Articles | Volume 18, issue 8
https://doi.org/10.5194/bg-18-2539-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-2539-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Impact of bottom trawling on sediment biogeochemistry: a modelling approach
Emil De Borger
CORRESPONDING AUTHOR
Department of Biology, Marine Biology Research
Group, Ghent University, Krijgslaan 281/S8, 9000 Ghent, Belgium
Department of
Estuarine and Delta Systems, Royal Netherlands Institute of Sea Research (NIOZ), Utrecht University, Korringaweg 7, P.O. Box
140, 4401 NT Yerseke, the Netherlands
Justin Tiano
Department of
Estuarine and Delta Systems, Royal Netherlands Institute of Sea Research (NIOZ), Utrecht University, Korringaweg 7, P.O. Box
140, 4401 NT Yerseke, the Netherlands
Department of Biology, Marine Biology Research
Group, Ghent University, Krijgslaan 281/S8, 9000 Ghent, Belgium
Ulrike Braeckman
Department of Biology, Marine Biology Research
Group, Ghent University, Krijgslaan 281/S8, 9000 Ghent, Belgium
Adriaan D. Rijnsdorp
Wageningen Marine Research, Wageningen University and Research,
IJmuiden, the Netherlands
Karline Soetaert
Department of
Estuarine and Delta Systems, Royal Netherlands Institute of Sea Research (NIOZ), Utrecht University, Korringaweg 7, P.O. Box
140, 4401 NT Yerseke, the Netherlands
Department of Biology, Marine Biology Research
Group, Ghent University, Krijgslaan 281/S8, 9000 Ghent, Belgium
Related authors
Emil De Borger, Justin Tiano, Ulrike Braeckman, Tom Ysebaert, and Karline Soetaert
Biogeosciences, 17, 1701–1715, https://doi.org/10.5194/bg-17-1701-2020, https://doi.org/10.5194/bg-17-1701-2020, 2020
Short summary
Short summary
By applying a novel technique to quantify organism-induced sediment–water column fluid exchange (bioirrigation), we show that organisms in subtidal (permanently submerged) areas have similar bioirrigation rates as those that inhabit intertidal areas (not permanently submerged), but organisms in the latter irrigate deeper burrows in this study. Our results expand on traditional methods to quantify bioirrigation rates and broaden the pool of field measurements of bioirrigation rates.
Sarah Paradis, Justin Tiano, Emil De Borger, Antonio Pusceddu, Clare Bradshaw, Claudia Ennas, Claudia Morys, and Marija Sciberras
Earth Syst. Sci. Data, 16, 3547–3563, https://doi.org/10.5194/essd-16-3547-2024, https://doi.org/10.5194/essd-16-3547-2024, 2024
Short summary
Short summary
DISOM is a database that compiles data of 71 independent studies that assess the effect of demersal fisheries on sedimentological and biogeochemical properties. This database also provides crucial metadata (i.e. environmental and fishing descriptors) needed to understand the effects of demersal fisheries in a global context.
Anna-Selma van der Kaaden, Dick van Oevelen, Christian Mohn, Karline Soetaert, Max Rietkerk, Johan van de Koppel, and Theo Gerkema
Ocean Sci., 20, 569–587, https://doi.org/10.5194/os-20-569-2024, https://doi.org/10.5194/os-20-569-2024, 2024
Short summary
Short summary
Cold-water corals (CWCs) and tidal waves in the interior of the ocean have been connected in case studies. We demonstrate this connection globally using hydrodynamic simulations and a CWC database. Internal-tide generation shows a similar depth pattern with slope steepness and latitude as CWCs. Our results suggest that internal-tide generation can be a useful predictor of CWC habitat and that current CWC habitats might change following climate-change-related shoaling of internal-tide generation.
Anna-Selma van der Kaaden, Sandra R. Maier, Siluo Chen, Laurence H. De Clippele, Evert de Froe, Theo Gerkema, Johan van de Koppel, Furu Mienis, Christian Mohn, Max Rietkerk, Karline Soetaert, and Dick van Oevelen
Biogeosciences, 21, 973–992, https://doi.org/10.5194/bg-21-973-2024, https://doi.org/10.5194/bg-21-973-2024, 2024
Short summary
Short summary
Combining hydrodynamic simulations and annotated videos, we separated which hydrodynamic variables that determine reef cover are engineered by cold-water corals and which are not. Around coral mounds, hydrodynamic zones seem to create a typical reef zonation, restricting corals from moving deeper (the expected response to climate warming). But non-engineered downward velocities in winter (e.g. deep winter mixing) seem more important for coral reef growth than coral engineering.
Caroline Ulses, Claude Estournel, Patrick Marsaleix, Karline Soetaert, Marine Fourrier, Laurent Coppola, Dominique Lefèvre, Franck Touratier, Catherine Goyet, Véronique Guglielmi, Fayçal Kessouri, Pierre Testor, and Xavier Durrieu de Madron
Biogeosciences, 20, 4683–4710, https://doi.org/10.5194/bg-20-4683-2023, https://doi.org/10.5194/bg-20-4683-2023, 2023
Short summary
Short summary
Deep convection plays a key role in the circulation, thermodynamics, and biogeochemical cycles in the Mediterranean Sea, considered to be a hotspot of biodiversity and climate change. In this study, we investigate the seasonal and annual budget of dissolved inorganic carbon in the deep-convection area of the northwestern Mediterranean Sea.
Stanley I. Nmor, Eric Viollier, Lucie Pastor, Bruno Lansard, Christophe Rabouille, and Karline Soetaert
Geosci. Model Dev., 15, 7325–7351, https://doi.org/10.5194/gmd-15-7325-2022, https://doi.org/10.5194/gmd-15-7325-2022, 2022
Short summary
Short summary
The coastal marine environment serves as a transition zone in the land–ocean continuum and is susceptible to episodic phenomena such as flash floods, which cause massive organic matter deposition. Here, we present a model of sediment early diagenesis that explicitly describes this type of deposition while also incorporating unique flood deposit characteristics. This model can be used to investigate the temporal evolution of marine sediments following abrupt changes in environmental conditions.
Justin C. Tiano, Jochen Depestele, Gert Van Hoey, João Fernandes, Pieter van Rijswijk, and Karline Soetaert
Biogeosciences, 19, 2583–2598, https://doi.org/10.5194/bg-19-2583-2022, https://doi.org/10.5194/bg-19-2583-2022, 2022
Short summary
Short summary
This study gives an assessment of bottom trawling on physical, chemical, and biological characteristics in a location known for its strong currents and variable habitats. Although trawl gears only removed the top 1 cm of the seabed surface, impacts on reef-building tubeworms significantly decreased carbon and nutrient cycling. Lighter trawls slightly reduced the impact on fauna and nutrients. Tubeworms were strongly linked to biogeochemical and faunal aspects before but not after trawling.
Alice E. Webb, Didier M. de Bakker, Karline Soetaert, Tamara da Costa, Steven M. A. C. van Heuven, Fleur C. van Duyl, Gert-Jan Reichart, and Lennart J. de Nooijer
Biogeosciences, 18, 6501–6516, https://doi.org/10.5194/bg-18-6501-2021, https://doi.org/10.5194/bg-18-6501-2021, 2021
Short summary
Short summary
The biogeochemical behaviour of shallow reef communities is quantified to better understand the impact of habitat degradation and species composition shifts on reef functioning. The reef communities investigated barely support reef functions that are usually ascribed to conventional coral reefs, and the overall biogeochemical behaviour is found to be similar regardless of substrate type. This suggests a decrease in functional diversity which may therefore limit services provided by this reef.
Chiu H. Cheng, Jaco C. de Smit, Greg S. Fivash, Suzanne J. M. H. Hulscher, Bas W. Borsje, and Karline Soetaert
Earth Surf. Dynam., 9, 1335–1346, https://doi.org/10.5194/esurf-9-1335-2021, https://doi.org/10.5194/esurf-9-1335-2021, 2021
Short summary
Short summary
Shells are biogenic particles that are widespread throughout natural sandy environments and can affect the bed roughness and seabed erodibility. As studies are presently lacking, we experimentally measured ripple formation and migration using natural sand with increasing volumes of shell material under unidirectional flow in a racetrack flume. We show that shells expedite the onset of sediment transport, reduce ripple dimensions and slow their migration rate.
Long Jiang, Theo Gerkema, Jacco C. Kromkamp, Daphne van der Wal, Pedro Manuel Carrasco De La Cruz, and Karline Soetaert
Biogeosciences, 17, 4135–4152, https://doi.org/10.5194/bg-17-4135-2020, https://doi.org/10.5194/bg-17-4135-2020, 2020
Short summary
Short summary
A seaward increasing chlorophyll-a gradient is observed during the spring bloom in a Dutch tidal bay. Biophysical model runs indicate the roles of bivalve grazing and tidal import in shaping the gradient. Five common spatial phytoplankton patterns are summarized in global estuarine–coastal ecosystems: seaward increasing, seaward decreasing, concave with a chlorophyll maximum, weak spatial gradients, and irregular patterns.
Emil De Borger, Justin Tiano, Ulrike Braeckman, Tom Ysebaert, and Karline Soetaert
Biogeosciences, 17, 1701–1715, https://doi.org/10.5194/bg-17-1701-2020, https://doi.org/10.5194/bg-17-1701-2020, 2020
Short summary
Short summary
By applying a novel technique to quantify organism-induced sediment–water column fluid exchange (bioirrigation), we show that organisms in subtidal (permanently submerged) areas have similar bioirrigation rates as those that inhabit intertidal areas (not permanently submerged), but organisms in the latter irrigate deeper burrows in this study. Our results expand on traditional methods to quantify bioirrigation rates and broaden the pool of field measurements of bioirrigation rates.
Long Jiang, Theo Gerkema, Déborah Idier, Aimée B. A. Slangen, and Karline Soetaert
Ocean Sci., 16, 307–321, https://doi.org/10.5194/os-16-307-2020, https://doi.org/10.5194/os-16-307-2020, 2020
Short summary
Short summary
A model downscaling approach is used to investigate the effects of sea-level rise (SLR) on local tides. Results indicate that SLR induces larger increases in tidal amplitude and stronger nonlinear tidal distortion in the bay compared to the adjacent shelf sea. SLR can also change shallow-water tidal asymmetry and influence the direction and magnitude of bed-load sediment transport. The model downscaling approach is widely applicable for local SLR projections in estuaries and coastal bays.
Ulrike Braeckman, Felix Janssen, Gaute Lavik, Marcus Elvert, Hannah Marchant, Caroline Buckner, Christina Bienhold, and Frank Wenzhöfer
Biogeosciences, 15, 6537–6557, https://doi.org/10.5194/bg-15-6537-2018, https://doi.org/10.5194/bg-15-6537-2018, 2018
Short summary
Short summary
Global warming has altered Arctic phytoplankton communities, with unknown effects on deep-sea communities that depend strongly on food produced at the surface. We compared the responses of Arctic deep-sea benthos to input of phytodetritus from diatoms and coccolithophorids. Coccolithophorid carbon was 5× less recycled than diatom carbon. The utilization of the coccolithophorid carbon may be less efficient, so a shift from diatom to coccolithophorid blooms could entail a delay in carbon cycling.
Ralf Hoffmann, Ulrike Braeckman, Christiane Hasemann, and Frank Wenzhöfer
Biogeosciences, 15, 4849–4869, https://doi.org/10.5194/bg-15-4849-2018, https://doi.org/10.5194/bg-15-4849-2018, 2018
Short summary
Short summary
Our study links surface sea-ice cover and benthic oxygen fluxes in the Fram Strait via primary production, food supply, benthic community, and their functions. We show that sea-ice cover and water depth are the most important factors influencing the ecosystem. However, in water depths > 1500 m, the effect of sea ice fades out. Further, we discuss primary production and benthic remineralization patterns and developed a potential scenario for the benthic remineralization in a future Arctic Ocean.
Sebastiaan Mestdagh, Leila Bagaço, Ulrike Braeckman, Tom Ysebaert, Bart De Smet, Tom Moens, and Carl Van Colen
Biogeosciences, 15, 2587–2599, https://doi.org/10.5194/bg-15-2587-2018, https://doi.org/10.5194/bg-15-2587-2018, 2018
Short summary
Short summary
We studied how invertebrate communities of mudflats are affected by sudden deposition of sediment. We applied sediment layers of different thickness to mudflat communities and studied how their densities, diversity, and behaviour and the exchange of oxygen between the bottom and the water column changed. We found that some species easily diminish in numbers, while others become more active after deposition. The interaction of all species effects influences the environment, i.e. oxygen exchange.
Tom J. S. Cox, Justus E. E. van Beusekom, and Karline Soetaert
Biogeosciences, 14, 5271–5280, https://doi.org/10.5194/bg-14-5271-2017, https://doi.org/10.5194/bg-14-5271-2017, 2017
Short summary
Short summary
Photosynthesis by phytoplankton is a key source of oxygen (O2) in aquatic systems. We have developed a mathematical technique to calculate the rate of photosynthesis from time series of O2. Additionally, the approach leads to a better understanding of the influence on O2 measurements of the tides in coasts and estuaries. The results are important for correctly interpreting the data that are gathered by a growing set of continuous O2 sensors that are deployed around the world.
H. Brenner, U. Braeckman, M. Le Guitton, and F. J. R. Meysman
Biogeosciences, 13, 841–863, https://doi.org/10.5194/bg-13-841-2016, https://doi.org/10.5194/bg-13-841-2016, 2016
Short summary
Short summary
Alkalinity released from sediments of the southern North Sea can play an important role in the carbon cycle of the North Sea by lowering the pCO2 of the seawater and thus increasing the CO2 flux between the atmosphere and the water. However, not every single mole alkalinity generated in sediments leads to an additional CO2 uptake, as certain reactions in the water column can negate the respective alkalinity release.
L. Meire, D. H. Søgaard, J. Mortensen, F. J. R. Meysman, K. Soetaert, K. E. Arendt, T. Juul-Pedersen, M. E. Blicher, and S. Rysgaard
Biogeosciences, 12, 2347–2363, https://doi.org/10.5194/bg-12-2347-2015, https://doi.org/10.5194/bg-12-2347-2015, 2015
Short summary
Short summary
The Greenland Ice Sheet releases large amounts of freshwater, which strongly influences the biogeochemistry of the adjacent fjord systems and continental shelves. Here we present seasonal observations of the carbonate system in the surface waters of a west Greenland tidewater outlet glacier fjord. Our data reveal a permanent undersaturation of CO2 in the surface layer of the entire fjord and adjacent shelf, creating a high annual uptake of 65gCm-2yr-1.
L. Pozzato, D. Van Oevelen, L. Moodley, K. Soetaert, and J. J. Middelburg
Biogeosciences, 10, 6879–6891, https://doi.org/10.5194/bg-10-6879-2013, https://doi.org/10.5194/bg-10-6879-2013, 2013
L. Meire, K. E. R. Soetaert, and F. J. R. Meysman
Biogeosciences, 10, 2633–2653, https://doi.org/10.5194/bg-10-2633-2013, https://doi.org/10.5194/bg-10-2633-2013, 2013
A. de Kluijver, K. Soetaert, J. Czerny, K. G. Schulz, T. Boxhammer, U. Riebesell, and J. J. Middelburg
Biogeosciences, 10, 1425–1440, https://doi.org/10.5194/bg-10-1425-2013, https://doi.org/10.5194/bg-10-1425-2013, 2013
K. Soetaert, D. van Oevelen, and S. Sommer
Biogeosciences, 9, 5341–5352, https://doi.org/10.5194/bg-9-5341-2012, https://doi.org/10.5194/bg-9-5341-2012, 2012
Related subject area
Biogeochemistry: Modelling, Aquatic
Global impact of benthic denitrification on marine N2 fixation and primary production simulated by a variable-stoichiometry Earth system model
Killing the predator: impacts of highest-predator mortality on the global-ocean ecosystem structure
Hydrodynamic and biochemical impacts on the development of hypoxia in the Louisiana–Texas shelf – Part 1: roles of nutrient limitation and plankton community
Changes in Arctic Ocean plankton community structure and trophic dynamics on seasonal to interannual timescales
Validation of the coupled physical–biogeochemical ocean model NEMO–SCOBI for the North Sea–Baltic Sea system
Investigating ecosystem connections in the shelf sea environment using complex networks
Seasonal and interannual variability of the pelagic ecosystem and of the organic carbon budget in the Rhodes Gyre (eastern Mediterranean): influence of winter mixing
How much do bacterial growth properties and biodegradable dissolved organic matter control water quality at low flow?
Methane emissions from Arctic landscapes during 2000–2015: an analysis with land and lake biogeochemistry models
Including filter-feeding gelatinous macrozooplankton in a global marine biogeochemical model: model–data comparison and impact on the ocean carbon cycle
Riverine impact on future projections of marine primary production and carbon uptake
Subsurface oxygen maximum in oligotrophic marine ecosystems: mapping the interaction between physical and biogeochemical processes
Quantifying biological carbon pump pathways with a data-constrained mechanistic model ensemble approach
Assessing the spatial and temporal variability of methylmercury biogeochemistry and bioaccumulation in the Mediterranean Sea with a coupled 3D model
Hydrodynamic and biochemical impacts on the development of hypoxia in the Louisiana–Texas shelf – Part 2: statistical modeling and hypoxia prediction
Modelling the effects of benthic fauna on carbon, nitrogen and phosphorus dynamics in the Baltic Sea
Improved prediction of dimethyl sulfide (DMS) distributions in the northeast subarctic Pacific using machine-learning algorithms
Nutrient transport and transformation in macrotidal estuaries of the French Atlantic coast: a modeling approach using the Carbon-Generic Estuarine Model
A modelling study of temporal and spatial pCO2 variability on the biologically active and temperature-dominated Scotian Shelf
Modeling the marine chromium cycle: new constraints on global-scale processes
New insights into large-scale trends of apparent organic matter reactivity in marine sediments and patterns of benthic carbon transformation
Evaluation of ocean dimethylsulfide concentration and emission in CMIP6 models
Zooplankton mortality effects on the plankton community of the northern Humboldt Current System: sensitivity of a regional biogeochemical model
Multi-compartment kinetic–allometric (MCKA) model of radionuclide bioaccumulation in marine fish
Cyanobacteria blooms in the Baltic Sea: a review of models and facts
Arctic Ocean acidification over the 21st century co-driven by anthropogenic carbon increases and freshening in the CMIP6 model ensemble
Modeling silicate–nitrate–ammonium co-limitation of algal growth and the importance of bacterial remineralization based on an experimental Arctic coastal spring bloom culture study
Role of jellyfish in the plankton ecosystem revealed using a global ocean biogeochemical model
Extreme event waves in marine ecosystems: an application to Mediterranean Sea surface chlorophyll
Use of optical absorption indices to assess seasonal variability of dissolved organic matter in Amazon floodplain lakes
The role of sediment-induced light attenuation on primary production during Hurricane Gustav (2008)
Quantifying spatiotemporal variability in zooplankton dynamics in the Gulf of Mexico with a physical–biogeochemical model
One size fits all? Calibrating an ocean biogeochemistry model for different circulations
Assessing the temporal scale of deep-sea mining impacts on sediment biogeochemistry
Seasonal patterns of surface inorganic carbon system variables in the Gulf of Mexico inferred from a regional high-resolution ocean biogeochemical model
Oxygen dynamics and evaluation of the single-station diel oxygen model across contrasting geologies
Oceanic CO2 outgassing and biological production hotspots induced by pre-industrial river loads of nutrients and carbon in a global modeling approach
Global trends in marine nitrate N isotopes from observations and a neural network-based climatology
Merging bio-optical data from Biogeochemical-Argo floats and models in marine biogeochemistry
Model constraints on the anthropogenic carbon budget of the Arctic Ocean
Modeling oceanic nitrate and nitrite concentrations and isotopes using a 3-D inverse N cycle model
Biogeochemical response of the Mediterranean Sea to the transient SRES-A2 climate change scenario
Modelling the biogeochemical effects of heterotrophic and autotrophic N2 fixation in the Gulf of Aqaba (Israel), Red Sea
A perturbed biogeochemistry model ensemble evaluated against in situ and satellite observations
Diazotrophy as the main driver of the oligotrophy gradient in the western tropical South Pacific Ocean: results from a one-dimensional biogeochemical–physical coupled model
Causes of simulated long-term changes in phytoplankton biomass in the Baltic proper: a wavelet analysis
Modelling N2 fixation related to Trichodesmium sp.: driving processes and impacts on primary production in the tropical Pacific Ocean
Long-term response of oceanic carbon uptake to global warming via physical and biological pumps
Seasonal patterns in phytoplankton biomass across the northern and deep Gulf of Mexico: a numerical model study
Sea-surface dimethylsulfide (DMS) concentration from satellite data at global and regional scales
Na Li, Christopher J. Somes, Angela Landolfi, Chia-Te Chien, Markus Pahlow, and Andreas Oschlies
Biogeosciences, 21, 4361–4380, https://doi.org/10.5194/bg-21-4361-2024, https://doi.org/10.5194/bg-21-4361-2024, 2024
Short summary
Short summary
N is a crucial nutrient that limits phytoplankton growth in large ocean areas. The amount of oceanic N is governed by the balance of N2 fixation and denitrification. Here we incorporate benthic denitrification into an Earth system model with variable particulate stoichiometry. Our model compares better to the observed surface nutrient distributions, marine N2 fixation, and primary production. Benthic denitrification plays an important role in marine N and C cycling and hence the global climate.
David Talmy, Eric Carr, Harshana Rajakaruna, Selina Våge, and Anne Willem Omta
Biogeosciences, 21, 2493–2507, https://doi.org/10.5194/bg-21-2493-2024, https://doi.org/10.5194/bg-21-2493-2024, 2024
Short summary
Short summary
The structure of plankton communities is central to global cycles of carbon, nitrogen, and other elements. This study explored the sensitivity of different assumptions about highest-predator mortality in ecosystem models with contrasting food web structures. In the context of environmental data, we find support for models assuming a density-dependent mortality of the highest predator, irrespective of assumed food web structure.
Yanda Ou and Z. George Xue
Biogeosciences, 21, 2385–2424, https://doi.org/10.5194/bg-21-2385-2024, https://doi.org/10.5194/bg-21-2385-2024, 2024
Short summary
Short summary
Developed for the Gulf of Mexico (2006–2020), a 3D hydrodynamic–biogeochemical model validated against in situ data reveals the impact of nutrients and plankton diversity on dissolved oxygen dynamics. It highlights the role of physical processes, sediment oxygen consumption, and nutrient distribution in shaping bottom oxygen levels and hypoxia. The model underscores the importance of complex plankton interactions for understanding primary production and hypoxia evolution.
Gabriela Negrete-García, Jessica Y. Luo, Colleen M. Petrik, Manfredi Manizza, and Andrew D. Barton
EGUsphere, https://doi.org/10.5194/egusphere-2024-953, https://doi.org/10.5194/egusphere-2024-953, 2024
Short summary
Short summary
The Arctic Ocean experiences significant seasonal and year-to-year changes, impacting marine plankton populations. Using a plankton community model, we studied these effects on plankton communities and their influence on fish production. Our findings revealed earlier plankton blooms, shifts towards more carnivorous zooplankton, and increased fisheries potential during summertime, especially in warmer years with less ice, highlighting the delicate balance of Arctic ecosystems.
Itzel Ruvalcaba Baroni, Elin Almroth-Rosell, Lars Axell, Sam T. Fredriksson, Jenny Hieronymus, Magnus Hieronymus, Sandra-Esther Brunnabend, Matthias Gröger, Ivan Kuznetsov, Filippa Fransner, Robinson Hordoir, Saeed Falahat, and Lars Arneborg
Biogeosciences, 21, 2087–2132, https://doi.org/10.5194/bg-21-2087-2024, https://doi.org/10.5194/bg-21-2087-2024, 2024
Short summary
Short summary
The health of the Baltic and North seas is threatened due to high anthropogenic pressure; thus, different methods to assess the status of these regions are urgently needed. Here, we validated a novel model simulating the ocean dynamics and biogeochemistry of the Baltic and North seas that can be used to create future climate and nutrient scenarios, contribute to European initiatives on de-eutrophication, and provide water quality advice and support on nutrient load reductions for both seas.
Ieuan Higgs, Jozef Skákala, Ross Bannister, Alberto Carrassi, and Stefano Ciavatta
Biogeosciences, 21, 731–746, https://doi.org/10.5194/bg-21-731-2024, https://doi.org/10.5194/bg-21-731-2024, 2024
Short summary
Short summary
A complex network is a way of representing which parts of a system are connected to other parts. We have constructed a complex network based on an ecosystem–ocean model. From this, we can identify patterns in the structure and areas of similar behaviour. This can help to understand how natural, or human-made, changes will affect the shelf sea ecosystem, and it can be used in multiple future applications such as improving modelling, data assimilation, or machine learning.
Joelle Habib, Caroline Ulses, Claude Estournel, Milad Fakhri, Patrick Marsaleix, Mireille Pujo-Pay, Marine Fourrier, Laurent Coppola, Alexandre Mignot, Laurent Mortier, and Pascal Conan
Biogeosciences, 20, 3203–3228, https://doi.org/10.5194/bg-20-3203-2023, https://doi.org/10.5194/bg-20-3203-2023, 2023
Short summary
Short summary
The Rhodes Gyre, eastern Mediterranean Sea, is the main Levantine Intermediate Water formation site. In this study, we use a 3D physical–biogeochemical model to investigate the seasonal and interannual variability of organic carbon dynamics in the gyre. Our results show its autotrophic nature and its high interannual variability, with enhanced primary production, downward exports, and onward exports to the surrounding regions during years marked by intense heat losses and deep mixed layers.
Masihullah Hasanyar, Thomas Romary, Shuaitao Wang, and Nicolas Flipo
Biogeosciences, 20, 1621–1633, https://doi.org/10.5194/bg-20-1621-2023, https://doi.org/10.5194/bg-20-1621-2023, 2023
Short summary
Short summary
The results of this study indicate that biodegradable dissolved organic matter is responsible for oxygen depletion at low flow during summer seasons when heterotrophic bacterial activity is so intense. Therefore, the dissolved organic matter must be well measured in the water monitoring networks in order to have more accurate water quality models. It also advocates for high-frequency data collection for better quantification of the uncertainties related to organic matter.
Xiangyu Liu and Qianlai Zhuang
Biogeosciences, 20, 1181–1193, https://doi.org/10.5194/bg-20-1181-2023, https://doi.org/10.5194/bg-20-1181-2023, 2023
Short summary
Short summary
We are among the first to quantify methane emissions from inland water system in the pan-Arctic. The total CH4 emissions are 36.46 Tg CH4 yr−1 during 2000–2015, of which wetlands and lakes were 21.69 Tg yr−1 and 14.76 Tg yr−1, respectively. By using two non-overlap area change datasets with land and lake models, our simulation avoids small lakes being counted twice as both lake and wetland, and it narrows the gap between two different methods used to quantify regional CH4 emissions.
Corentin Clerc, Laurent Bopp, Fabio Benedetti, Meike Vogt, and Olivier Aumont
Biogeosciences, 20, 869–895, https://doi.org/10.5194/bg-20-869-2023, https://doi.org/10.5194/bg-20-869-2023, 2023
Short summary
Short summary
Gelatinous zooplankton play a key role in the ocean carbon cycle. In particular, pelagic tunicates, which feed on a wide size range of prey, produce rapidly sinking detritus. Thus, they efficiently transfer carbon from the surface to the depths. Consequently, we added these organisms to a marine biogeochemical model (PISCES-v2) and evaluated their impact on the global carbon cycle. We found that they contribute significantly to carbon export and that this contribution increases with depth.
Shuang Gao, Jörg Schwinger, Jerry Tjiputra, Ingo Bethke, Jens Hartmann, Emilio Mayorga, and Christoph Heinze
Biogeosciences, 20, 93–119, https://doi.org/10.5194/bg-20-93-2023, https://doi.org/10.5194/bg-20-93-2023, 2023
Short summary
Short summary
We assess the impact of riverine nutrients and carbon (C) on projected marine primary production (PP) and C uptake using a fully coupled Earth system model. Riverine inputs alleviate nutrient limitation and thus lessen the projected PP decline by up to 0.7 Pg C yr−1 globally. The effect of increased riverine C may be larger than the effect of nutrient inputs in the future on the projected ocean C uptake, while in the historical period increased nutrient inputs are considered the largest driver.
Valeria Di Biagio, Stefano Salon, Laura Feudale, and Gianpiero Cossarini
Biogeosciences, 19, 5553–5574, https://doi.org/10.5194/bg-19-5553-2022, https://doi.org/10.5194/bg-19-5553-2022, 2022
Short summary
Short summary
The amount of dissolved oxygen in the ocean is the result of interacting physical and biological processes. Oxygen vertical profiles show a subsurface maximum in a large part of the ocean. We used a numerical model to map this subsurface maximum in the Mediterranean Sea and to link local differences in its properties to the driving processes. This emerging feature can help the marine ecosystem functioning to be better understood, also under the impacts of climate change.
Michael R. Stukel, Moira Décima, and Michael R. Landry
Biogeosciences, 19, 3595–3624, https://doi.org/10.5194/bg-19-3595-2022, https://doi.org/10.5194/bg-19-3595-2022, 2022
Short summary
Short summary
The biological carbon pump (BCP) transports carbon into the deep ocean, leading to long-term marine carbon sequestration. It is driven by many physical, chemical, and ecological processes. We developed a model of the BCP constrained using data from 11 cruises in 4 different ocean regions. Our results show that sinking particles and vertical mixing are more important than transport mediated by vertically migrating zooplankton. They also highlight the uncertainty in current estimates of the BCP.
Ginevra Rosati, Donata Canu, Paolo Lazzari, and Cosimo Solidoro
Biogeosciences, 19, 3663–3682, https://doi.org/10.5194/bg-19-3663-2022, https://doi.org/10.5194/bg-19-3663-2022, 2022
Short summary
Short summary
Methylmercury (MeHg) is produced and bioaccumulated in marine food webs, posing concerns for human exposure through seafood consumption. We modeled and analyzed the fate of MeHg in the lower food web of the Mediterranean Sea. The modeled spatial–temporal distribution of plankton bioaccumulation differs from the distribution of MeHg in surface water. We also show that MeHg exposure concentrations in temperate waters can be lowered by winter convection, which is declining due to climate change.
Yanda Ou, Bin Li, and Z. George Xue
Biogeosciences, 19, 3575–3593, https://doi.org/10.5194/bg-19-3575-2022, https://doi.org/10.5194/bg-19-3575-2022, 2022
Short summary
Short summary
Over the past decades, the Louisiana–Texas shelf has been suffering recurring hypoxia (dissolved oxygen < 2 mg L−1). We developed a novel prediction model using state-of-the-art statistical techniques based on physical and biogeochemical data provided by a numerical model. The model can capture both the magnitude and onset of the annual hypoxia events. This study also demonstrates that it is possible to use a global model forecast to predict regional ocean water quality.
Eva Ehrnsten, Oleg Pavlovitch Savchuk, and Bo Gustav Gustafsson
Biogeosciences, 19, 3337–3367, https://doi.org/10.5194/bg-19-3337-2022, https://doi.org/10.5194/bg-19-3337-2022, 2022
Short summary
Short summary
We studied the effects of benthic fauna, animals living on or in the seafloor, on the biogeochemical cycles of carbon, nitrogen and phosphorus using a model of the Baltic Sea ecosystem. By eating and excreting, the animals transform a large part of organic matter sinking to the seafloor into inorganic forms, which fuel plankton blooms. Simultaneously, when they move around (bioturbate), phosphorus is bound in the sediments. This reduces nitrogen-fixing plankton blooms and oxygen depletion.
Brandon J. McNabb and Philippe D. Tortell
Biogeosciences, 19, 1705–1721, https://doi.org/10.5194/bg-19-1705-2022, https://doi.org/10.5194/bg-19-1705-2022, 2022
Short summary
Short summary
The trace gas dimethyl sulfide (DMS) plays an important role in the ocean sulfur cycle and can also influence Earth’s climate. Our study used two statistical methods to predict surface ocean concentrations and rates of sea–air exchange of DMS in the northeast subarctic Pacific. Our results show improved predictive power over previous approaches and suggest that nutrient availability, light-dependent processes, and physical mixing may be important controls on DMS in this region.
Xi Wei, Josette Garnier, Vincent Thieu, Paul Passy, Romain Le Gendre, Gilles Billen, Maia Akopian, and Goulven Gildas Laruelle
Biogeosciences, 19, 931–955, https://doi.org/10.5194/bg-19-931-2022, https://doi.org/10.5194/bg-19-931-2022, 2022
Short summary
Short summary
Estuaries are key reactive ecosystems along the land–ocean aquatic continuum and are often strongly impacted by anthropogenic activities. We calculated nutrient in and out fluxes by using a 1-D transient model for seven estuaries along the French Atlantic coast. Among these, large estuaries with high residence times showed higher retention rates than medium and small ones. All reveal coastal eutrophication due to the excess of diffused nitrogen from intensive agricultural river basins.
Krysten Rutherford, Katja Fennel, Dariia Atamanchuk, Douglas Wallace, and Helmuth Thomas
Biogeosciences, 18, 6271–6286, https://doi.org/10.5194/bg-18-6271-2021, https://doi.org/10.5194/bg-18-6271-2021, 2021
Short summary
Short summary
Using a regional model of the northwestern North Atlantic shelves in combination with a surface water time series and repeat transect observations, we investigate surface CO2 variability on the Scotian Shelf. The study highlights a strong seasonal cycle in shelf-wide pCO2 and spatial variability throughout the summer months driven by physical events. The simulated net flux of CO2 on the Scotian Shelf is out of the ocean, deviating from the global air–sea CO2 flux trend in continental shelves.
Frerk Pöppelmeier, David J. Janssen, Samuel L. Jaccard, and Thomas F. Stocker
Biogeosciences, 18, 5447–5463, https://doi.org/10.5194/bg-18-5447-2021, https://doi.org/10.5194/bg-18-5447-2021, 2021
Short summary
Short summary
Chromium (Cr) is a redox-sensitive element that holds promise as a tracer of ocean oxygenation and biological activity. We here implemented the oxidation states Cr(III) and Cr(VI) in the Bern3D model to investigate the processes that shape the global Cr distribution. We find a Cr ocean residence time of 5–8 kyr and that the benthic source dominates the tracer budget. Further, regional model–data mismatches suggest strong Cr removal in oxygen minimum zones and a spatially variable benthic source.
Felipe S. Freitas, Philip A. Pika, Sabine Kasten, Bo B. Jørgensen, Jens Rassmann, Christophe Rabouille, Shaun Thomas, Henrik Sass, Richard D. Pancost, and Sandra Arndt
Biogeosciences, 18, 4651–4679, https://doi.org/10.5194/bg-18-4651-2021, https://doi.org/10.5194/bg-18-4651-2021, 2021
Short summary
Short summary
It remains challenging to fully understand what controls carbon burial in marine sediments globally. Thus, we use a model–data approach to identify patterns of organic matter reactivity at the seafloor across distinct environmental conditions. Our findings support the notion that organic matter reactivity is a dynamic ecosystem property and strongly influences biogeochemical cycling and exchange. Our results are essential to improve predictions of future changes in carbon cycling and climate.
Josué Bock, Martine Michou, Pierre Nabat, Manabu Abe, Jane P. Mulcahy, Dirk J. L. Olivié, Jörg Schwinger, Parvadha Suntharalingam, Jerry Tjiputra, Marco van Hulten, Michio Watanabe, Andrew Yool, and Roland Séférian
Biogeosciences, 18, 3823–3860, https://doi.org/10.5194/bg-18-3823-2021, https://doi.org/10.5194/bg-18-3823-2021, 2021
Short summary
Short summary
In this study we analyse surface ocean dimethylsulfide (DMS) concentration and flux to the atmosphere from four CMIP6 Earth system models over the historical and ssp585 simulations.
Our analysis of contemporary (1980–2009) climatologies shows that models better reproduce observations in mid to high latitudes. The models disagree on the sign of the trend of the global DMS flux from 1980 onwards. The models agree on a positive trend of DMS over polar latitudes following sea-ice retreat dynamics.
Mariana Hill Cruz, Iris Kriest, Yonss Saranga José, Rainer Kiko, Helena Hauss, and Andreas Oschlies
Biogeosciences, 18, 2891–2916, https://doi.org/10.5194/bg-18-2891-2021, https://doi.org/10.5194/bg-18-2891-2021, 2021
Short summary
Short summary
In this study we use a regional biogeochemical model of the eastern tropical South Pacific Ocean to implicitly simulate the effect that fluctuations in populations of small pelagic fish, such as anchovy and sardine, may have on the biogeochemistry of the northern Humboldt Current System. To do so, we vary the zooplankton mortality in the model, under the assumption that these fishes eat zooplankton. We also evaluate the model for the first time against mesozooplankton observations.
Roman Bezhenar, Kyeong Ok Kim, Vladimir Maderich, Govert de With, and Kyung Tae Jung
Biogeosciences, 18, 2591–2607, https://doi.org/10.5194/bg-18-2591-2021, https://doi.org/10.5194/bg-18-2591-2021, 2021
Short summary
Short summary
A new approach to predicting the accumulation of radionuclides in fish was developed by taking into account heterogeneity of distribution of contamination in the organism and dependence of metabolic process rates on the fish mass. Predicted concentrations of radionuclides in fish agreed well with the laboratory and field measurements. The model with the defined generic parameters could be used in marine environments without local calibration, which is important for emergency decision support.
Britta Munkes, Ulrike Löptien, and Heiner Dietze
Biogeosciences, 18, 2347–2378, https://doi.org/10.5194/bg-18-2347-2021, https://doi.org/10.5194/bg-18-2347-2021, 2021
Short summary
Short summary
Cyanobacteria blooms can strongly aggravate eutrophication problems of water bodies. Their controls are, however, not comprehensively understood, which impedes effective management and protection plans. Here we review the current understanding of cyanobacteria blooms. Juxtaposition of respective field and laboratory studies with state-of-the-art mathematical models reveals substantial uncertainty associated with nutrient demands, grazing, and death of cyanobacteria.
Jens Terhaar, Olivier Torres, Timothée Bourgeois, and Lester Kwiatkowski
Biogeosciences, 18, 2221–2240, https://doi.org/10.5194/bg-18-2221-2021, https://doi.org/10.5194/bg-18-2221-2021, 2021
Short summary
Short summary
The uptake of carbon, emitted as a result of human activities, results in ocean acidification. We analyse 21st-century projections of acidification in the Arctic Ocean, a region of particular vulnerability, using the latest generation of Earth system models. In this new generation of models there is a large decrease in the uncertainty associated with projections of Arctic Ocean acidification, with freshening playing a greater role in driving acidification than previously simulated.
Tobias R. Vonnahme, Martial Leroy, Silke Thoms, Dick van Oevelen, H. Rodger Harvey, Svein Kristiansen, Rolf Gradinger, Ulrike Dietrich, and Christoph Völker
Biogeosciences, 18, 1719–1747, https://doi.org/10.5194/bg-18-1719-2021, https://doi.org/10.5194/bg-18-1719-2021, 2021
Short summary
Short summary
Diatoms are crucial for Arctic coastal spring blooms, and their growth is controlled by nutrients and light. At the end of the bloom, inorganic nitrogen or silicon can be limiting, but nitrogen can be regenerated by bacteria, extending the algal growth phase. Modeling these multi-nutrient dynamics and the role of bacteria is challenging yet crucial for accurate modeling. We recreated spring bloom dynamics in a cultivation experiment and developed a representative dynamic model.
Rebecca M. Wright, Corinne Le Quéré, Erik Buitenhuis, Sophie Pitois, and Mark J. Gibbons
Biogeosciences, 18, 1291–1320, https://doi.org/10.5194/bg-18-1291-2021, https://doi.org/10.5194/bg-18-1291-2021, 2021
Short summary
Short summary
Jellyfish have been included in a global ocean biogeochemical model for the first time. The global mean jellyfish biomass in the model is within the observational range. Jellyfish are found to play an important role in the plankton ecosystem, influencing community structure, spatiotemporal dynamics and biomass. The model raises questions about the sensitivity of the zooplankton community to jellyfish mortality and the interactions between macrozooplankton and jellyfish.
Valeria Di Biagio, Gianpiero Cossarini, Stefano Salon, and Cosimo Solidoro
Biogeosciences, 17, 5967–5988, https://doi.org/10.5194/bg-17-5967-2020, https://doi.org/10.5194/bg-17-5967-2020, 2020
Short summary
Short summary
Events that influence the functioning of the Earth’s ecosystems are of interest in relation to a changing climate. We propose a method to identify and characterise
wavesof extreme events affecting marine ecosystems for multi-week periods over wide areas. Our method can be applied to suitable ecosystem variables and has been used to describe different kinds of extreme event waves of phytoplankton chlorophyll in the Mediterranean Sea, by analysing the output from a high-resolution model.
Maria Paula da Silva, Lino A. Sander de Carvalho, Evlyn Novo, Daniel S. F. Jorge, and Claudio C. F. Barbosa
Biogeosciences, 17, 5355–5364, https://doi.org/10.5194/bg-17-5355-2020, https://doi.org/10.5194/bg-17-5355-2020, 2020
Short summary
Short summary
In this study, we analyze the seasonal changes in the dissolved organic matter (DOM) quality (based on its optical properties) in four Amazon floodplain lakes. DOM plays a fundamental role in surface water chemistry, controlling metal bioavailability and mobility, and nutrient cycling. The model proposed in our paper highlights the potential to study DOM quality at a wider spatial scale, which may help to better understand the persistence and fate of DOM in the ecosystem.
Zhengchen Zang, Z. George Xue, Kehui Xu, Samuel J. Bentley, Qin Chen, Eurico J. D'Sa, Le Zhang, and Yanda Ou
Biogeosciences, 17, 5043–5055, https://doi.org/10.5194/bg-17-5043-2020, https://doi.org/10.5194/bg-17-5043-2020, 2020
Taylor A. Shropshire, Steven L. Morey, Eric P. Chassignet, Alexandra Bozec, Victoria J. Coles, Michael R. Landry, Rasmus Swalethorp, Glenn Zapfe, and Michael R. Stukel
Biogeosciences, 17, 3385–3407, https://doi.org/10.5194/bg-17-3385-2020, https://doi.org/10.5194/bg-17-3385-2020, 2020
Short summary
Short summary
Zooplankton are the smallest animals in the ocean and important food for fish. Despite their importance, zooplankton have been relatively undersampled. To better understand the zooplankton community in the Gulf of Mexico (GoM), we developed a model to simulate their dynamics. We found that heterotrophic protists are important for supporting mesozooplankton, which are the primary prey of larval fish. The model developed in this study has the potential to improve fisheries management in the GoM.
Iris Kriest, Paul Kähler, Wolfgang Koeve, Karin Kvale, Volkmar Sauerland, and Andreas Oschlies
Biogeosciences, 17, 3057–3082, https://doi.org/10.5194/bg-17-3057-2020, https://doi.org/10.5194/bg-17-3057-2020, 2020
Short summary
Short summary
Constants of global biogeochemical ocean models are often tuned
by handto match observations of nutrients or oxygen. We investigate the effect of this tuning by optimising six constants of a global biogeochemical model, simulated in five different offline circulations. Optimal values for three constants adjust to distinct features of the circulation applied and can afterwards be swapped among the circulations, without losing too much of the model's fit to observed quantities.
Laura Haffert, Matthias Haeckel, Henko de Stigter, and Felix Janssen
Biogeosciences, 17, 2767–2789, https://doi.org/10.5194/bg-17-2767-2020, https://doi.org/10.5194/bg-17-2767-2020, 2020
Short summary
Short summary
Deep-sea mining for polymetallic nodules is expected to have severe environmental impacts. Through prognostic modelling, this study aims to provide a holistic assessment of the biogeochemical recovery after a disturbance event. It was found that the recovery strongly depends on the impact type; e.g. complete removal of the surface sediment reduces seafloor nutrient fluxes over centuries.
Fabian A. Gomez, Rik Wanninkhof, Leticia Barbero, Sang-Ki Lee, and Frank J. Hernandez Jr.
Biogeosciences, 17, 1685–1700, https://doi.org/10.5194/bg-17-1685-2020, https://doi.org/10.5194/bg-17-1685-2020, 2020
Short summary
Short summary
We use a numerical model to infer annual changes of surface carbon chemistry in the Gulf of Mexico (GoM). The main seasonality drivers of partial pressure of carbon dioxide and aragonite saturation state from the model are temperature and river runoff. The GoM basin is a carbon sink in winter–spring and carbon source in summer–fall, but uptake prevails near the Mississippi Delta year-round due to high biological production. Our model results show good correspondence with observational studies.
Simon J. Parker
Biogeosciences, 17, 305–315, https://doi.org/10.5194/bg-17-305-2020, https://doi.org/10.5194/bg-17-305-2020, 2020
Short summary
Short summary
Dissolved oxygen (DO) models typically assume constant ecosystem respiration over the course of a single day. Using a data-driven approach, this research examines this assumption in four streams across two (hydro-)geological types (Chalk and Greensand). Despite hydrogeological equivalence in terms of baseflow index for each hydrogeological pairing, model suitability differed within, rather than across, geology types. This corresponded with associated differences in timings of DO minima.
Fabrice Lacroix, Tatiana Ilyina, and Jens Hartmann
Biogeosciences, 17, 55–88, https://doi.org/10.5194/bg-17-55-2020, https://doi.org/10.5194/bg-17-55-2020, 2020
Short summary
Short summary
Contributions of rivers to the oceanic cycling of carbon have been poorly represented in global models until now. Here, we assess the long–term implications of preindustrial riverine loads in the ocean in a novel framework which estimates the loads through a hierarchy of weathering and land–ocean export models. We investigate their impacts for the oceanic biological production and air–sea carbon flux. Finally, we assess the potential incorporation of the framework in an Earth system model.
Patrick A. Rafter, Aaron Bagnell, Dario Marconi, and Timothy DeVries
Biogeosciences, 16, 2617–2633, https://doi.org/10.5194/bg-16-2617-2019, https://doi.org/10.5194/bg-16-2617-2019, 2019
Short summary
Short summary
The N isotopic composition of nitrate (
nitrate δ15N) is a useful tracer of ocean N cycling and many other ocean processes. Here, we use a global compilation of marine nitrate δ15N as an input, training, and validating dataset for an artificial neural network (a.k.a.,
machine learning) and examine basin-scale trends in marine nitrate δ15N from the surface to the seafloor.
Elena Terzić, Paolo Lazzari, Emanuele Organelli, Cosimo Solidoro, Stefano Salon, Fabrizio D'Ortenzio, and Pascal Conan
Biogeosciences, 16, 2527–2542, https://doi.org/10.5194/bg-16-2527-2019, https://doi.org/10.5194/bg-16-2527-2019, 2019
Short summary
Short summary
Measuring ecosystem properties in the ocean is a hard business. Recent availability of data from Biogeochemical-Argo floats can help make this task easier. Numerical models can integrate these new data in a coherent picture and can be used to investigate the functioning of ecosystem processes. Our new approach merges experimental information and model capabilities to quantitatively demonstrate the importance of light and water vertical mixing for algae dynamics in the Mediterranean Sea.
Jens Terhaar, James C. Orr, Marion Gehlen, Christian Ethé, and Laurent Bopp
Biogeosciences, 16, 2343–2367, https://doi.org/10.5194/bg-16-2343-2019, https://doi.org/10.5194/bg-16-2343-2019, 2019
Short summary
Short summary
A budget of anthropogenic carbon in the Arctic Ocean, the main driver of open-ocean acidification, was constructed for the first time using a high-resolution ocean model. The budget reveals that anthropogenic carbon enters the Arctic Ocean mainly by lateral transport; the air–sea flux plays a minor role. Coarser-resolution versions of the same model, typical of earth system models, store less anthropogenic carbon in the Arctic Ocean and thus underestimate ocean acidification in the Arctic Ocean.
Taylor S. Martin, François Primeau, and Karen L. Casciotti
Biogeosciences, 16, 347–367, https://doi.org/10.5194/bg-16-347-2019, https://doi.org/10.5194/bg-16-347-2019, 2019
Short summary
Short summary
Nitrite is a key intermediate in many nitrogen (N) cycling processes in the ocean, particularly in areas with low oxygen that are hotspots for N loss. We have created a 3-D global N cycle model with nitrite as a tracer. Stable isotopes of N are also included in the model and we are able to model the isotope fractionation associated with each N cycling process. Our model accurately represents N concentrations and isotope distributions in the ocean.
Camille Richon, Jean-Claude Dutay, Laurent Bopp, Briac Le Vu, James C. Orr, Samuel Somot, and François Dulac
Biogeosciences, 16, 135–165, https://doi.org/10.5194/bg-16-135-2019, https://doi.org/10.5194/bg-16-135-2019, 2019
Short summary
Short summary
We evaluate the effects of climate change and biogeochemical forcing evolution on the nutrient and plankton cycles of the Mediterranean Sea for the first time. We use a high-resolution coupled physical and biogeochemical model and perform 120-year transient simulations. The results indicate that changes in external nutrient fluxes and climate change may have synergistic or antagonistic effects on nutrient concentrations, depending on the region and the scenario.
Angela M. Kuhn, Katja Fennel, and Ilana Berman-Frank
Biogeosciences, 15, 7379–7401, https://doi.org/10.5194/bg-15-7379-2018, https://doi.org/10.5194/bg-15-7379-2018, 2018
Short summary
Short summary
Recent studies demonstrate that marine N2 fixation can be carried out without light. However, direct measurements of N2 fixation in dark environments are relatively scarce. This study uses a model that represents biogeochemical cycles at a deep-ocean location in the Gulf of Aqaba (Red Sea). Different model versions are used to test assumptions about N2 fixers. Relaxing light limitation for marine N2 fixers improved the similarity between model results and observations of deep nitrate and oxygen.
Prima Anugerahanti, Shovonlal Roy, and Keith Haines
Biogeosciences, 15, 6685–6711, https://doi.org/10.5194/bg-15-6685-2018, https://doi.org/10.5194/bg-15-6685-2018, 2018
Short summary
Short summary
Minor changes in the biogeochemical model equations lead to major dynamical changes. We assessed this structural sensitivity for the MEDUSA biogeochemical model on chlorophyll and nitrogen concentrations at five oceanographic stations over 10 years, using 1-D ensembles generated by combining different process equations. The ensemble performed better than the default model in most of the stations, suggesting that our approach is useful for generating a probabilistic biogeochemical ensemble model.
Audrey Gimenez, Melika Baklouti, Thibaut Wagener, and Thierry Moutin
Biogeosciences, 15, 6573–6589, https://doi.org/10.5194/bg-15-6573-2018, https://doi.org/10.5194/bg-15-6573-2018, 2018
Short summary
Short summary
During the OUTPACE cruise conducted in the oligotrophic to ultra-oligotrophic region of the western tropical South Pacific, two contrasted regions were sampled in terms of N2 fixation rates, primary production rates and nutrient availability. The aim of this work was to investigate the role of N2 fixation in the differences observed between the two contrasted areas by comparing two simulations only differing by the presence or not of N2 fixers using a 1-D biogeochemical–physical coupled model.
Jenny Hieronymus, Kari Eilola, Magnus Hieronymus, H. E. Markus Meier, Sofia Saraiva, and Bengt Karlson
Biogeosciences, 15, 5113–5129, https://doi.org/10.5194/bg-15-5113-2018, https://doi.org/10.5194/bg-15-5113-2018, 2018
Short summary
Short summary
This paper investigates how phytoplankton concentrations in the Baltic Sea co-vary with nutrient concentrations and other key variables on inter-annual timescales in a model integration over the years 1850–2008. The study area is not only affected by climate change; it has also been subjected to greatly increased nutrient loads due to extensive use of agricultural fertilizers. The results indicate the largest inter-annual coherence of phytoplankton with the limiting nutrient.
Cyril Dutheil, Olivier Aumont, Thomas Gorguès, Anne Lorrain, Sophie Bonnet, Martine Rodier, Cécile Dupouy, Takuhei Shiozaki, and Christophe Menkes
Biogeosciences, 15, 4333–4352, https://doi.org/10.5194/bg-15-4333-2018, https://doi.org/10.5194/bg-15-4333-2018, 2018
Short summary
Short summary
N2 fixation is recognized as one of the major sources of nitrogen in the ocean. Thus, N2 fixation sustains a significant part of the primary production (PP) by supplying the most common limiting nutrient for phytoplankton growth. From numerical simulations, the local maximums of Trichodesmium biomass in the Pacific are found around islands, explained by the iron fluxes from island sediments. We assessed that 15 % of the PP may be due to Trichodesmium in the low-nutrient, low-chlorophyll areas.
Akitomo Yamamoto, Ayako Abe-Ouchi, and Yasuhiro Yamanaka
Biogeosciences, 15, 4163–4180, https://doi.org/10.5194/bg-15-4163-2018, https://doi.org/10.5194/bg-15-4163-2018, 2018
Short summary
Short summary
Millennial-scale changes in oceanic CO2 uptake due to global warming are simulated by a GCM and offline biogeochemical model. Sensitivity studies show that decreases in oceanic CO2 uptake are mainly caused by a weaker biological pump and seawater warming. Enhanced CO2 uptake due to weaker equatorial upwelling cancels out reduced CO2 uptake due to weaker AMOC and AABW formation. Thus, circulation change plays only a small direct role in reduction of CO2 uptake due to global warming.
Fabian A. Gomez, Sang-Ki Lee, Yanyun Liu, Frank J. Hernandez Jr., Frank E. Muller-Karger, and John T. Lamkin
Biogeosciences, 15, 3561–3576, https://doi.org/10.5194/bg-15-3561-2018, https://doi.org/10.5194/bg-15-3561-2018, 2018
Short summary
Short summary
Seasonal patterns in nanophytoplankton and diatom biomass in the Gulf of Mexico were examined with an ocean–biogeochemical model. We found silica limitation of model diatom growth in the deep GoM and Mississippi delta. Zooplankton grazing and both transport and vertical mixing of biomass substantially influence the model phytoplankton biomass seasonality. We stress the need for integrated analyses of biologically and physically driven biomass fluxes to describe phytoplankton seasonal changes.
Martí Galí, Maurice Levasseur, Emmanuel Devred, Rafel Simó, and Marcel Babin
Biogeosciences, 15, 3497–3519, https://doi.org/10.5194/bg-15-3497-2018, https://doi.org/10.5194/bg-15-3497-2018, 2018
Short summary
Short summary
We developed a new algorithm to estimate the sea-surface concentration of dimethylsulfide (DMS) using satellite data. DMS is a gas produced by marine plankton that, once emitted to the atmosphere, plays a key climatic role by seeding cloud formation. We used the algorithm to produce global DMS maps and also regional DMS time series. The latter suggest that DMS can vary largely from one year to another, which should be taken into account in atmospheric studies.
Cited articles
Akaike, H.: A new look at the statistical model identification, IEEE Trans.
Automat. Contr., 19, 716–723, https://doi.org/10.1109/TAC.1974.1100705, 1974.
Allen, J. I. and Clarke, K. R.: Effects of demersal trawling on ecosystem functioning in the North Sea: A modelling study, Mar. Ecol. Prog. Ser., 336, 63–75, https://doi.org/10.3354/meps336063, 2007.
Almroth, E., Tengberg, A., Andersson, J. H., Pakhomova, S., and Hall, P. O.
J.: Effects of resuspension on benthic fluxes of oxygen, nutrients,
dissolved inorganic carbon, iron and manganese in the Gulf of Finland,
Baltic Sea, Cont. Shelf Res., 29, 807–818,
https://doi.org/10.1016/j.csr.2008.12.011, 2009.
Amoroso, R. O., Pitcher, C. R., Rijnsdorp, A. D., McConnaughey, R. A.,
Parma, A. M., Suuronen, P., Eigaard, O. R., Bastardie, F., Hintzen, N. T.,
Althaus, F., Baird, S. J., Black, J., Buhl-Mortensen, L., Campbell, A. B.,
Catarino, R., Collie, J., Cowan, J. H., Durholtz, D., Engstrom, N.,
Fairweather, T. P., Fock, H. O., Ford, R., Gálvez, P. A., Gerritsen, H.,
Góngora, M. E., González, J. A., Hiddink, J. G., Hughes, K. M.,
Intelmann, S. S., Jenkins, C., Jonsson, P., Kainge, P., Kangas, M., Kathena,
J. N., Kavadas, S., Leslie, R. W., Lewise, S. G., Lundy, M., Makin, D.,
Martin, J., Mazor, T., Gonzalez-Mirelis, G., Newman, S. J., Papadopoulou,
N., Posen, P. E., Rochester, W., Russok, T., Salal, A., Semmens, J. M.,
Silvan, C., Tsoloso, A., Vanelslander, B., Wakefield, C. B., Wood, B. A.,
Hilborn, R., Kaiser, M. J., and Jennings, S.: Bottom trawl fishing footprints
on the world's continental shelves, P. Natl. Acad. Sci. USA,
115, E10275–E10282, https://doi.org/10.1073/pnas.1802379115, 2018.
Bergman, M. J. N. and Hup, M.: Direct effects of beamtrawling on macrofauna
in a sandy sediment in the southern north sea, ICES J. Mar. Sci., 49,
5–11, https://doi.org/10.1093/icesjms/49.1.5, 1992.
Bergman, M. J. N. and Van Santbrink, J. W.: Mortality in megafaunal benthic
populations caused by trawl fisheries on the Dutch continental shelf in the
North Sea in 1994, ICES J. Mar. Sci., 57, 1321–1331,
https://doi.org/10.1006/jmsc.2000.0917, 2000.
Boudreau, B. P.: The diffusive tortuosity of fine-grained unlithified
sediments, Geochim. Cosmochim. Ac., 60, 3139–3142,
https://doi.org/10.1016/0016-7037(96)00158-5, 1996.
Braeckman, U., Foshtomi, M. Y., Van Gansbeke, D., Meysman, F., Soetaert, K.,
Vincx, M., and Vanaverbeke, J.: Variable Importance of Macrofaunal Functional
Biodiversity for Biogeochemical Cycling in Temperate Coastal Sediments,
Ecosystems, 17, 720–737, https://doi.org/10.1007/s10021-014-9755-7, 2014.
Brylinsky, M., Gibson, J., and Gordon Jr., D. C.: Impacts of Flounder Trawls
on the Intertidal Habitat and Community of the Minas Basin, Bay of Fundy,
Can. J. Fish. Aquat. Sci., 51, 650–661, https://doi.org/10.1139/f94-066, 1994.
Butenschön, M., Clark, J., Aldridge, J. N., Icarus Allen, J., Artioli,
Y., Blackford, J., Bruggeman, J., Cazenave, P., Ciavatta, S., Kay, S.,
Lessin, G., Van Leeuwen, S., Van Der Molen, J., De Mora, L., Polimene, L.,
Sailley, S., Stephens, N., and Torres, R.: ERSEM 15.06: A generic model for
marine biogeochemistry and the ecosystem dynamics of the lower trophic
levels, Geosci. Model Dev., 9, 1293–1339, https://doi.org/10.5194/gmd-9-1293-2016,
2016.
Cashion, T., Al-Abdulrazzak, D., Belhabib, D., Derrick, B., Divovich, E.,
Moutopoulos, D. K., Noël, S. L., Palomares, M. L. D., Teh, L. C. L.,
Zeller, D., and Pauly, D.: Reconstructing global marine fishing gear use:
Catches and landed values by gear type and sector, Fish. Res., 206,
57–64, https://doi.org/10.1016/j.fishres.2018.04.010, 2018.
Copernicus Marine Service Information: Atlantic- European North West
Shelf- Ocean Biogeochemistry Reanalysis, available at:
http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=NORTHWESTSHELF_REANALYSIS_BIO_004_011 (last access: 4 April 2020), 2020.
Couceiro, F., Fones, G. R., Thompson, C. E. L., Statham, P. J., Sivyer, D.
B., Parker, R., Kelly-Gerreyn, B. A., and Amos, C. L.: Impact of resuspension
of cohesive sediments at the Oyster Grounds (North Sea) on nutrient exchange
across the sediment-water interface, Biogeochemistry, 113, 37–52,
https://doi.org/10.1007/s10533-012-9710-7, 2013.
Dauwe, B., Herman, P. M. J., and Heip, C. H. R.: Community structure and
bioturbation potential of macrofauna at four North Sea stations with
contrasting food supply, Mar. Ecol. Prog. Ser., 173, 67–83,
https://doi.org/10.3354/meps173067, 1998.
De Borger, E. and Soetaert, K.: edeborger/Trawling_Biogeochemistry_BGS: Trawling disturbance model, Zenodo, https://doi.org/10.5281/zenodo.4697277, 2021.
De Borger, E., Braeckman, U., and Soetaert, K.: Rapid organic matter cycling
in North Sea sediments, Cont. Shelf Res., 214, 104327,
https://doi.org/10.1016/j.csr.2020.104327, 2021.
Depestele, J., Ivanović, A., Degrendele, K., Esmaeili, M., Polet, H.,
Roche, M., Summerbell, K., Teal, L. R., Vanelslander, B., and O'Neill, F. G.:
Measuring and assessing the physical impact of beam trawling, ICES J. Mar.
Sci., 73, i15–i26, https://doi.org/10.1093/icesjms/fsv056,
2016.
Depestele, J., Degrendele, K., Esmaeili, M., Ivanovic, A., Kröger, S.,
O'Neill, F. G., Parker, R., Polet, H., Roche, M., Teal, L. R., Vanelslander,
B., and Rijnsdorp, A. D.: Comparison of mechanical disturbance in soft
sediments due to tickler-chain SumWing trawl vs. Electro-fitted PulseWing
trawl, ICES J. Mar. Sci., 76, 312–329, https://doi.org/10.1093/icesjms/fsy124, 2019.
Dounas, C. G., Davies, I. M., Hayes, P. J., Arvanitidis, C. D., and Koulouri,
P. T.: The effect of different types of otter trawl ground rope on benthic
nutrient releases and sediment biogeochemistry, Benthic Habitats Eff. Fish.,
41, 539–544, 2005.
Duplisea, D. E., Jennings, S., Malcolm, S. J., Parker, R., and Sivyer, D. B.:
Modelling potential impacts of bottom trawl fisheries on soft sediment
biogeochemistry in the North Sea, Geochem. Trans., 2, 112–117,
https://doi.org/10.1039/b108342b, 2001.
Durrieu de Madron, X., Ferré, B., Le Corre, G., Grenz, C., Conan, P.,
Pujo-Pay, M., Buscail, R., and Bodiot, O.: Trawling-induced resuspension and
dispersal of muddy sediments and dissolved elements in the Gulf of Lion (NW
Mediterranean), Cont. Shelf Res., 25, 2387–2409,
https://doi.org/10.1016/j.csr.2005.08.002, 2005.
Ehrenhauss, S., Witte, U., Janssen, F., and Huettel, M.: Decomposition of
diatoms and nutrient dynamics in permeable North Sea sediments, Cont. Shelf
Res., 24, 721–737, https://doi.org/10.1016/j.csr.2004.01.002, 2004.
Eigaard, O. R., Bastardie, F., Hintzen, N. T., Buhl-Mortensen, L.,
Buhl-Mortensen, P., Catarino, R., Dinesen, G. E., Egekvist, J., Fock, H. O.,
Geitner, K., Gerritsen, H. D., González, M. M., Jonsson, P., Kavadas,
S., Laffargue, P., Lundy, M., Gonzalez-Mirelis, G., Nielsen, J. R.,
Papadopoulou, N., Posen, P. E., Pulcinella, J., Russo, T., Sala, A., Silva,
C., Smith, C. J., Vanelslander, B., and Rijnsdorp, A. D.: The footprint of
bottom trawling in European waters: Distribution, intensity, and seabed
integrity, ICES J. Mar. Sci., 74, 847–865, https://doi.org/10.1093/icesjms/fsw194,
2017.
Ferguson, A. J. P., Oakes, J., and Eyre, B. D.: Bottom trawling reduces
benthic denitrification and has the potential to influence the global
nitrogen cycle, Limnol. Oceanogr. Lett., 5, 237–245, https://doi.org/10.1002/lol2.10150, 2020.
Fick, A.: Ueber Diffusion, Ann. Phys. Chem., 170, 59–86,
https://doi.org/10.1002/andp.18551700105, 1855.
Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R.
W., Seitzinger, S. P., Asner, G. P., Cleveland, C. C., Green, P. A.,
Holland, E. A., Karl, D. M., Michaels, A. F., Porter, J. H., Townsend, A. R.,
and Vorosmarty, C. J.: Nitrogen Cycles: Past, Present, and Future,
Biogeochemistry, 70, 153–226, https://doi.org/10.1007/s10533-004-0370-0, 2004.
GEBCO Compilation Group: GEBCO 2020 Grid,
https://doi.org/10.5285/a29c5465-b138-234d-e053-6c86abc040b9, 2020.
Hale, R., Godbold, J. A., Sciberras, M., Dwight, J., Wood, C., Hiddink, J. G., and Solan, M.: Mediation of macronutrients and carbon by post-disturbance shelf sea sediment communities, Biogeochemistry, 135, 121–133, https://doi.org/10.1007/s10533-017-0350-9, 2017.
Hiddink, J. G., Jennings, S., Sciberras, M., Szostek, C. L., Hughes, K. M.,
Ellis, N., Rijnsdorp, A. D., McConnaughey, R. A., Mazor, T., Hilborn, R.,
Collie, J. S., Pitcher, C. R., Amoroso, R. O., Parma, A. M., Suuronen, P.,
and Kaiser, M. J.: Global analysis of depletion and recovery of seabed biota
after bottom trawling disturbance, P. Natl. Acad. Sci. USA, 114,
8301–8306, https://doi.org/10.1073/pnas.1618858114, 2017.
Hiddink, J. G., Jennings, S., Sciberras, M., Bolam, S. G., Cambiè, G.,
McConnaughey, R. A., Mazor, T., Hilborn, R., Collie, J. S., Pitcher, C. R.,
Parma, A. M., Suuronen, P., Kaiser, M. J., and Rijnsdorp, A. D.: Assessing
bottom trawling impacts based on the longevity of benthic invertebrates, J.
Appl. Ecol., 56, 1075–1084, https://doi.org/10.1111/1365-2664.13278, 2019.
Huettel, M. and Gust, G.: Impact of bioroughness on interfacial solute
exchange in permeable sediments, Mar. Ecol. Prog. Ser., 89, 253–267,
https://doi.org/10.3354/meps089253, 1992.
Huettel, M. and Rusch, A.: Transport and degradation of phytoplankton in
permeable sediment, Limnol. Oceanogr., 45, 534–549,
https://doi.org/10.4319/lo.2000.45.3.0534, 2000.
ICES: Working Group on Electrical Trawling (WGELECTRA), ICES Sci. Reports/Rapp. Sci. du Ciem, 1, 87 pp., https://doi.org/10.17895/ices.pub.5619, 2020.
Kaiser, M. J., Clarke, K. R., Hinz, H., Austen, M. C. V., Somerfield, P. J.,
and Karakassis, I.: Global analysis of response and recovery of benthic
biota to fishing, Mar. Ecol. Prog. Ser., 311, 1–14,
https://doi.org/10.3354/meps311001, 2006.
Le Bot, S., Lafite, R., Fournier, M., Baltzer, A., and Desprez, M.:
Morphological and sedimentary impacts and recovery on a mixed sandy to
pebbly seabed exposed to marine aggregate extraction (Eastern English
Channel, France), Estuar. Coast. Shelf Sci., 89, 221–233,
https://doi.org/10.1016/j.ecss.2010.06.012, 2010.
Lucchetti, A. and Sala, A.: Impact and performance of mediterranean fishing
gear by side-scan sonar technology, Can. J. Fish. Aquat. Sci., 69,
1806–1816, https://doi.org/10.1139/f2012-107, 2012.
Martín, J., Puig, P., Masqué, P., Palanques, A., and
Sánchez-Gómez, A.: Impact of bottom trawling on deep-sea sediment
properties along the flanks of a submarine canyon, PLoS One, 9, e104536,
https://doi.org/10.1371/journal.pone.0104536, 2014.
Mayer, L. M.: Surface area control of organic carbon accumulation in
continental shelf sediments, Geochim. Cosmochim. Ac., 58, 1271–1284,
https://doi.org/10.1016/0016-7037(94)90381-6, 1994.
Mayer, L. M., Schick, D. F., Findlay, R. H., and Rice, D. L.: Effects of
commercial dragging on sedimentary organic matter, Mar. Environ. Res.,
31, 249–261, https://doi.org/10.1016/0141-1136(91)90015-Z, 1991.
McConnaughey, R. A., Hiddink, J. G., Jennings, S., Pitcher, C. R., Kaiser,
M. J., Suuronen, P., Sciberras, M., Rijnsdorp, A. D., Collie, J. S., Mazor,
T., Amoroso, R. O., Parma, A. M., and Hilborn, R.: Choosing best practices
for managing impacts of trawl fishing on seabed habitats and biota, Fish
Fish., 21, 319–337, https://doi.org/10.1111/faf.12431, 2020.
Mengual, B., Cayocca, F., Le Hir, P., Draye, R., Laffargue, P., Vincent, B.,
and Garlan, T.: Influence of bottom trawling on sediment resuspension in the
“Grande-Vasière” area (Bay of Biscay, France), Ocean Dyn., 66,
1181–1207, https://doi.org/10.1007/s10236-016-0974-7, 2016.
Mengual, B., Le Hir, P., Cayocca, F. and Garlan, T.: Bottom trawling
contribution to the spatio-temporal variability of sediment fluxes on the
continental shelf of the Bay of Biscay (France), Mar. Geol., 414(May),
77–91, https://doi.org/10.1016/j.margeo.2019.05.009, 2019.
Middelburg, J. J., Soetaert, K., Herman, P. M. J., and Heip, C. H. R.:
Denitrification in marine sediments: A model study, Global Biogeochem.
Cy., 10, 661–673, https://doi.org/10.1029/96GB02562, 1996.
Morato, T., Watson, R., Pitcher, T. J., and Pauly, D.: Fishing down the deep,
Fish Fish., 7, 24–34, https://doi.org/10.1111/j.1467-2979.2006.00205.x, 2006.
Murray, F., Copland, P., Boulcott, P., Robertson, M., and Bailey, N.: Impacts
of electrofishing for razor clams (Ensis spp.) on benthic fauna, Fish. Res.,
174, 40–46, https://doi.org/10.1016/j.fishres.2015.08.028, 2016.
Norse, E. A., Brooke, S., Cheung, W. W. L., Clark, M. R., Ekeland, I.,
Froese, R., Gjerde, K. M., Haedrich, R. L., Heppell, S. S., Morato, T.,
Morgan, L. E., Pauly, D., Sumaila, R., and Watson, R.: Sustainability of
deep-sea fisheries, Mar. Policy, 36, 307–320,
https://doi.org/10.1016/j.marpol.2011.06.008, 2012.
O'Neill, F. G. and Ivanović, A.: The physical impact of towed demersal
fishing gears on soft sediments, ICES J. Mar. Sci., 73, i5–i14, https://doi.org/10.1093/icesjms/fsv125, 2016.
O'Neill, F. G. and Summerbell, K.: The mobilisation of sediment by demersal
otter trawls, Mar. Pollut. Bull., 62, 1088–1097,
https://doi.org/10.1016/j.marpolbul.2011.01.038, 2011.
Palanques, A., Puig, P., Guillén, J., Demestre, M., and Martín, J.:
Effects of bottom trawling on the Ebro continental shelf sedimentary system
(NW Mediterranean), Cont. Shelf Res., 72, 83–98,
https://doi.org/10.1016/j.csr.2013.10.008, 2014.
Paradis, S., Pusceddu, A., Masqué, P., Puig, P., Moccia, D., Russo, T., and Lo Iacono, C.: Organic matter contents and degradation in a highly trawled area during fresh particle inputs (Gulf of Castellammare, southwestern Mediterranean), Biogeosciences, 16, 4307–4320, https://doi.org/10.5194/bg-16-4307-2019, 2019.
Paradis, S., Goñi, M., Masqué, P., Durán, R., Arjona-Camas, M.,
Palanques, A., and Puig, P.: Persistence of Biogeochemical Alterations of
Deep-Sea Sediments by Bottom Trawling, Geophys. Res. Lett., 48, 1–12,
https://doi.org/10.1029/2020gl091279, 2021.
Paschen, M., Richter, U., and Köpnick, W.: Trawl Penetration in the
Seabed (TRAPESE), Final report Contract No. 96-006, 2000.
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., and R Core Team:
{nlme}: Linear and Nonlinear Mixed Effects
Models, available at: https://cran.r-project.org/package=nlme (last access: 19 April 2021),
2019.
Pinheiro, J. C. and Bates, D. M.: Mixed-Effects Models in S and S-PLUS,
edited by: Chambers, J., Eddy, W., Hardle, W., Sheater, S., and Tierney, L.,
Springer-Verlag, New York, 2000.
Pitcher, C. R., Ellis, N., Jennings, S., Hiddink, J. G., Mazor, T., Kaiser,
M. J., Kangas, M. I., McConnaughey, R. A., Parma, A. M., Rijnsdorp, A. D.,
Suuronen, P., Collie, J. S., Amoroso, R., Hughes, K. M., and Hilborn, R.:
Estimating the sustainability of towed fishing-gear impacts on seabed
habitats: a simple quantitative risk assessment method applicable to
data-limited fisheries, Methods Ecol. Evol., 8, 472–480,
https://doi.org/10.1111/2041-210X.12705, 2017.
Polymenakou, P. N., Pusceddu, A., Tselepides, A., Polychronaki, T.,
Giannakourou, A., Fiordelmondo, C., Hatziyanni, E., and Danovaro, R.: Benthic
microbial abundance and activities in an intensively trawled ecosystem
(Thermaikos Gulf, Aegean Sea), Cont. Shelf Res., 25, 2570–2584,
https://doi.org/10.1016/j.csr.2005.08.018, 2005.
Poos, J.-J., Hintzen, N. T., van Rijssel, J. C., and Rijnsdorp, A. D.:
Efficiency changes in bottom trawling for flatfish species as a result of
the replacement of mechanical stimulation by electric stimulation, edited by:
Pol, M., ICES J. Mar. Sci., 77, 2635–2645, https://doi.org/10.1093/icesjms/fsaa126, 2020.
Price, W. L.: A controlled random search procedure for global optimisation,
Comput. J., 20, 367–370, https://doi.org/10.1093/comjnl/20.4.367, 1977.
Provoost, P., Braeckman, U., Van Gansbeke, D., Moodley, L., Soetaert, K.,
Middelburg, J. J., and Vanaverbeke, J.: Modelling benthic oxygen consumption
and benthic-pelagic coupling at a shallow station in the southern North Sea,
Estuar. Coast. Shelf Sci., 120, 1–11, https://doi.org/10.1016/j.ecss.2013.01.008, 2013.
Puig, P., Canals, M., Company, J. B., Martín, J., Amblas, D., Lastras,
G., Palanques, A., and Calafat, A. M.: Ploughing the deep sea floor, Nature,
489, 286–289, https://doi.org/10.1038/nature11410, 2012.
Pusceddu, A., Bianchelli, S., Martín, J., Puig, P., Palanques, A.,
Masqué, P., and Danovaro, R.: Chronic and intensive bottom trawling
impairs deep-sea biodiversity and ecosystem functioning, P. Natl. Acad.
Sci. USA, 111, 8861–8866, https://doi.org/10.1073/pnas.1405454111, 2014.
Pusceddu, A., Fiordelmondo, C., Polymenakou, P., Polychronaki, T.,
Tselepides, A., and Danovaro, R.: Effects of bottom trawling on the quantity
and biochemical composition of organic matter in coastal marine sediments
(Thermaikos Gulf, northwestern Aegean Sea), Cont. Shelf Res., 25,
2491–2505, https://doi.org/10.1016/j.csr.2005.08.013, 2005.
R Core Team: R: A language and environment for statistical computing,
available at: http://www.r-project.org/ (last access: 19 April 2021), 2020.
Riemann, B. and Hoffmann, E.: Ecological consequences of dredging and bottom
trawling in the Limfjord, Denmark, Mar. Ecol. Prog. Ser., 69,
171–178, https://doi.org/10.3354/meps069171, 1991.
Rijnsdorp, A.: Micro-scale distribution of beam trawl effort in the southern
North Sea between 1993 and 1996 in relation to the trawling frequency of the
sea bed and the impact on benthic organisms, ICES J. Mar. Sci., 55,
403–419, https://doi.org/10.1006/jmsc.1997.0326, 1998.
Rijnsdorp, A. D., Bastardie, F., Bolam, S. G., Buhl-Mortensen, L., Eigaard,
O. R., Hamon, K. G., Hiddink, J. G., Hintzen, N. T., Ivanović, A.,
Kenny, A., Laffargue, P., Nielsen, J. R., O'Neill, F. G., Piet, G. J.,
Polet, H., Sala, A., Smith, C., van Denderen, P. D., van Kooten, T., and
Zengin, M.: Towards a framework for the quantitative assessment of trawling
impact on the seabed and benthic ecosystem, ICES J. Mar. Sci.,
73, i127–i138, https://doi.org/10.1093/icesjms/fsv207, 2016.
Rijnsdorp, A. D., Bolam, S. G., Garcia, C., Hiddink, J. G., Hintzen, N. T.,
van Denderen, P. D., and van Kooten, T.: Estimating sensitivity of seabed
habitats to disturbance by bottom trawling based on the longevity of benthic
fauna, Ecol. Appl., 28, 1302–1312, https://doi.org/10.1002/eap.1731, 2018.
Rijnsdorp, A. D., Boute, P., Tiano, J., Lankheet, M., Soetaert, K.,
Beier, U., De Borger, E., and Hintzen, N.: The implications of a transition
from tickler chain beam trawl to electric pulse trawl on the sustainability
and ecosystem effects of the fishery for North Sea sole: an impact
assessment, IJmuiden, 108 pp., 2020a.
Rijnsdorp, A. D., Depestele, J., Eigaard, O. R., Hintzen, N. T.,
Ivanović, A., Molenaar, P., O'Neill, F. G., Polet, H., Poos, J. J., and
van Kooten, T. : Mitigating seafloor disturbance of bottom trawl fisheries
for North Sea sole Solea solea by replacing mechanical with electrical
stimulation, PLoS One, 15, e0228528, https://doi.org/10.1371/journal.pone.0228528, 2020b.
Robinson, J. E., Newell, R. C., Seiderer, L. J., and Simpson, N. M.: Impacts
of aggregate dredging on sediment composition and associated benthic fauna
at an offshore dredge site in the southern North Sea, Mar. Environ. Res.,
60, 51–68, https://doi.org/10.1016/j.marenvres.2004.09.001, 2005.
Sciberras, M., Parker, R., Powell, C., Robertson, C., Kröger, S., Bolam,
S., and Geert Hiddink, J.: Impacts of bottom fishing on the sediment infaunal
community and biogeochemistry of cohesive and non-cohesive sediments,
Limnol. Oceanogr., 61, 2076–2089, https://doi.org/10.1002/lno.10354, 2016.
Sciberras, M., Hiddink, J. G., Jennings, S., Szostek, C. L., Hughes, K. M.,
Kneafsey, B., Clarke, L. J., Ellis, N., Rijnsdorp, A. D., McConnaughey, R.
A., Hilborn, R., Collie, J. S., Pitcher, C. R., Amoroso, R. O., Parma, A.
M., Suuronen, P., and Kaiser, M. J.: Response of benthic fauna to
experimental bottom fishing: A global meta-analysis, Fish Fish., 19,
698–715, https://doi.org/10.1111/faf.12283, 2018.
Seitzinger, S., Harrison, J. A., Böhlke, J. K., Bouwman, A. F.,
Lowrance, R., Peterson, B., Tobias, C., and Van Drecht, G.: Denitrification
across landscapes and waterscapes: A synthesis, Ecol. Appl., 16,
2064–2090, https://doi.org/10.1890/1051-0761(2006)016[2064:DALAWA]2.0.CO;2, 2006.
Soetaert, K.: rootSolve: Nonlinear root finding, equilibrium and
steady-state analysis of ordinary differential equations, available at: https://CRAN.R-project.org/package=rootSolve, (last access: 19 April 2021), 2009.
Soetaert, K. and Meysman, F.: Reactive transport in aquatic ecosystems:
Rapid model prototyping in the open source software R, Environ. Model.
Softw., 32, 49–60, https://doi.org/10.1016/j.envsoft.2011.08.011, 2012.
Soetaert, K. and Middelburg, J. J.: Modeling eutrophication and
oligotrophication of shallow-water marine systems: The importance of
sediments under stratified and well-mixed conditions, Hydrobiologia, 629,
239–254, https://doi.org/10.1007/s10750-009-9777-x, 2009.
Soetaert, K. and Petzoldt, T.: Inverse Modelling, Sensitivity and Monte
Carlo analysis in R Using PAckage FME, J. Stat. Softw., 33, 1–28,
https://doi.org/10.18637/jss.v033.i03, 2010.
Soetaert, K. and Petzoldt, T.: marelac: Tools for Aquatic Sciences, available at: https://cran.r-project.org/package=marelac (last access: 19 April 2021), 2018.
Soetaert, K., Herman, P. M. J., and Middelburg, J. J.: A model of early
diagenetic processes from the shelf to abyssal depths, Geochim. Cosmochim.
Ac., 60, 1019–1040, https://doi.org/10.1016/0016-7037(96)00013-0, 1996a.
Soetaert, K., Herman, P. M. J., and Middelburg, J. J.: Dynamic response of
deep-sea sediments to seasonal variations: A model, Limnol. Oceanogr.,
41, 1651–1668, https://doi.org/10.4319/lo.1996.41.8.1651, 1996b.
Soetaert, K., Petzoldt, T., and Setzer, R. W.: Solving Differential Equations
in R: Package deSolve, J. Stat. Softw., 33, 1–25,
https://doi.org/10.18637/jss.v033.i09, 2010.
Soetaert, M., Chiers, K., Duchateau, L., Polet, H., Verschueren, B., and
Decostere, A.: Determining the safety range of electrical pulses for two
benthic invertebrates: brown shrimp (Crangon crangon L.) and ragworm (Alitta virens S.), ICES J. Mar. Sci., 72, 973–980, https://doi.org/10.1093/icesjms/fsu176,
2015a.
Soetaert, M., Decostere, A., Polet, H., Verschueren, B., and Chiers, K.:
Electrotrawling: a promising alternative fishing technique warranting
further exploration, Fish Fish., 16, 104–124, https://doi.org/10.1111/faf.12047,
2015b.
Soetaert, M., Verschueren, B., Chiers, K., Duchateau, L., Polet, H., and
Decostere, A.: Laboratory Study of the Impact of Repetitive Electrical and
Mechanical Stimulation on Brown Shrimp Crangon crangon, Mar. Coast. Fish.,
8, 404–411, https://doi.org/10.1080/19425120.2016.1180333, 2016.
Tiano, J. C., Witbaard, R., Bergman, M. J. N., Van Rijswijk, P., Tramper,
A., Van Oevelen, D., Soetaert, K., and Degraer, S.: Acute impacts of bottom
trawl gears on benthic metabolism and nutrient cycling, ICES J. Mar. Sci.,
76, 1917–1930, https://doi.org/10.1093/icesjms/fsz060, 2019.
Tiano, J. C., van der Reijden, K. J., O'Flynn, S., Beauchard, O., van der
Ree, S., van der Wees, J., Ysebaert, T., and Soetaert, K.: Experimental
bottom trawling finds resilience in large-bodied infauna but vulnerability
for epifauna and juveniles in the Frisian Front, Mar. Environ. Res.,
159, 104964, https://doi.org/10.1016/j.marenvres.2020.104964, 2020.
Toussaint, E., De Borger, E., Braeckman, U., De Backer, A., Soetaert, K., and
Vanaverbeke, J.: Faunal and environmental drivers of carbon and nitrogen
cycling along a permeability gradient in shallow North Sea sediments, Sci.
Total Environ., 767, 144994, https://doi.org/10.1016/j.scitotenv.2021.144994, 2021.
Trimmer, M., Petersen, J., Sivyer, D., Mills, C., Young, E., and Parker, E.:
Impact of long-term benthic trawl disturbance on sediment sorting and
biogeochemistry in the southern North Sea, Mar. Ecol. Prog. Ser., 298,
79–94, https://doi.org/10.3354/meps298079, 2005.
van der Molen, J., Aldridge, J. N., Coughlan, C., Parker, E. R., Stephens,
D., and Ruardij, P.: Modelling marine ecosystem response to climate change
and trawling in the North Sea, Biogeochemistry, 113, 213–236,
https://doi.org/10.1007/s10533-012-9763-7, 2013.
Van De Velde, S., Van Lancker, V., Hidalgo-Martinez, S., Berelson, W. M., and
Meysman, F. J. R.: Anthropogenic disturbance keeps the coastal seafloor
biogeochemistry in a transient state, Sci. Rep., 8, 5582,
https://doi.org/10.1038/s41598-018-23925-y, 2018.
van Marlen, B., de Haan, D., van Gool, A., and Burggraaf, D.: The effect of
pulse stimulation on marine biota – Research in relation to ICES advice –
Progress report on the effects on benthic invertebrates, Inst. Mar. Resour. Ecosyst. Stud. Rep., C103/09, 53, 2009.
van Marlen, B., Wiegerinck, J. A. M., van Os-Koomen, E., and van Barneveld,
E.: Catch comparison of flatfish pulse trawls and a tickler chain beam
trawl, Fish. Res., 151, 57–69, https://doi.org/10.1016/j.fishres.2013.11.007, 2014.
Watling, L., Findlay, R. H., Mayer, L. M., and Schick, D. F.: Impact of a
scallop drag on the sediment chemistry, microbiota, and faunal assemblages
of a shallow subtidal marine benthic community, J. Sea Res., 46,
309–324, https://doi.org/10.1016/S1385-1101(01)00083-1, 2001.
Watson, R. A. and Morato, T.: Fishing down the deep: Accounting for
within-species changes in depth of fishing, Fish. Res., 140, 63–65,
https://doi.org/10.1016/j.fishres.2012.12.004, 2013.
West, B. T., Welch, K. B., and Galecki, A. T.: Linear Mixed Models, Chapman
and Hall/CRC, London, https://doi.org/10.1201/b17198, 2014.
Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A., and Smith, G. M.:
Mixed effects models and extensions in ecology with R, Springer New York,
New York, NY, 2009.
Short summary
Bottom trawling alters benthic mineralization: the recycling of organic material (OM) to free nutrients. To better understand how this occurs, trawling events were added to a model of seafloor OM recycling. Results show that bottom trawling reduces OM and free nutrients in sediments through direct removal thereof and of fauna which transport OM to deeper sediment layers protected from fishing. Our results support temporospatial trawl restrictions to allow key sediment functions to recover.
Bottom trawling alters benthic mineralization: the recycling of organic material (OM) to free...
Altmetrics
Final-revised paper
Preprint