Articles | Volume 18, issue 1
https://doi.org/10.5194/bg-18-1-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-1-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Factors controlling Carex brevicuspis leaf litter decomposition and its contribution to surface soil organic carbon pool at different water levels
Lianlian Zhu
Key Laboratory of Agro-ecological Processes in Subtropical Region,
The Chinese Academy of Sciences, Changsha 410125, China
Dongting Lake Station for Wetland Ecosystem Research, Institute of
Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125,
China
University of Chinese Academy of Sciences, Beijing 100049, China
Zhengmiao Deng
CORRESPONDING AUTHOR
Key Laboratory of Agro-ecological Processes in Subtropical Region,
The Chinese Academy of Sciences, Changsha 410125, China
Dongting Lake Station for Wetland Ecosystem Research, Institute of
Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125,
China
Yonghong Xie
CORRESPONDING AUTHOR
Key Laboratory of Agro-ecological Processes in Subtropical Region,
The Chinese Academy of Sciences, Changsha 410125, China
Dongting Lake Station for Wetland Ecosystem Research, Institute of
Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125,
China
Xu Li
Key Laboratory of Agro-ecological Processes in Subtropical Region,
The Chinese Academy of Sciences, Changsha 410125, China
Dongting Lake Station for Wetland Ecosystem Research, Institute of
Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125,
China
Feng Li
Key Laboratory of Agro-ecological Processes in Subtropical Region,
The Chinese Academy of Sciences, Changsha 410125, China
Dongting Lake Station for Wetland Ecosystem Research, Institute of
Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125,
China
Xinsheng Chen
Key Laboratory of Agro-ecological Processes in Subtropical Region,
The Chinese Academy of Sciences, Changsha 410125, China
Dongting Lake Station for Wetland Ecosystem Research, Institute of
Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125,
China
Yeai Zou
Key Laboratory of Agro-ecological Processes in Subtropical Region,
The Chinese Academy of Sciences, Changsha 410125, China
Dongting Lake Station for Wetland Ecosystem Research, Institute of
Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125,
China
Chengyi Zhang
National Climate Center, China Meteorological Administration, Beijing
100081, China
Key Laboratory of Agro-ecological Processes in Subtropical Region,
The Chinese Academy of Sciences, Changsha 410125, China
Dongting Lake Station for Wetland Ecosystem Research, Institute of
Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125,
China
Related authors
No articles found.
Liyan Wang, Zhengmiao Deng, Yonghong Xie, Tao Wang, Feng Li, Ye’ai Zou, Buqing Wang, Zhitao Huo, Cicheng Zhang, Changhui Peng, and Andrew Macrae
EGUsphere, https://doi.org/10.5194/egusphere-2025-2972, https://doi.org/10.5194/egusphere-2025-2972, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
We employed stable isotope and ¹³C nuclear magnetic resonance spectroscopy analyses to characterize soil organic carbon sources and stability in Dongting Lake wetlands. Our results revealed vegetation elevated soil organic carbon (Miscanthus: 13.76; Carex: 12.98 g kg-1 > mudflat: 6.88 g kg-1), with plant-derived carbon dominating (47.5–53.3 %). Miscanthus exhibited lower soil organic carbon stability (high O-alkyl C), suggesting a higher risk of organic carbon loss in its floodplain ecosystems.
Cited articles
Bani, A., Borruso, L., Nicholass, K. J. M., Bardelli, T., Polo, A., Pioli, S., Gomez-Brandon, M., Insam, H., Dumbrell, A. J., and Brusetti, L.: Site-Specific Microbial Decomposer Communities Do Not Imply Faster Decomposition: Results from a Litter Transplantation Experiment, Microorganisms, 7, 15, https://doi.org/10.3390/microorganisms7090349, 2019.
Berg, B.: Decomposition patterns for foliar litter – A theory for
influencing factors, Soil Biol. Biochem., 78, 222–232,
https://doi.org/10.1016/j.soilbio.2014.08.005, 2014.
Bossio, D. A. and Scow, K. M.: Impacts of carbon and flooding on soil
microbial communities: Phospholipid fatty acid profiles and substrate
utilization patterns, Microb. Ecol., 35, 265–278, https://doi.org/10.1007/s002489900082,
1998.
Bowden, R. D., Deem, L., Plante, A. F., Peltre, C., Nadelhoffer, K., and
Lajtha, K.: Litter Input Controls on Soil Carbon in a Temperate Deciduous
Forest, Soil Sci. Soc. Am. J., 78, 66–75,
https://doi.org/10.2136/sssaj2013.09.0413nafsc, 2014.
Cao, J. B., He, X. X., Chen, Y. Q., Chen, Y. P., Zhang, Y. J., Yu, S. Q.,
Zhou, L. X., Liu, Z. F., Zhang, C. L., and Fu, S. L.: Leaf litter
contributes more to soil organic carbon than fine roots in two 10-year-old
subtropical plantations, Sci. Total Environ., 704, 135341, https://doi.org/10.1016/j.scitotenv.2019.135341, 2020.
Chen, H. Y., Zou, J. Y., Cui, J., Nie, M., and Fang, C. M.: Wetland drying
increases the temperature sensitivity of soil respiration, Soil Biol.
Biochem., 120, 24–27, https://doi.org/10.1016/j.soilbio.2018.01.035, 2018.
Chen, X. S., Deng, Z. M., Xie, Y. H., Li, F., Hou, Z. Y., and Wu, C.:
Consequences of Repeated Defoliation on Belowground Bud Banks of Carex
brevicuspis (Cyperaceae) in the Dongting Lake Wetlands, China, Front.
Plant Sci., 7, 1119, https://doi.org/10.3389/fpls.2016.01119, 2016.
Davis, S. E., Corronado-Molina, C., Childers, D. L., and Day, J. W.: Temporally dependent C, N, and P dynamics associated with the decay of Rhizophora mangle L. leaf litter in oligotrophic mangrove wetlands of the Southern Everglades, Aquat. Bot., 75, 199–215, https://doi.org/10.1016/s0304-3770(02)00176-6, 2003.
de Boer, W., Folman, L. B., Summerbell, R. C., and Boddy, L.: Living in a fungal world: impact of fungi on soil bacterial niche development, Fems Microbiol. Rev., 29, 795–811, https://doi.org/10.1016/j.femsre.2004.11.005, 2005.
Deng, Z. M., Li, Y. Z., Xie, Y. H., Peng, C. H., Chen, X. S., Li, F., Ren,
Y. J., Pan, B. H., and Zhang, C. Y.: Hydrologic and Edaphic Controls on Soil
Carbon Emission in Dongting Lake Floodplain, China, J. Geophys.
Res.-Biogeo., 123, 3088–3097, https://doi.org/10.1029/2018jg004515, 2018.
Gao, J. Q., Feng, J., Zhang, X. W., Yu, F. H., Xu, X. L., and Kuzyakov, Y.:
Drying-rewetting cycles alter carbon and nitrogen mineralization in
litter-amended alpine wetland soil, Catena, 145, 285–290,
https://doi.org/10.1016/j.catena.2016.06.026, 2016.
Gomez-Casanovas, N., DeLucia, N. J., DeLucia, E. H., Blanc-Betes, E., Boughton, E. H., Sparks, J., and Bernacchi, C. J.: Seasonal Controls of CO2 and CH4 Dynamics in a Temporarily Flooded Subtropical Wetland, J. Geophys. Res.-Biogeosc., 125, 18, https://doi.org/10.1029/2019jg005257, 2020.
Graça, M. A. S., Bärlocher, F., and Gessner, M. O.: Methods to Study
Litter Decomposition, Springer Netherlands, Germany, 2005.
Hoyos-Santillan, J., Lomax, B. H., Large, D., Turner, B. L., Boom, A.,
Lopez, O. R., and Sjogersten, S.: Getting to the root of the problem: litter
decomposition and peat formation in lowland Neotropical peatlands,
Biogeochemistry, 126, 115–129, https://doi.org/10.1007/s10533-015-0147-7, 2015.
Hu, J. Y., Xie, Y. H., Tang, Y., Li, F., and Zou, Y. A.: Changes of
Vegetation Distribution in the East Dongting Lake After the Operation of the
Three Gorges Dam, China, Front. Plant Sci., 9, 582,
https://doi.org/10.3389/fpls.2018.00582, 2018.
Kang, W. X., Tian, H., Jie-Nan, H. E., Hong-Zheng, X. I., Cui, S. S., and
Yan-Ping, H. U.: Carbon Storage of the Wetland Vegetation Ecosystem and Its
Distribution in Dongting Lake, J. Soil Water Conserv., 23, 129–133, https://doi.org/10.13870/j.cnki.stbcxb.2009.06.053,
2009.
Kayranli, B., Scholz, M., Mustafa, A., and Hedmark, A.: Carbon Storage and
Fluxes within Freshwater Wetlands: a Critical Review, Wetlands, 30, 111–124,
https://doi.org/10.1007/s13157-009-0003-4, 2010.
Köchy, M., Hiederer, R., and Freibauer, A.: Global distribution of soil organic carbon – Part 1: Masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world, SOIL, 1, 351–365, https://doi.org/10.5194/soil-1-351-2015, 2015.
Liu, S. L., Jiang, Z. J., Deng, Y. Q., Wu, Y. C., Zhao, C. Y., Zhang, J. P.,
Shen, Y., and Huang, X. P.: Effects of seagrass leaf litter decomposition on
sediment organic carbon composition and the key transformation processes,
Sci. China-Earth Sci., 60, 2108–2117, https://doi.org/10.1007/s11430-017-9147-4, 2017.
Lv, F. C. and Wang, X. D.: Contribution of Litters to Soil Respiration : A
Review, Soils, 49, 225–231, 2017.
Lyu, M. K., Li, X. J., Xie, J. S., Homyak, P. M., Ukonmaanaho, L., Yang, Z. J., Liu, X. F., Ruan, C. Y., and Yang, Y. S.: Root-microbial interaction accelerates soil nitrogen depletion but not soil carbon after increasing litter inputs to a coniferous forest, Plant and Soil, 444, 153–164, https://doi.org/10.1007/s11104-019-04265-w, 2019.
Molles, M. C., Crawford, C. S., and Ellis, L. M.: Effects of an experimental flood on litter dynamics in the middle Rio Grande riparian ecosystem, Regul. Rivers-Res. Manage., 11, 275–281, https://doi.org/10.1002/rrr.3450110304, 1995.
Moriyama, A., Yonemura, S., Kawashima, S., Du, M. Y., and Tang, Y. H.:
Environmental indicators for estimating the potential soil respiration rate
in alpine zone, Ecol. Indic., 32, 245–252, https://doi.org/10.1016/j.ecolind.2013.03.032,
2013.
Olson, J. S.: Energy-storage and balabce of producers and decomposers in
ecological- systems, Ecology, 44, 322–331, https://doi.org/10.2307/1932179, 1963.
Peltoniemi, K., Strakova, P., Fritze, H., Iraizoz, P. A., Pennanen, T., and Laiho, R.: How water-level drawdown modifies litter-decomposing fungal and actinobacterial communities in boreal peatlands, Soil Biol. Biochem., 51, 20–34, https://doi.org/10.1016/j.soilbio.2012.04.013, 2012.
Peng, P. Q., Zhang, W. J., Tong, C. L., Qiu, S. J., and Zhang, W. C.: Soil
C, N and P contents and their relationships with soil physical properties in
wetlands of Dongting Lake floodplain, J. Appl. Ecol., 16,
1872–1878, 2005.
Pinto, O. B., Vourlitis, G. L., Carneiro, E. M. D., Dias, M. D., Hentz, C.,
and Nogueira, J. D.: Interactions between Vegetation, Hydrology, and Litter
Inputs on Decomposition and Soil CO2 Efflux of Tropical Forests in the
Brazilian Pantanal, Forests, 9, 281, https://doi.org/10.3390/f9050281, 2018.
Qiu, H. S., Ge, T. D., Liu, J. Y., Chen, X. B., Hu, Y. J., Wu, J. S., Su, Y.
R., and Kuzyakov, Y.: Effects of biotic and abiotic factors on soil organic
matter mineralization: Experiments and struc tural modeling analysis, Eur.
J. Soil Biol., 84, 27–34, https://doi.org/10.1016/j.ejsobi.2017.12.003, 2018.
Sokol, N. W. and Bradford, M. A.: Microbial formation of stable soil carbon is more efficient from belowground than aboveground input, Nat. Geosci., 12, 46–53, https://doi.org/10.1038/s41561-018-0258-6, 2019.
Song, Y. Y., Song, C. C., Tao, B. X., Wang, J. Y., Zhu, X. Y., and Wang, X.
W.: Short-term responses of soil enzyme activities and carbon mineralization
to added nitrogen and litter in a freshwater marsh of Northeast China, Eur.
J. Soil Biol., 61, 72–79, https://doi.org/10.1016/j.ejsobi.2014.02.001, 2014.
Sun, X. L., Kong, F. L., Li, Y., Di, L. Y., and Xi, M.: Effects of litter
decomposition on contents and three-dimensional fluorescence spectroscopy
characteristics of soil labile organic carbon in coastal wetlands of
Jiaozhou Bay, China, J. Appl. Ecol., 30, 563–572,
https://doi.org/10.13287/j.1001-9332.201902.036, 2019.
Sun, Z. G., Mou, X. J., and Liu, J. S.: Effects of flooding regimes on the decomposition and nutrient dynamics of Calamagrostis angustifolia litter in the Sanjiang Plain of China, Environ. Earth Sci., 66, 2235–2246, https://doi.org/10.1007/s12665-011-1444-7, 2012.
Tong, C., Cadillo-Quiroz, H., Zeng, Z. H., She, C. X., Yang, P., and Huang,
J. F.: Changes of community structure and abundance of methanogens in soils
along a freshwater-brackish water gradient in subtropical estuarine marshes,
Geoderma, 299, 101–110, https://doi.org/10.1016/j.geoderma.2017.03.026, 2017.
Van de Moortel, A. M. K., Du Laing, G., De Pauw, N., and Tack, F. M. G.: The
role of the litter compartment in a constructed floating wetland, Ecol.
Eng., 39, 71–80, https://doi.org/10.1016/j.ecoleng.2011.11.003, 2012.
Wang, X. L., Xu, L. G., and Wan, R. R.: Comparison on soil organic carbon
within two typical wetland areas along the vegetation gradient of Poyang
Lake, China, Hydrol. Res., 47, 261–277, https://doi.org/10.2166/nh.2016.218, 2016.
Whiting, G. J. and Chanton, J. P.: Greenhouse carbon balance of wetlands:
methane emission versus carbon sequestration, Tellus B, 53, 521–528, https://doi.org/10.1034/j.1600-0889.2001.530501.x, 2001.
Wilkinson, S. C., Anderson, J. M., Scardelis, S. P., Tisiafouli, M., Taylor,
A., and Wolters, V.: PLFA profiles of microbial communities in decomposing
conifer litters subject to moisture stress, Soil Biol. Biochem.,
34, 189–200, 2002.
Xie, Y., Xie, Y., Chen, X., Li, F., Hou, Z., and Li, X.: Non-additive
effects of water availability and litter quality on decomposition of litter
mixtures, J. Freshwater Ecol., 31, 153–168,
https://doi.org/10.1080/02705060.2015.1079559, 2016a.
Xie, Y. J., Xie, Y. H., Hu, C., Chen, X. S., and Li, F.: Interaction between
litter quality and simulated water depths on decomposition of two emergent
macrophytes, J. Limnol., 75, 36–43, https://doi.org/10.4081/jlimnol.2015.1119, 2016b.
Xie, Y. J., Xie, Y. H., Xiao, H. Y., Chen, X. S., and Li, F.: Controls on
Litter Decomposition of Emergent Macrophyte in Dongting Lake Wetlands,
Ecosystems, 20, 1383–1389, https://doi.org/10.1007/s10021-017-0119-y, 2017.
Yan, J. F., Wang, L., Hu, Y., Tsang, Y. F., Zhang, Y. N., Wu, J. H., Fu, X.
H., and Sun, Y.: Plant litter composition selects different soil microbial
structures and in turn drives different litter decomposition pattern and
soil carbon sequestration capability, Geoderma, 319, 194–203,
https://doi.org/10.1016/j.geoderma.2018.01.009, 2018.
Yan, Z. Z., Xu, Y., Zhang, Q. Q., Qu, J. G., and Li, X. Z.: Decomposition of Spartina alterniflora and concomitant metal release dynamics in a tidal environment, Sci. Total Environ., 663, 867–877, https://doi.org/10.1016/j.scitotenv.2019.01.422, 2019.
Yarwood, S. A.: The role of wetland microorganisms in plant-litter decomposition and soil organic matter formation: a critical review, Fems Microbiol. Ecol., 94, 17, https://doi.org/10.1093/femsec/fiy175, 2018.
Yu, X. F., Ding, S. S., Lin, Q. X., Wang, G. P., Wang, C. L., Zheng, S. J.,
and Zou, Y. C.: Wetland plant litter decomposition occurring during the
freeze season under disparate flooded conditions, Sci. Total
Environ., 706, 136091, https://doi.org/10.1016/j.scitotenv.2019.136091, 2020.
Yue, K., Peng, C. H., Yang, W. Q., Peng, Y., Zhang, C., Huang, C. P., and Wu, F. Z.: Degradation of lignin and cellulose during foliar litter decomposition in an alpine forest river, Ecosphere, 7, 11, https://doi.org/10.1002/ecs2.1523, 2016.
Zhang, G. S., Yu, X. B., Gao, Y., Li, Y., Zhang, Q. J., Liu, Y., Rao, D. D., Lin, Y. M., and Xia, S. X.: Effects of water table on cellulose and lignin degradation of Carex cinerascens in a large seasonal floodplain, J. Freshw. Ecol., 33, 311–325, https://doi.org/10.1080/02705060.2018.1459324, 2018.
Zhang, L., Zhou, G. S., Ji, Y. H., and Bai, Y. F.: Grassland Carbon Budget
and Its Driving Factors of the Subtropical and Tropical Monsoon Region in
China During 1961 to 2013, Sci. Rep.-UK, 7, 14717,
https://doi.org/10.1038/s41598-017-15296-7, 2017.
Zhang, Q. J., Zhang, G. S., Yu, X. B., Liu, Y., Xia, S. X., Ya, L., Hu, B.
H., and Wan, S. X.: Effect of ground water level on the release of carbon,
nitrogen and phosphorus during decomposition of Carex, cinerascens Kukenth
in the typical seasonal floodplain in dry season, J. Freshwater
Ecol., 34, 305–322, https://doi.org/10.1080/02705060.2019.1584128, 2019.
Zhao, J., Zeng, Z. X., He, X. Y., Chen, H. S., and Wang, K. L.: Effects of
monoculture and mixed culture of grass and legume forage species on soil
microbial community structure under different levels of nitrogen
fertilization, Eur. J. Soil Biol., 68, 61–68, https://doi.org/10.1016/j.ejsobi.2015.03.008,
2015.
Zhou, W. J., Sha, L. Q., Schaefer, D. A., Zhang, Y. P., Song, Q. H., Tan, Z. H., Deng, Y., Deng, X. B., and Guan, H. L.: Direct effects of litter decomposition on soil dissolved organic carbon and nitrogen in a tropical rainforest, Soil Biol. Biochem., 81, 255–258, https://doi.org/10.1016/j.soilbio.2014.11.019, 2015.
Zhu, L., Deng, Z., Xie, Y., Li, X., Li, F., Chen, X., Zou, Y., Zhang, C., and Wang, W.: Factors controlling Carex brevicuspis leaf litter decomposition and its contribution to surface soil organic carbon pool at different water levels.xlsx, figshare, https://doi.org/10.6084/m9.figshare.12758387.v1, 2020.
Short summary
We conducted a Carex brevicuspis leaf litter input experiment to clarify the intrinsic factors controlling litter decomposition and quantify its contribution to the soil organic carbon pool at different water levels. Our results revealed that the water level in natural wetlands influenced litter decomposition mainly by leaching and microbial activity, by extension, and affected the wetland surface carbon pool.
We conducted a Carex brevicuspis leaf litter input experiment to clarify the intrinsic factors...
Altmetrics
Final-revised paper
Preprint