Articles | Volume 18, issue 3
https://doi.org/10.5194/bg-18-1067-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-1067-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Biotic and abiotic transformation of amino acids in cloud water: experimental studies and atmospheric implications
Saly Jaber
Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
Muriel Joly
Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
Maxence Brissy
Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
Martin Leremboure
Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
Amina Khaled
Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
Barbara Ervens
Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
Anne-Marie Delort
CORRESPONDING AUTHOR
Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
Related authors
Pascal Renard, Maxence Brissy, Florent Rossi, Martin Leremboure, Saly Jaber, Jean-Luc Baray, Angelica Bianco, Anne-Marie Delort, and Laurent Deguillaume
Atmos. Chem. Phys., 22, 2467–2486, https://doi.org/10.5194/acp-22-2467-2022, https://doi.org/10.5194/acp-22-2467-2022, 2022
Short summary
Short summary
Amino acids (AAs) have been quantified in cloud water collected at the Puy de Dôme station (France). Concentrations and speciation of those compounds are highly variable among the samples. Sources from the sea surface and atmospheric transformations during the air mass transport, mainly in the free troposphere, have been shown to modulate AA levels in cloud water.
Barbara Ervens, Ken S. Carslaw, Thomas Koop, and Ulrich Pöschl
Atmos. Chem. Phys., 25, 13903–13952, https://doi.org/10.5194/acp-25-13903-2025, https://doi.org/10.5194/acp-25-13903-2025, 2025
Short summary
Short summary
Over 25 years, the European Geosciences Union (EGU) has demonstrated the success, viability and benefits of interactive open-access (OA) publishing with public peer review in its journals, its publishing platform EGUsphere and virtual compilations. The article summarizes the evolution of the EGU/Copernicus publications and of OA publishing with interactive public peer review at large by placing the EGU/Copernicus publications in the context of current and future global open science.
Frédéric Mathonat, François Enault, Raphaëlle Péguilhan, Muriel Joly, Mariline Théveniot, Jean-Luc Baray, Barbara Ervens, and Pierre Amato
EGUsphere, https://doi.org/10.5194/egusphere-2025-3534, https://doi.org/10.5194/egusphere-2025-3534, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
The atmosphere plays key roles in Earth’s biogeochemical cycles. Airborne microbes were demonstrated previously to participate in the processing of organic carbon in clouds. Using a combinaison of complementary methods, we examined here, for the first time, their potential contribution to the pool of nitrogen compounds. Airborne microorganisms interact with abundant forms of nitrogen in the air and cloud and we provide global estimates.
Raphaëlle Péguilhan, Florent Rossi, Muriel Joly, Engy Nasr, Bérénice Batut, François Enault, Barbara Ervens, and Pierre Amato
Biogeosciences, 22, 1257–1275, https://doi.org/10.5194/bg-22-1257-2025, https://doi.org/10.5194/bg-22-1257-2025, 2025
Short summary
Short summary
Using comparative metagenomics and metatranscriptomics, we examined the functioning of airborne microorganisms in clouds and a clear atmosphere. Clouds are atmospheric masses where multiple microbial processes are promoted compared with a clear atmosphere. Overrepresented microbial functions of interest include the processing of chemical compounds, biomass production, and regulation of oxidants. This has implications for biogeochemical cycles and microbial ecology.
Barbara Ervens, Pierre Amato, Kifle Aregahegn, Muriel Joly, Amina Khaled, Tiphaine Labed-Veydert, Frédéric Mathonat, Leslie Nuñez López, Raphaëlle Péguilhan, and Minghui Zhang
Biogeosciences, 22, 243–256, https://doi.org/10.5194/bg-22-243-2025, https://doi.org/10.5194/bg-22-243-2025, 2025
Short summary
Short summary
Atmospheric microorganisms are a small fraction of Earth's microbiome, with bacteria being a significant part. Aerosolized bacteria are airborne for a few days, encountering unique chemical and physical conditions affecting stress levels and survival. We explore chemical and microphysical conditions bacteria encounter, highlighting potential nutrient and oxidant limitations and diverse effects by pollutants, which may ultimately impact the microbiome's role in global ecosystems and biodiversity.
Barbara Ervens, Andrew Rickard, Bernard Aumont, William P. L. Carter, Max McGillen, Abdelwahid Mellouki, John Orlando, Bénédicte Picquet-Varrault, Paul Seakins, William R. Stockwell, Luc Vereecken, and Timothy J. Wallington
Atmos. Chem. Phys., 24, 13317–13339, https://doi.org/10.5194/acp-24-13317-2024, https://doi.org/10.5194/acp-24-13317-2024, 2024
Short summary
Short summary
Chemical mechanisms describe the chemical processes in atmospheric models that are used to describe the changes in the atmospheric composition. Therefore, accurate chemical mechanisms are necessary to predict the evolution of air pollution and climate change. The article describes all steps that are needed to build chemical mechanisms and discusses the advances and needs of experimental and theoretical research activities needed to build reliable chemical mechanisms.
Leslie Nuñez López, Pierre Amato, and Barbara Ervens
Atmos. Chem. Phys., 24, 5181–5198, https://doi.org/10.5194/acp-24-5181-2024, https://doi.org/10.5194/acp-24-5181-2024, 2024
Short summary
Short summary
Living bacteria comprise a small particle fraction in the atmosphere. Our model study shows that atmospheric bacteria in clouds may efficiently biodegrade formic and acetic acids that affect the acidity of rain. We conclude that current atmospheric models underestimate losses of these acids as they only consider chemical processes. We suggest that biodegradation can affect atmospheric concentration not only of formic and acetic acids but also of other volatile, moderately soluble organics.
Maud Leriche, Pierre Tulet, Laurent Deguillaume, Frédéric Burnet, Aurélie Colomb, Agnès Borbon, Corinne Jambert, Valentin Duflot, Stéphan Houdier, Jean-Luc Jaffrezo, Mickaël Vaïtilingom, Pamela Dominutti, Manon Rocco, Camille Mouchel-Vallon, Samira El Gdachi, Maxence Brissy, Maroua Fathalli, Nicolas Maury, Bert Verreyken, Crist Amelynck, Niels Schoon, Valérie Gros, Jean-Marc Pichon, Mickael Ribeiro, Eric Pique, Emmanuel Leclerc, Thierry Bourrianne, Axel Roy, Eric Moulin, Joël Barrie, Jean-Marc Metzger, Guillaume Péris, Christian Guadagno, Chatrapatty Bhugwant, Jean-Mathieu Tibere, Arnaud Tournigand, Evelyn Freney, Karine Sellegri, Anne-Marie Delort, Pierre Amato, Muriel Joly, Jean-Luc Baray, Pascal Renard, Angelica Bianco, Anne Réchou, and Guillaume Payen
Atmos. Chem. Phys., 24, 4129–4155, https://doi.org/10.5194/acp-24-4129-2024, https://doi.org/10.5194/acp-24-4129-2024, 2024
Short summary
Short summary
Aerosol particles in the atmosphere play a key role in climate change and air pollution. A large number of aerosol particles are formed from the oxidation of volatile organic compounds (VOCs and secondary organic aerosols – SOA). An important field campaign was organized on Réunion in March–April 2019 to understand the formation of SOA in a tropical atmosphere mostly influenced by VOCs emitted by forest and in the presence of clouds. This work synthesizes the results of this campaign.
Pascal Renard, Maxence Brissy, Florent Rossi, Martin Leremboure, Saly Jaber, Jean-Luc Baray, Angelica Bianco, Anne-Marie Delort, and Laurent Deguillaume
Atmos. Chem. Phys., 22, 2467–2486, https://doi.org/10.5194/acp-22-2467-2022, https://doi.org/10.5194/acp-22-2467-2022, 2022
Short summary
Short summary
Amino acids (AAs) have been quantified in cloud water collected at the Puy de Dôme station (France). Concentrations and speciation of those compounds are highly variable among the samples. Sources from the sea surface and atmospheric transformations during the air mass transport, mainly in the free troposphere, have been shown to modulate AA levels in cloud water.
Amina Khaled, Minghui Zhang, and Barbara Ervens
Atmos. Chem. Phys., 22, 1989–2009, https://doi.org/10.5194/acp-22-1989-2022, https://doi.org/10.5194/acp-22-1989-2022, 2022
Short summary
Short summary
Chemical reactions with iron in clouds and aerosol form and cycle reactive oxygen species (ROS). Previous model studies assumed that all cloud droplets (particles) contain iron, while single-particle analyses showed otherwise. By means of a model, we explore the bias in predicted ROS budgets by distributing a given iron mass to either all or only a few droplets (particles). Implications for oxidation potential, radical loss and iron oxidation state are discussed.
Pamela A. Dominutti, Pascal Renard, Mickaël Vaïtilingom, Angelica Bianco, Jean-Luc Baray, Agnès Borbon, Thierry Bourianne, Frédéric Burnet, Aurélie Colomb, Anne-Marie Delort, Valentin Duflot, Stephan Houdier, Jean-Luc Jaffrezo, Muriel Joly, Martin Leremboure, Jean-Marc Metzger, Jean-Marc Pichon, Mickaël Ribeiro, Manon Rocco, Pierre Tulet, Anthony Vella, Maud Leriche, and Laurent Deguillaume
Atmos. Chem. Phys., 22, 505–533, https://doi.org/10.5194/acp-22-505-2022, https://doi.org/10.5194/acp-22-505-2022, 2022
Short summary
Short summary
We present here the results obtained during an intensive field campaign conducted in March to April 2019 in Reunion. Our study integrates a comprehensive chemical and microphysical characterization of cloud water. Our investigations reveal that air mass history and cloud microphysical properties do not fully explain the variability observed in their chemical composition. This highlights the complexity of emission sources, multiphasic exchanges, and transformations in clouds.
Ramon Campos Braga, Barbara Ervens, Daniel Rosenfeld, Meinrat O. Andreae, Jan-David Förster, Daniel Fütterer, Lianet Hernández Pardo, Bruna A. Holanda, Tina Jurkat-Witschas, Ovid O. Krüger, Oliver Lauer, Luiz A. T. Machado, Christopher Pöhlker, Daniel Sauer, Christiane Voigt, Adrian Walser, Manfred Wendisch, Ulrich Pöschl, and Mira L. Pöhlker
Atmos. Chem. Phys., 21, 17513–17528, https://doi.org/10.5194/acp-21-17513-2021, https://doi.org/10.5194/acp-21-17513-2021, 2021
Short summary
Short summary
Interactions of aerosol particles with clouds represent a large uncertainty in estimates of climate change. Properties of aerosol particles control their ability to act as cloud condensation nuclei. Using aerosol measurements in the Amazon, we performed model studies to compare predicted and measured cloud droplet number concentrations at cloud bases. Our results confirm previous estimates of particle hygroscopicity in this region.
Ramon Campos Braga, Daniel Rosenfeld, Ovid O. Krüger, Barbara Ervens, Bruna A. Holanda, Manfred Wendisch, Trismono Krisna, Ulrich Pöschl, Meinrat O. Andreae, Christiane Voigt, and Mira L. Pöhlker
Atmos. Chem. Phys., 21, 14079–14088, https://doi.org/10.5194/acp-21-14079-2021, https://doi.org/10.5194/acp-21-14079-2021, 2021
Short summary
Short summary
Quantifying the precipitation within clouds is crucial for our understanding of the Earth's hydrological cycle. Using in situ measurements of cloud and rain properties over the Amazon Basin and Atlantic Ocean, we show here a linear relationship between the effective radius (re) and precipitation water content near the tops of convective clouds for different pollution states and temperature levels. Our results emphasize the role of re to determine both initiation and amount of precipitation.
Mira L. Pöhlker, Minghui Zhang, Ramon Campos Braga, Ovid O. Krüger, Ulrich Pöschl, and Barbara Ervens
Atmos. Chem. Phys., 21, 11723–11740, https://doi.org/10.5194/acp-21-11723-2021, https://doi.org/10.5194/acp-21-11723-2021, 2021
Short summary
Short summary
Clouds cool our atmosphere. The role of small aerosol particles in affecting them represents one of the largest uncertainties in current estimates of climate change. Traditionally it is assumed that cloud droplets only form particles of diameters ~ 100 nm (
accumulation mode). Previous studies suggest that this can also occur in smaller particles (
Aitken mode). Our study provides a general framework to estimate under which aerosol and cloud conditions Aitken mode particles affect clouds.
Minghui Zhang, Amina Khaled, Pierre Amato, Anne-Marie Delort, and Barbara Ervens
Atmos. Chem. Phys., 21, 3699–3724, https://doi.org/10.5194/acp-21-3699-2021, https://doi.org/10.5194/acp-21-3699-2021, 2021
Short summary
Short summary
Although primary biological aerosol particles (PBAPs, bioaerosols) represent a small fraction of total atmospheric aerosol burden, they might affect climate and public health. We summarize which PBAP properties are important to affect their inclusion in clouds and interaction with light and might also affect their residence time and transport in the atmosphere. Our study highlights that not only chemical and physical but also biological processes can modify these physicochemical properties.
Amina Khaled, Minghui Zhang, Pierre Amato, Anne-Marie Delort, and Barbara Ervens
Atmos. Chem. Phys., 21, 3123–3141, https://doi.org/10.5194/acp-21-3123-2021, https://doi.org/10.5194/acp-21-3123-2021, 2021
Cited articles
Amato, P., Parazols, M., Sancelme, M., Laj, P., Mailhot, G., and Delort, A.-M.: Microorganisms isolated from the water phase of tropospheric clouds at the puy de Dôme: major groups and growth abilities at low temperatures, FEMS Microbiol. Ecol., 59, 242–254, https://doi.org/10.1111/j.1574-6941.2006.00199.x, 2007.
Amato, P., Joly, M., Besaury, L., Oudart, A., Taib, N., Moné, A. I., Deguillaume, L., Delort, A.-M., and Debroas, D.: Active microorganisms thrive among extremely diverse communities in cloud water, PLOS ONE, 12, e0182869, https://doi.org/10.1371/journal.pone.0182869, 2017.
Amato, P., Besaury, L., Joly, M., Penaud, B., Deguillaume, L., and Delort,
A.-M.: Metatranscriptomic exploration of microbial functioning in clouds,
Sci. Rep., 9, 4383, https://doi.org/10.1038/s41598-019-41032-4, 2019.
Arakaki, T., Anastasio, C., Kuroki, Y., Nakajima, H., Okada, K., Kotani, Y.,
Handa, D., Azechi, S., Kimura, T., Tsuhako, A., and Miyagi, Y.: A General
Scavenging Rate Constant for Reaction of Hydroxyl Radical with Organic
Carbon in Atmospheric Waters, Environ. Sci. Technol., 47, 8196–8203,
https://doi.org/10.1021/es401927b, 2013.
Ariya, P. A., Nepotchatykh, O., Ignatova, O., and Amyot, M.: Microbiological
degradation of atmospheric organic compounds, Geophys. Res. Lett., 29, 2077,
https://doi.org/10.1029/2002GL015637, 2002.
Barbaro, E., Zangrando, R., Moret, I., Barbante, C., Cescon, P., and Gambaro,
A.: Free amino acids in atmospheric particulate matter of Venice, Italy,
Atmos. Environ., 45, 5050–5057,
https://doi.org/10.1016/j.atmosenv.2011.01.068, 2011.
Barbaro, E., Zangrando, R., Vecchiato, M., Piazza, R., Capodaglio, G., Barbante, C., and Gambaro, A.: Amino acids in Antarctica: evolution and fate of marine aerosols, Atmos. Chem. Phys. Discuss., 14, 17067–17099, https://doi.org/10.5194/acpd-14-17067-2014, 2014.
Barbaro, E., Zangrando, R., Vecchiato, M., Piazza, R., Cairns, W. R. L., Capodaglio, G., Barbante, C., and Gambaro, A.: Free amino acids in Antarctic aerosol: potential markers for the evolution and fate of marine aerosol, Atmos. Chem. Phys., 15, 5457–5469, https://doi.org/10.5194/acp-15-5457-2015, 2015.
Berger, P., Leitner, N., Karpel, V., Doré, M., and Legube, B.: Ozone and
hydroxyl radicals induced oxidation of glycine, Water Res., 33,
433–441, https://doi.org/10.1016/S0043-1354(98)00230-9, 1999.
Besaury, L., Amato, P., Wirgot, N., Sancelme, M., and Delort, A. M.: Draft
Genome Sequence of Pseudomonas graminis PDD-13b-3, a Model Strain Isolated
from Cloud Water, Genome Announc., 5, e00464-17,
https://doi.org/10.1128/genomeA.00464-17, 2017a.
Besaury, L., Amato, P., Sancelme, M., and Delort, A. M.: Draft Genome
Sequence of Pseudomonas syringae PDD-32b-74, a Model Strain for
Ice-Nucleation Studies in the Atmosphere, Genome Announc., 5, e00742-17,
https://doi.org/10.1128/genomeA.00742-17, 2017b.
Bianco, A., Voyard, G., Deguillaume, L., Mailhot, G., and Brigante, M.:
Improving the characterization of dissolved organic carbon in cloud water:
amino acids and their impact on the oxidant capacity, Sci. Rep., 6, 37420,
https://doi.org/10.1038/srep37420, 2016a.
Bianco, A., Passananti, M., Deguillaume, L., Mailhot, G., and Brigante, M.:
Tryptophan and tryptophan-like substances in cloud water: Occurrence and
photochemical fate, Atmos. Environ., 137, 53–61,
https://doi.org/10.1016/j.atmosenv.2016.04.034, 2016b.
Bianco, A., Deguillaume, L., Vaïtilingom, M., Nicol, E., Baray, J.-L.,
Chaumerliac, N., and Bridoux, M.: Molecular Characterization of Cloud Water
Samples Collected at the Puy de Dôme (France) by Fourier Transform Ion
Cyclotron Resonance Mass Spectrometry, Environ. Sci. Technol., 52,
10275–10285, https://doi.org/10.1021/acs.est.8b01964, 2018.
Cape, J. N., Cornell, S. E., Jickells, T. D., and Nemitz, E.: Organic
nitrogen in the atmosphere – Where does it come from? A review of sources
and methods, Atmos. Res., 102, 30–48,
https://doi.org/10.1016/j.atmosres.2011.07.009, 2011.
Cornell, S. E.: Atmospheric nitrogen deposition: Revisiting the question of
the importance of the organic component, Environ. Pollut., 159,
2214–2222, https://doi.org/10.1016/j.envpol.2010.11.014, 2011.
Deguillaume, L., Charbouillot, T., Joly, M., Vaïtilingom, M., Parazols, M., Marinoni, A., Amato, P., Delort, A.-M., Vinatier, V., Flossmann, A., Chaumerliac, N., Pichon, J. M., Houdier, S., Laj, P., Sellegri, K., Colomb, A., Brigante, M., and Mailhot, G.: Classification of clouds sampled at the puy de Dôme (France) based on 10 yr of monitoring of their physicochemical properties, Atmos. Chem. Phys., 14, 1485–1506, https://doi.org/10.5194/acp-14-1485-2014, 2014.
Faust, B. C. and Allen, J. M.: Aqueous-phase photochemical sources of
peroxyl radicals and singlet molecular oxygen in clouds and fog, J. Geophys. Res.-Atmos., 97, 12913–12926,
https://doi.org/10.1029/92JD00843, 1992.
Helin, A., Sietiö, O.-M., Heinonsalo, J., Bäck, J., Riekkola, M.-L., and Parshintsev, J.: Characterization of free amino acids, bacteria and fungi in size-segregated atmospheric aerosols in boreal forest: seasonal patterns, abundances and size distributions, Atmos. Chem. Phys., 17, 13089–13101, https://doi.org/10.5194/acp-17-13089-2017, 2017.
Hill, K. A., Shepson, P. B., Galbavy, E. S., Anastasio, C., Kourtev, P. S.,
Konopka, A. and Stirm, B. H.: Processing of atmospheric nitrogen by clouds
above a forest environment, J. Geophys. Res.-Atmos.,
112, https://doi.org/10.1029/2006JD008002, 2007.
Husárová, S., Vaïtilingom, M., Deguillaume, L., Traikia, M.,
Vinatier, V., Sancelme, M., Amato, P., Matulová, M., and Delort, A.-M.:
Biotransformation of methanol and formaldehyde by bacteria isolated from
clouds. Comparison with radical chemistry, Atmos. Environ., 45,
6093–6102, https://doi.org/10.1016/j.atmosenv.2011.06.035, 2011.
Ignatenko, A. and Cherenkevich, S.: Reactivity of amino acids and proteins
in reactions with ozone, Kinet. Katal., 26, 1332–1335, 1985.
Jaber, S., Lallement, A., Sancelme, M., Leremboure, M., Mailhot, G., Ervens, B., and Delort, A.-M.: Biodegradation of phenol and catechol in cloud water: comparison to chemical oxidation in the atmospheric multiphase system, Atmos. Chem. Phys., 20, 4987–4997, https://doi.org/10.5194/acp-20-4987-2020, 2020.
KEGG pathway database: available at: https://www.genome.jp/kegg/pathway.html, last access: 18 January 2021.
Kraljić, I. and Sharpatyi, V. A.: Determination of singlet oxygen rate
constants in aqueous solution, Photochem. Photobiol., 28,
583–586, https://doi.org/10.1111/j.1751-1097.1978.tb06973.x, 1978.
Kristensson, A., Rosenørn, T., and Bilde, M.: Cloud Droplet Activation of
Amino Acid Aerosol Particles, J. Phys. Chem. A, 114, 379–386,
https://doi.org/10.1021/jp9055329, 2010.
Lallement, A., Besaury, L., Eyheraguibel, B., Amato, P., Sancelme, M.,
Mailhot, G., and Delort, A. M.: Draft Genome Sequence of Rhodococcus
enclensis 23b-28, a Model Strain Isolated from Cloud Water, Genome Announc.,
5, e01199-17, https://doi.org/10.1128/genomeA.01199-17, 2017.
Lallement, A., Vinatier, V., Brigante, M., Deguillaume, L., Delort, A. M.,
and Mailhot, G.: First evaluation of the effect of microorganisms on steady
state hydroxyl radical concentrations in atmospheric waters, Chemosphere,
212, 715–722, https://doi.org/10.1016/j.chemosphere.2018.08.128, 2018.
Lesworth, T., Baker, A. R., and Jickells, T.: Aerosol organic nitrogen over
the remote Atlantic Ocean, Atmos. Environ., 44, 1887–1893,
https://doi.org/10.1016/j.atmosenv.2010.02.021, 2010.
Lide, D. R.: CRC Handbook of Chemistry and Physics, 89th ed., CRC
Press/Taylor and Francis, Boca Raton, FL, 2736 pp., 2009.
Mace, K. A., Duce, R. A., and Tindale, N. W.: Organic nitrogen in rain and aerosol at Cape Grim, Tasmania, Australia, J. Geophys. Res., 108, 4338, https://doi.org/10.1029/2002JD003051, 2003a.
Mace, K. A., Kubilay, N., and Duce, R. A.: Organic nitrogen in rain and
aerosol in the eastern Mediterranean atmosphere: An association with
atmospheric dust, J. Geophys. Res.-Atmos., 108,
https://doi.org/10.1029/2002JD002997, 2003b.
Manfrin, A., Nizkorodov, S. A., Malecha, K. T., Getzinger, G. J., McNeill,
K., and Borduas-Dedekind, N.: Reactive Oxygen Species Production from
Secondary Organic Aerosols: The Importance of Singlet Oxygen, Environ. Sci.
Technol., 53, 8553–8562, https://doi.org/10.1021/acs.est.9b01609, 2019.
Marion, A., Brigante, M., and Mailhot, G.: A new source of ammonia and
carboxylic acids in cloud water: The first evidence of photochemical process
involving an iron-amino acid complex, Atmos. Environ., 195,
179–186, https://doi.org/10.1016/j.atmosenv.2018.09.060, 2018.
Mashayekhy Rad, F., Zurita, J., Gilles, P., Rutgeerts, L. A. J., Nilsson,
U., Ilag, L. L., and Leck, C.: Measurements of Atmospheric Proteinaceous
Aerosol in the Arctic Using a Selective UHPLC/ESI-MS/MS Strategy, J. Am. Soc. Mass Spectr., 30, 161–173,
https://doi.org/10.1007/s13361-018-2009-8, 2019.
Matheson, I. B. C. and Lee, J.: Chemical reaction rates of amino acids with
singlet oxygen, Photochem. Photobiol., 29, 879–881,
https://doi.org/10.1111/j.1751-1097.1979.tb07786.x, 1979.
Matos, J. T. V., Duarte, R. M. B. O., and Duarte, A. C.: Challenges in the identification and characterization of free amino acids and proteinaceous compounds in atmospheric aerosols: A critical review, TrAC, 75, 97–107, https://doi.org/10.1016/j.trac.2015.08.004, 2016.
Matsumoto, K. and Uematsu, M.: Free amino acids in marine aerosols over the
western North Pacific Ocean, Atmos. Environ., 39, 2163–2170,
https://doi.org/10.1016/j.atmosenv.2004.12.022, 2005.
McGregor, K. G. and Anastasio, C.: Chemistry of fog waters in California's
Central Valley: 2. Photochemical transformations of amino acids and alkyl
amines, Atmos. Environ., 35, 1091–1104, https://doi.org/10.1016/s1352-2310(00)00282-x, 2001.
Michaeli, A. and Feitelson, J.: Reactivity of singlet oxygen toward amino
acids and peptides, Photochem. Photobiol., 59, 284–289,
https://doi.org/10.1111/j.1751-1097.1994.tb05035.x, 1994.
Miskoski, S. and García, N.: Influence of the peptide bond on the
singlet molecular oxygen-mediated (O2[1 δ g]) photooxidation of
histidine and methionine dipeptides. A kinetic study, Photochem. Photobiol., 57, 447–452, https://doi.org/10.1111/j.1751-1097.1993.tb02317.x, 1993.
Miyazaki, Y., Kawamura, K., Jung, J., Furutani, H., and Uematsu, M.: Latitudinal distributions of organic nitrogen and organic carbon in marine aerosols over the western North Pacific, Atmos. Chem. Phys., 11, 3037–3049, https://doi.org/10.5194/acp-11-3037-2011, 2011.
Mopper, K. and Zika, R. G.: Free amino acids in marine rains: evidence for
oxidation and potential role in nitrogen cycling, Nature, 325,
246–249, https://doi.org/10.1038/325246a0, 1987.
Motohashi, N. and Saito, Y.: Competitive Measurement of Rate Constants for
Hydroxyl Radical Reactions Using Radiolytic Hydroxylation of Benzoate,
Chem. Pharma. Bull., 41, 1842–1845,
https://doi.org/10.1248/cpb.41.1842, 1993.
Mudd, J. B., Leavitt, R., Ongun, A., and McManus, T. T.: Reaction of ozone
with amino acids and proteins, Atmos. Environ., 3,
669–681, https://doi.org/10.1016/0004-6981(69)90024-9, 1969.
Pattison, D. I., Rahmanto, A. S., and Davies, M. J.: Photo-oxidation of proteins, Photochem. Photobiol. Sci., 11, 38–53, https://doi.org/10.1039/c1pp05164d, 2012.
Prasse, C., Ford, B., Nomura, D. K., and Sedlak, D. L.: Unexpected
transformation of dissolved phenols to toxic dicarbonyls by hydroxyl
radicals and UV light, P. Natl. Acad. Sci. USA, 115, 2311,
https://doi.org/10.1073/pnas.1715821115, 2018.
Prütz, W. A. and Vogel, S.: Specific Rate Constants of Hydroxyl Radical
and Hydrated Electron Reactions Determined by the RCL Method, Z. Naturforsch., 31, 1501–1510, https://doi.org/10.1515/znb-1976-1115,
1976.
Pryor, W. A., Giamalva, D. H., and Church, D. F.: Kinetics of Ozonation, 2. Amino Acids and Model Compounds in Water and Comparisons to Rates in Nonpolar Solvents, J. Am. Chem. Soc., 106, 7094–7100, https://doi.org/10.1021/ja00335a038, 1984.
Reasoner, D. J. and Geldreich, E. E.: A new medium for the enumeration and
subculture of bacteria from potable water, Appl. Environ. Microbiol., 49,
1–7, 1985.
Samy, S., Robinson, J., Rumsey, I. C., Walker, J. T., and Hays, M. D.:
Speciation and trends of organic nitrogen in southeastern U.S. fine
particulate matter (PM2.5), J. Geophys. Res.-Atmos.,
118, 1996–2006, https://doi.org/10.1029/2012JD017868, 2013.
Sander, R.: Modeling Atmospheric Chemistry: Interactions between Gas-Phase
Species and Liquid Cloud/Aerosol Particle, Surv. Geophys., 20, 1–31, 1999.
Saxena, P. and Hildemann, L. M.: Water-Soluble Organics in Atmospheric
Particles: A Critical Review of the Literature and Application of
Thermodynamics to Identify Candidate Compounds, J. Atmos. Chem., 24,
57–109, 1996.
Scheller, E.: Amino acids in dew – origin and seasonal variation,
Atmos. Environ., 35, 2179–2192,
https://doi.org/10.1016/S1352-2310(00)00477-5, 2001.
Scholes, G., Shaw, P., Wilson, R. L., and Ebert, M.: Pulse radiolysis studies of aqueous solutions of nucleic acid and related substances, in: Pulse Radiolysis, Academic Press, 151–164, 1965.
Sidle, A. B.: Amino acid content of atmospheric precipitation, Tellus,
19, 129–135, https://doi.org/10.3402/tellusa.v19i1.9757, 1967.
Song, T., Wang, S., Zhang, Y., Song, J., Liu, F., Fu, P., Shiraiwa, M., Xie, Z., Yue, D., Zhong, L., Zheng, J., and Lai, S.: Proteins and Amino Acids in Fine Particulate Matter in Rural Guangzhou, Southern China: Seasonal Cycles, Sources, and Atmospheric Processes, Environ. Sci. Technol., 51, 6773–6781, https://doi.org/10.1021/acs.est.7b00987, 2017.
Stadtman, E. R.: Oxidation of free amino acids and amino acid residues in
proteins by radiolysis and by metal-catalyzed reactions, Annu. Rev.
Biochem., 62, 797–821, 1993.
Stadtman, E. R. and Levine, R.: Free radical-mediated oxidation of free
amino acids and amino acid residues in proteins, Amino Acids, 25, 207–18,
https://doi.org/10.1007/s00726-003-0011-2, 2004.
Sutton, M. A., Howard, C. M., Erisman, J. W., Billen, G., Bleeker, A.,
Grennfelt, P., van Grinsven, H., and Grizzetti, B., Eds.: The European
Nitrogen Assessment: Sources, Effects and Policy Perspectives, Cambridge
University Press, Cambridge, 2011.
Szyrmer, W. and Zawadzki, I.: Biogenic and atnthropogenic sources of
ice-forming nuclei: A review, B. Am. Meteorol. Soc., 78, 209–228,
1997.
Triesch, N., van Pinxteren, M., Engel, A., and Herrmann, H.: Concerted measurements of free amino acids at the Cabo Verde islands: high enrichments in submicron sea spray aerosol particles and cloud droplets, Atmos. Chem. Phys., 21, 163–181, https://doi.org/10.5194/acp-21-163-2021, 2021.
Vaïtilingom, M., Amato, P., Sancelme, M., Laj, P., Leriche, M. and
Delort, A.-M.: Contribution of Microbial Activity to Carbon Chemistry in
Clouds, Appl. Environ. Microbiol., 76, 23–29,
https://doi.org/10.1128/AEM.01127-09, 2010.
Vaïtilingom, M., Charbouillot, T., Deguillaume, L., Maisonobe, R., Parazols, M., Amato, P., Sancelme, M., and Delort, A.-M.: Atmospheric chemistry of carboxylic acids: microbial implication versus photochemistry, Atmos. Chem. Phys., 11, 8721–8733, https://doi.org/10.5194/acp-11-8721-2011, 2011.
Vaïtilingom, M., Attard, E., Gaiani, N., Sancelme, M., Deguillaume, L.,
Flossmann, A. I., Amato, P., and Delort, A.-M.: Long-term features of cloud
microbiology at the puy de Dôme (France), Atmos. Environ.,
56, 88–100, doi:https://doi.org/10.1016/j.atmosenv.2012.03.072, 2012.
Xu, W., Sun, Y., Wang, Q., Du, W., Zhao, J., Ge, X., Han, T., Zhang, Y.,
Zhou, W., Li, J., Fu, P., Wang, Z., and Worsnop, D. R.: Seasonal
Characterization of Organic Nitrogen in Atmospheric Aerosols Using High
Resolution Aerosol Mass Spectrometry in Beijing, China, ACS Earth Space
Chem., 1, 673–682, https://doi.org/10.1021/acsearthspacechem.7b00106, 2017.
Xu, Y., Wu, D., Xiao, H., and Zhou, J.: Dissolved hydrolyzed amino acids in
precipitation in suburban Guiyang, southwestern China: Seasonal variations
and potential atmospheric processes, Atmos. Environ., 211, 247–255,
https://doi.org/10.1016/j.atmosenv.2019.05.011, 2019.
Yan, G., Kim, G., Kim, J., Jeong, Y.-S., and Kim, Y. I.: Dissolved total
hydrolyzable enantiomeric amino acids in precipitation: Implications on
bacterial contributions to atmospheric organic matter, Geochim. Cosmochim. Ac., 153, 1–14, https://doi.org/10.1016/j.gca.2015.01.005, 2015.
Yang, H., Xu, J., Wu, W.-S., Wan, C. H., and Yu, J. Z.: Chemical
Characterization of Water-Soluble Organic Aerosols at Jeju Island Collected
During ACE-Asia, Environ. Chem., 1, 13–17, 2004.
Zhang, Q. and Anastasio, C.: Free and combined amino compounds in
atmospheric fine particles (PM2.5) and fog waters from Northern
California, Atmos. Environ., 37, 2247–2258, 2003.
Zhang, Y., Song, L., Liu, X. J., Li, W. Q., Lü, S. H., Zheng, L. X.,
Bai, Z. C., Cai, G. Y., and Zhang, F. S.: Atmospheric organic nitrogen
deposition in China, Atmos. Environ., 46, 195–204,
https://doi.org/10.1016/j.atmosenv.2011.09.080, 2012.
Zhao, Y., Hallar, A. G., and Mazzoleni, L. R.: Atmospheric organic matter in clouds: exact masses and molecular formula identification using ultrahigh-resolution FT-ICR mass spectrometry, Atmos. Chem. Phys., 13, 12343–12362, https://doi.org/10.5194/acp-13-12343-2013, 2013.
Zhu, R., Xiao, H.-Y., Luo, L., Xiao, H., Wen, Z., Zhu, Y., Fang, X., Pan, Y., and Chen, Z.: Measurement report: Amino acids in fine and coarse atmospheric aerosol: concentrations, compositions, sources and possible bacterial degradation state, Atmos. Chem. Phys. Discuss. [preprint], https://doi.org/10.5194/acp-2020-534, in review, 2020a.
Zhu, R., Xiao, H.-Y., Zhu, Y., Wen, Z., Fang, X., and Pan, Y.: Sources and
Transformation Processes of Proteinaceous Matter and Free Amino Acids in
PM2.5, J. Geophys. Res.-Atmos., 125, e2020JD032375,
https://doi.org/10.1029/2020JD032375, 2020b.
Short summary
Our study is of interest to atmospheric scientists and environmental microbiologists, as we show that clouds can be considered a medium where bacteria efficiently degrade and transform amino acids, in competition with chemical processes. As current atmospheric multiphase models are restricted to chemical degradation of organic compounds, our conclusions motivate further model development.
Our study is of interest to atmospheric scientists and environmental microbiologists, as we show...
Altmetrics
Final-revised paper
Preprint