at the early stages might be due to the preferential utilization of cottonseed meal. The positive priming that followed decreased with the increase in salinity.
Joséphine Hazera, David Sebag, Isabelle Kowalewski, Eric Verrecchia, Herman Ravelojaona, and Tiphaine Chevallier
Biogeosciences, 20, 5229–5242, https://doi.org/10.5194/bg-20-5229-2023, https://doi.org/10.5194/bg-20-5229-2023, 2023
Short summary
Short summary
This study adapts the Rock-Eval® protocol to quantify soil organic carbon (SOC) and soil inorganic carbon (SIC) on a non-pretreated soil aliquot. The standard protocol properly estimates SOC contents once the TOC parameter is corrected. However, it cannot complete the thermal breakdown of SIC amounts > 4 mg, leading to an underestimation of high SIC contents by the MinC parameter, even after correcting for this. Thus, the final oxidation isotherm is extended to 7 min to quantify any SIC amount.
Bo Zhao, Amin Dou, Zhiwei Zhang, Zhenyu Chen, Wenbo Sun, Yanli Feng, Xiaojuan Wang, and Qiang Wang
Biogeosciences, 20, 4761–4774, https://doi.org/10.5194/bg-20-4761-2023, https://doi.org/10.5194/bg-20-4761-2023, 2023
Short summary
Short summary
This study provided a comprehensive analysis of the spatial variability and determinants of Fe-bound organic carbon (Fe-OC) among terrestrial, wetland, and marine ecosystems and its governing factors globally. We illustrated that reactive Fe was not only an important sequestration mechanism for OC in terrestrial ecosystems but also an effective “rusty sink” of OC preservation in wetland and marine ecosystems, i.e., a key factor for long-term OC storage in global ecosystems.
Han Sun, Tomoyasu Nishizawa, Hiroyuki Ohta, and Kazuhiko Narisawa
Biogeosciences, 20, 4737–4749, https://doi.org/10.5194/bg-20-4737-2023, https://doi.org/10.5194/bg-20-4737-2023, 2023
Short summary
Short summary
In this research, we assessed the diversity and function of the dark septate endophytic (DSE) fungi community associated with Miscanthus condensatus root in volcanic ecosystems. Both metabarcoding and isolation were adopted in this study. We further validated effects on plant growth by inoculation of some core DSE isolates. This study helps improve our understanding of the role of Miscanthus condensatus-associated DSE fungi during the restoration of post-volcanic ecosystems.
Xianjin He, Laurent Augusto, Daniel S. Goll, Bruno Ringeval, Ying-Ping Wang, Julian Helfenstein, Yuanyuan Huang, and Enqing Hou
Biogeosciences, 20, 4147–4163, https://doi.org/10.5194/bg-20-4147-2023, https://doi.org/10.5194/bg-20-4147-2023, 2023
Short summary
Short summary
We identified total soil P concentration as the most important predictor of all soil P pool concentrations, except for primary mineral P concentration, which is primarily controlled by soil pH and only secondarily by total soil P concentration. We predicted soil P pools’ distributions in natural systems, which can inform assessments of the role of natural P availability for ecosystem productivity, climate change mitigation, and the functioning of the Earth system.
Imane Slimani, Xia Zhu-Barker, Patricia Lazicki, and William Horwath
Biogeosciences, 20, 3873–3894, https://doi.org/10.5194/bg-20-3873-2023, https://doi.org/10.5194/bg-20-3873-2023, 2023
Short summary
Short summary
There is a strong link between nitrogen availability and iron minerals in soils. These minerals have multiple outcomes for nitrogen availability depending on soil conditions and properties. For example, iron can limit microbial degradation of nitrogen in aerated soils but has opposing outcomes in non-aerated soils. This paper focuses on the multiple ways iron can affect nitrogen bioavailability in soils.
Shane W. Stoner, Marion Schrumpf, Alison Hoyt, Carlos A. Sierra, Sebastian Doetterl, Valier Galy, and Susan Trumbore
Biogeosciences, 20, 3151–3163, https://doi.org/10.5194/bg-20-3151-2023, https://doi.org/10.5194/bg-20-3151-2023, 2023
Short summary
Short summary
Soils store more carbon (C) than any other terrestrial C reservoir, but the processes that control how much C stays in soil, and for how long, are very complex. Here, we used a recent method that involves heating soil in the lab to measure the range of C ages in soil. We found that most C in soil is decades to centuries old, while some stays for much shorter times (days to months), and some is thousands of years old. Such detail helps us to estimate how soil C may react to changing climate.
Adetunji Alex Adekanmbi, Laurence Dale, Liz Shaw, and Tom Sizmur
Biogeosciences, 20, 2207–2219, https://doi.org/10.5194/bg-20-2207-2023, https://doi.org/10.5194/bg-20-2207-2023, 2023
Short summary
Short summary
The decomposition of soil organic matter and flux of carbon dioxide are expected to increase as temperatures rise. However, soil organic matter decomposition is a two-step process whereby large molecules are first broken down outside microbial cells and then respired within microbial cells. We show here that these two steps are not equally sensitive to increases in soil temperature and that global warming may cause a shift in the rate-limiting step from outside to inside the microbial cell.
Mercedes Román Dobarco, Alexandre M. J-C. Wadoux, Brendan Malone, Budiman Minasny, Alex B. McBratney, and Ross Searle
Biogeosciences, 20, 1559–1586, https://doi.org/10.5194/bg-20-1559-2023, https://doi.org/10.5194/bg-20-1559-2023, 2023
Short summary
Short summary
Soil organic carbon (SOC) is of a heterogeneous nature and varies in chemistry, stabilisation mechanisms, and persistence in soil. In this study we mapped the stocks of SOC fractions with different characteristics and turnover rates (presumably PyOC >= MAOC > POC) across Australia, combining spectroscopy and digital soil mapping. The SOC stocks (0–30 cm) were estimated as 13 Pg MAOC, 2 Pg POC, and 5 Pg PyOC.
Frederick Büks
Biogeosciences, 20, 1529–1535, https://doi.org/10.5194/bg-20-1529-2023, https://doi.org/10.5194/bg-20-1529-2023, 2023
Short summary
Short summary
Ultrasonication with density fractionation of soils is a commonly used method to separate soil organic matter pools, which is, e.g., important to calculate carbon turnover in landscapes. It is shown that the approach that merges soil and dense solution without mixing has a low recovery rate and causes co-extraction of parts of the retained labile pool along with the intermediate pool. An alternative method with high recovery rates and no cross-contamination was recommended.
Tino Peplau, Christopher Poeplau, Edward Gregorich, and Julia Schroeder
Biogeosciences, 20, 1063–1074, https://doi.org/10.5194/bg-20-1063-2023, https://doi.org/10.5194/bg-20-1063-2023, 2023
Short summary
Short summary
We buried tea bags and temperature loggers in a paired-plot design in soils under forest and agricultural land and retrieved them after 2 years to quantify the effect of land-use change on soil temperature and litter decomposition in subarctic agricultural systems. We could show that agricultural soils were on average 2 °C warmer than forests and that litter decomposition was enhanced. The results imply that deforestation amplifies effects of climate change on soil organic matter dynamics.
Joseph Okello, Marijn Bauters, Hans Verbeeck, Samuel Bodé, John Kasenene, Astrid Françoys, Till Engelhardt, Klaus Butterbach-Bahl, Ralf Kiese, and Pascal Boeckx
Biogeosciences, 20, 719–735, https://doi.org/10.5194/bg-20-719-2023, https://doi.org/10.5194/bg-20-719-2023, 2023
Short summary
Short summary
The increase in global and regional temperatures has the potential to drive accelerated soil organic carbon losses in tropical forests. We simulated climate warming by translocating intact soil cores from higher to lower elevations. The results revealed increasing temperature sensitivity and decreasing losses of soil organic carbon with increasing elevation. Our results suggest that climate warming may trigger enhanced losses of soil organic carbon from tropical montane forests.
Johanna Pihlblad, Louise C. Andresen, Catriona A. Macdonald, David S. Ellsworth, and Yolima Carrillo
Biogeosciences, 20, 505–521, https://doi.org/10.5194/bg-20-505-2023, https://doi.org/10.5194/bg-20-505-2023, 2023
Short summary
Short summary
Elevated CO2 in the atmosphere increases forest biomass productivity when growth is not limited by soil nutrients. This study explores how mature trees stimulate soil availability of nitrogen and phosphorus with free-air carbon dioxide enrichment after 5 years of fumigation. We found that both nutrient availability and processes feeding available pools increased in the rhizosphere, and phosphorus increased at depth. This appears to not be by decomposition but by faster recycling of nutrients.
Rodrigo Vargas and Van Huong Le
Biogeosciences, 20, 15–26, https://doi.org/10.5194/bg-20-15-2023, https://doi.org/10.5194/bg-20-15-2023, 2023
Short summary
Short summary
Quantifying the role of soils in nature-based solutions requires accurate estimates of soil greenhouse gas (GHG) fluxes. We suggest that multiple GHG fluxes should not be simultaneously measured at a few fixed time intervals, but an optimized sampling approach can reduce bias and uncertainty. Our results have implications for assessing GHG fluxes from soils and a better understanding of the role of soils in nature-based solutions.
Kristine Karstens, Benjamin Leon Bodirsky, Jan Philipp Dietrich, Marta Dondini, Jens Heinke, Matthias Kuhnert, Christoph Müller, Susanne Rolinski, Pete Smith, Isabelle Weindl, Hermann Lotze-Campen, and Alexander Popp
Biogeosciences, 19, 5125–5149, https://doi.org/10.5194/bg-19-5125-2022, https://doi.org/10.5194/bg-19-5125-2022, 2022
Short summary
Short summary
Soil organic carbon (SOC) has been depleted by anthropogenic land cover change and agricultural management. While SOC models often simulate detailed biochemical processes, the management decisions are still little investigated at the global scale. We estimate that soils have lost around 26 GtC relative to a counterfactual natural state in 1975. Yet, since 1975, SOC has been increasing again by 4 GtC due to a higher productivity, recycling of crop residues and manure, and no-tillage practices.
Petri Kiuru, Marjo Palviainen, Arianna Marchionne, Tiia Grönholm, Maarit Raivonen, Lukas Kohl, and Annamari Laurén
Biogeosciences, 19, 5041–5058, https://doi.org/10.5194/bg-19-5041-2022, https://doi.org/10.5194/bg-19-5041-2022, 2022
Short summary
Short summary
Peatlands are large carbon stocks. Emissions of carbon dioxide and methane from peatlands may increase due to changes in management and climate. We studied the variation in the gas diffusivity of peat with depth using pore network simulations and laboratory experiments. Gas diffusivity was found to be lower in deeper peat with smaller pores and lower pore connectivity. However, gas diffusivity was not extremely low in wet conditions, which may reflect the distinctive structure of peat.
Rachael Akinyede, Martin Taubert, Marion Schrumpf, Susan Trumbore, and Kirsten Küsel
Biogeosciences, 19, 4011–4028, https://doi.org/10.5194/bg-19-4011-2022, https://doi.org/10.5194/bg-19-4011-2022, 2022
Short summary
Short summary
Soils will likely become warmer in the future, and this can increase the release of carbon dioxide (CO2) into the atmosphere. As microbes can take up soil CO2 and prevent further escape into the atmosphere, this study compares the rate of uptake and release of CO2 at two different temperatures. With warming, the rate of CO2 uptake increases less than the rate of release, indicating that the capacity to modulate soil CO2 release into the atmosphere will decrease under future warming.
Giuseppe Cipolla, Salvatore Calabrese, Amilcare Porporato, and Leonardo V. Noto
Biogeosciences, 19, 3877–3896, https://doi.org/10.5194/bg-19-3877-2022, https://doi.org/10.5194/bg-19-3877-2022, 2022
Short summary
Short summary
Enhanced weathering (EW) is a promising strategy for carbon sequestration. Since models may help to characterize field EW, the present work applies a hydro-biogeochemical model to four case studies characterized by different rainfall seasonality, vegetation and soil type. Rainfall seasonality strongly affects EW dynamics, but low carbon sequestration suggests that an in-depth analysis at the global scale is required to see if EW may be effective to mitigate climate change.
Vao Fenotiana Razanamahandry, Marjolein Dewaele, Gerard Govers, Liesa Brosens, Benjamin Campforts, Liesbet Jacobs, Tantely Razafimbelo, Tovonarivo Rafolisy, and Steven Bouillon
Biogeosciences, 19, 3825–3841, https://doi.org/10.5194/bg-19-3825-2022, https://doi.org/10.5194/bg-19-3825-2022, 2022
Short summary
Short summary
In order to shed light on possible past vegetation shifts in the Central Highlands of Madagascar, we measured stable isotope ratios of organic carbon in soil profiles along both forested and grassland hillslope transects in the Lake Alaotra region. Our results show that the landscape of this region was more forested in the past: soils in the C4-dominated grasslands contained a substantial fraction of C3-derived carbon, increasing with depth.
Katherine E. O. Todd-Brown, Rose Z. Abramoff, Jeffrey Beem-Miller, Hava K. Blair, Stevan Earl, Kristen J. Frederick, Daniel R. Fuka, Mario Guevara Santamaria, Jennifer W. Harden, Katherine Heckman, Lillian J. Heran, James R. Holmquist, Alison M. Hoyt, David H. Klinges, David S. LeBauer, Avni Malhotra, Shelby C. McClelland, Lucas E. Nave, Katherine S. Rocci, Sean M. Schaeffer, Shane Stoner, Natasja van Gestel, Sophie F. von Fromm, and Marisa L. Younger
Biogeosciences, 19, 3505–3522, https://doi.org/10.5194/bg-19-3505-2022, https://doi.org/10.5194/bg-19-3505-2022, 2022
Short summary
Short summary
Research data are becoming increasingly available online with tantalizing possibilities for reanalysis. However harmonizing data from different sources remains challenging. Using the soils community as an example, we walked through the various strategies that researchers currently use to integrate datasets for reanalysis. We find that manual data transcription is still extremely common and that there is a critical need for community-supported informatics tools like vocabularies and ontologies.
Alessandro Montemagno, Christophe Hissler, Victor Bense, Adriaan J. Teuling, Johanna Ziebel, and Laurent Pfister
Biogeosciences, 19, 3111–3129, https://doi.org/10.5194/bg-19-3111-2022, https://doi.org/10.5194/bg-19-3111-2022, 2022
Short summary
Short summary
We investigated the biogeochemical processes that dominate the release and retention of elements (nutrients and potentially toxic elements) during litter degradation. Our results show that toxic elements are retained in the litter, while nutrients are released in solution during the first stages of degradation. This seems linked to the capability of trees to distribute the elements between degradation-resistant and non-degradation-resistant compounds of leaves according to their chemical nature.
Laura Sereni, Bertrand Guenet, Charlotte Blasi, Olivier Crouzet, Jean-Christophe Lata, and Isabelle Lamy
Biogeosciences, 19, 2953–2968, https://doi.org/10.5194/bg-19-2953-2022, https://doi.org/10.5194/bg-19-2953-2022, 2022
Short summary
Short summary
This study focused on the modellisation of two important drivers of soil greenhouse gas emissions: soil contamination and soil moisture change. The aim was to include a Cu function in the soil biogeochemical model DNDC for different soil moisture conditions and then to estimate variation in N2O, NO2 or NOx emissions. Our results show a larger effect of Cu on N2 and N2O emissions than on the other nitrogen species and a higher effect for the soils incubated under constant constant moisture.
Marie Spohn and Johan Stendahl
Biogeosciences, 19, 2171–2186, https://doi.org/10.5194/bg-19-2171-2022, https://doi.org/10.5194/bg-19-2171-2022, 2022
Short summary
Short summary
We explored the ratios of carbon (C), nitrogen (N), and phosphorus (P) of organic matter in Swedish forest soils. The N : P ratio of the organic layer was most strongly related to the mean annual temperature, while the C : N ratios of the organic layer and mineral soil were strongly related to tree species even in the subsoil. The organic P concentration in the mineral soil was strongly affected by soil texture, which diminished the effect of tree species on the C to organic P (C : OP) ratio.
Moritz Mainka, Laura Summerauer, Daniel Wasner, Gina Garland, Marco Griepentrog, Asmeret Asefaw Berhe, and Sebastian Doetterl
Biogeosciences, 19, 1675–1689, https://doi.org/10.5194/bg-19-1675-2022, https://doi.org/10.5194/bg-19-1675-2022, 2022
Short summary
Short summary
The largest share of terrestrial carbon is stored in soils, making them highly relevant as regards global change. Yet, the mechanisms governing soil carbon stabilization are not well understood. The present study contributes to a better understanding of these processes. We show that qualitative changes in soil organic matter (SOM) co-vary with alterations of the soil matrix following soil weathering. Hence, the type of SOM that is stabilized in soils might change as soils develop.
Jasmin Fetzer, Emmanuel Frossard, Klaus Kaiser, and Frank Hagedorn
Biogeosciences, 19, 1527–1546, https://doi.org/10.5194/bg-19-1527-2022, https://doi.org/10.5194/bg-19-1527-2022, 2022
Short summary
Short summary
As leaching is a major pathway of nitrogen and phosphorus loss in forest soils, we investigated several potential drivers in two contrasting beech forests. The composition of leachates, obtained by zero-tension lysimeters, varied by season, and climatic extremes influenced the magnitude of leaching. Effects of nitrogen and phosphorus fertilization varied with soil nutrient status and sorption properties, and leaching from the low-nutrient soil was more sensitive to environmental factors.
Karis J. McFarlane, Heather M. Throckmorton, Jeffrey M. Heikoop, Brent D. Newman, Alexandra L. Hedgpeth, Marisa N. Repasch, Thomas P. Guilderson, and Cathy J. Wilson
Biogeosciences, 19, 1211–1223, https://doi.org/10.5194/bg-19-1211-2022, https://doi.org/10.5194/bg-19-1211-2022, 2022
Short summary
Short summary
Planetary warming is increasing seasonal thaw of permafrost, making this extensive old carbon stock vulnerable. In northern Alaska, we found more and older dissolved organic carbon in small drainages later in summer as more permafrost was exposed by deepening thaw. Younger and older carbon did not differ in chemical indicators related to biological lability suggesting this carbon can cycle through aquatic systems and contribute to greenhouse gas emissions as warming increases permafrost thaw.
Pengzhi Zhao, Daniel Joseph Fallu, Sara Cucchiaro, Paolo Tarolli, Clive Waddington, David Cockcroft, Lisa Snape, Andreas Lang, Sebastian Doetterl, Antony G. Brown, and Kristof Van Oost
Biogeosciences, 18, 6301–6312, https://doi.org/10.5194/bg-18-6301-2021, https://doi.org/10.5194/bg-18-6301-2021, 2021
Short summary
Short summary
We investigate the factors controlling the soil organic carbon (SOC) stability and temperature sensitivity of abandoned prehistoric agricultural terrace soils. Results suggest that the burial of former topsoil due to terracing provided an SOC stabilization mechanism. Both the soil C : N ratio and SOC mineral protection regulate soil SOC temperature sensitivity. However, which mechanism predominantly controls SOC temperature sensitivity depends on the age of the buried terrace soils.
Heleen Deroo, Masuda Akter, Samuel Bodé, Orly Mendoza, Haichao Li, Pascal Boeckx, and Steven Sleutel
Biogeosciences, 18, 5035–5051, https://doi.org/10.5194/bg-18-5035-2021, https://doi.org/10.5194/bg-18-5035-2021, 2021
Short summary
Short summary
We assessed if and how incorporation of exogenous organic carbon (OC) such as straw could affect decomposition of native soil organic carbon (SOC) under different irrigation regimes. Addition of exogenous OC promoted dissolution of native SOC, partly because of increased Fe reduction, leading to more net release of Fe-bound SOC. Yet, there was no proportionate priming of SOC-derived DOC mineralisation. Water-saving irrigation can retard both priming of SOC dissolution and mineralisation.
Frances A. Podrebarac, Sharon A. Billings, Kate A. Edwards, Jérôme Laganière, Matthew J. Norwood, and Susan E. Ziegler
Biogeosciences, 18, 4755–4772, https://doi.org/10.5194/bg-18-4755-2021, https://doi.org/10.5194/bg-18-4755-2021, 2021
Short summary
Short summary
Soil respiration is a large and temperature-responsive flux in the global carbon cycle. We found increases in microbial use of easy to degrade substrates enhanced the temperature response of respiration in soils layered as they are in situ. This enhanced response is consistent with soil composition differences in warm relative to cold climate forests. These results highlight the importance of the intact nature of soils rarely studied in regulating responses of CO2 fluxes to changing temperature.
Elisa Bruni, Bertrand Guenet, Yuanyuan Huang, Hugues Clivot, Iñigo Virto, Roberta Farina, Thomas Kätterer, Philippe Ciais, Manuel Martin, and Claire Chenu
Biogeosciences, 18, 3981–4004, https://doi.org/10.5194/bg-18-3981-2021, https://doi.org/10.5194/bg-18-3981-2021, 2021
Short summary
Short summary
Increasing soil organic carbon (SOC) stocks is beneficial for climate change mitigation and food security. One way to enhance SOC stocks is to increase carbon input to the soil. We estimate the amount of carbon input required to reach a 4 % annual increase in SOC stocks in 14 long-term agricultural experiments around Europe. We found that annual carbon input should increase by 43 % under current temperature conditions, by 54 % for a 1 °C warming scenario and by 120 % for a 5 °C warming scenario.
Rainer Brumme, Bernd Ahrends, Joachim Block, Christoph Schulz, Henning Meesenburg, Uwe Klinck, Markus Wagner, and Partap K. Khanna
Biogeosciences, 18, 3763–3779, https://doi.org/10.5194/bg-18-3763-2021, https://doi.org/10.5194/bg-18-3763-2021, 2021
Short summary
Short summary
In order to study the fate of litter nitrogen in forest soils, we combined a leaf litterfall exchange experiment using 15N-labeled leaf litter with long-term element budgets at seven European beech sites in Germany. It appears that fructification intensity, which has increased in recent decades, has a distinct impact on N retention in forest soils. Despite reduced nitrogen deposition, about 6 and 10 kg ha−1 of nitrogen were retained annually in the soils and in the forest stands, respectively.
Lorenz Gfeller, Andrea Weber, Isabelle Worms, Vera I. Slaveykova, and Adrien Mestrot
Biogeosciences, 18, 3445–3465, https://doi.org/10.5194/bg-18-3445-2021, https://doi.org/10.5194/bg-18-3445-2021, 2021
Short summary
Short summary
Our incubation experiment shows that flooding of polluted floodplain soils may induce pulses of both mercury (Hg) and methylmercury to the soil solution and threaten downstream ecosystems. We demonstrate that mobilization of Hg bound to manganese oxides is a relevant process in organic-matter-poor soils. Addition of organic amendments accelerates this mobilization but also facilitates the formation of nanoparticulate Hg and the subsequent fixation of Hg from soil solution to the soil.
Yao Zhang, Jocelyn M. Lavallee, Andy D. Robertson, Rebecca Even, Stephen M. Ogle, Keith Paustian, and M. Francesca Cotrufo
Biogeosciences, 18, 3147–3171, https://doi.org/10.5194/bg-18-3147-2021, https://doi.org/10.5194/bg-18-3147-2021, 2021
Short summary
Short summary
Soil organic matter (SOM) is essential for the health of soils, and the accumulation of SOM helps removal of CO2 from the atmosphere. Here we present the result of the continued development of a mathematical model that simulates SOM and its measurable fractions. In this study, we simulated several grassland sites in the US, and the model generally captured the carbon and nitrogen amounts in SOM and their distribution between the measurable fractions throughout the entire soil profile.
Zhongkui Luo, Raphael A. Viscarra-Rossel, and Tian Qian
Biogeosciences, 18, 2063–2073, https://doi.org/10.5194/bg-18-2063-2021, https://doi.org/10.5194/bg-18-2063-2021, 2021
Short summary
Short summary
Using the data from 141 584 whole-soil profiles across the globe, we disentangled the relative importance of biotic, climatic and edaphic variables in controlling global SOC stocks. The results suggested that soil properties and climate contributed similarly to the explained global variance of SOC in four sequential soil layers down to 2 m. However, the most important individual controls are consistently soil-related, challenging current climate-driven framework of SOC dynamics.
Debjani Sihi, Xiaofeng Xu, Mónica Salazar Ortiz, Christine S. O'Connell, Whendee L. Silver, Carla López-Lloreda, Julia M. Brenner, Ryan K. Quinn, Jana R. Phillips, Brent D. Newman, and Melanie A. Mayes
Biogeosciences, 18, 1769–1786, https://doi.org/10.5194/bg-18-1769-2021, https://doi.org/10.5194/bg-18-1769-2021, 2021
Short summary
Short summary
Humid tropical soils are important sources and sinks of methane. We used model simulation to understand how different kinds of microbes and observed soil moisture and oxygen dynamics contribute to production and consumption of methane along a wet tropical hillslope during normal and drought conditions. Drought alters the diffusion of oxygen and microbial substrates into and out of soil microsites, resulting in enhanced methane release from the entire hillslope during drought recovery.
Mathieu Chassé, Suzanne Lutfalla, Lauric Cécillon, François Baudin, Samuel Abiven, Claire Chenu, and Pierre Barré
Biogeosciences, 18, 1703–1718, https://doi.org/10.5194/bg-18-1703-2021, https://doi.org/10.5194/bg-18-1703-2021, 2021
Short summary
Short summary
Evolution of organic carbon content in soils could be a major driver of atmospheric greenhouse gas concentrations over the next century. Understanding factors controlling carbon persistence in soil is a challenge. Our study of unique long-term bare-fallow samples, depleted in labile organic carbon, helps improve the separation, evaluation and characterization of carbon pools with distinct residence time in soils and gives insight into the mechanisms explaining soil organic carbon persistence.
Melisa A. Diaz, Christopher B. Gardner, Susan A. Welch, W. Andrew Jackson, Byron J. Adams, Diana H. Wall, Ian D. Hogg, Noah Fierer, and W. Berry Lyons
Biogeosciences, 18, 1629–1644, https://doi.org/10.5194/bg-18-1629-2021, https://doi.org/10.5194/bg-18-1629-2021, 2021
Short summary
Short summary
Water-soluble salt and nutrient concentrations of soils collected along the Shackleton Glacier, Antarctica, show distinct geochemical gradients related to latitude, longitude, elevation, soil moisture, and distance from coast and glacier. Machine learning algorithms were used to estimate geochemical gradients for the region given the relationship with geography. Geography and surface exposure age drive salt and nutrient abundances, influencing invertebrate habitat suitability and biogeography.
Cited articles
Abiven, S. and Santín, C.: Editorial: From Fires to Oceans: Dynamics of
Fire-Derived Organic Matter in Terrestrial and Aquatic Ecosystems, Front. Earth Sci., 7, 31,
https://doi.org/10.3389/feart.2019.00031, 2019.
Abiven, S., Hengartner, P., Schneider, M. P. W., Singh, N., and Schmidt, M. W. I.:
Pyrogenic carbon soluble fraction is larger and more aromatic in aged charcoal than in fresh
charcoal, Soil Biol. Biochem., 43, 1615–1617, https://doi.org/10.1016/j.soilbio.2011.03.027, 2011.
Abney, R. B., Kuhn, T. J., Chow, A., Hockaday, W., Fogel, M. L., and Berhe, A. A.:
Pyrogenic carbon erosion after the Rim Fire, Yosemite National Park: The Role of Burn Severity and
Slope, J. Geophys. Res.-Biogeo., 124, 432–449, https://doi.org/10.1029/2018JG004787, 2019.
Bao, H., Niggemann, J., Huang, D., Dittmar, T., and Kao, S. J.: Different Responses of
Dissolved Black Carbon and Dissolved Lignin to Seasonal Hydrological Changes and an Extreme Rain
Event, J. Geophys. Res.-Biogeo., 124, 479–493, https://doi.org/10.1029/2018JG004822, 2019.
Barnes, R. T., Gallagher, M. E., Masiello, C. A., Liu, Z., and Dugan, B.:
Biochar-induced changes in soil hydraulic conductivity and dissolved nutrient fluxes constrained
by laboratory experiments, PLoS One, 9, e108340,
https://doi.org/10.1371/journal.pone.0108340, 2014.
Bird, M. I., Wynn, J. G., Saiz, G., Wurster, C. M., and McBeath, A.: The Pyrogenic
Carbon Cycle, Annu. Rev. Earth Planet. Sc., 43, 273–298,
https://doi.org/10.1146/annurev-earth-060614-105038, 2015.
Braun, M., Kappenberg, A., Sandhage-Hofmann, A., and Lehndorff, E.: Leachable soil black
carbon after biochar application, Org. Geochem., 143, 103996,
https://doi.org/10.1016/j.orggeochem.2020.103996, 2020.
Brodowski, S., Amelung, W., Haumaier, L., Abetz, C., and Zech, W.: Morphological and
chemical properties of black carbon in physical soil fractions as revealed by scanning electron
microscopy and energy-dispersive X-ray spectroscopy, Geoderma, 128, 116–129,
https://doi.org/10.1016/j.geoderma.2004.12.019, 2005.
Brodowski, S., John, B., Flessa, H., and Amelung, W.: Aggregate-occluded black carbon in
soil, Eur. J. Soil Sci., 57, 539–546, https://doi.org/10.1111/j.1365-2389.2006.00807.x, 2006.
Brodowski, S., Amelung, W., Haumaier, L., and Zech, W.: Black carbon contribution to
stable humus in German arable soils, Geoderma, 139, 220–228,
https://doi.org/10.1016/j.geoderma.2007.02.004, 2007.
Castan, S., Sigmund, G., Hüffer, T., and Hofmann, T.: Biochar particle aggregation
in soil pore water: The influence of ionic strength and interactions with pyrene,
Environ. Sci. Process. Impacts, 21, 1722–1728, https://doi.org/10.1039/c9em00277d, 2019.
Chatterjee, S., Santos, F., Abiven, S., Itin, B., Stark, R. E., and Bird, J. a.:
Elucidating the chemical structure of pyrogenic organic matter by combining magnetic resonance,
mid-infrared spectroscopy and mass spectrometry, Org. Geochem., 51, 35–44,
https://doi.org/10.1016/j.orggeochem.2012.07.006, 2012.
Cheng, C.-H. H., Lehmann, J., Thies, J. J. E., and Burton, S. D. S.: Stability of black
carbon in soils across a climatic gradient, J. Geophys. Res.-Biogeosci., 113, 1–10,
https://doi.org/10.1029/2007JG000642, 2008.
Coplen, T. B.: Guidelines and recommended terms for expression of stable-isotope-ratio
and gas-ratio measurement results, Rapid Commun. Mass Sp., 25, 2538–2560,
https://doi.org/10.1002/rcm.5129, 2011.
Coppola, A. I. and Druffel, E. R. M.: Cycling of black carbon in the ocean,
Geophys. Res. Lett., 43, 4477–4482, https://doi.org/10.1002/2016GL068574, 2016.
Coppola, A. I., Wiedemeier, D. B., Galy, V., Haghipour, N., Hanke, U. M., Nascimento,
G. S., Usman, M., Blattmann, T. M., Reisser, M., Freymond, C. V., Zhao, M., Voss, B., Wacker, L.,
Schefuß, E., Peucker-Ehrenbrink, B., Abiven, S., Schmidt, M. W. I., and Eglinton, T. I.:
Global-scale evidence for the refractory nature of riverine black carbon, Nat. Geosci., 11,
584–588, https://doi.org/10.1038/s41561-018-0159-8, 2018.
Cotrufo, M. F., Boot, C., Abiven, S., Foster, E. J., Haddix, M., Reisser, M., Wurster,
C. M., Bird, M. I., and Schmidt, M. W. I.: Quantification of pyrogenic carbon in the environment:
An integration of analytical approaches, Org. Geochem., 100, 42–50,
https://doi.org/10.1016/j.orggeochem.2016.07.007, 2016.
Coward, E. K., Ohno, T., and Sparks, D. L.: Direct Evidence for Temporal Molecular
Fractionation of Dissolved Organic Matter at the Iron Oxyhydroxide Interface,
Environ. Sci. Technol., 53, 642–650, https://doi.org/10.1021/acs.est.8b04687, 2019.
Cross, A. and Sohi, S. P.: A method for screening the relative long-term stability of biochar, GCB Bioenergy, 5, 215–220,
https://doi.org/10.1111/gcbb.12035, 2013.
Ding, Y., Yamashita, Y., Dodds, W. K., and Jaffé, R.: Dissolved black carbon in
grassland streams: Is there an effect of recent fire history?, Chemosphere, 90, 2557–2562,
https://doi.org/10.1016/j.chemosphere.2012.10.098, 2013.
Dittmar, T., De Rezende, C. E., Manecki, M., Niggemann, J., Coelho Ovalle, A. R.,
Stubbins, A., and Bernardes, M. C.: Continuous flux of dissolved black carbon from a vanished
tropical forest biome, Nat. Geosci., 5, 618–622, https://doi.org/10.1038/ngeo1541, 2012a.
Dittmar, T., Paeng, J., Gihring, T. M., Suryaputra, I. G. N. A., and Huettel, M.:
Discharge of dissolved black carbon from a fire-affected intertidal system, Limnol. Oceanogr., 57,
1171–1181, https://doi.org/10.4319/lo.2012.57.4.1171, 2012b.
Don, A. and Kalbitz, K.: Amounts and degradability of dissolved organic carbon from
foliar litter at different decomposition stages, Soil Biol. Biochem., 37, 2171–2179,
https://doi.org/10.1016/j.soilbio.2005.03.019, 2005.
Eusterhues, K., Rennert, T., Knicker, H., Kögel-Knabner, I., Totsche, K., and
Schwetmann, U.: Fractionation of Organic Matter Due to Reaction with Ferrihydrite?:
Coprecipitation versus Adsorption, Environ. Sci. Technol., 45, 527–533, https://doi.org/10.1021/es1023898,
2011.
Fang, Y., Singh, B., Singh, B. P., and Krull, E.: Biochar carbon stability in four
contrasting soils, Eur. J. Soil Sci., 65, 60–71, https://doi.org/10.1111/ejss.12094, 2014.
Hammes, K. and Abiven, S.: Identification of black carbon in the Earth system
Identification of Black Carbon in the Earth System, in: Fire phenomna and the Earth system: an
interdisciplinary guide to fire science, edited by: Belcher, C. M., Wiley-Blackwell,
Southern Gate, Chichester, UK, 157–176, 2013.
Hammes, K., Smernik, R. J., Skjemstad, J. O., Herzog, A., Vogt, U. F., and Schmidt,
M. W. I.: Synthesis and characterisation of laboratory-charred grass straw (Oryza sativa) and
chestnut wood (Castanea sativa) as reference materials for black carbon quantification,
Org. Geochem., 37, 1629–1633, https://doi.org/10.1016/j.orggeochem.2006.07.003, 2006.
Hilscher, A. and Knicker, H.: Degradation of grass-derived pyrogenic organic material,
transport of the residues within a soil column and distribution in soil organic matter fractions
during a 28 month microcosm experiment, Org. Geochem., 42, 42–54,
https://doi.org/10.1016/j.orggeochem.2010.10.005, 2011.
Hilscher, A., Heister, K., Siewert, C., and Knicker, H.: Mineralisation and structural
changes during the initial phase of microbial degradation of pyrogenic plant residues in soil,
Org. Geochem., 40, 332–342, https://doi.org/10.1016/j.orggeochem.2008.12.004, 2009.
Hobley, E.: Vertical Distribution of Soil Pyrogenic Matter: A Review, Pedosphere, 29,
137–149, https://doi.org/10.1016/S1002-0160(19)60795-2, 2019.
Hockaday, W. C., Grannas, A. M., Kim, S., and Hatcher, P. G.: Direct molecular evidence
for the degradation and mobility of black carbon in soils from ultrahigh-resolution mass spectral
analysis of dissolved organic matter from a fire-impacted forest soil, Org. Geochem., 37,
501–510, https://doi.org/10.1016/j.orggeochem.2005.11.003, 2006.
Hockaday, W. C., Grannas, A. M., Kim, S., and Hatcher, P. G.: The transformation and
mobility of charcoal in a fire-impacted watershed, Geochim. Cosmochim. Acta, 71, 3432–3445,
https://doi.org/10.1016/j.gca.2007.02.023, 2007.
Jaffé, R., Ding, Y., Niggemann, J., Vähätalo, A. V., Stubbins, A., Spencer,
R. G. M., Campbell, J., and Dittmar, T.: Global charcoal mobilization from soils via dissolution
and riverine transport to the oceans, Science, 340, 345–347, https://doi.org/10.1126/science.1231476, 2013.
Jiang, X., Haddix, M. L., and Cotrufo, M. F.: Interactions between biochar and soil
organic carbon decomposition: Effects of nitrogen and low molecular weight carbon compound
addition, Soil Biol. Biochem., 100, 92–101, https://doi.org/10.1016/j.soilbio.2016.05.020, 2016.
Jiang, X., Tan, X., Cheng, J., Haddix, M. L., and Cotrufo, M. F.: Interactions between
aged biochar, fresh low molecular weight carbon and soil organic carbon after 3.5-years
soil-biochar incubations, Geoderma, 333, 99–107, https://doi.org/10.1016/j.geoderma.2018.07.016, 2019.
Jones, D. L., Rousk, J., Edwards-Jones, G., DeLuca, T. H., and Murphy, D. V.:
Biochar-mediated changes in soil quality and plant growth in a three year field trial, Soil
Biol. Biochem., 45, 113–124, https://doi.org/10.1016/j.soilbio.2011.10.012, 2012.
Jones, M. W., Santín, C., van der Werf, G. R., and Doerr, S. H.: Global fire
emissions buffered by the production of pyrogenic carbon, Nat. Geosci., 12, 742–747,
https://doi.org/10.1038/s41561-019-0403-x, 2019.
Jones, M. W., Coppola, A. I., Santín, C., Dittmar, T., Jaffé, R., Doerr,
S. H., and Quine, T. A.: Fires prime terrestrial organic carbon for riverine export to the global
oceans, Nat. Commun., 11, 2791, https://doi.org/10.1038/s41467-020-16576-z, 2020.
Joseph, S. D., Camps-Arbestain, M., Lin, Y., Munroe, P., Chia, C. H., Hook, J., Van
Zwieten, L., Kimber, S., Cowie, A., Singh, B. P., Lehmann, J., Foidl, N., Smernik, R. J., and
Amonette, J. E.: An investigation into the reactions of biochar in soil, Aust. J. Soil Res., 48,
501–515, https://doi.org/10.1071/SR10009, 2010.
Kaiser, K. and Guggenberger, G.: The role of DOM sorption to mineral surfaces in the
preservation of organic matter in soils, Org. Geochem., 31, 711–725,
https://doi.org/10.1016/S0146-6380(00)00046-2, 2000.
Kaiser, K. and Kalbitz, K.: Cycling downwards – dissolved organic matter in soils,
Soil Biol. Biochem., 52, 29–32, https://doi.org/10.1016/j.soilbio.2012.04.002, 2012.
Kalbitz, K., Solinger, S., Park, J. H., Michalzik, B., and Matzner, E.: Controls on the
dynamics dissolved organic matter in soils: A review, Soil Sci., 165, 4,
https://doi.org/10.1097/00010694-200004000-00001, 2000.
Keiluweit, M., Nico, P. S., and Johnson, M. G.: Dynamic Molecular Structure of Plant
Biomass-Derived Black Carbon (Biochar), Environ. Sci. Technol., 44, 1247–1253, 2010.
Knicker, H.: Pyrogenic organic matter in soil: Its origin and occurrence, its chemistry
and survival in soil environments, Quaternary Int., 243, 251–263, https://doi.org/10.1016/j.quaint.2011.02.037,
2011.
Kuzyakov, Y., Bogomolova, I., and Glaser, B.: Biochar stability in soil: Decomposition
during eight years and transformation as assessed by compound-specific 14C analysis,
Soil Biol. Biochem., 70, 229–236, https://doi.org/10.1016/j.soilbio.2013.12.021, 2014.
Lavallee, J. M., Soong, J. L., and Cotrufo, M. F.: Conceptualizing soil organic matter
into particulate and mineral-associated forms to address global change in the 21st century,
Glob. Chang. Biol., 26, 261–273, https://doi.org/10.1111/gcb.14859, 2020.
Lehmann, J.: A handful of carbon, Nature, 447, 143–144, https://doi.org/10.1038/447143a, 2007.
Lehmann, J., Kinyangi, J., and Solomon, D.: Organic matter stabilization in soil
microaggregates: Implications from spatial heterogeneity of organic carbon contents and carbon
forms, Biogeochemistry, 85, 45–57, https://doi.org/10.1007/s10533-007-9105-3, 2007.
Lehmann, J., Abiven, S., Kleber, M., Pan, G., Singh, B. P., Sohi, S. P., and Zimmerman,
A. R.: Persistence of biochar in soil, in Biochar for Environmental Management, edited by: Lehmann, J. and Joseph, S., Routledge, Abingdon (UK), 235–282, 2015.
Liebmann, P., Wordell-Dietrich, P., Kalbitz, K., Mikutta, R., Kalks, F., Don, A.,
Woche, S. K., Dsilva, L. R., and Guggenberger, G.: Relevance of aboveground litter for soil
organic matter formation – a soil profile perspective, Biogeosciences, 17, 3099–3113,
https://doi.org/10.5194/bg-17-3099-2020, 2020.
Lützow, M. V., Kögel-Knabner, I., Ekschmitt, K., Matzner, E., Guggenberger, G.,
Marschner, B., and Flessa, H.: Stabilization of organic matter in temperate soils: Mechanisms and
their relevance under different soil conditions – A review, Eur. J. Soil Sci., 57, 426–445,
https://doi.org/10.1111/j.1365-2389.2006.00809.x, 2006.
Maestrini, B., Abiven, S., Singh, N., Bird, J., Torn, M. S., and Schmidt, M. W. I.:
Carbon losses from pyrolysed and original wood in a forest soil under natural and increased N
deposition, Biogeosciences, 11, 5199–5213, https://doi.org/10.5194/bg-11-5199-2014, 2014.
Major, J., Lehmann, J., Rondon, M., and Goodale, C.: Fate of soil-applied black carbon:
Downward migration, leaching and soil respiration, Glob. Chang. Biol., 16, 1366–1379,
https://doi.org/10.1111/j.1365-2486.2009.02044.x, 2010.
Masiello, C. A. and Druffel, E. R. M.: Black carbon in deep-sea sediments, Science,
280, 1911–1913, 1998.
McKeague, J. A., Brydon, J. E., and Miles, N. M.: Differentiation of Forms of
Extractable Iron and Aluminum in Soils, Soil Sci. Soc. Am. J., 35, 33–38,
https://doi.org/10.2136/sssaj1971.03615995003500010016x, 1971.
Mukherjee, A. and Zimmerman, A. R.: Organic carbon and nutrient release from a range of
laboratory-produced biochars and biochar-soil mixtures, Geoderma, 193–194, 122–130,
https://doi.org/10.1016/j.geoderma.2012.10.002, 2013.
Oren, A. and Chefetz, B.: Sorptive and Desorptive Fractionation of Dissolved Organic
Matter by Mineral Soil Matrices, J. Environ. Qual., 41, 526–533, https://doi.org/10.2134/jeq2011.0362,
2012.
Pignatello, J. J., Uchimiya, M., Abiven, S., and Schmidt, M. W. I.: Evolution of
biochar properties in soil, in Biochar for environmental management, edited by: Lehmann, J. and
Joseph, S., Routledge, Abingdon (UK), 195–233, 2015.
Pingree, M. R. A. and DeLuca, T. H.: Function of Wildfire-Deposited Pyrogenic Carbon in
Terrestrial Ecosystems, Front. Environ. Sci., 5, 1–7, https://doi.org/10.3389/fenvs.2017.00053, 2017.
Preston, C. M. and Schmidt, M. W. I.: Black (pyrogenic) carbon: a synthesis of current
knowledge and uncertainties with special consideration of boreal regions, Biogeosciences, 3,
397–420, https://doi.org/10.5194/bg-3-397-2006, 2006.
R Core Team: R: The R Project for Statistical Computing, R Foundation, Vienna, Austria, 2020.
Rechberger, M. V., Kloss, S., Rennhofer, H., Tintner, J., Watzinger, A., Soja, G.,
Lichtenegger, H., and Zehetner, F.: Changes in biochar physical and chemical properties:
Accelerated biochar aging in an acidic soil, Carbon N. Y., 115, 209–219,
https://doi.org/10.1016/j.carbon.2016.12.096, 2017.
Reisser, M., Purves, R. S., Schmidt, M. W. I., and Abiven, S.: Pyrogenic Carbon in
Soils: A Literature-Based Inventory and a Global Estimation of Its Content in Soil Organic Carbon
and Stocks, Front. Earth Sci., 4, 1–14, https://doi.org/10.3389/feart.2016.00080, 2016.
Rumpel, C., Leifeld, J., Santin, C., and Doerr, S.: Movement of biochar in the
environment, in Biochar for Environmental Management, edited by: Lehmann, J. and Joseph,
S., Routledge, Abingdon (UK), 281–298, 2015.
Saiz, G., Goodrick, I., Wurster, C., Nelson, P. N., Wynn, J., and Bird, M.:
Preferential Production and Transport of Grass-Derived Pyrogenic Carbon in NE-Australian Savanna
Ecosystems, Front. Earth Sci., 5, 1–13, https://doi.org/10.3389/feart.2017.00115, 2018.
Santín, C., Doerr, S. H., Preston, C. M., and González-Rodríguez, G.:
Pyrogenic organic matter production from wildfires: a missing sink in the global carbon cycle,
Glob. Change Biol., 21, 1621–1633, https://doi.org/10.1111/gcb.12800, 2015.
Santín, C., Doerr, S. H., Kane, E. S., Masiello, C. A., Ohlson, M., de la Rosa,
J. M., Preston, C. M., and Dittmar, T.: Towards a global assessment of pyrogenic carbon from
vegetation fires, Glob. Change Biol., 22, 76–91, https://doi.org/10.1111/gcb.12985, 2016.
Santín, C., Doerr, S. H., Merino, A., Bucheli, T. D., Bryant, R., Ascough, P.,
Gao, X., and Masiello, C. A.: Carbon sequestration potential and physicochemical properties differ
between wildfire charcoals and slow-pyrolysis biochars, Sci. Rep., 7, 1–11,
https://doi.org/10.1038/s41598-017-10455-2, 2017.
Santos, F., Torn, M. S., and Bird, J. A.: Biological degradation of pyrogenic organic
matter in temperate forest soils, Soil Biol. Biochem., 51, 115–124,
https://doi.org/10.1016/j.soilbio.2012.04.005, 2012.
Santos, F., Wagner, S., Rothstein, D., Jaffe, R., and Miesel, J. R.: Impact of a
Historical Fire Event on Pyrogenic Carbon Stocks and Dissolved Pyrogenic Carbon in Spodosols in
Northern Michigan, Front. Earth Sci., 5, 1–9, https://doi.org/10.3389/feart.2017.00080, 2017.
Schiedung, M. and Abiven, S.: Dataset to Manuscript: Vertical mobility of pyrogenic organic matter in soils: A column experiment, Zenodo, https://doi.org/10.5281/zenodo.4268490, 2020.
Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens,
I. A., Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D. A. C., Nannipieri, P., Rasse,
D. P., Weiner, S., and Trumbore, S. E.: Persistence of soil organic matter as an ecosystem
property, Nature, 478, 49–56, https://doi.org/10.1038/nature10386, 2011.
Sigmund, G., Jiang, C., Hofmann, T., and Chen, W.: Environmental transformation of
natural and engineered carbon nanoparticles and implications for the fate of organic contaminants,
Environ. Sci. Nano, 5, 2500–2518, https://doi.org/10.1039/C8EN00676H, 2018.
Simunek, J., van Genuchten, M. Th., Sejna, M., Toride, N., and Leij, F. J.: STANMOD computer software package for evaluating solute transport in porous media using analytical solutions of the convection-dispersion solute transport equation, Version 2.08.1130, available at: https://www.pc-progress.com (last access: 9 October 2019), 2003
Singh, N., Abiven, S., Torn, M. S., and Schmidt, M. W. I.: Fire-derived organic carbon
in soil turns over on a centennial scale, Biogeosciences, 9, 2847–2857,
https://doi.org/10.5194/bg-9-2847-2012, 2012.
Singh, N., Abiven, S., Maestrini, B., Bird, J. A., Torn, M. S., and Schmidt, M. W. I.:
Transformation and stabilization of pyrogenic organic matter in a temperate forest field
experiment, Glob. Chang. Biol., 20, 1629–1642, https://doi.org/10.1111/gcb.12459, 2014.
Smebye, A., Alling, V., Vogt, R. D., Gadmar, T. C., Mulder, J., Cornelissen, G., and
Hale, S. E.: Biochar amendment to soil changes dissolved organic matter content and composition,
Chemosphere, 142, 100–105, https://doi.org/10.1016/j.chemosphere.2015.04.087, 2016.
Soucémarianadin, L., Reisser, M., Cécillon, L., Barré, P., Nicolas, M., and
Abiven, S.: Pyrogenic carbon content and dynamics in top and subsoil of French forests, Soil
Biol. Biochem., 133, 12–15, https://doi.org/10.1016/j.soilbio.2019.02.013, 2019.
Spokas, K. A., Novak, J. M., Masiello, C. A., Johnson, M. G., Colosky, E. C., Ippolito,
J. A., and Trigo, C.: Physical Disintegration of Biochar: An Overlooked Process,
Environ. Sci. Technol. Lett., 1, 326–332, https://doi.org/10.1021/ez500199t, 2014.
Studer, M. S., Künzli, R., Maier, R., Schmidt, M. W. I., Siegwolf, R. T. W.,
Woodhatch, I., and Abiven, S.: The MICE facility–a new tool to study plant–soil C cycling with a
holistic approach, Isotopes Environ. Health Stud., 53, 286–297,
https://doi.org/10.1080/10256016.2016.1254209, 2017.
Tipping, E. and Woof, C.: Release To the Soil Solution in Terms of Humic Charge, Water,
41, 573–586, 1990.
Tipping, E., Chamberlain, P. M., Fröberg, M., Hanson, P. J., and Jardine, P. M.:
Simulation of carbon cycling, including dissolved organic carbon transport, in forest soil locally
enriched with 14C, Biogeochemistry, 108, 91–107, https://doi.org/10.1007/s10533-011-9575-1, 2012.
Vanderborght, J. and Vereecken, H.: Review of dispersivities for transport modeling in
soils, Vadose Zone J., 6, 29–52, https://doi.org/10.2136/vzj2006.0096, 2007.
Vasilyeva, N. A., Abiven, S., Milanovskiy, E. Y., Hilf, M., Rizhkov, O. V. and Schmidt,
M. W. I.: Pyrogenic carbon quantity and quality unchanged after 55 years of organic matter
depletion in a Chernozem, Soil Biol. Biochem., 43, 1985–1988,
https://doi.org/10.1016/j.soilbio.2011.05.015, 2011.
Velasco-Molina, M., Knicker, H., and Macías, F.: The Potential of Humic Material
in Sombric-Like Horizons of Two Brazilian Soil Profiles as an Efficient Carbon Sink within the
Global C Cycle, in Functions of Natural Organic Matter in Changing Environment, vol. 9789400756,
edited by: Xu, J., Wu, J., and He, Y., Springer Netherlands, Dordrecht, 429–433, 2013.
Wagner, S., Ding, Y., and Jaffé, R.: A New Perspective on the Apparent Solubility
of Dissolved Black Carbon, Front. Earth Sci., 5, 1–16, https://doi.org/10.3389/feart.2017.00075, 2017.
Wagner, S., Jaffé, R., and Stubbins, A.: Dissolved black carbon in aquatic
ecosystems, Limnol. Oceanogr. Lett., 168–185, https://doi.org/10.1002/lol2.10076, 2018.
Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Lützow, M., Marin-Spiotta,
E., van Wesemael, B., Rabot, E., Ließ, M., Garcia-Franco, N., Wollschläger, U., Vogel,
H.-J., and Kögel-Knabner, I.: Soil organic carbon storage as a key function of soils – A
review of drivers and indicators at various scales, Geoderma, 333, 149–162,
https://doi.org/10.1016/j.geoderma.2018.07.026, 2019.
Wood, D. J.: Characterisation of Charcoals by DRIFT, Mikrochim. Acta, 95, 167–169,
https://doi.org/10.1007/BF01349745, 1988.
Xiao, F. and Pignatello, J. J.: π+-π Interactions between (hetero)aromatic
amine cations and the graphitic surfaces of pyrogenic carbonaceous materials,
Environ. Sci. Technol., 49, 906–914, https://doi.org/10.1021/es5043029, 2015.
Zhang, A., Zhou, X., Li, M., and Wu, H.: Impacts of biochar addition on soil dissolved
organic matter characteristics in a wheat-maize rotation system in Loess Plateau of China,
Chemosphere, 186, 986–993, https://doi.org/10.1016/j.chemosphere.2017.08.074, 2017.
Zhang, P., Liu, A., Huang, P., Min, L., and Sun, H.: Sorption and molecular
fractionation of biochar-derived dissolved organic matter on ferrihydrite, J. Hazard. Mater., 392,
122260, https://doi.org/10.1016/j.jhazmat.2020.122260, 2020.
Zhao, Z. and Zhou, W.: Insight into interaction between biochar and soil minerals in
changing biochar properties and adsorption capacities for sulfamethoxazole, Environ. Pollut., 245,
208–217, https://doi.org/10.1016/j.envpol.2018.11.013, 2019.
Zimmerman, A. R.: Abiotic and Microbial Oxidation of Laboratory-Produced Black Carbon
(Biochar), Environ. Sci. Technol., 44, 1295–1301, https://doi.org/10.1021/es903140c, 2010.
Short summary
The mobility of pyrogenic organic matter (PyOM) in soils is largely unknow, while it is a major and persistent component of the soil organic matter. With a soil column experiment, we identified that only a small proportion of PyOM can migrate through the soil, but its export is continuous. Aging and associated oxidation increase its mobility but also its retention in soils. Further, PyOM can alter the vertical mobility of native soil organic carbon during its downward migration.
The mobility of pyrogenic organic matter (PyOM) in soils is largely unknow, while it is a major...
Altmetrics
Final-revised paper
Preprint