Articles | Volume 18, issue 1
https://doi.org/10.5194/bg-18-251-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-251-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Factors controlling the competition between Phaeocystis and diatoms in the Southern Ocean and implications for carbon export fluxes
Institute for Biogeochemistry and Pollutant Dynamics,
ETH Zürich, Universitätstrasse 16, 8092 Zurich, Switzerland
Meike Vogt
Institute for Biogeochemistry and Pollutant Dynamics,
ETH Zürich, Universitätstrasse 16, 8092 Zurich, Switzerland
Related authors
Cara Nissen, Meike Vogt, Matthias Münnich, Nicolas Gruber, and F. Alexander Haumann
Biogeosciences, 15, 6997–7024, https://doi.org/10.5194/bg-15-6997-2018, https://doi.org/10.5194/bg-15-6997-2018, 2018
Short summary
Short summary
Using a regional ocean model, we find that coccolithophore biomass in the Southern Ocean is highest in the subantarctic in late summer when diatom growth becomes limited by silicate. We show that zooplankton grazing is crucial to explain phytoplankton biomass distributions in this area and conclude that assessments of future distributions should not only consider physical and chemical factors (temperature, light, nutrients, pH), but also interactions with other phytoplankton or zooplankton.
Corentin Clerc, Laurent Bopp, Fabio Benedetti, Meike Vogt, and Olivier Aumont
Biogeosciences, 20, 869–895, https://doi.org/10.5194/bg-20-869-2023, https://doi.org/10.5194/bg-20-869-2023, 2023
Short summary
Short summary
Gelatinous zooplankton play a key role in the ocean carbon cycle. In particular, pelagic tunicates, which feed on a wide size range of prey, produce rapidly sinking detritus. Thus, they efficiently transfer carbon from the surface to the depths. Consequently, we added these organisms to a marine biogeochemical model (PISCES-v2) and evaluated their impact on the global carbon cycle. We found that they contribute significantly to carbon export and that this contribution increases with depth.
Damiano Righetti, Meike Vogt, Niklaus E. Zimmermann, Michael D. Guiry, and Nicolas Gruber
Earth Syst. Sci. Data, 12, 907–933, https://doi.org/10.5194/essd-12-907-2020, https://doi.org/10.5194/essd-12-907-2020, 2020
Short summary
Short summary
Phytoplankton sustain marine life, as they are the principal primary producers in the global ocean. Despite their ecological importance, their distribution and diversity patterns are poorly known, mostly due to data limitations. We present a global dataset that synthesizes over 1.3 million occurrences of phytoplankton from public archives. It is easily extendable. This dataset can be used to characterize phytoplankton distribution and diversity in current and future oceans.
Cara Nissen, Meike Vogt, Matthias Münnich, Nicolas Gruber, and F. Alexander Haumann
Biogeosciences, 15, 6997–7024, https://doi.org/10.5194/bg-15-6997-2018, https://doi.org/10.5194/bg-15-6997-2018, 2018
Short summary
Short summary
Using a regional ocean model, we find that coccolithophore biomass in the Southern Ocean is highest in the subantarctic in late summer when diatom growth becomes limited by silicate. We show that zooplankton grazing is crucial to explain phytoplankton biomass distributions in this area and conclude that assessments of future distributions should not only consider physical and chemical factors (temperature, light, nutrients, pH), but also interactions with other phytoplankton or zooplankton.
Corinne Le Quéré, Erik T. Buitenhuis, Róisín Moriarty, Séverine Alvain, Olivier Aumont, Laurent Bopp, Sophie Chollet, Clare Enright, Daniel J. Franklin, Richard J. Geider, Sandy P. Harrison, Andrew G. Hirst, Stuart Larsen, Louis Legendre, Trevor Platt, I. Colin Prentice, Richard B. Rivkin, Sévrine Sailley, Shubha Sathyendranath, Nick Stephens, Meike Vogt, and Sergio M. Vallina
Biogeosciences, 13, 4111–4133, https://doi.org/10.5194/bg-13-4111-2016, https://doi.org/10.5194/bg-13-4111-2016, 2016
Short summary
Short summary
We present a global biogeochemical model which incorporates ecosystem dynamics based on the representation of ten plankton functional types, and use the model to assess the relative roles of iron vs. grazing in determining phytoplankton biomass in the Southern Ocean. Our results suggest that observed low phytoplankton biomass in the Southern Ocean during summer is primarily explained by the dynamics of the Southern Ocean zooplankton community, despite iron limitation of phytoplankton growth.
Charlotte Laufkötter, Meike Vogt, Nicolas Gruber, Olivier Aumont, Laurent Bopp, Scott C. Doney, John P. Dunne, Judith Hauck, Jasmin G. John, Ivan D. Lima, Roland Seferian, and Christoph Völker
Biogeosciences, 13, 4023–4047, https://doi.org/10.5194/bg-13-4023-2016, https://doi.org/10.5194/bg-13-4023-2016, 2016
Short summary
Short summary
We compare future projections in marine export production, generated by four ecosystem models under IPCC's high-emission scenario RCP8.5. While all models project decreases in export, they differ strongly regarding the drivers. The formation of sinking particles of organic matter is the most uncertain process with models not agreeing on either magnitude or the direction of change. Changes in diatom concentration are a strong driver for export in some models but of low significance in others.
C. Laufkötter, M. Vogt, N. Gruber, M. Aita-Noguchi, O. Aumont, L. Bopp, E. Buitenhuis, S. C. Doney, J. Dunne, T. Hashioka, J. Hauck, T. Hirata, J. John, C. Le Quéré, I. D. Lima, H. Nakano, R. Seferian, I. Totterdell, M. Vichi, and C. Völker
Biogeosciences, 12, 6955–6984, https://doi.org/10.5194/bg-12-6955-2015, https://doi.org/10.5194/bg-12-6955-2015, 2015
Short summary
Short summary
We analyze changes in marine net primary production (NPP) and its drivers for the 21st century in 9 marine ecosystem models under the RCP8.5 scenario. NPP decreases in 5 models and increases in 1 model; 3 models show no significant trend. The main drivers include stronger nutrient limitation, but in many models warming-induced increases in phytoplankton growth outbalance the nutrient effect. Temperature-driven increases in grazing and other loss processes cause a net decrease in biomass and NPP.
F. Fendereski, M. Vogt, M. R. Payne, Z. Lachkar, N. Gruber, A. Salmanmahiny, and S. A. Hosseini
Biogeosciences, 11, 6451–6470, https://doi.org/10.5194/bg-11-6451-2014, https://doi.org/10.5194/bg-11-6451-2014, 2014
C. Laufkötter, M. Vogt, and N. Gruber
Biogeosciences, 10, 7373–7393, https://doi.org/10.5194/bg-10-7373-2013, https://doi.org/10.5194/bg-10-7373-2013, 2013
M. Vogt, T. Hashioka, M. R. Payne, E. T. Buitenhuis, C. Le Quéré, S. Alvain, M. N. Aita, L. Bopp, S. C. Doney, T. Hirata, I. Lima, S. Sailley, and Y. Yamanaka
Biogeosciences Discuss., https://doi.org/10.5194/bgd-10-17193-2013, https://doi.org/10.5194/bgd-10-17193-2013, 2013
Revised manuscript has not been submitted
T. Hashioka, M. Vogt, Y. Yamanaka, C. Le Quéré, E. T. Buitenhuis, M. N. Aita, S. Alvain, L. Bopp, T. Hirata, I. Lima, S. Sailley, and S. C. Doney
Biogeosciences, 10, 6833–6850, https://doi.org/10.5194/bg-10-6833-2013, https://doi.org/10.5194/bg-10-6833-2013, 2013
C. J. O'Brien, J. A. Peloquin, M. Vogt, M. Heinle, N. Gruber, P. Ajani, H. Andruleit, J. Arístegui, L. Beaufort, M. Estrada, D. Karentz, E. Kopczyńska, R. Lee, A. J. Poulton, T. Pritchard, and C. Widdicombe
Earth Syst. Sci. Data, 5, 259–276, https://doi.org/10.5194/essd-5-259-2013, https://doi.org/10.5194/essd-5-259-2013, 2013
E. T. Buitenhuis, M. Vogt, R. Moriarty, N. Bednaršek, S. C. Doney, K. Leblanc, C. Le Quéré, Y.-W. Luo, C. O'Brien, T. O'Brien, J. Peloquin, R. Schiebel, and C. Swan
Earth Syst. Sci. Data, 5, 227–239, https://doi.org/10.5194/essd-5-227-2013, https://doi.org/10.5194/essd-5-227-2013, 2013
J. Peloquin, C. Swan, N. Gruber, M. Vogt, H. Claustre, J. Ras, J. Uitz, R. Barlow, M. Behrenfeld, R. Bidigare, H. Dierssen, G. Ditullio, E. Fernandez, C. Gallienne, S. Gibb, R. Goericke, L. Harding, E. Head, P. Holligan, S. Hooker, D. Karl, M. Landry, R. Letelier, C. A. Llewellyn, M. Lomas, M. Lucas, A. Mannino, J.-C. Marty, B. G. Mitchell, F. Muller-Karger, N. Nelson, C. O'Brien, B. Prezelin, D. Repeta, W. O. Jr. Smith, D. Smythe-Wright, R. Stumpf, A. Subramaniam, K. Suzuki, C. Trees, M. Vernet, N. Wasmund, and S. Wright
Earth Syst. Sci. Data, 5, 109–123, https://doi.org/10.5194/essd-5-109-2013, https://doi.org/10.5194/essd-5-109-2013, 2013
C. Hauri, N. Gruber, M. Vogt, S. C. Doney, R. A. Feely, Z. Lachkar, A. Leinweber, A. M. P. McDonnell, M. Munnich, and G.-K. Plattner
Biogeosciences, 10, 193–216, https://doi.org/10.5194/bg-10-193-2013, https://doi.org/10.5194/bg-10-193-2013, 2013
Y. Yara, M. Vogt, M. Fujii, H. Yamano, C. Hauri, M. Steinacher, N. Gruber, and Y. Yamanaka
Biogeosciences, 9, 4955–4968, https://doi.org/10.5194/bg-9-4955-2012, https://doi.org/10.5194/bg-9-4955-2012, 2012
Related subject area
Biodiversity and Ecosystem Function: Marine
Unique benthic foraminiferal communities (stained) in diverse environments of sub-Antarctic fjords, South Georgia
Upwelled plankton community modulates surface bloom succession and nutrient availability in a natural plankton assemblage
First phytoplankton community assessment of the Kong Håkon VII Hav, Southern Ocean, during austral autumn
Ecological divergence of a mesocosm in an eastern boundary upwelling system assessed with multi-marker environmental DNA metabarcoding
Early life stages of a Mediterranean coral are vulnerable to ocean warming and acidification
Mediterranean seagrasses as carbon sinks: methodological and regional differences
Contrasting vertical distributions of recent planktic foraminifera off Indonesia during the southeast monsoon: implications for paleoceanographic reconstructions
The onset of the spring phytoplankton bloom in the coastal North Sea supports the Disturbance Recovery Hypothesis
Species richness and functional attributes of fish assemblages across a large-scale salinity gradient in shallow coastal areas
Modeling the growth and sporulation dynamics of the macroalga Ulva in mixed-age populations in cultivation and the formation of green tides
Spatial changes in community composition and food web structure of mesozooplankton across the Adriatic basin (Mediterranean Sea)
Predicting mangrove forest dynamics across a soil salinity gradient using an individual-based vegetation model linked with plant hydraulics
Will daytime community calcification reflect reef accretion on future, degraded coral reefs?
Modeling polar marine ecosystem functions guided by bacterial physiological and taxonomic traits
Quantifying functional consequences of habitat degradation on a Caribbean coral reef
Enhanced chlorophyll-a concentration in the wake of Sable Island, eastern Canada, revealed by two decades of satellite observations: a response to grey seal population dynamics?
Population dynamics and reproduction strategies of planktonic foraminifera in the open ocean
The Bouraké semi-enclosed lagoon (New Caledonia) – a natural laboratory to study the lifelong adaptation of a coral reef ecosystem to extreme environmental conditions
Atypical, high-diversity assemblages of foraminifera in a mangrove estuary in northern Brazil
Permanent ectoplasmic structures in deep-sea Cibicides and Cibicidoides taxa – long-term observations at in situ pressure
Ideas and perspectives: Ushering the Indian Ocean into the UN Decade of Ocean Science for Sustainable Development (UNDOSSD) through marine ecosystem research and operational services – an early career's take
Persistent effects of sand extraction on habitats and associated benthic communities in the German Bight
Spatial patterns of ectoenzymatic kinetics in relation to biogeochemical properties in the Mediterranean Sea and the concentration of the fluorogenic substrate used
A 2-decade (1988–2009) record of diatom fluxes in the Mauritanian coastal upwelling: impact of low-frequency forcing and a two-step shift in the species composition
Review and syntheses: Impacts of turbidity flows on deep-sea benthic communities
Ideas and perspectives: When ocean acidification experiments are not the same, repeatability is not tested
The effect of the salinity, light regime and food source on carbon and nitrogen uptake in a benthic foraminifer
Changes in population depth distribution and oxygen stratification are involved in the current low condition of the eastern Baltic Sea cod (Gadus morhua)
Effects of spatial variability on the exposure of fish to hypoxia: a modeling analysis for the Gulf of Mexico
Plant genotype determines biomass response to flooding frequency in tidal wetlands
Characterization of particle-associated and free-living bacterial and archaeal communities along the water columns of the South China Sea
Adult life strategy affects distribution patterns in abyssal isopods – implications for conservation in Pacific nodule areas
Diversity and distribution of nitrogen fixation genes in the oxygen minimum zones of the world oceans
Structure and function of epipelagic mesozooplankton and their response to dust deposition events during the spring PEACETIME cruise in the Mediterranean Sea
Distribution of planktonic foraminifera in the subtropical South Atlantic: depth hierarchy of controlling factors
Technical note: Estimating light-use efficiency of benthic habitats using underwater O2 eddy covariance
Ocean acidification reduces growth and grazing impact of Antarctic heterotrophic nanoflagellates
Dynamics of environmental conditions during the decline of a Cymodocea nodosa meadow
Megafauna community assessment of polymetallic-nodule fields with cameras: platform and methodology comparison
A meta-analysis on environmental drivers of marine phytoplankton C : N : P
Spatial and temporal variability in the response of phytoplankton and prokaryotes to B-vitamin amendments in an upwelling system
Biogeography and community structure of abyssal scavenging Amphipoda (Crustacea) in the Pacific Ocean
Are seamounts refuge areas for fauna from polymetallic nodule fields?
Ocean deoxygenation and copepods: coping with oxygen minimum zone variability
Unexpected high abyssal ophiuroid diversity in polymetallic nodule fields of the northeast Pacific Ocean and implications for conservation
Population dynamics of modern planktonic foraminifera in the western Barents Sea
Foraminiferal community response to seasonal anoxia in Lake Grevelingen (the Netherlands)
Light availability modulates the effects of warming in a marine N2 fixer
SiR-actin-labelled granules in foraminifera: patterns, dynamics, and hypotheses
Alpha and beta diversity patterns of polychaete assemblages across the nodule province of the eastern Clarion-Clipperton Fracture Zone (equatorial Pacific)
Wojciech Majewski, Witold Szczuciński, and Andrew J. Gooday
Biogeosciences, 20, 523–544, https://doi.org/10.5194/bg-20-523-2023, https://doi.org/10.5194/bg-20-523-2023, 2023
Short summary
Short summary
We studied foraminifera living in the fjords of South Georgia, a sub-Antarctic island sensitive to climate change. As conditions in water and on the seafloor vary, different associations of these microorganisms dominate far inside, in the middle, and near fjord openings. Assemblages in inner and middle parts of fjords are specific to South Georgia, but they may become widespread with anticipated warming. These results are important for interpretating fossil records and monitoring future change.
Allanah Joy Paul, Lennart Thomas Bach, Javier Arístegui, Elisabeth von der Esch, Nauzet Hernández-Hernández, Jonna Piiparinen, Laura Ramajo, Kristian Spilling, and Ulf Riebesell
Biogeosciences, 19, 5911–5926, https://doi.org/10.5194/bg-19-5911-2022, https://doi.org/10.5194/bg-19-5911-2022, 2022
Short summary
Short summary
We investigated how different deep water chemistry and biology modulate the response of surface phytoplankton communities to upwelling in the Peruvian coastal zone. Our results show that the most influential drivers were the ratio of inorganic nutrients (N : P) and the microbial community present in upwelling source water. These led to unexpected and variable development in the phytoplankton assemblage that could not be predicted by the amount of inorganic nutrients alone.
Hanna M. Kauko, Philipp Assmy, Ilka Peeken, Magdalena Różańska-Pluta, Józef M. Wiktor, Gunnar Bratbak, Asmita Singh, Thomas J. Ryan-Keogh, and Sebastien Moreau
Biogeosciences, 19, 5449–5482, https://doi.org/10.5194/bg-19-5449-2022, https://doi.org/10.5194/bg-19-5449-2022, 2022
Short summary
Short summary
This article studies phytoplankton (microscopic
plantsin the ocean capable of photosynthesis) in Kong Håkon VII Hav in the Southern Ocean. Different species play different roles in the ecosystem, and it is therefore important to assess the species composition. We observed that phytoplankton blooms in this area are formed by large diatoms with strong silica armors, which can lead to high silica (and sometimes carbon) export to depth and be important prey for krill.
Markus A. Min, David M. Needham, Sebastian Sudek, N. Kobun Truelove, Kathleen J. Pitz, Gabriela M. Chavez, Camille Poirier, Bente Gardeler, Elisabeth von der Esch, Andrea Ludwig, Ulf Riebesell, Alexandra Z. Worden, and Francisco P. Chavez
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-212, https://doi.org/10.5194/bg-2022-212, 2022
Revised manuscript accepted for BG
Short summary
Short summary
Emerging molecular methods provide new ways of understanding how marine communities respond to changes in ocean conditions. Here, environmental DNA was used to track the temporal evolution of biological communities in the Peruvian coastal upwelling system and in an adjacent enclosure where upwelling was simulated. We found that the two communities quickly diverged, with the open ocean being one found during upwelling and the enclosure evolving to one found under stratified conditions.
Chloe Carbonne, Steeve Comeau, Phoebe T. W. Chan, Keyla Plichon, Jean-Pierre Gattuso, and Núria Teixidó
Biogeosciences, 19, 4767–4777, https://doi.org/10.5194/bg-19-4767-2022, https://doi.org/10.5194/bg-19-4767-2022, 2022
Short summary
Short summary
For the first time, our study highlights the synergistic effects of a 9-month warming and acidification combined stress on the early life stages of a Mediterranean azooxanthellate coral, Astroides calycularis. Our results predict a decrease in dispersion, settlement, post-settlement linear extention, budding and survival under future global change and that larvae and recruits of A. calycularis are stages of interest for this Mediterranean coral resistance, resilience and conservation.
Iris E. Hendriks, Anna Escolano-Moltó, Susana Flecha, Raquel Vaquer-Sunyer, Marlene Wesselmann, and Núria Marbà
Biogeosciences, 19, 4619–4637, https://doi.org/10.5194/bg-19-4619-2022, https://doi.org/10.5194/bg-19-4619-2022, 2022
Short summary
Short summary
Seagrasses are marine plants with the capacity to act as carbon sinks due to their high primary productivity, using carbon for growth. This capacity can play a key role in climate change mitigation. We compiled and published data showing that two Mediterranean seagrass species have different metabolic rates, while the study method influences the rates of the measurements. Most communities act as carbon sinks, while the western basin might be more productive than the eastern Mediterranean.
Raúl Tapia, Sze Ling Ho, Hui-Yu Wang, Jeroen Groeneveld, and Mahyar Mohtadi
Biogeosciences, 19, 3185–3208, https://doi.org/10.5194/bg-19-3185-2022, https://doi.org/10.5194/bg-19-3185-2022, 2022
Short summary
Short summary
We report census counts of planktic foraminifera in depth-stratified plankton net samples off Indonesia. Our results show that the vertical distribution of foraminifera species routinely used in paleoceanographic reconstructions varies in hydrographically distinct regions, likely in response to food availability. Consequently, the thermal gradient based on mixed layer and thermocline dwellers also differs for these regions, suggesting potential implications for paleoceanographic reconstructions.
Ricardo González-Gil, Neil S. Banas, Eileen Bresnan, and Michael R. Heath
Biogeosciences, 19, 2417–2426, https://doi.org/10.5194/bg-19-2417-2022, https://doi.org/10.5194/bg-19-2417-2022, 2022
Short summary
Short summary
In oceanic waters, the accumulation of phytoplankton biomass in winter, when light still limits growth, is attributed to a decrease in grazing as the mixed layer deepens. However, in coastal areas, it is not clear whether winter biomass can accumulate without this deepening. Using 21 years of weekly data, we found that in the Scottish coastal North Sea, the seasonal increase in light availability triggers the accumulation of phytoplankton biomass in winter, when light limitation is strongest.
Birgit Koehler, Mårten Erlandsson, Martin Karlsson, and Lena Bergström
Biogeosciences, 19, 2295–2312, https://doi.org/10.5194/bg-19-2295-2022, https://doi.org/10.5194/bg-19-2295-2022, 2022
Short summary
Short summary
Understanding species richness patterns remains a challenge for biodiversity management. We estimated fish species richness over a coastal salinity gradient (3–32) with a method that allowed comparing data from various sources. Species richness was 3-fold higher at high vs. low salinity, and salinity influenced species’ habitat preference, mobility and feeding type. If climate change causes upper-layer freshening of the Baltic Sea, further shifts along the identified patterns may be expected.
Uri Obolski, Thomas Wichard, Alvaro Israel, Alexander Golberg, and Alexander Liberzon
Biogeosciences, 19, 2263–2271, https://doi.org/10.5194/bg-19-2263-2022, https://doi.org/10.5194/bg-19-2263-2022, 2022
Short summary
Short summary
The algal genus Ulva plays a major role in coastal ecosystems worldwide and is a promising prospect as an seagriculture crop. A substantial hindrance to cultivating Ulva arises from sudden sporulation, leading to biomass loss. This process is not yet well understood. Here, we characterize the dynamics of Ulva growth, considering the potential impact of sporulation inhibitors, using a mathematical model. Our findings are an essential step towards understanding the dynamics of Ulva growth.
Emanuela Fanelli, Samuele Menicucci, Sara Malavolti, Andrea De Felice, and Iole Leonori
Biogeosciences, 19, 1833–1851, https://doi.org/10.5194/bg-19-1833-2022, https://doi.org/10.5194/bg-19-1833-2022, 2022
Short summary
Short summary
Zooplankton play a key role in marine ecosystems, forming the base of the marine food web and a link between primary producers and higher-order consumers, such as fish. This aspect is crucial in the Adriatic basin, one of the most productive and overexploited areas of the Mediterranean Sea. A better understanding of community and food web structure and their response to water mass changes is essential under a global warming scenario, as zooplankton are sensitive to climate change.
Masaya Yoshikai, Takashi Nakamura, Rempei Suwa, Sahadev Sharma, Rene Rollon, Jun Yasuoka, Ryohei Egawa, and Kazuo Nadaoka
Biogeosciences, 19, 1813–1832, https://doi.org/10.5194/bg-19-1813-2022, https://doi.org/10.5194/bg-19-1813-2022, 2022
Short summary
Short summary
This study presents a new individual-based vegetation model to investigate salinity control on mangrove productivity. The model incorporates plant hydraulics and tree competition and predicts unique and complex patterns of mangrove forest structures that vary across soil salinity gradients. The presented model does not hold an empirical expression of salinity influence on productivity and thus may provide a better understanding of mangrove forest dynamics in future climate change.
Coulson A. Lantz, William Leggat, Jessica L. Bergman, Alexander Fordyce, Charlotte Page, Thomas Mesaglio, and Tracy D. Ainsworth
Biogeosciences, 19, 891–906, https://doi.org/10.5194/bg-19-891-2022, https://doi.org/10.5194/bg-19-891-2022, 2022
Short summary
Short summary
Coral bleaching events continue to drive the degradation of coral reefs worldwide. In this study we measured rates of daytime coral reef community calcification and photosynthesis during a reef-wide bleaching event. Despite a measured decline in coral health across several taxa, there was no change in overall daytime community calcification and photosynthesis. These findings highlight potential limitations of these community-level metrics to reflect actual changes in coral health.
Hyewon Heather Kim, Jeff S. Bowman, Ya-Wei Luo, Hugh W. Ducklow, Oscar M. Schofield, Deborah K. Steinberg, and Scott C. Doney
Biogeosciences, 19, 117–136, https://doi.org/10.5194/bg-19-117-2022, https://doi.org/10.5194/bg-19-117-2022, 2022
Short summary
Short summary
Heterotrophic marine bacteria are tiny organisms responsible for taking up organic matter in the ocean. Using a modeling approach, this study shows that characteristics (taxonomy and physiology) of bacteria are associated with a subset of ecological processes in the coastal West Antarctic Peninsula region, a system susceptible to global climate change. This study also suggests that bacteria will become more active, in particular large-sized cells, in response to changing climates in the region.
Alice E. Webb, Didier M. de Bakker, Karline Soetaert, Tamara da Costa, Steven M. A. C. van Heuven, Fleur C. van Duyl, Gert-Jan Reichart, and Lennart J. de Nooijer
Biogeosciences, 18, 6501–6516, https://doi.org/10.5194/bg-18-6501-2021, https://doi.org/10.5194/bg-18-6501-2021, 2021
Short summary
Short summary
The biogeochemical behaviour of shallow reef communities is quantified to better understand the impact of habitat degradation and species composition shifts on reef functioning. The reef communities investigated barely support reef functions that are usually ascribed to conventional coral reefs, and the overall biogeochemical behaviour is found to be similar regardless of substrate type. This suggests a decrease in functional diversity which may therefore limit services provided by this reef.
Emmanuel Devred, Andrea Hilborn, and Cornelia Elizabeth den Heyer
Biogeosciences, 18, 6115–6132, https://doi.org/10.5194/bg-18-6115-2021, https://doi.org/10.5194/bg-18-6115-2021, 2021
Short summary
Short summary
A theoretical model of grey seal seasonal abundance on Sable Island (SI) coupled with chlorophyll-a concentration [chl-a] measured by satellite revealed the impact of seal nitrogen fertilization on the surrounding waters of SI, Canada. The increase in seals from about 100 000 in 2003 to about 360 000 in 2018 during the breeding season is consistent with an increase in [chl-a] leeward of SI. The increase in seal abundance explains 8 % of the [chl-a] increase.
Julie Meilland, Michael Siccha, Maike Kaffenberger, Jelle Bijma, and Michal Kucera
Biogeosciences, 18, 5789–5809, https://doi.org/10.5194/bg-18-5789-2021, https://doi.org/10.5194/bg-18-5789-2021, 2021
Short summary
Short summary
Planktonic foraminifera population dynamics has long been assumed to be controlled by synchronous reproduction and ontogenetic vertical migration (OVM). Due to contradictory observations, this concept became controversial. We here test it in the Atlantic ocean for four species of foraminifera representing the main clades. Our observations support the existence of synchronised reproduction and OVM but show that more than half of the population does not follow the canonical trajectory.
Federica Maggioni, Mireille Pujo-Pay, Jérome Aucan, Carlo Cerrano, Barbara Calcinai, Claude Payri, Francesca Benzoni, Yves Letourneur, and Riccardo Rodolfo-Metalpa
Biogeosciences, 18, 5117–5140, https://doi.org/10.5194/bg-18-5117-2021, https://doi.org/10.5194/bg-18-5117-2021, 2021
Short summary
Short summary
Based on current experimental evidence, climate change will affect up to 90 % of coral reefs worldwide. The originality of this study arises from our recent discovery of an exceptional study site where environmental conditions (temperature, pH, and oxygen) are even worse than those forecasted for the future.
While these conditions are generally recognized as unfavorable for marine life, we found a rich and abundant coral reef thriving under such extreme environmental conditions.
Nisan Sariaslan and Martin R. Langer
Biogeosciences, 18, 4073–4090, https://doi.org/10.5194/bg-18-4073-2021, https://doi.org/10.5194/bg-18-4073-2021, 2021
Short summary
Short summary
Analyses of foraminiferal assemblages from the Mamanguape mangrove estuary (northern Brazil) revealed highly diverse, species-rich, and structurally complex biotas. The atypical fauna resembles shallow-water offshore assemblages and are interpreted to be the result of highly saline ocean waters penetrating deep into the estuary. The findings contrast with previous studies, have implications for the fossil record, and provide novel perspectives for reconstructing mangrove environments.
Jutta E. Wollenburg, Jelle Bijma, Charlotte Cremer, Ulf Bickmeyer, and Zora Mila Colomba Zittier
Biogeosciences, 18, 3903–3915, https://doi.org/10.5194/bg-18-3903-2021, https://doi.org/10.5194/bg-18-3903-2021, 2021
Short summary
Short summary
Cultured at in situ high-pressure conditions Cibicides and Cibicidoides taxa develop lasting ectoplasmic structures that cannot be retracted or resorbed. An ectoplasmic envelope surrounds their test and may protect the shell, e.g. versus carbonate aggressive bottom water conditions. Ectoplasmic roots likely anchor the specimens in areas of strong bottom water currents, trees enable them to elevate themselves above ground, and twigs stabilize and guide the retractable pseudopodial network.
Kumar Nimit
Biogeosciences, 18, 3631–3635, https://doi.org/10.5194/bg-18-3631-2021, https://doi.org/10.5194/bg-18-3631-2021, 2021
Short summary
Short summary
The Indian Ocean Rim hosts many of the underdeveloped and emerging economies that depend on ocean resources for the livelihood of millions. Operational ocean information services cater to the requirements of resource managers and end-users to efficiently harness resources, mitigate threats and ensure safety. This paper outlines existing tools and explores the ongoing research that has the potential to convert the findings into operational services in the near- to midterm.
Finn Mielck, Rune Michaelis, H. Christian Hass, Sarah Hertel, Caroline Ganal, and Werner Armonies
Biogeosciences, 18, 3565–3577, https://doi.org/10.5194/bg-18-3565-2021, https://doi.org/10.5194/bg-18-3565-2021, 2021
Short summary
Short summary
Marine sand mining is becoming more and more important to nourish fragile coastlines that face global change. We investigated the largest sand extraction site in the German Bight. The study reveals that after more than 35 years of mining, the excavation pits are still detectable on the seafloor while the sediment composition has largely changed. The organic communities living in and on the seafloor were strongly decimated, and no recovery is observable towards previous conditions.
France Van Wambeke, Elvira Pulido, Philippe Catala, Julie Dinasquet, Kahina Djaoudi, Anja Engel, Marc Garel, Sophie Guasco, Barbara Marie, Sandra Nunige, Vincent Taillandier, Birthe Zäncker, and Christian Tamburini
Biogeosciences, 18, 2301–2323, https://doi.org/10.5194/bg-18-2301-2021, https://doi.org/10.5194/bg-18-2301-2021, 2021
Short summary
Short summary
Michaelis–Menten kinetics were determined for alkaline phosphatase, aminopeptidase and β-glucosidase in the Mediterranean Sea. Although the ectoenzymatic-hydrolysis contribution to heterotrophic prokaryotic needs was high in terms of N, it was low in terms of C. This study points out the biases in interpretation of the relative differences in activities among the three tested enzymes in regard to the choice of added concentrations of fluorogenic substrates.
Oscar E. Romero, Simon Ramondenc, and Gerhard Fischer
Biogeosciences, 18, 1873–1891, https://doi.org/10.5194/bg-18-1873-2021, https://doi.org/10.5194/bg-18-1873-2021, 2021
Short summary
Short summary
Upwelling intensity along NW Africa varies on the interannual to decadal timescale. Understanding its changes is key for the prediction of future changes of CO2 sequestration in the northeastern Atlantic. Based on a multiyear (1988–2009) sediment trap experiment at the site CBmeso, fluxes and the species composition of the diatom assemblage are presented. Our data help in establishing the scientific basis for forecasting and modeling future states of this ecosystem and its decadal changes.
Katharine T. Bigham, Ashley A. Rowden, Daniel Leduc, and David A. Bowden
Biogeosciences, 18, 1893–1908, https://doi.org/10.5194/bg-18-1893-2021, https://doi.org/10.5194/bg-18-1893-2021, 2021
Short summary
Short summary
Turbidity flows – underwater avalanches – are large-scale physical disturbances believed to have profound impacts on productivity and diversity of benthic communities in the deep sea. We reviewed published studies and found that current evidence for changes in productivity is ambiguous at best, but the influence on regional and local diversity is clearer. We suggest study design criteria that may lead to a better understanding of large-scale disturbance effects on deep-sea benthos.
Phillip Williamson, Hans-Otto Pörtner, Steve Widdicombe, and Jean-Pierre Gattuso
Biogeosciences, 18, 1787–1792, https://doi.org/10.5194/bg-18-1787-2021, https://doi.org/10.5194/bg-18-1787-2021, 2021
Short summary
Short summary
The reliability of ocean acidification research was challenged in early 2020 when a high-profile paper failed to corroborate previously observed impacts of high CO2 on the behaviour of coral reef fish. We now know the reason why: the
replicatedstudies differed in many ways. Open-minded and collaborative assessment of all research results, both negative and positive, remains the best way to develop process-based understanding of the impacts of ocean acidification on marine organisms.
Michael Lintner, Bianca Lintner, Wolfgang Wanek, Nina Keul, and Petra Heinz
Biogeosciences, 18, 1395–1406, https://doi.org/10.5194/bg-18-1395-2021, https://doi.org/10.5194/bg-18-1395-2021, 2021
Short summary
Short summary
Foraminifera are unicellular marine organisms that play an important role in the marine element cycle. Changes of environmental parameters such as salinity or temperature have a significant impact on the faunal assemblages. Our experiments show that changes in salinity immediately influence the foraminiferal activity. Also the light regime has a significant impact on carbon or nitrogen processing in foraminifera which contain no kleptoplasts.
Michele Casini, Martin Hansson, Alessandro Orio, and Karin Limburg
Biogeosciences, 18, 1321–1331, https://doi.org/10.5194/bg-18-1321-2021, https://doi.org/10.5194/bg-18-1321-2021, 2021
Short summary
Short summary
In the past 20 years the condition of the eastern Baltic cod has dropped, with large implications for the fishery. Our results show that simultaneously the cod population has moved deeper while low-oxygenated waters detrimental for cod growth have become shallower. Cod have thus dwelled more in detrimental waters, explaining the drop in its condition. This study, using long-term fish and hydrological monitoring data, evidences the impact of deoxygenation on fish biology and fishing.
Elizabeth D. LaBone, Kenneth A. Rose, Dubravko Justic, Haosheng Huang, and Lixia Wang
Biogeosciences, 18, 487–507, https://doi.org/10.5194/bg-18-487-2021, https://doi.org/10.5194/bg-18-487-2021, 2021
Short summary
Short summary
The hypoxic zone is an area of low dissolved oxygen (DO) in the Gulf of Mexico. Fish can be killed by exposure to hypoxia and can be negatively impacted by exposure to low, nonlethal DO concentrations (sublethal DO). We found that high sublethal area resulted in higher exposure and DO variability had a small effect on exposure. There was a large variation in exposure among individuals, which when combined with spatial variability of DO, can result in an underestimation of exposure when averaged.
Svenja Reents, Peter Mueller, Hao Tang, Kai Jensen, and Stefanie Nolte
Biogeosciences, 18, 403–411, https://doi.org/10.5194/bg-18-403-2021, https://doi.org/10.5194/bg-18-403-2021, 2021
Short summary
Short summary
By conducting a flooding experiment with two genotypes of the salt-marsh grass Elymus athericus, we show considerable differences in biomass response to flooding within the same species. As biomass production plays a major role in sedimentation processes and thereby salt-marsh accretion, we emphasise the importance of taking intraspecific differences into account when evaluating ecosystem resilience to accelerated sea level rise.
Jiangtao Li, Lingyuan Gu, Shijie Bai, Jie Wang, Lei Su, Bingbing Wei, Li Zhang, and Jiasong Fang
Biogeosciences, 18, 113–133, https://doi.org/10.5194/bg-18-113-2021, https://doi.org/10.5194/bg-18-113-2021, 2021
Short summary
Short summary
Few studies have focused on the particle-attached (PA) and free-living (FL) microbes of the deep ocean. Here we determined PA and FL microbial communities along depth profiles of the SCS. PA and FL fractions accommodated divergent microbial compositions, and most of them are potentially generalists with PA and FL dual lifestyles. A potential vertical connectivity between surface-specific microbes and those in the deep ocean was indicated, likely through microbial attachment to sinking particles.
Saskia Brix, Karen J. Osborn, Stefanie Kaiser, Sarit B. Truskey, Sarah M. Schnurr, Nils Brenke, Marina Malyutina, and Pedro Martinez Arbizu
Biogeosciences, 17, 6163–6184, https://doi.org/10.5194/bg-17-6163-2020, https://doi.org/10.5194/bg-17-6163-2020, 2020
Short summary
Short summary
The Clarion–Clipperton Fracture Zone (CCZ) located in the Pacific is commercially the most important area of proposed manganese nodule mining. Extraction of this will influence the life and distribution of small deep-sea invertebrates like peracarid crustaceans, of which >90 % are undescribed species new to science. We are doing a species delimitation approach as baseline for an ecological interpretation of species distribution and discuss the results in light of future deep-sea conservation.
Amal Jayakumar and Bess B. Ward
Biogeosciences, 17, 5953–5966, https://doi.org/10.5194/bg-17-5953-2020, https://doi.org/10.5194/bg-17-5953-2020, 2020
Short summary
Short summary
Diversity and community composition of nitrogen-fixing microbes in the three main oxygen minimum zones of the world ocean were investigated using nifH clone libraries. Representatives of three main clusters of nifH genes were detected. Sequences were most diverse in the surface waters. The most abundant OTUs were affiliated with Alpha- and Gammaproteobacteria. The sequences were biogeographically distinct and the dominance of a few OTUs was commonly observed in OMZs in this (and other) studies.
Guillermo Feliú, Marc Pagano, Pamela Hidalgo, and François Carlotti
Biogeosciences, 17, 5417–5441, https://doi.org/10.5194/bg-17-5417-2020, https://doi.org/10.5194/bg-17-5417-2020, 2020
Short summary
Short summary
The impact of Saharan dust deposition events on the Mediterranean Sea ecosystem was studied during a basin-scale survey (PEACETIME cruise, May–June 2017). Short-term responses of the zooplankton community were observed after episodic dust deposition events, highlighting the impact of these events on productivity up to the zooplankton level in the poorly fertilized pelagic ecosystems of the southern Mediterranean Sea.
Douglas Lessa, Raphaël Morard, Lukas Jonkers, Igor M. Venancio, Runa Reuter, Adrian Baumeister, Ana Luiza Albuquerque, and Michal Kucera
Biogeosciences, 17, 4313–4342, https://doi.org/10.5194/bg-17-4313-2020, https://doi.org/10.5194/bg-17-4313-2020, 2020
Short summary
Short summary
We observed that living planktonic foraminifera had distinct vertically distributed communities across the Subtropical South Atlantic. In addition, a hierarchic alternation of environmental parameters was measured to control the distribution of planktonic foraminifer's species depending on the water depth. This implies that not only temperature but also productivity and subsurface processes are signed in fossil assemblages, which could be used to perform paleoceanographic reconstructions.
Karl M. Attard and Ronnie N. Glud
Biogeosciences, 17, 4343–4353, https://doi.org/10.5194/bg-17-4343-2020, https://doi.org/10.5194/bg-17-4343-2020, 2020
Short summary
Short summary
Light-use efficiency defines the ability of primary producers to convert sunlight energy to primary production. This report provides a framework to compute hourly and daily light-use efficiency using underwater eddy covariance, a recent technological development that produces habitat-scale rates of primary production for many different habitat types. The approach, tested on measured flux data, provides a useful means to compare habitat productivity across time and space.
Stacy Deppeler, Kai G. Schulz, Alyce Hancock, Penelope Pascoe, John McKinlay, and Andrew Davidson
Biogeosciences, 17, 4153–4171, https://doi.org/10.5194/bg-17-4153-2020, https://doi.org/10.5194/bg-17-4153-2020, 2020
Short summary
Short summary
Our study showed how ocean acidification can exert both direct and indirect influences on the interactions among trophic levels within the microbial loop. Microbial grazer abundance was reduced at CO2 concentrations at and above 634 µatm, while microbial communities increased in abundance, likely due to a reduction in being grazed. Such changes in predator–prey interactions with ocean acidification could have significant effects on the food web and biogeochemistry in the Southern Ocean.
Mirjana Najdek, Marino Korlević, Paolo Paliaga, Marsej Markovski, Ingrid Ivančić, Ljiljana Iveša, Igor Felja, and Gerhard J. Herndl
Biogeosciences, 17, 3299–3315, https://doi.org/10.5194/bg-17-3299-2020, https://doi.org/10.5194/bg-17-3299-2020, 2020
Short summary
Short summary
The response of Cymodocea nodosa to environmental changes was reported during a 15-month period. The meadow decline was triggered in spring by the simultaneous reduction of available light in the water column and the creation of anoxic conditions in the rooted area. This disturbance was critical for the plant since it took place during its recruitment phase when metabolic needs are maximal and stored reserves minimal. The loss of such habitat-forming seagrass is a major environmental concern.
Timm Schoening, Autun Purser, Daniel Langenkämper, Inken Suck, James Taylor, Daphne Cuvelier, Lidia Lins, Erik Simon-Lledó, Yann Marcon, Daniel O. B. Jones, Tim Nattkemper, Kevin Köser, Martin Zurowietz, Jens Greinert, and Jose Gomes-Pereira
Biogeosciences, 17, 3115–3133, https://doi.org/10.5194/bg-17-3115-2020, https://doi.org/10.5194/bg-17-3115-2020, 2020
Short summary
Short summary
Seafloor imaging is widely used in marine science and industry to explore and monitor areas of interest. The selection of the most appropriate imaging gear and deployment strategy depends on the target application. This paper compares imaging platforms like autonomous vehicles or towed camera frames and different deployment strategies of those in assessing the megafauna abundance of polymetallic-nodule fields. The deep-sea mining industry needs that information for robust impact monitoring.
Tatsuro Tanioka and Katsumi Matsumoto
Biogeosciences, 17, 2939–2954, https://doi.org/10.5194/bg-17-2939-2020, https://doi.org/10.5194/bg-17-2939-2020, 2020
Short summary
Short summary
We conducted an extensive literature survey (meta-analysis) on how the C : N : P ratio varies with change in key environmental drivers. We found that the expected reduction in nutrients and warming under the future climate change scenario is likely to result in increased C : P and C : N of marine phytoplankton. Further, our findings highlight the greater stoichiometric plasticity of eukaryotes over prokaryotes, which provide us insights on how to understand and model plankton.
Vanessa Joglar, Antero Prieto, Esther Barber-Lluch, Marta Hernández-Ruiz, Emilio Fernández, and Eva Teira
Biogeosciences, 17, 2807–2823, https://doi.org/10.5194/bg-17-2807-2020, https://doi.org/10.5194/bg-17-2807-2020, 2020
Short summary
Short summary
Coastal marine ecosystems are among the most ecologically and economically productive areas providing a large fraction of ecosystem goods and services to human populations, and B vitamins have long been considered important growth factors for phytoplankton. Our findings indicate that the responses of microbial plankton to B-vitamin supply are mainly driven by the bacterial community composition and that microbial plankton in this area seems to be well adapted to cope with B-vitamin shortage.
Tasnim Patel, Henri Robert, Cedric D'Udekem D'Acoz, Koen Martens, Ilse De Mesel, Steven Degraer, and Isa Schön
Biogeosciences, 17, 2731–2744, https://doi.org/10.5194/bg-17-2731-2020, https://doi.org/10.5194/bg-17-2731-2020, 2020
Short summary
Short summary
Exploitation of deep-sea resources in one of the largest ecosystems on the planet has rendered research of its biodiversity more urgent than ever before. We investigated the known habitats and connectivity of deep-sea scavenging amphipods and obtained important knowledge about several species. We also demonstrated that a long-term disturbance experiment has possibly reduced amphipod biodiversity. These data and further sampling expeditions are instrumental for formulating sustainable policies.
Daphne Cuvelier, Pedro A. Ribeiro, Sofia P. Ramalho, Daniel Kersken, Pedro Martinez Arbizu, and Ana Colaço
Biogeosciences, 17, 2657–2680, https://doi.org/10.5194/bg-17-2657-2020, https://doi.org/10.5194/bg-17-2657-2020, 2020
Short summary
Short summary
Polymetallic nodule mining will remove hard substrata from the abyssal deep-sea floor. The only neighbouring ecosystems featuring hard substratum are seamounts, and their inhabiting fauna could aid in recovery post-mining. Nevertheless, first observations of seamount megafauna were very different from nodule-associated megafauna and showed little overlap. The possible uniqueness of these ecosystems implies that they should be included in management plans for the conservation of biodiversity.
Karen F. Wishner, Brad Seibel, and Dawn Outram
Biogeosciences, 17, 2315–2339, https://doi.org/10.5194/bg-17-2315-2020, https://doi.org/10.5194/bg-17-2315-2020, 2020
Short summary
Short summary
Increasing deoxygenation and oxygen minimum zone expansion are consequences of global warming. Copepod species had different vertical distribution strategies and physiologies associated with oxygen profile variability (0–1000 m). Species (1) changed vertical distributions and maximum abundance depth, (2) shifted diapause depth, (3) changed diel vertical migration depths, or (4) changed epipelagic depth range in the aerobic mixed layer. Present-day variability helps predict future scenarios.
Magdalini Christodoulou, Timothy O'Hara, Andrew F. Hugall, Sahar Khodami, Clara F. Rodrigues, Ana Hilario, Annemiek Vink, and Pedro Martinez Arbizu
Biogeosciences, 17, 1845–1876, https://doi.org/10.5194/bg-17-1845-2020, https://doi.org/10.5194/bg-17-1845-2020, 2020
Short summary
Short summary
Unexpectedly high diversity was revealed in areas licenced for polymetallic nodule mining exploration in the Pacific Ocean. For the first time, a comprehensive reference library including 287 novel ophiuroid sequences allocated to 43 species was produced. Differences in food availability along the nodule province of CCZ were reflected in the biodiversity patterns observed. The APEI3's dissimilarity with the exploration contract areas questions its ability to serve as a biodiversity reservoir.
Julie Meilland, Hélène Howa, Vivien Hulot, Isaline Demangel, Joëlle Salaün, and Thierry Garlan
Biogeosciences, 17, 1437–1450, https://doi.org/10.5194/bg-17-1437-2020, https://doi.org/10.5194/bg-17-1437-2020, 2020
Short summary
Short summary
This study reports on planktonic foraminifera (PF) diversity and distribution in the Barents Sea. The species Globigerinita uvula and Turborotalita quinqueloba dominate the water column while surface sediments are dominated by Neogloboquadrina pachyderma. We hypothesize the unusual dominance of G. uvula in the water to be a seasonal signal or a result of climate forcing. Size-normalized-protein concentrations of PF show a northward decrease, suggesting biomass to vary with the environment.
Julien Richirt, Bettina Riedel, Aurélia Mouret, Magali Schweizer, Dewi Langlet, Dorina Seitaj, Filip J. R. Meysman, Caroline P. Slomp, and Frans J. Jorissen
Biogeosciences, 17, 1415–1435, https://doi.org/10.5194/bg-17-1415-2020, https://doi.org/10.5194/bg-17-1415-2020, 2020
Short summary
Short summary
The paper presents the response of benthic foraminiferal communities to seasonal absence of oxygen coupled with the presence of hydrogen sulfide, considered very harmful for several living organisms.
Our results suggest that the foraminiferal community mainly responds as a function of the duration of the adverse conditions.
This knowledge is especially useful to better understand the ecology of benthic foraminifera but also in the context of palaeoceanographic interpretations.
Xiangqi Yi, Fei-Xue Fu, David A. Hutchins, and Kunshan Gao
Biogeosciences, 17, 1169–1180, https://doi.org/10.5194/bg-17-1169-2020, https://doi.org/10.5194/bg-17-1169-2020, 2020
Short summary
Short summary
Combined effects of warming and light intensity were estimated in N2-fixing cyanobacterium Trichodesmium. Its physiological responses to warming were significantly modulated by light, with growth peaking at 27 °C under the light-saturating condition but being non-responsive across the range of 23–31 °C under the light-limiting condition. Light shortage also weakened the acclimation ability of Trichodesmium to warming, making light-limited Trichodesmium more sensitive to acute temperature change.
Jan Goleń, Jarosław Tyszka, Ulf Bickmeyer, and Jelle Bijma
Biogeosciences, 17, 995–1011, https://doi.org/10.5194/bg-17-995-2020, https://doi.org/10.5194/bg-17-995-2020, 2020
Short summary
Short summary
We studied the organisation and dynamics of actin in foraminifera. Actin is one of the key structural proteins in most lifeforms. Our investigations show that in foraminifera it forms small granules, around 1 µm in diameter, that display rapid movement. This granularity is unusual in comparison to other organisms. We suppose that these granules are most likely involved in the formation of all types of pseudopods responsible for movement, food capturing, biomineralisation, and other functions.
Paulo Bonifácio, Pedro Martínez Arbizu, and Lénaïck Menot
Biogeosciences, 17, 865–886, https://doi.org/10.5194/bg-17-865-2020, https://doi.org/10.5194/bg-17-865-2020, 2020
Short summary
Short summary
The patterns observed in the composition of polychaete assemblages were attributed to variations in food supply at the regional scale and nodule density at the local scale. The high levels of species replacement were mainly driven by rare species, leading to regional species pool estimates between 498 and 240 000 species. The high proportion of singletons seems reflect an under-sampling bias that is currently preventing the assessment of potential biodiversity loss due to nodule mining.
Cited articles
Accornero, A., Manno, C., Esposito, F., and Gambi, M. C.: The vertical flux of
particulate matter in the polynya of Terra Nova Bay. Part II. Biological
components, Antarct. Sci., 15, S0954102003001214,
https://doi.org/10.1017/S0954102003001214, 2003. a, b
Alvain, S., Moulin, C., Dandonneau, Y., and Loisel, H.: Seasonal distribution
and succession of dominant phytoplankton groups in the global ocean: A
satellite view, Global Biogeochem. Cy., 22, GB3001,
https://doi.org/10.1029/2007GB003154, 2008. a, b, c, d
Anderson, L. A. and Sarmiento, J. L.: Redfield ratios of remineralization
determined by nutrient data analysis, Global Biogeochem. Cy., 8,
65–80, https://doi.org/10.1029/93GB03318, 1994. a
Arrigo, K. R., Weiss, A. M., and Smith, W. O.: Physical forcing of
phytoplankton dynamics in the southwestern Ross Sea, J. Geophys. Res.-Oceans, 103, 1007–1021, https://doi.org/10.1029/97JC02326, 1998. a
Arrigo, K. R., Robinson, D. H., Worthen, D. L., Dunbar, R. B., DiTullio, G. R.,
VanWoert, M. L., and Lizotte, M. P.: Phytoplankton community structure and
the drawdown of nutrients and CO2 in the Southern Ocean, Science, 283,
365–367, https://doi.org/10.1126/science.283.5400.365, 1999. a, b, c, d, e, f
Arrigo, K. R., DiTullio, G. R., Dunbar, R. B., Robinson, D. H., VanWoert, M.,
Worthen, D. L., and Lizotte, M. P.: Phytoplankton taxonomic variability in
nutrient utilization and primary production in the Ross Sea, J. Geophys. Res.-Oceans, 105, 8827–8846, https://doi.org/10.1029/1998JC000289,
2000. a
Arrigo, K. R., van Dijken, G. L., Alderkamp, A.-C., Erickson, Z. K., Lewis, K. M., Lowry, K. E., Joy Warren, H. L., Middag, R., Nash Arrigo, J. E.,
Selz, V., and van de Poll, W.: Early Spring Phytoplankton Dynamics in the
Western Antarctic Peninsula, J. Geophys. Res.-Oceans, 122,
9350–9369, https://doi.org/10.1002/2017JC013281, 2017. a, b
Asper, V. L. and Smith, W. O.: Particle fluxes during austral spring and
summer in the southern Ross Sea, Antarctica, J. Geophys. Res.-Oceans 104, 5345–5359, https://doi.org/10.1029/1998JC900067, 1999. a, b, c, d
Asper, V. L. and Smith, W. O.: Variations in the abundance and distribution of
aggregates in the Ross Sea, Antarctica, Elem. Sci. Anth., 7, 23,
https://doi.org/10.1525/elementa.355,
2019. a, b, c
Ayers, G. P., Ivey, J. P., and Gillett, R. W.: Coherence between seasonal
cycles of dimethyl sulphide, methanesulphonate and sulphate in marine air,
Nature, 349, 404–406, https://doi.org/10.1038/349404a0, 1991. a
Balch, W. M., Drapeau, D. T., Bowler, B. C., Lyczskowski, E., Booth, E. S., and
Alley, D.: The contribution of coccolithophores to the optical and inorganic
carbon budgets during the Southern Ocean Gas Exchange Experiment: New
evidence in support of the ”Great Calcite Belt” hypothesis, J. Geophys. Res., 116, C00F06, https://doi.org/10.1029/2011JC006941, 2011. a
Balch, W. M., Bates, N. R., Lam, P. J., Twining, B. S., Rosengard, S. Z.,
Bowler, B. C., Drapeau, D. T., Garley, R., Lubelczyk, L. C., Mitchell, C.,
and Rauschenberg, S.: Factors regulating the Great Calcite Belt in the
Southern Ocean and its biogeochemical significance, Global Biogeochem. Cy., 30, 1199–1214, https://doi.org/10.1002/2016GB005414, 2016. a, b, c, d, e
Behrenfeld, M. J.: Climate-mediated dance of the plankton, Nat. Clim. Change, 4, 880–887, https://doi.org/10.1038/nclimate2349, 2014. a
Behrenfeld, M. J. and Falkowski, P. G.: Photosynthetic rates derived from
satellite-based chlorophyll concentration, Limnol. Oceanogr., 42,
1–20, https://doi.org/10.4319/lo.1997.42.1.0001, 1997. a, b
Ben Mustapha, Z. B., Alvain, S., Jamet, C., Loisel, H., and Dessailly, D.: Automatic classification of water-leaving radiance anomalies from global
SeaWiFS imagery: Application to the detection of phytoplankton groups in open
ocean waters, Remote Sens. Environ., 146, 97–112,
https://doi.org/10.1016/j.rse.2013.08.046, 2014. a
Bender, S. J., Moran, D. M., McIlvin, M. R., Zheng, H., McCrow, J. P., Badger, J., DiTullio, G. R., Allen, A. E., and Saito, M. A.: Colony formation in Phaeocystis antarctica: connecting molecular mechanisms with iron biogeochemistry, Biogeosciences, 15, 4923–4942, https://doi.org/10.5194/bg-15-4923-2018, 2018. a, b
Berman-Frank, I., Cullen, J. T., Shaked, Y., Sherrell, R. M., and Falkowski, P. G.: Iron availability, cellular iron quotas, and nitrogen fixation in
Trichodesmium, Limnol. Oceanogr., 46, 1249–1260,
https://doi.org/10.4319/lo.2001.46.6.1249, 2001. a
Bopp, L., Aumont, O., Cadule, P., Alvain, S., and Gehlen, M.: Response of
diatoms distribution to global warming and potential implications: A global
model study, Geophys. Res. Lett., 32, 1–4,
https://doi.org/10.1029/2005GL023653, 2005. a
Boyd, P. W.: Physiology and iron modulate diverse responses of diatoms to a
warming Southern Ocean, Nat. Clim. Change, 9, 148–152,
https://doi.org/10.1038/s41558-018-0389-1, 2019. a
Buesseler, K. O.: The decoupling of production and particulate export in the
surface ocean, Global Biogeochem. Cy., 12, 297–310,
https://doi.org/10.1029/97GB03366, 1998. a, b
Buitenhuis, E. T. and Geider, R. J.: A model of phytoplankton acclimation to
iron-light colimitation, Limnol. Oceanogr., 55, 714–724,
https://doi.org/10.4319/lo.2009.55.2.0714, 2010. a
Buitenhuis, E. T., Pangerc, T., Franklin, D. J., Le Quéré, C.,
and Malin, G.: Growth rates of six coccolithophorid strains as a function of
temperature, Limnol. Oceanogr., 53, 1181–1185,
https://doi.org/10.4319/lo.2008.53.3.1181, 2008. a
Buitenhuis, E. T., Hashioka, T., and Le Quéré, C.: Combined
constraints on global ocean primary production using observations and
models, Global Biogeochem. Cy., 27, 847–858, https://doi.org/10.1002/gbc.20074,
2013. a, b, c, d
Buma, A. G. J., Bano, N., Veldhuis, M. J. W., and Kraay, G. W.: Comparison of
the pigmentation of two strains of the prymnesiophyte Phaeocystis
sp., Neth. J. Sea Res., 27, 173–182,
https://doi.org/10.1016/0077-7579(91)90010-X, 1991. a
Capone, D. G.: Trichodesmium, a Globally Significant Marine Cyanobacterium,
Science, 276, 1221–1229, https://doi.org/10.1126/science.276.5316.1221, 1997. a
Caron, D. A., Dennett, M. R., Lonsdale, D. J., Moran, D. M., and Shalapyonok, L.: Microzooplankton herbivory in the Ross Sea, Antarctica, Deep-Sea Res. Pt. II, 47, 3249–3272,
https://doi.org/10.1016/S0967-0645(00)00067-9, 2000. a, b
Carton, J. A. and Giese, B. S.: A reanalysis of ocean climate using Simple
Ocean Data Assimilation (SODA), Mon. Weather Rev., 136, 2999–3017,
https://doi.org/10.1175/2007MWR1978.1, 2008. a
Chen, Y.-Q., Wang, N., Zhang, P., Zhou, H., and Qu, L.-H.: Molecular evidence
identifies bloom-forming Phaeocystis (Prymnesiophyta) from coastal
waters of southeast China as Phaeocystis globosa, Biochem. Syst. Ecol., 30, 15–22, https://doi.org/10.1016/S0305-1978(01)00054-0,
2002. a
Constable, A. J., Melbourne-Thomas, J., Corney, S. P., Arrigo, K. R., Barbraud, C., Barnes, D. K. A., Bindoff, N. L., Boyd, P. W., Brandt, A., Costa, D. P.,
Davidson, A. T., Ducklow, H. W., Emmerson, L., Fukuchi, M., Gutt, J.,
Hindell, M. A., Hofmann, E. E., Hosie, G. W., Iida, T., Jacob, S., Johnston, N. M., Kawaguchi, S., Kokubun, N., Koubbi, P., Lea, M.-A., Makhado, A.,
Massom, R. A., Meiners, K., Meredith, M. P., Murphy, E. J., Nicol, S., Reid, K., Richerson, K., Riddle, M. J., Rintoul, S. R., Smith, W. O., Southwell, C., Stark, J. S., Sumner, M., Swadling, K. M., Takahashi, K. T., Trathan, P. N., Welsford, D. C., Weimerskirch, H., Westwood, K. J., Wienecke, B. C.,
Wolf-Gladrow, D., Wright, S. W., Xavier, J. C., and Ziegler, P.: Climate
change and Southern Ocean ecosystems I: how changes in physical habitats
directly affect marine biota, Glob. Change Biol., 20, 3004–3025,
https://doi.org/10.1111/gcb.12623, 2014. a, b
Cubillos, J. C., Wright, S. W., Nash, G., de Salas, M. F., Griffiths, B.,
Tilbrook, B., Poisson, A., and Hallegraeff, G. M.: Calcification morphotypes
of the coccolithophorid Emiliania huxleyi in the Southern Ocean:
changes in 2001 to 2006 compared to historical data, Mar. Ecol. Prog. Ser., 348, 47–54, https://doi.org/10.3354/meps07058, 2007. a
Curran, M. A. J. and Jones, G. B.: Dimethyl sulfide in the Southern Ocean:
Seasonality and flux, J. Geophys. Res.-Atmos., 105,
20451–20459, https://doi.org/10.1029/2000JD900176, 2000. a, b
Curran, M. A. J., Jones, G. B., and Burton, H.: Spatial distribution of
dimethylsulfide and dimethylsulfoniopropionate in the Australasian sector of
the Southern Ocean, J. Geophys. Res.-Atmos., 103,
16677–16689, https://doi.org/10.1029/97JD03453, 1998. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P.,
Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C.,
Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B.,
Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J.,
Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N.,
and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of
the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011. a
Deppeler, S. L. and Davidson, A. T.: Southern Ocean phytoplankton in a
changing climate, Front. Mar. Sci., 4, 40,
https://doi.org/10.3389/fmars.2017.00040, 2017. a
DeVries, T. and Weber, T.: The export and fate of organic matter in the ocean:
New constraints from combining satellite and oceanographic tracer
observations, Global Biogeochem. Cy., 31, 535–555,
https://doi.org/10.1002/2016GB005551, 2017. a, b
DiTullio, G. R., Grebmeier, J. M., Arrigo, K. R., Lizotte, M. P., Robinson, D. H., Leventer, A., Barry, J. P., VanWoert, M. L., and Dunbar, R. B.: Rapid
and early export of Phaeocystis antarctica blooms in the Ross Sea,
Antarctica, Nature, 404, 595–598, https://doi.org/10.1038/35007061, 2000. a, b, c
Ducklow, H. W., Wilson, S. E., Post, A. F., Stammerjohn, S. E., Erickson, M.,
Lee, S., Lowry, K. E., Sherrell, R. M., and Yager, P. L.: Particle flux on
the continental shelf in the Amundsen Sea Polynya and Western Antarctic
Peninsula, Elem. Sci. Anth., 3, 000046,
https://doi.org/10.12952/journal.elementa.000046, 2015. a, b, c
Eppley, R. W.: Temperature and phytoplankton growth in the sea, Fish. B.-NOAA, 70, 1063–1085, 1972. a
Fanton d'Andon, O., Mangin, A., Lavender, S., Antoine, D., Maritorena, S.,
Morel, A., Barrot, G., Demaria, J., and Pinnock, S.: GlobColour – the
European Service for Ocean Colour, in: Proceedings of the 2009 IEEE
International Geoscience and Remote Sensing Symposium, IEEE International
Geoscience and Remote Sensing Symposium (IGARSS), 12–17 July 2009,
Cape Town, South Africa, ISBN 9781424433957, 2009. a, b, c
Feng, Y., Hare, C. E., Rose, J. M., Handy, S. M., DiTullio, G. R., Lee, P. A.,
Smith, W. O., Peloquin, J., Tozzi, S., Sun, J., Zhang, Y., Dunbar, R. B.,
Long, M. C., Sohst, B., Lohan, M., and Hutchins, D. A.: Interactive effects
of iron, irradiance and CO2 on Ross Sea phytoplankton, Deep-Sea Res. Pt. I, 57, 368–383,
https://doi.org/10.1016/j.dsr.2009.10.013, 2010. a, b
Follows, M. J., Dutkiewicz, S., Grant, S., and Chisholm, S. W.: Emergent
biogeography of microbial communities in a model ocean, Science, 315,
1843–1846, https://doi.org/10.1126/science.1138544, 2007. a
Freeman, N. M., Lovenduski, N. S., Munro, D. R., Krumhardt, K. M., Lindsay, K.,
Long, M. C., and Maclennan, M.: The variable and changing Southern Ocean
silicate front: Insights from the CESM large ensemble, Global Biogeochem. Cy., 32, 752–768, https://doi.org/10.1029/2017GB005816, 2018. a
Garcia, H. E., Locarnini, R. A., Boyer, T. P., Antonov, J. I., Baranova, O.,
Zweng, M., Reagan, J., and Johnson, D.: World Ocean Atlas 2013, Volume 3:
Dissolved oxygen, apparent oxygen utilization, and oxygen saturation, Silver Spring, MD, NOAA
Atlas NESDIS 75, 3, 27 pp., 2014a. a
Geider, R. J., MacIntyre, H. L., and Kana, T. M.: A dynamic regulatory model
of phytoplanktonic acclimation to light, nutrients, and temperature,
Limnol. Oceanogr., 43, 679–694, https://doi.org/10.4319/lo.1998.43.4.0679,
1998. a, b
Goffart, A., Catalano, G., and Hecq, J.: Factors controlling the distribution
of diatoms and Phaeocystis in the Ross Sea, J. Marine Syst., 27, 161–175, https://doi.org/10.1016/S0924-7963(00)00065-8, 2000. a
Gowing, M. M., Garrison, D. L., Kunze, H. B., and Winchell, C. J.: Biological
components of Ross Sea short-term particle fluxes in the austral summer of
1995–1996, Deep-Sea Res. Pt. I, 48,
2645–2671, https://doi.org/10.1016/S0967-0637(01)00034-6, 2001. a, b
Granéli, E., Granéli, W., Rabbani, M. M., Daugbjerg, N., Fransz, G., Roudy, J. C., and Alder, V. A.: The influence of copepod and krill
grazing on the species composition of phytoplankton communities from the
Scotia Weddell sea, Polar Biol., 13, 201–213, https://doi.org/10.1007/BF00238930,
1993. a, b, c, d, e
Gravalosa, J. M., Flores, J.-A., Sierro, F. J., and Gersonde, R.: Sea surface
distribution of coccolithophores in the eastern Pacific sector of the
Southern Ocean (Bellingshausen and Amundsen Seas) during the late austral
summer of 2001, Mar. Micropaleontol., 69, 16–25,
https://doi.org/10.1016/j.marmicro.2007.11.006, 2008. a
Green, S. E. and Sambrotto, R. N.: Plankton community structure and export of
C, N, P and Si in the Antarctic Circumpolar Current, Deep-Sea Res. Pt. II, 53, 620–643,
https://doi.org/10.1016/j.dsr2.2006.01.022, 2006. a
Guidi, L., Chaffron, S., Bittner, L., Eveillard, D., Larhlimi, A., Roux, S.,
Darzi, Y., Audic, S., Berline, L., Brum, J. R., Coelho, L. P., Espinoza, J. C. I., Malviya, S., Sunagawa, S., Dimier, C., Kandels-Lewis, S., Picheral, M., Poulain, J., Searson, S., Stemmann, L., Not, F., Hingamp, P., Speich, S.,
Follows, M., Karp-Boss, L., Boss, E., Ogata, H., Pesant, S., Weissenbach, J.,
Wincker, P., Acinas, S. G., Bork, P., de Vargas, C., Iudicone, D.,
Sullivan, M. B., Raes, J., Karsenti, E., Bowler, C., and Gorsky, G.: Plankton networks driving carbon export in the oligotrophic ocean, Nature,
532, 465–470, https://doi.org/10.1038/nature16942, 2016. a
Hamm, C. E., Simson, D. A., Merkel, R., and Smetacek, V.: Colonies of
Phaeocystis globosa are protected by a thin but tough skin, Mar. Ecol. Prog. Ser., 187, 101–111, https://doi.org/10.3354/meps187101, 1999. a
Hancock, A. M., Davidson, A. T., McKinlay, J., McMinn, A., Schulz, K. G., and van den Enden, R. L.: Ocean acidification changes the structure of an Antarctic coastal protistan community, Biogeosciences, 15, 2393–2410, https://doi.org/10.5194/bg-15-2393-2018, 2018. a
Hashioka, T., Vogt, M., Yamanaka, Y., Le Quéré, C., Buitenhuis, E. T., Aita,
M. N., Alvain, S., Bopp, L., Hirata, T., Lima, I., Sailley, S., and Doney,
S. C.: Phytoplankton competition during the spring bloom in four plankton
functional type models, Biogeosciences, 10, 6833–6850,
https://doi.org/10.5194/bg-10-6833-2013, 2013. a, b
Haumann, F. A.: Southern Ocean response to recent changes in surface
freshwater fluxes, PhD Thesis, ETH Zürich,
https://doi.org/10.3929/ethz-b-000166276, 2016. a
Henson, S. A., Le Moigne, F., and Giering, S.: Drivers of Carbon Export
Efficiency in the Global Ocean, Global Biogeochem. Cy., 33, 891–903,
https://doi.org/10.1029/2018GB006158, 2019. a
Holling, C. S.: The components of predation as revealed by a study of
small-mammal predation of the European pine sawfly, Can. Entomol., 91, 293–320, https://doi.org/10.4039/Ent91293-5, 1959. a, b
IPCC: Climate change 2013 – The physical science basis: Working group I contribution to the fifth assessment report of the Intergovernmental Panel on
Climate Change, Cambridge University Press, Cambridge, https://doi.org/10.1017/CBO9781107415324, 2014. a, b
Johnson, R., Strutton, P. G., Wright, S. W., McMinn, A., and Meiners, K. M.: Three improved satellite chlorophyll algorithms for the Southern Ocean,
J. Geophys. Res.-Oceans, 118, 3694–3703,
https://doi.org/10.1002/jgrc.20270, 2013. a, b, c, d
Kaufman, D. E., Friedrichs, M. A. M., Smith, W. O., Hofmann, E. E., Dinniman, M. S., and Hemmings, J. C. P.: Climate change impacts on southern Ross Sea
phytoplankton composition, productivity, and export, J. Geophys. Res.-Oceans, 122, 2339–2359, https://doi.org/10.1002/2016JC012514, 2017. a, b, c, d, e
Keller, M. D., Bellows, W. K., and Guillard, R. R. L.: Dimethyl sulfide
production in marine phytoplankton, in: Biogenic Sulfur in the Environment,
edited by: Saltzman, E. S. and Cooper, W. J., vol. 393 of ACS Symposium Series, pp. 167–182, American Chemical Society, Washington, D.C.,
https://doi.org/10.1021/bk-1989-0393, ISBN 0-8412-1612-6, 1989. a, b
Lam, P. J. and Bishop, J. K. B.: High biomass, low export regimes in the
Southern Ocean, Deep-Sea Res. Pt. II,
54, 601–638, https://doi.org/10.1016/j.dsr2.2007.01.013, 2007. a
Lana, A., Bell, T. G., Simó, R., Vallina, S. M., Ballabrera-Poy, J.,
Kettle, A. J., Dachs, J., Bopp, L., Saltzman, E. S., Stefels, J., Johnson, J. E., and Liss, P. S.: An updated climatology of surface dimethlysulfide
concentrations and emission fluxes in the global ocean, Global Biogeochem. Cy., 25, 1–17, https://doi.org/10.1029/2010GB003850, 2011. a, b, c
Laufkötter, C., Vogt, M., Gruber, N., Aumont, O., Bopp, L., Doney, S. C., Dunne, J. P., Hauck, J., John, J. G., Lima, I. D., Seferian, R., and Völker, C.: Projected decreases in future marine export production: the role of the carbon flux through the upper ocean ecosystem, Biogeosciences, 13, 4023–4047, https://doi.org/10.5194/bg-13-4023-2016, 2016. a, b, c, d, e
Lauvset, S. K., Key, R. M., Olsen, A., van Heuven, S., Velo, A., Lin, X., Schirnick, C., Kozyr, A., Tanhua, T., Hoppema, M., Jutterström, S., Steinfeldt, R., Jeansson, E., Ishii, M., Perez, F. F., Suzuki, T., and Watelet, S.: A new global interior ocean mapped climatology: the GLODAP version 2, Earth Syst. Sci. Data, 8, 325–340, https://doi.org/10.5194/essd-8-325-2016, 2016. a
Le Quéré, C., Buitenhuis, E. T., Moriarty, R., Alvain, S., Aumont, O., Bopp, L., Chollet, S., Enright, C., Franklin, D. J., Geider, R. J., Harrison, S. P., Hirst, A. G., Larsen, S., Legendre, L., Platt, T., Prentice, I. C., Rivkin, R. B., Sailley, S., Sathyendranath, S., Stephens, N., Vogt, M., and Vallina, S. M.: Role of zooplankton dynamics for Southern Ocean phytoplankton biomass and global biogeochemical cycles, Biogeosciences, 13, 4111–4133, https://doi.org/10.5194/bg-13-4111-2016, 2016. a, b, c, d, e, f, g, h, i, j
Leblanc, K., Arístegui, J., Armand, L., Assmy, P., Beker, B., Bode, A., Breton, E., Cornet, V., Gibson, J., Gosselin, M.-P., Kopczynska, E., Marshall, H., Peloquin, J., Piontkovski, S., Poulton, A. J., Quéguiner, B., Schiebel, R., Shipe, R., Stefels, J., van Leeuwe, M. A., Varela, M., Widdicombe, C., and Yallop, M.: A global diatom database abundance, biovolume and biomass in the world ocean, Earth Syst. Sci. Data, 4, 149–165, https://doi.org/10.5194/essd-4-149-2012, 2012. a, b, c, d
Lee, S. H., Hwang, J., Ducklow, H. W., Hahm, D., Lee, S. H., Kim, D., Hyun, J.-H., Park, J., Ha, H. K., Kim, T.-W., Yang, E. J., and Shin, H. C.: Evidence of minimal carbon sequestration in the productive Amundsen Sea
polynya, Geophys. Res. Lett., 44, 7892–7899,
https://doi.org/10.1002/2017GL074646, 2017. a
Lima, I. D., Lam, P. J., and Doney, S. C.: Dynamics of particulate organic carbon flux in a global ocean model, Biogeosciences, 11, 1177–1198, https://doi.org/10.5194/bg-11-1177-2014, 2014. a
Liss, P. S., Malin, G., Turner, S. M., and Holligan, P. M.: Dimethyl sulphide
and Phaeocystis: A review, J. Marine Syst., 5, 41–53,
https://doi.org/10.1016/0924-7963(94)90015-9, 1994. a
Maritorena, S., Fanton D'Andon, O., Mangin, A., and Siegel, D. A.: Merged
satellite ocean color data products using a bio-optical model:
Characteristics, benefits and issues, Remote Sens. Environ., 114,
1791–1804, https://doi.org/10.1016/j.rse.2010.04.002, 2010. a, b, c
Martin, J. H., Fitzwater, S. E., and Gordon, R. M.: Iron deficiency limits
phytoplankton growth in Antarctic waters, Global Biogeochem. Cy., 4,
5–12, https://doi.org/10.1029/GB004i001p00005, 1990a. a
Martin, J. H., Gordon, R. M., and Fitzwater, S. E.: Iron in Antarctic waters,
Nature, 345, 156–158, https://doi.org/10.1038/345156a0, 1990b. a
Martínez-García, A., Sigman, D. M., Ren, H., Anderson, R. F.,
Straub, M., Hodell, D. a., Jaccard, S. L., Eglinton, T. I., and Haug, G. H.: Iron fertilization of the Subantarctic ocean during the last ice age,
Science, 343, 1347–1350, https://doi.org/10.1126/science.1246848, 2014. a
Mills, M. M., Kropuenske, L. R., van Dijken, G. L., Alderkamp, A.-C., Berg, G. M., Robinson, D. H., Welschmeyer, N. A., and Arrigo, K. R.:
Photophysiology in two Southern Ocean phytoplankton taxa: photosynthesis of
Phaeocystis Antarctica (Prymnesiophyceae) and
Fragilariopsis cylindrus (Bacillariophyceae) under simulated
mixed-layer irradiance, J. Phycol., 46, 1114–1127,
https://doi.org/10.1111/j.1529-8817.2010.00923.x, 2010. a, b
Moisan, T. A. and Mitchell, B. G.: Modeling Net Growth of Phaeocystis antarctica Based on Physiological and Optical Responses to Light and
Temperature Co-limitation, Front. Mar. Sci., 4, 1–15,
https://doi.org/10.3389/fmars.2017.00437, 2018. a, b
Moore, J. K., Doney, S. C., Kleypas, J. A., Glover, D. M., and Fung, I. Y.: An
intermediate complexity marine ecosystem model for the global domain,
Deep-Sea Res. Pt. II, 49, 403–462, https://doi.org/10.1016/S0967-0645(01)00108-4,
2002. a
Moore, J. K., Lindsay, K., Doney, S. C., Long, M. C., and Misumi, K.: Marine
ecosystem dynamics and biogeochemical cycling in the Community Earth System
Model [CESM1(BGC)]: Comparison of the 1990s with the 2090s under the RCP4.5
and RCP8.5 scenarios, J. Climate, 26, 9291–9312,
https://doi.org/10.1175/JCLI-D-12-00566.1, 2013. a, b
Morel, A. and Berthon, J.-F.: Surface pigments, algal biomass profiles, and
potential production of the euphotic layer: Relationships reinvestigated in
view of remote-sensing applications, Limnol. Oceanogr., 34,
1545–1562, https://doi.org/10.4319/lo.1989.34.8.1545, 1989. a
NASA-OBPG: NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group, Moderate-resolution Imaging Spectroradiometer (MODIS) Aqua Chlorophyll Data,
https://doi.org/10.5067/AQUA/MODIS/L3M/CHL/2014, 2014a. a, b, c
NASA-OBPG: NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group, Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Chlorophyll Data,
https://doi.org/10.5067/ORBVIEW-2/SEAWIFS/L3M/CHL/2014, 2014b. a
Nejstgaard, J. C., Tang, K. W., Steinke, M., Dutz, J., Koski, M., Antajan, E.,
and Long, J. D.: Zooplankton grazing on Phaeocystis: a quantitative
review and future challenges, in: Phaeocystis, major link in the
biogeochemical cycling of climate-relevant elements, vol. 83, pp. 147–172,
Springer, the Netherlands, https://doi.org/10.1007/s10533-007-9098-y, 2007. a, b, c, d
Nguyen, B. C., Mihalopoulos, N., and Belviso, S.: Seasonal variation of
atmospheric dimethylsulfide at Amsterdam Island in the southern Indian
Ocean, J. Atmos. Chem., 11, 123–141,
https://doi.org/10.1007/BF00053671, 1990. a
Nissen, C. and Vogt, M.: ROMS-BEC model data: Factors controlling the
competition between Phaeocystis and diatoms in the Southern Ocean
and implications for carbon export fluxes, ETH Zürich, https://doi.org/10.3929/ethz-b-000409193,
2020. a
Nissen, C., Vogt, M., Münnich, M., Gruber, N., and Haumann, F. A.: Factors controlling coccolithophore biogeography in the Southern Ocean, Biogeosciences, 15, 6997–7024, https://doi.org/10.5194/bg-15-6997-2018, 2018. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, aa, ab, ac
O'Brien, C. J., Peloquin, J. A., Vogt, M., Heinle, M., Gruber, N., Ajani, P., Andruleit, H., Arístegui, J., Beaufort, L., Estrada, M., Karentz, D., Kopczyńska, E., Lee, R., Poulton, A. J., Pritchard, T., and Widdicombe, C.: Global marine plankton functional type biomass distributions: coccolithophores, Earth Syst. Sci. Data, 5, 259–276, https://doi.org/10.5194/essd-5-259-2013, 2013. a, b
Palter, J. B., Sarmiento, J. L., Gnanadesikan, A., Simeon, J., and Slater, R. D.: Fueling export production: nutrient return pathways from the deep ocean and their dependence on the Meridional Overturning Circulation, Biogeosciences, 7, 3549–3568, https://doi.org/10.5194/bg-7-3549-2010, 2010. a
Pasquer, B., Laruelle, G., Becquevort, S., Schoemann, V., Goosse, H., and
Lancelot, C.: Linking ocean biogeochemical cycles and ecosystem structure
and function: results of the complex SWAMCO-4 model, J. Sea Res., 53, 93–108, https://doi.org/10.1016/j.seares.2004.07.001, 2005. a, b, c, d
Peperzak, L.: Observations of flagellates in colonies of Phaeocystis globosa (Prymnesiophyceae); a hypothesis for their position in the life
cycle, J. Plankton Res., 22, 2181–2203,
https://doi.org/10.1093/plankt/22.12.2181, 2000. a
Popova, E. E., Pollard, R. T., Lucas, M. I., Venables, H. J., and Anderson, T. R.: Real-time forecasting of ecosystem dynamics during the CROZEX
experiment and the roles of light, iron, silicate, and circulation, Deep-Sea Res. Pt. II, 54, 1966–1988,
https://doi.org/10.1016/j.dsr2.2007.06.018, 2007. a
Poulton, A. J., Moore, M. C., Seeyave, S., Lucas, M. I., Fielding, S., and
Ward, P.: Phytoplankton community composition around the Crozet Plateau,
with emphasis on diatoms and Phaeocystis, Deep-Sea Res. Pt. II, 54, 2085–2105,
https://doi.org/10.1016/j.dsr2.2007.06.005, 2007. a
Reigstad, M. and Wassmann, P.: Does Phaeocystis spp. contribute
significantly to vertical export of organic carbon?, in:
Phaeocystis, major link in the biogeochemical cycling of
climate-relevant elements, vol. 83, pp. 217–234, Springer Netherlands, Heidelberg, Germany,
https://doi.org/10.1007/978-1-4020-6214-8_16,
2007. a, b
Rigual Hernández, A. S., Trull, T. W., Nodder, S. D., Flores, J. A., Bostock, H., Abrantes, F., Eriksen, R. S., Sierro, F. J., Davies, D. M., Ballegeer, A.-M., Fuertes, M. A., and Northcote, L. C.: Coccolithophore biodiversity controls carbonate export in the Southern Ocean, Biogeosciences, 17, 245–263, https://doi.org/10.5194/bg-17-245-2020, 2020. a
Rivero-Calle, S., Gnanadesikan, A., Del Castillo, C. E., Balch, W. M., and
Guikema, S. D.: Multidecadal increase in North Atlantic coccolithophores and
the potential role of rising CO2, Science, 350, 1533–1537,
https://doi.org/10.1126/science.aaa8026, 2015. a
Rosengard, S. Z., Lam, P. J., Balch, W. M., Auro, M. E., Pike, S., Drapeau, D., and Bowler, B.: Carbon export and transfer to depth across the Southern Ocean Great Calcite Belt, Biogeosciences, 12, 3953–3971, https://doi.org/10.5194/bg-12-3953-2015, 2015. a
Rousseau, V., Vaulot, D., Casotti, R., Cariou, V., Lenz, J., Gunkel, J., and
Baumann, M.: The life cycle of Phaeocystis (Prymnesiophycaea):
evidence and hypotheses, J. Marine Syst., 5, 23–39,
https://doi.org/10.1016/0924-7963(94)90014-0, 1994. a
Ryan-Keogh, T. J., DeLizo, L. M., Smith, W. O., Sedwick, P. N., McGillicuddy, D. J., Moore, C. M., and Bibby, T. S.: Temporal progression of
photosynthetic-strategy in phytoplankton in the Ross Sea, Antarctica,
J. Marine Syst., 166, 87–96, https://doi.org/10.1016/j.jmarsys.2016.08.014,
2017. a
Saavedra-Pellitero, M., Baumann, K.-H., Flores, J.-A., and Gersonde, R.: Biogeographic distribution of living coccolithophores in the Pacific sector
of the Southern Ocean, Mar. Micropaleontol., 109, 1–20,
https://doi.org/10.1016/j.marmicro.2014.03.003, 2014. a
Sarmiento, J. L., Gruber, N., Brzezinski, M. A., and Dunne, J. P.: High-latitude controls of thermocline nutrients and low latitude biological
productivity, Nature, 427, 56–60, https://doi.org/10.1038/nature02127, 2004. a
Sathyendranath, S., Stuart, V., Nair, A., Oka, K., Nakane, T., Bouman, H.,
Forget, M. H., Maass, H., and Platt, T.: Carbon-to-chlorophyll ratio and
growth rate of phytoplankton in the sea, Mar. Ecol. Prog. Ser.,
383, 73–84, https://doi.org/10.3354/meps07998, 2009. a
Schlitzer, R.: Export production in the Equatorial and North Pacific derived
from dissolved oxygen, nutrient and carbon data, J. Oceanogr., 60, 53–62,
https://doi.org/10.1023/B:JOCE.0000038318.38916.e6, 2004. a
Schoemann, V., Wollast, R., Chou, L., and Lancelot, C.: Effects of
photosynthesis on the accumulation of Mn and Fe by Phaeocystis
colonies, Limnol. Oceanogr., 46, 1065–1076,
https://doi.org/10.4319/lo.2001.46.5.1065, 2001. a
Sedwick, P. N., DiTullio, G. R., and Mackey, D. J.: Iron and manganese in the
Ross Sea, Antarctica: Seasonal iron limitation in Antarctic shelf waters,
J. Geophys. Res., 105, 11321, https://doi.org/10.1029/2000JC000256,
2000. a, b
Sedwick, P. N., Garcia, N. S., Riseman, S. F., Marsay, C. M., and DiTullio, G. R.: Evidence for high iron requirements of colonial Phaeocystis antarctica at low irradiance, in: Phaeocystis, major link in the
biogeochemical cycling of climate-relevant elements, vol. 83, pp. 83–97,
Springer Netherlands, Heidelberg, Germany, https://doi.org/10.1007/978-1-4020-6214-8_8, 2007. a
Shchepetkin, A. F. and McWilliams, J. C.: The regional oceanic modeling system
(ROMS): a split-explicit, free-surface, topography-following-coordinate
oceanic model, Ocean Model., 9, 347–404,
https://doi.org/10.1016/j.ocemod.2004.08.002, 2005. a
Siegel, D. A., Buesseler, K. O., Doney, S. C., Sailley, S. F., Behrenfeld, M. J., and Boyd, P. W.: Global assessment of ocean carbon export by
combining satellite observations and food-web models, Global Biogeochem. Cy., 28, 181–196, https://doi.org/10.1002/2013GB004743, 2014. a
Simó, R. and Pedrós-Alló, C.: Role of vertical mixing in
controlling the oceanic production of dimethyl sulphide, Nature, 402,
396–399, https://doi.org/10.1038/46516, 1999. a
Smetacek, V., Assmy, P., and Henjes, J.: The role of grazing in structuring
Southern Ocean pelagic ecosystems and biogeochemical cycles, Antarct. Sci., 16, 541–558, https://doi.org/10.1017/S0954102004002317, 2004. a, b
Smetacek, V., Klaas, C., Strass, V. H., Assmy, P., Montresor, M., Cisewski, B.,
Savoye, N., Webb, A., D'Ovidio, F., Arrieta, J. M., Bathmann, U., Bellerby, R., Berg, G. M., Croot, P., Gonzalez, S., Henjes, J., Herndl, G. J.,
Hoffmann, L. J., Leach, H., Losch, M., Mills, M. M., Neill, C., Peeken, I.,
Röttgers, R., Sachs, O., Sauter, E., Schmidt, M. M., Schwarz, J.,
Terbrüggen, A., and Wolf-Gladrow, D.: Deep carbon export from a
Southern Ocean iron-fertilized diatom bloom, Nature, 487, 313–319,
https://doi.org/10.1038/nature11229, 2012. a
Smith, W. O. and Gordon, L. I.: Hyperproductivity of the Ross Sea (Antarctica)
polynya during austral spring, Geophys. Res. Lett., 24, 233–236,
https://doi.org/10.1029/96GL03926, 1997. a, b
Smith, W. O., Dinniman, M. S., Tozzi, S., DiTullio, G. R., Mangoni, O., Modigh, M., and Saggiomo, V.: Phytoplankton photosynthetic pigments in the Ross Sea:
Patterns and relationships among functional groups, J. Marine Syst., 82, 177–185, https://doi.org/10.1016/j.jmarsys.2010.04.014, 2010. a
Smith, W. O., Ainley, D. G., Arrigo, K. R., and Dinniman, M. S.: The
Oceanography and Ecology of the Ross Sea, Annu. Rev. Mar. Sci.,
6, 469–487, https://doi.org/10.1146/annurev-marine-010213-135114, 2014. a, b, c
Soppa, M., Hirata, T., Silva, B., Dinter, T., Peeken, I., Wiegmann, S., and
Bracher, A.: Global retrieval of diatom abundance based on phytoplankton
pigments and satellite data, Remote Sens.-Basel, 6, 10089–10106,
https://doi.org/10.3390/rs61010089, 2014. a
Soppa, M., Völker, C., and Bracher, A.: Diatom phenology in the Southern
Ocean: mean patterns, trends and the role of climate Oscillations, Remote Sens.-Basel, 8, 420, https://doi.org/10.3390/rs8050420, 2016. a
Stange, P., Bach, L. T., Le Moigne, F. A. C., Taucher, J., Boxhammer, T., and
Riebesell, U.: Quantifying the time lag between organic matter production
and export in the surface ocean: Implications for estimates of export
efficiency, Geophys. Res. Lett., 44, 268–276,
https://doi.org/10.1002/2016GL070875, 2017. a
Stefels, J., Steinke, M., Turner, S., Malin, G., and Belviso, S.: Environmental constraints on the production and removal of the climatically
active gas dimethylsulphide (DMS) and implications for ecosystem modelling,
in: Phaeocystis, major link in the biogeochemical cycling of
climate-relevant elements, pp. 245–275, Springer Netherlands, Heidelberg, Germany,
https://doi.org/10.1007/978-1-4020-6214-8_18, 2007. a, b, c, d, e
Steinberg, D. K. and Landry, M. R.: Zooplankton and the ocean carbon cycle,
Annu. Rev. Mar. Sci., 9, 413–444,
https://doi.org/10.1146/annurev-marine-010814-015924, 2017. a
Strzepek, R. F., Boyd, P. W., and Sunda, W. G.: Photosynthetic adaptation to
low iron, light, and temperature in Southern Ocean phytoplankton,
P. Natl. Acad. Sci. USA, 116, 4388–4393,
https://doi.org/10.1073/pnas.1810886116, 2019. a
Tagliabue, A. and Arrigo, K. R.: Iron in the Ross Sea: 1. Impact on CO2
fluxes via variation in phytoplankton functional group and non-Redfield
stoichiometry, J. Geophys. Res.-Oceans, 110, 1–15,
https://doi.org/10.1029/2004JC002531, 2005. a, b, c
Tang, K. W., Smith, W. O., Elliott, D. T., and Shields, A. R.: Colony size of
Phaeocystis Antarctica (Prymnesiophyceae) as influenced by
zooplankton grazers, J. Phycol., 44, 1372–1378,
https://doi.org/10.1111/j.1529-8817.2008.00595.x, 2008. a
Tang, K. W., Smith, W. O., Shields, A. R., and Elliott, D. T.: Survival and
recovery of Phaeocystis antarctica (Prymnesiophyceae) from prolonged
darkness and freezing, P. Roy. Soc. B-Biol. Sci., 276, 81–90, https://doi.org/10.1098/rspb.2008.0598, 2009. a, b
Thomalla, S. J., Fauchereau, N., Swart, S., and Monteiro, P. M. S.: Regional scale characteristics of the seasonal cycle of chlorophyll in the Southern Ocean, Biogeosciences, 8, 2849–2866, https://doi.org/10.5194/bg-8-2849-2011, 2011. a
Thomalla, S. J., Racault, M.-F., Swart, S., and Monteiro, P. M. S.: High-resolution view of the spring bloom initiation and net community
production in the Subantarctic Southern Ocean using glider data, ICES
J. Mar. Sci., 72, 1999–2020,
https://doi.org/10.1093/icesjms/fsv105, 2015. a
Timmermans, K. R., van der Wagt, B., and de Baar, H. J. W.: Growth rates,
half saturation constants, and silicate, nitrate, and phosphate depletion in
relation to iron availability of four large open-ocean diatoms from the
Southern Ocean, Limnol. Oceanogr., 49, 2141–2151,
https://doi.org/10.4319/lo.2004.49.6.2141, 2004. a
Turner, J. T.: Zooplankton fecal pellets, marine snow, phytodetritus and the
ocean's biological pump, Prog. Oceanogr., 130, 205–248,
https://doi.org/10.1016/j.pocean.2014.08.005, 2015. a
Tyrrell, T. and Charalampopoulou, A.: Coccolithophore size, abundance and
calcification across Drake Passage (Southern Ocean), 2009,
https://doi.org/10.1594/PANGAEA.771715, 2009. a
van Boekel, W. H. M., Hansen, F. C., Riegman, R., and Bak, R. P. M.:
Lysis-induced decline of a Phaeocystis spring bloom and coupling
with the microbial foodweb, Mar. Ecol. Prog. Ser., 81, 269–276,
https://doi.org/10.3354/meps081269, 1992. a, b
van Hilst, C. M. and Smith, W. O.: Photosynthesis/irradiance relationships in
the Ross Sea, Antarctica, and their control by phytoplankton assemblage
composition and environmental factors, Mar. Ecol. Prog. Ser., 226,
1–12, https://doi.org/10.3354/meps226001, 2002. a, b
Veldhuis, M. J. W., Colijn, F., and Admiraal, W.: Phosphate Utilization in
Phaeocystis pouchetii (Haptophyceae), Mar. Ecol., 12,
53–62, https://doi.org/10.1111/j.1439-0485.1991.tb00083.x, 1991. a, b
Verity, P. G.: Grazing experiments and model simulations of the role of
zooplankton in Phaeocystis food webs, J. Sea Res., 43,
317–343, https://doi.org/10.1016/S1385-1101(00)00025-3, 2000. a
Vogt, M., O'Brien, C., Peloquin, J., Schoemann, V., Breton, E., Estrada, M., Gibson, J., Karentz, D., Van Leeuwe, M. A., Stefels, J., Widdicombe, C., and Peperzak, L.: Global marine plankton functional type biomass distributions: Phaeocystis spp., Earth Syst. Sci. Data, 4, 107–120, https://doi.org/10.5194/essd-4-107-2012, 2012. a, b, c, d, e, f, g
Wang, S., Elliott, S., Maltrud, M., and Cameron-Smith, P.: Influence of
explicit Phaeocystis parameterizations on the global distribution of
marine dimethyl sulfide, J. Geophys. Res.-Biogeo.,
120, 2158–2177, https://doi.org/10.1002/2015JG003017, 2015. a
Ward, B. A., Schartau, M., Oschlies, A., Martin, A. P., Follows, M. J., and
Anderson, T. R.: When is a biogeochemical model too complex? Objective model
reduction and selection for North Atlantic time-series sites, Prog. Oceanogr., 116, 49–65, https://doi.org/10.1016/j.pocean.2013.06.002, 2013. a
Winter, A., Henderiks, J., Beaufort, L., Rickaby, R. E. M., and Brown, C. W.:
Poleward expansion of the coccolithophore Emiliania huxleyi,
J. Plankton Res., 36, 316–325, https://doi.org/10.1093/plankt/fbt110,
2013.
a
Wright, S. W., van den Enden, R. L., Pearce, I., Davidson, A. T., Scott, F. J.,
and Westwood, K. J.: Phytoplankton community structure and stocks in the
Southern Ocean (30-80∘E) determined by CHEMTAX analysis of HPLC
pigment signatures, Deep-Sea Res. Pt. II, 57, 758–778,
https://doi.org/10.1016/j.dsr2.2009.06.015, 2010. a
Yager, P. L., Sherrell, R. M., Stammerjohn, S. E., Ducklow, H. W., Schofield, O. M. E., Ingall, E. D., Wilson, S. E., Lowry, K. E., Williams, C. M.,
Riemann, L., Bertilsson, S., Alderkamp, A.-C., Dinasquet, J., Logares, R.,
Richert, I., Sipler, R. E., Melara, A. J., Mu, L., Newstead, R. G., Post, A. F., Swalethorp, R., and van Dijken, G. L.: A carbon budget for the
Amundsen Sea Polynya, Antarctica: Estimating net community production and
export in a highly productive polar ecosystem, Elem. Sci. Anth., 4, 000140, https://doi.org/10.12952/journal.elementa.000140, 2016. a, b
Yang, E. J., Jiang, Y., and Lee, S. H.: Microzooplankton herbivory and
community structure in the Amundsen Sea, Antarctica, Deep-Sea Res. Pt. II, 123, 58–68,
https://doi.org/10.1016/j.dsr2.2015.06.001, 2016. a
Yang, S., Gruber, N., Long, M. C., and Vogt, M.: ENSO-driven variability of
denitrification and suboxia in the Eastern Tropical Pacific Ocean, Global Biogeochem. Cy., 31, 1470–1487, https://doi.org/10.1002/2016GB005596, 2017. a
Zondervan, I.: The effects of light, macronutrients, trace metals and CO2
on the production of calcium carbonate and organic carbon in
coccolithophores – A review, Deep-Sea Res. Pt. II, 54, 521–537,
https://doi.org/10.1016/j.dsr2.2006.12.004, 2007. a
Zweng, M. M., Reagan, J. R., Antonov, J. I., Mishonov, A. V., Boyer, T. P.,
Garcia, H. E., Baranova, O. K., Johnson, D. R., Seidov, D., and
Bidlle, M. M.: World Ocean Atlas 2013, Volume 2: Salinity, Silver Spring, MD, NOAA Atlas NESDIS
74, 2, 39 pp, 2013. a
Short summary
Using a regional Southern Ocean ecosystem model, we find that the relative importance of Phaeocystis and diatoms at high latitudes is controlled by iron and temperature variability, with light levels controlling the seasonal succession in coastal areas. Yet, biomass losses via aggregation and grazing matter as well. We show that the seasonal succession of Phaeocystis and diatoms impacts the seasonality of carbon export fluxes with ramifications for nutrient cycling and food web dynamics.
Using a regional Southern Ocean ecosystem model, we find that the relative importance of...
Altmetrics
Final-revised paper
Preprint