Articles | Volume 17, issue 24
https://doi.org/10.5194/bg-17-6475-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-17-6475-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Silicon uptake and isotope fractionation dynamics by crop species
GFZ German Research Centre for Geosciences, Potsdam, 14473, Germany
Rainer Remus
Working Group “Isotope Biogeochemistry & Gas Fluxes”, Leibniz Centre for Agricultural Landscape Research (ZALF),
Müncheberg, 15374, Germany
Michael Sommer
Working Group “Silicon Biogeochemistry”, Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, 15374, Germany
Institute of Environmental Science and Geography, University of
Potsdam, Potsdam, 14476, Germany
Jürgen Augustin
Working Group “Isotope Biogeochemistry & Gas Fluxes”, Leibniz Centre for Agricultural Landscape Research (ZALF),
Müncheberg, 15374, Germany
Danuta Kaczorek
Working Group “Silicon Biogeochemistry”, Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, 15374, Germany
Friedhelm von Blanckenburg
GFZ German Research Centre for Geosciences, Potsdam, 14473, Germany
Institute of Geological Science, Freie Universität Berlin, Berlin,
12249, Germany
Related authors
Tim B. Stobbe, Henning A. Bauch, Daniel A. Frick, Jimin Yu, and Julia Gottschalk
Clim. Past, 21, 1281–1304, https://doi.org/10.5194/cp-21-1281-2025, https://doi.org/10.5194/cp-21-1281-2025, 2025
Short summary
Short summary
New bottom water reconstructions in the deep Norwegian Sea show higher [CO32-] values in Marine Isotope Stages 5 and 4 than in the Holocene. This suggests modern-like/persistent deep-water formation in this region, even when Atlantic overturning weakened and/or shoaled. Our data put new constraints on the endmember [CO32-] composition of northern component waters emerging from the Nordic Seas, with implications for the chemical characteristics and carbon storage capacity of the Atlantic Ocean.
Tim B. Stobbe, Henning A. Bauch, Daniel A. Frick, Jimin Yu, and Julia Gottschalk
Clim. Past, 21, 1281–1304, https://doi.org/10.5194/cp-21-1281-2025, https://doi.org/10.5194/cp-21-1281-2025, 2025
Short summary
Short summary
New bottom water reconstructions in the deep Norwegian Sea show higher [CO32-] values in Marine Isotope Stages 5 and 4 than in the Holocene. This suggests modern-like/persistent deep-water formation in this region, even when Atlantic overturning weakened and/or shoaled. Our data put new constraints on the endmember [CO32-] composition of northern component waters emerging from the Nordic Seas, with implications for the chemical characteristics and carbon storage capacity of the Atlantic Ocean.
Luis Alfredo Pires Barbosa, Martin Leue, Marc Wehrhan, and Michael Sommer
EGUsphere, https://doi.org/10.5194/egusphere-2025-746, https://doi.org/10.5194/egusphere-2025-746, 2025
Short summary
Short summary
Healthy soils need plant biomass, especially roots, to function properly. Our study examined how different wheat varieties and soil erosion impact root growth and carbon storage. We found that tillage erosion significantly reduced total wheat biomass, while newer wheat varieties produced more grain but contributed less carbon to the soil. Simulations showed that modern varieties are more sensitive to dry conditions, highlighting a trade-off between higher yields and long-term soil health.
Rahmantara Trichandi, Klaus Bauer, Trond Ryberg, Benjamin Heit, Jaime Araya Vargas, Friedhelm von Blanckenburg, and Charlotte M. Krawczyk
Earth Surf. Dynam., 12, 747–763, https://doi.org/10.5194/esurf-12-747-2024, https://doi.org/10.5194/esurf-12-747-2024, 2024
Short summary
Short summary
This study investigates subsurface weathering zones, revealing their structure through shear wave velocity variations. The research focuses on the arid climate of Pan de Azúcar National Park, Chile, using seismic ambient noise recordings to construct pseudo-3D models. The resulting models show the subsurface structure, including granite gradients and mafic dike intrusions. Comparison with other sites emphasizes the intricate relationship between climate, geology, and weathering depth.
Adrian Dahlmann, Mathias Hoffmann, Gernot Verch, Marten Schmidt, Michael Sommer, Jürgen Augustin, and Maren Dubbert
Hydrol. Earth Syst. Sci., 27, 3851–3873, https://doi.org/10.5194/hess-27-3851-2023, https://doi.org/10.5194/hess-27-3851-2023, 2023
Short summary
Short summary
Evapotranspiration (ET) plays a pivotal role in terrestrial water cycling, returning up to 90 % of precipitation to the atmosphere. We studied impacts of soil type and management on an agroecosystem using an automated system with modern modeling approaches. We modeled ET at high spatial and temporal resolution to highlight differences in heterogeneous soils on an hourly basis. Our results show significant differences in yield and smaller differences in ET overall, impacting water use efficiency.
Ferdinand J. Hampl, Ferry Schiperski, Christopher Schwerdhelm, Nicole Stroncik, Casey Bryce, Friedhelm von
Blanckenburg, and Thomas Neumann
Earth Surf. Dynam., 11, 511–528, https://doi.org/10.5194/esurf-11-511-2023, https://doi.org/10.5194/esurf-11-511-2023, 2023
Short summary
Short summary
We investigated the mineral content and geochemical composition of the upper 6 m of regolith, formed by weathering of granitic rocks in Mediterranean and humid climate zones. We found that the development of the upper regolith in the Mediterranean climate is controlled by secondary minerals which cause fracturing and thus facilitate fluid infiltration to depth. The upper regolith in the humid climate is controlled by secondary minerals that cause a reduction of fluid infiltration to depth.
Peter Stimmler, Mathias Goeckede, Bo Elberling, Susan Natali, Peter Kuhry, Nia Perron, Fabrice Lacroix, Gustaf Hugelius, Oliver Sonnentag, Jens Strauss, Christina Minions, Michael Sommer, and Jörg Schaller
Earth Syst. Sci. Data, 15, 1059–1075, https://doi.org/10.5194/essd-15-1059-2023, https://doi.org/10.5194/essd-15-1059-2023, 2023
Short summary
Short summary
Arctic soils store large amounts of carbon and nutrients. The availability of nutrients, such as silicon, calcium, iron, aluminum, phosphorus, and amorphous silica, is crucial to understand future carbon fluxes in the Arctic. Here, we provide, for the first time, a unique dataset of the availability of the abovementioned nutrients for the different soil layers, including the currently frozen permafrost layer. We relate these data to several geographical and geological parameters.
Marc Wehrhan, Daniel Puppe, Danuta Kaczorek, and Michael Sommer
Biogeosciences, 18, 5163–5183, https://doi.org/10.5194/bg-18-5163-2021, https://doi.org/10.5194/bg-18-5163-2021, 2021
Short summary
Short summary
UAS remote sensing provides a promising tool for new insights into Si biogeochemistry at catchment scale. Our study on an artificial catchment shows surprisingly high silicon stocks in the biomass of two grass species (C. epigejos, 7 g m−2; P. australis, 27 g m−2). The distribution of initial sediment properties (clay, Tiron-extractable Si, nitrogen, plant-available potassium) controlled the spatial distribution of C. epigejos. Soil wetness determined the occurrence of P. australis.
Travis Clow, Jane K. Willenbring, Mirjam Schaller, Joel D. Blum, Marcus Christl, Peter W. Kubik, and Friedhelm von Blanckenburg
Geochronology, 2, 411–423, https://doi.org/10.5194/gchron-2-411-2020, https://doi.org/10.5194/gchron-2-411-2020, 2020
Short summary
Short summary
Meteoric beryllium-10 concentrations in soil profiles have great capacity to quantify Earth surface processes, such as erosion rates and landform ages. However, determining these requires an accurate estimate of the delivery rate of this isotope to local sites. Here, we present a new method to constrain the long-term delivery rate to an eroding western US site, compare it against existing delivery rate estimates (revealing considerable disagreement between methods), and suggest best practices.
Florian Wilken, Michael Ketterer, Sylvia Koszinski, Michael Sommer, and Peter Fiener
SOIL, 6, 549–564, https://doi.org/10.5194/soil-6-549-2020, https://doi.org/10.5194/soil-6-549-2020, 2020
Short summary
Short summary
Soil redistribution by water and tillage erosion processes on arable land is a major threat to sustainable use of soil resources. We unravel the role of tillage and water erosion from fallout radionuclide (239+240Pu) activities in a ground moraine landscape. Our results show that tillage erosion dominates soil redistribution processes and has a major impact on the hydrological and sedimentological connectivity, which started before the onset of highly mechanised farming since the 1960s.
Ralf A. Oeser and Friedhelm von Blanckenburg
Biogeosciences, 17, 4883–4917, https://doi.org/10.5194/bg-17-4883-2020, https://doi.org/10.5194/bg-17-4883-2020, 2020
Short summary
Short summary
We present a novel strategy to decipher the relative impact of biogenic and abiotic drivers of weathering. We parameterized the nutrient fluxes in four ecosystems along a climate and vegetation gradient situated on the Chilean Coastal Cordillera. We investigated how nutrient demand by plants drives weathering. We found that the increase in biomass nutrient demand is accommodated by faster nutrient recycling rather than an increase in the weathering–release rates.
Cited articles
Blanck, E., Melville, R., and Sachse, J.: Zur Bestimmung des
Gesamtschwefelgehaltes in der Pflanzensubstanz, Bodenkd. und
Pflanzenernährung, 6, 56–64, https://doi.org/10.1002/jpln.19380060106, 1938.
Blecker, S. W., King, S. L., Derry, L. A., Chadwick, O. A., Ippolito, J. A.,
and Kelly, E. F.: The ratio of germanium to silicon in plant phytoliths:
Quantification of biological discrimination under controlled experimental
conditions, Biogeochemistry, 86, 189–199, https://doi.org/10.1007/s10533-007-9154-7,
2007.
Broadley, M., Brown, P., Cakmak, I., Ma, J. F., Rengel, Z., and Zhao, F.:
Beneficial Elements, in: Marschner's Mineral Nutrition of Higher Plants, Academic Press, San Diego, 249–269, 2012.
Carey, J. C. and Fulweiler, R. W.: The Terrestrial Silica Pump, PLoS One,
7, e52932, https://doi.org/10.1371/journal.pone.0052932, 2012.
Carey, J. C. and Fulweiler, R. W.: Human appropriation of biogenic silicon
– the increasing role of agriculture, Funct. Ecol., 30, 1331–1339,
https://doi.org/10.1111/1365-2435.12544, 2016.
Cooke, J., DeGabriel, J. L., and Hartley, S. E.: The functional ecology of
plant silicon: geoscience to genes, Funct. Ecol., 30, 1270–1276,
https://doi.org/10.1111/1365-2435.12711, 2016.
Coplen, T. B., Hopple, J. A., Böhlke, J. K., Peiser, H. S., Rieder, S.
E., Krouse, H. R., Rosman, K. J. R., Ding, T., Vocke, R. D. J.,
Révész, K. M., Lamberty, A., Taylor, P., and De Bièvre, P.:
Compilation of minimum and maximum isotope ratios of selected elements in
naturally occurring terrestrial materials and reagents, US Geol. Surv.
Water-Resources Investig. Rep. 01-4222, 45–50, available at:
http://pubs.usgs.gov/wri/wri014222/ (last access: 3 December 2020), 2002.
Cornelis, J.-T. T., Delvaux, B., Cardinal, D., André, L., Ranger, J., and
Opfergelt, S.: Tracing mechanisms controlling the release of dissolved
silicon in forest soil solutions using Si isotopes and Ge∕Si ratios,
Geochim. Cosmochim. Ac., 74, 3913–3924, https://doi.org/10.1016/j.gca.2010.04.056,
2010.
Coskun, D., Deshmukh, R., Sonah, H., Menzies, J. G., Reynolds, O., Ma, J.
F., Kronzucker, H. J., and Bélanger, R. R.: In defence of the selective
transport and role of silicon in plants, New Phytol., 223, 514–516,
https://doi.org/10.1111/nph.15764, 2019a.
Coskun, D., Deshmukh, R., Sonah, H., Menzies, J. G., Reynolds, O., Ma, J.
F., Kronzucker, H. J., and Bélanger, R. R.: The controversies of
silicon's role in plant biology, New Phytol., 221, 67–85,
https://doi.org/10.1111/nph.15343, 2019b.
Delvigne, C., Opfergelt, S., Cardinal, D., Delvaux, B., and André, L.:
Distinct silicon and germanium pathways in the soil-plant system: Evidence
from banana and horsetail, J. Geophys. Res.-Biogeo., 114, G02013, https://doi.org/10.1029/2008JG000899, 2009.
Delvigne, C., Guihou, A., Schuessler, J. A., Savage, P., Fischer, S.,
Hatton, E., Hendry, K. R., Bayon, G., Ponzevera, E., and Georg, B.: An
inter-comparison exercise of the Si isotope composition of soils and plant
reference materials, Geophysical Research Abstracts, 21, 18488, 2019.
Derry, L. A., Kurtz, A. C., Ziegler, K., and Chadwick, O. A.: Biological
control of terrestrial silica cycling and export fluxes to watersheds,
Nature, 433, 728–731, https://doi.org/10.1038/nature03299, 2005.
Deshmukh, R. K., Vivancos, J., Ramakrishnan, G., Guérin, V., Carpentier,
G., Sonah, H., Labbé, C., Isenring, P., Belzile, F. J., and Bélanger,
R. R.: A precise spacing between the NPA domains of aquaporins is essential
for silicon permeability in plants, Plant J., 83, 489–500,
https://doi.org/10.1111/tpj.12904, 2015.
Deshmukh, R., Bélanger, R. R., and Hartley, S.: Molecular evolution of
aquaporins and silicon influx in plants, Funct. Ecol., 30, 1277–1285,
https://doi.org/10.1111/1365-2435.12570, 2016.
Ding, T. P., Ma, G. R., Shui, M. X., Wan, D. F., and Li, R. H.: Silicon
isotope study on rice plants from the Zhejiang province, China, Chem. Geol.,
218, 41–50, https://doi.org/10.1016/j.chemgeo.2005.01.018, 2005.
Ding, T. P., Tian, S. H., Sun, L., Wu, L. H., Zhou, J. X., and Chen, Z. Y.:
Silicon isotope fractionation between rice plants and nutrient solution and
its significance to the study of the silicon cycle, Geochim. Cosmochim.
Ac., 72, 5600–5615, https://doi.org/10.1016/j.gca.2008.09.006, 2008a.
Ding, T. P., Zhou, J. X., Wan, D. F., Chen, Z. Y., Wang, C. Y. and Zhang,
F.: Silicon isotope fractionation in bamboo and its significance to the
biogeochemical cycle of silicon, Geochim. Cosmochim. Ac., 72,
1381–1395, https://doi.org/10.1016/j.gca.2008.01.008, 2008b.
Epstein, E.: The anomaly of silicon in plant biology., Proc. Natl. Acad.
Sci. USA, 91, 11–17, https://doi.org/10.1073/pnas.91.1.11, 1994.
Epstein, E.: Silicon, Annu. Rev. Plant Physiol. Plant Mol. Biol., 50,
641–664, 1999.
Epstein, E.: Chapter 1 Silicon in plants: Facts vs. concepts, in: Studies in
Plant Science, vol. 8, edited by: Datnoff, L. E., Snyder, G. H., and Korndörfer, G. H., Elsevier, 1–15, 2001.
Exley, C.: A possible mechanism of biological silicification in plants,
Front. Plant Sci., 6, 1–7, https://doi.org/10.3389/fpls.2015.00853, 2015.
Exley, C. and Guerriero, G.: A reappraisal of biological silicification in
plants?, New Phytol., 223, 511–513, https://doi.org/10.1111/nph.15752, 2019.
Exley, C., Guerriero, G., and Lopez, X.: How is silicic acid transported in
plants?, Silicon, 12, 2641–2645, https://doi.org/10.1007/s12633-019-00360-w, 2020.
Frew, A., Weston, L. A., Reynolds, O. L., and Gurr, G. M.: The role of
silicon in plant biology: A paradigm shift in research approach, Ann. Bot.,
121, 1265–1273, https://doi.org/10.1093/aob/mcy009, 2018.
Frick, D. A., Schuessler, J. A., Sommer, M., and Blanckenburg, F.: Laser
Ablation In Situ Silicon Stable Isotope Analysis of Phytoliths, Geostand.
Geoanalytical Res., 43, 77–91, https://doi.org/10.1111/ggr.12243, 2019.
Geilert, S., Vroon, P. Z., Roerdink, D. L., Van Cappellen, P., and van
Bergen, M. J.: Silicon isotope fractionation during abiotic silica
precipitation at low temperatures: Inferences from flow-through experiments,
Geochim. Cosmochim. Ac., 142, 95–114, https://doi.org/10.1016/j.gca.2014.07.003,
2014.
Georg, R. B., Reynolds, B. C., Frank, M., and Halliday, A. N.: New sample
preparation techniques for the determination of Si isotopic compositions
using MC-ICPMS, Chem. Geol., 235, 95–104,
https://doi.org/10.1016/j.chemgeo.2006.06.006, 2006.
He, C., Ma, J., and Wang, L.: A hemicellulose-bound form of silicon with
potential to improve the mechanical properties and regeneration of the cell
wall of rice, New Phytol., 206, 1051–1062, https://doi.org/10.1111/nph.13282, 2015.
He, H. T., Zhang, S., Zhu, C., and Liu, Y.: Equilibrium and kinetic Si
isotope fractionation factors and their implications for Si isotope
distributions in the Earth's surface environments, Acta Geochim., 35,
15–24, https://doi.org/10.1007/s11631-015-0079-x, 2016.
Hodson, M. J. and Sangster, A. G.: Subcellular localization of mineral
deposits in the roots of wheat (Triticum aestivum L.), Protoplasma, 151,
19–32, https://doi.org/10.1007/BF01403298, 1989.
Hodson, M. J., White, P. J., Mead, A., and Broadley, M. R.: Phylogenetic
variation in the silicon composition of plants, Ann. Bot., 96,
1027–1046, https://doi.org/10.1093/aob/mci255, 2005.
Hodson, M. J., Parker, A. G., Leng, M. J., and Sloane, H. J.: Silicon, oxygen
and carbon isotope composition of wheat (Triticum aestivum L.) phytoliths:
implications for palaeoecology and archaeology, J. Quat. Sci., 23,
331–339, https://doi.org/10.1002/jqs.1176, 2008.
Joachimsmeier, I., Pistorius, J., Heimbach, U., Schenke, D., Kirchner, W.,
and Zwerger, P.: Frequency and intensity of guttation events in different
crops in Germany, in: 11th International Symposium of the ICP-BR Bee
Protection Group, Wageningen, The Netherlands, 2–4 November 2011, 87–90., 2012.
Jochum, K. P., Nohl, U., Herwig, K., Lammel, E., Stoll, B., and Hofmann, A.
W.: GeoReM: A New Geochemical Database for Reference Materials and Isotopic
Standards, Geostand. Geoanalytical Res., 29, 333–338,
https://doi.org/10.1111/j.1751-908X.2005.tb00904.x, 2005.
Katz, O.: Silicon content is a plant functional trait: implications in a
changing world, Flora Morphol. Distrib. Funct. Ecol. Plants, 254, 88–94, https://doi.org/10.1016/j.flora.2018.08.007, 2019.
Köster, J. R., Bol, R., Leng, M. J., Parker, A. G., Sloane, H. J., and
Ma, J. F.: Effects of active silicon uptake by rice on 29Si fractionation in
various plant parts, Rapid Commun. Mass Spectrom., 23, 2398–2402,
https://doi.org/10.1002/rcm.3971, 2009.
Leng, M. J., Swann, G. E. A., Hodson, M. J., Tyler, J. J., Patwardhan, S. V.,
and Sloane, H. J.: The Potential use of Silicon Isotope Composition of
Biogenic Silica as a Proxy for Environmental Change, Silicon, 1, 65–77,
https://doi.org/10.1007/s12633-009-9014-2, 2009.
Ma, J. F.: Role of silicon in enhancing the resistance of plants to biotic
and abiotic stresses, Soil Sci. Plant Nutr., 50, 11–18,
https://doi.org/10.1080/00380768.2004.10408447, 2004.
Ma, J. F. and Yamaji, N.: Silicon uptake and accumulation in higher plants,
Trends Plant Sci., 11, 392–397, https://doi.org/10.1016/j.tplants.2006.06.007, 2006.
Ma, J. F. and Yamaji, N.: A cooperative system of silicon transport in
plants, Trends Plant Sci., 20, 435–442,
https://doi.org/10.1016/j.tplants.2015.04.007, 2015.
Ma, J. F., Miyake, Y., and Takahashi, E.: Chapter 2 Silicon as a beneficial
element for crop plants, in: Studies in Plant Science, vol. 8,
edited by: Datnoff, L. E., Snyder, G. H., and Korndörfer, G. H., Elsevier, 17–39, 2001.
Ma, J. F., Tamai, K., Yamaji, N., Mitani, N., Konishi, S., Katsuhara, M.,
Ishiguro, M., Murata, Y., and Yano, M.: A silicon transporter in rice,
Nature, 440, 688–691, https://doi.org/10.1038/nature04590, 2006.
Ma, J. F., Yamaji, N., Mitani, N., Tamai, K., Konishi, S., Fujiwara, T.,
Katsuhara, M., and Yano, M.: An efflux transporter of silicon in rice,
Nature, 448, 209–212, https://doi.org/10.1038/nature05964, 2007.
Mariotti, A., Germon, J. C., Hubert, P., Kaiser, P., Letolle, R., Tardieux,
A., and Tardieux, P.: Experimental determination of nitrogen kinetic isotope
fractionation: Some principles; illustration for the denitrification and
nitrification processes, Plant Soil, 62, 413–430,
https://doi.org/10.1007/BF02374138, 1981.
Marron, A. O., Chappell, H., Ratcliffe, S., and Goldstein, R. E.: A model for
the effects of germanium on silica biomineralization in choanoflagellates,
J. R. Soc. Interface, 13, 20160485, https://doi.org/10.1098/rsif.2016.0485, 2016.
Marschner, H. and Marschner, P.: Marschner's mineral nutrition of higher
plants, Academic Press, availabe at:
https://www.sciencedirect.com/science/book/9780123849052 (last access: 5 April 2018), 2012.
Mills, R. and Harris, K. R.: The effect of isotopic substitution on
diffusion in liquids, Chem. Soc. Rev., 5, 215, https://doi.org/10.1039/cs9760500215,
1976.
Mitani, N., Chiba, Y., Yamaji, N., and Ma, J. F.: Identification and
Characterization of Maize and Barley Lsi2-Like Silicon Efflux Transporters
Reveals a Distinct Silicon Uptake System from That in Rice, Plant Cell,
21, 2133–2142, https://doi.org/10.1105/tpc.109.067884, 2009.
Mühling, K. H. and Sattelmacher, B.: Apoplastic Ion Concentration of
Intact Leaves of Field Bean (Vicia faba) as Influenced by Ammonium and
Nitrate Nutrition, J. Plant Physiol., 147, 81–86,
https://doi.org/10.1016/S0176-1617(11)81417-3, 1995.
Oelze, M., von Blanckenburg, F., Bouchez, J., Hoellen, D., and Dietzel, M.:
The effect of Al on Si isotope fractionation investigated by silica
precipitation experiments, Chem. Geol., 397, 94–105,
https://doi.org/10.1016/j.chemgeo.2015.01.002, 2015.
Oelze, M., Schuessler, J. A., and von Blanckenburg, F.: Mass bias
stabilization by Mg doping for Si stable isotope analysis by MC-ICP-MS, J.
Anal. At. Spectrom., 31, 2094–2100, https://doi.org/10.1039/C6JA00218H, 2016.
O'Leary, M. H.: Measurement of the isotope fractionation associated with
diffusion of carbon dioxide in aqueous solution, J. Phys. Chem., 88,
823–825, https://doi.org/10.1021/j150648a041, 1984.
Opfergelt, S., Cardinal, D., Henriet, C., Draye, X., André, L., and
Delvaux, B.: Silicon Isotopic Fractionation by Banana (Musa spp.) Grown in a
Continuous Nutrient Flow Device, Plant Soil, 285, 333–345,
https://doi.org/10.1007/s11104-006-9019-1, 2006.
Opfergelt, S., Cardinal, D., André, L., Delvigne, C., Bremond, L., and
Delvaux, B.: Variations of δ30Si and Ge∕Si with weathering and
biogenic input in tropical basaltic ash soils under monoculture, Geochim.
Cosmochim. Ac., 74, 225–240, https://doi.org/10.1016/j.gca.2009.09.025, 2010.
Paolicchi, M., Benvenuto, M. L., Honaine, M. F., and Osterrieth, M.: Root
silicification of grasses and crops from the Pampean region and its
relevance to silica and silicophytolith content of soils, Plant Soil, 444, 351–363,
https://doi.org/10.1007/s11104-019-04287-4, 2019.
Poitrasson, F.: Silicon Isotope Geochemistry, Rev. Mineral. Geochem.,
82, 289–344, https://doi.org/10.2138/rmg.2017.82.8, 2017.
Pokrovski, G. S. and Schott, J.: Experimental study of the complexation of
silicon and germanium with aqueous organic species: Implications for
germanium and silicon transport and Ge∕Si ratio in natural waters, Geochim.
Cosmochim. Ac., 62, 3413–3428, 1998.
Raven, J. A.: Chapter 3 Silicon transport at the cell and tissue level, in:
Studies in Plant Science, vol. 8, edited by: Datnoff, L. E., Snyder, G. H., and Korndörfer, G. H., Elsevier, 41–55, 2001.
Richmond, K. E. and Sussman, M.: Got silicon? The non-essential beneficial
plant nutrient, Curr. Opin. Plant Biol., 6, 268–272,
https://doi.org/10.1016/S1369-5266(03)00041-4, 2003.
Richter, F. M., Mendybaev, R. A., Christensen, J. N., Hutcheon, I. D.,
Williams, R. W., Sturchio, N. C., and Beloso, A. D.: Kinetic isotopic
fractionation during diffusion of ionic species in water, Geochim.
Cosmochim. Ac., 70, 277–289, https://doi.org/10.1016/j.gca.2005.09.016, 2006.
Roerdink, D. L., van den Boorn, S. H. J. M., Geilert, S., Vroon, P. Z., and
van Bergen, M. J.: Experimental constraints on kinetic and equilibrium
silicon isotope fractionation during the formation of non-biogenic chert
deposits, Chem. Geol., 402, 40–51, https://doi.org/10.1016/j.chemgeo.2015.02.038, 2015.
Schilling, G., Ansorge, H., Borchmann, W., Markgraf, G., and Peschke, H.:
Pflanzenernährung und Düngung, VEB Deutscher Landwirtschaftsverlag, Berlin, East Germany,
1982.
Schuessler, J. A. and von Blanckenburg, F.: Testing the limits of
micro-scale analyses of Si stable isotopes by femtosecond laser ablation
multicollector inductively coupled plasma mass spectrometry with application
to rock weathering, Spectrochim. Ac. B, 98, 1–18,
https://doi.org/10.1016/j.sab.2014.05.002, 2014.
Schuessler, J. A., Kämpf, H., Koch, U., and Alawi, M.: Earthquake impact
on iron isotope signatures recorded in mineral spring water, J. Geophys.
Res.-Sol. Ea., 121, 8548–8568, https://doi.org/10.1002/2016JB013408, 2016.
Sommer, M., Kaczorek, D., Kuzyakov, Y., and Breuer, J.: Silicon pools and
fluxes in soils and landscapes – a review, J. Plant Nutr. Soil Sci., 169,
310–329, https://doi.org/10.1002/jpln.200521981, 2006.
Sommer, M., Jochheim, H., Höhn, A., Breuer, J., Zagorski, Z., Busse, J., Barkusky, D., Meier, K., Puppe, D., Wanner, M., and Kaczorek, D.: Si cycling in a forest biogeosystem – the importance of transient state biogenic Si pools, Biogeosciences, 10, 4991–5007, https://doi.org/10.5194/bg-10-4991-2013, 2013.
Sonah, H., Deshmukh, R. K., Labbé, C., and Bélanger, R. R.: Analysis
of aquaporins in Brassicaceae species reveals high-level of conservation and
dynamic role against biotic and abiotic stress in canola, Sci. Rep., 7,
1–17, https://doi.org/10.1038/s41598-017-02877-9, 2017.
Sparks, J. P., Chandra, S., Derry, L. A., Parthasarathy, M. V., Daugherty,
C. S., and Griffin, R.: Subcellular localization of silicon and germanium in
grass root and leaf tissues by SIMS: Evidence for differential and active
transport, Biogeochemistry, 104, 237–249,
https://doi.org/10.1007/s10533-010-9498-2, 2011.
Stamm, F. M., Zambardi, T., Chmeleff, J., Schott, J., von Blanckenburg, F.,
and Oelkers, E. H.: The experimental determination of equilibrium Si isotope
fractionation factors among H4SiO4°, H3SiO4− and amorphous silica
(SiO2× 0.32 H2O) at 25 and 75∘C using the
three-isotope method, Geochim. Cosmochim. Ac., 255, 49–68,
https://doi.org/10.1016/j.gca.2019.03.035, 2019.
Steinhoefel, G., Breuer, J., von Blanckenburg, F., Horn, I., and Sommer, M.:
The dynamics of Si cycling during weathering in two small catchments in the
Black Forest (Germany) traced by Si isotopes, Chem. Geol., 466,
389–402, https://doi.org/10.1016/j.chemgeo.2017.06.026, 2017.
Sun, H., Duan, Y., Mitani-Ueno, N., Che, J., Jia, J., Liu, J., Guo, J., Ma,
J. F., and Gong, H.: Tomato roots have a functional silicon influx
transporter but not a functional silicon efflux transporter, Plant Cell
Environ., 43, 732–744, https://doi.org/10.1111/pce.13679, 2020.
Sun, L., Wu, L. H., Ding, T. P., and Tian, S. H.: Silicon isotope
fractionation in rice plants, an experimental study on rice growth under
hydroponic conditions, Plant Soil, 304, 291–300,
https://doi.org/10.1007/s11104-008-9552-1, 2008.
Sun, Y., Wu, L., and Li, X.: Experimental Determination of Silicon Isotope
Fractionation in Rice, PLoS One, 11, e0168970,
https://doi.org/10.1371/journal.pone.0168970, 2016a.
Sun, Y., Wu, L., Li, X., Sun, L., Gao, J., and Ding, T.: Silicon Isotope
Fractionation in Rice and Cucumber Plants over a Life Cycle: Laboratory
Studies at Different External Silicon Concentrations, J. Geophys. Res.-Biogeo., 121, 2829–2841, https://doi.org/10.1002/2016JG003443, 2016b.
Takahashi, E., Ma, J. F., and Miyake, Y.: The possibility of silicon as an
essential element for higher plants, Comments Agric. Food Chem., 2,
99–102, 1990.
Weiss, D. J., Mason, T. F. D., Zhao, F. J., Kirk, G. J. D., Coles, B. J., and
Horstwood, M. S. A.: Isotopic discrimination of zinc in higher plants, New
Phytol., 165, 703–710, https://doi.org/10.1111/j.1469-8137.2004.01307.x, 2004.
Wiche, O., Székely, B., Moschner, C., and Heilmeier, H.: Germanium in the
soil-plant system – a review, Environ. Sci. Pollut. Res., 25,
31938–31956, https://doi.org/10.1007/s11356-018-3172-y, 2018.
Yamaji, N., Mitatni, N., and Ma, J. F.: A Transporter Regulating Silicon
Distribution in Rice Shoots, Plant Cell, 20, 1381–1389,
https://doi.org/10.1105/tpc.108.059311, 2008.
Yan, G., Nikolic, M., Ye, M., Xiao, Z., and Liang, Y.: Silicon acquisition
and accumulation in plant and its significance for agriculture, J. Integr.
Agric., 17, 2138–2150, https://doi.org/10.1016/S2095-3119(18)62037-4, 2018.
Zambardi, T. and Poitrasson, F.: Precise Determination of Silicon Isotopes
in Silicate Rock Reference Materials by MC-ICP-MS, Geostand. Geoanalytical
Res., 35, 89–99, https://doi.org/10.1111/j.1751-908X.2010.00067.x, 2011.
Zangi, R. and Filella, M.: Transport routes of metalloids into and out of
the cell: A review of the current knowledge, Chem. Biol. Interact., 197,
47–57, https://doi.org/10.1016/j.cbi.2012.02.001, 2012.
Ziegler, K., Chadwick, O. A., Brzezinski, M. A., and Kelly, E. F.: Natural
variations of δ30Si ratios during progressive basalt weathering,
Hawaiian Islands, Geochim. Cosmochim. Ac., 69, 4597–4610,
https://doi.org/10.1016/j.gca.2005.05.008, 2005.
Short summary
Silicon is taken up by some plants to increase structural stability and to develop stress resistance and is rejected by others. To explore the underlying mechanisms, we used the stable isotopes of silicon that shift in their relative abundance depending on the biochemical transformation involved. On species with a rejective (tomato, mustard) and active (wheat) uptake mechanism, grown in hydroculture, we found that the transport of silicic acid is controlled by the precipitation of biogenic opal.
Silicon is taken up by some plants to increase structural stability and to develop stress...
Altmetrics
Final-revised paper
Preprint