Articles | Volume 18, issue 8
Biogeosciences, 18, 2539–2557, 2021
https://doi.org/10.5194/bg-18-2539-2021
Biogeosciences, 18, 2539–2557, 2021
https://doi.org/10.5194/bg-18-2539-2021

Research article 22 Apr 2021

Research article | 22 Apr 2021

Impact of bottom trawling on sediment biogeochemistry: a modelling approach

Emil De Borger et al.

Related authors

Biological and biogeochemical methods for estimating bioirrigation: a case study in the Oosterschelde estuary
Emil De Borger, Justin Tiano, Ulrike Braeckman, Tom Ysebaert, and Karline Soetaert
Biogeosciences, 17, 1701–1715, https://doi.org/10.5194/bg-17-1701-2020,https://doi.org/10.5194/bg-17-1701-2020, 2020
Short summary

Related subject area

Biogeochemistry: Modelling, Aquatic
Zooplankton mortality effects on the plankton community of the northern Humboldt Current System: sensitivity of a regional biogeochemical model
Mariana Hill Cruz, Iris Kriest, Yonss Saranga José, Rainer Kiko, Helena Hauss, and Andreas Oschlies
Biogeosciences, 18, 2891–2916, https://doi.org/10.5194/bg-18-2891-2021,https://doi.org/10.5194/bg-18-2891-2021, 2021
Short summary
Multi-compartment kinetic–allometric (MCKA) model of radionuclide bioaccumulation in marine fish
Roman Bezhenar, Kyeong Ok Kim, Vladimir Maderich, Govert de With, and Kyung Tae Jung
Biogeosciences, 18, 2591–2607, https://doi.org/10.5194/bg-18-2591-2021,https://doi.org/10.5194/bg-18-2591-2021, 2021
Short summary
Cyanobacteria blooms in the Baltic Sea: a review of models and facts
Britta Munkes, Ulrike Löptien, and Heiner Dietze
Biogeosciences, 18, 2347–2378, https://doi.org/10.5194/bg-18-2347-2021,https://doi.org/10.5194/bg-18-2347-2021, 2021
Short summary
Arctic Ocean acidification over the 21st century co-driven by anthropogenic carbon increases and freshening in the CMIP6 model ensemble
Jens Terhaar, Olivier Torres, Timothée Bourgeois, and Lester Kwiatkowski
Biogeosciences, 18, 2221–2240, https://doi.org/10.5194/bg-18-2221-2021,https://doi.org/10.5194/bg-18-2221-2021, 2021
Short summary
Modeling silicate–nitrate–ammonium co-limitation of algal growth and the importance of bacterial remineralization based on an experimental Arctic coastal spring bloom culture study
Tobias R. Vonnahme, Martial Leroy, Silke Thoms, Dick van Oevelen, H. Rodger Harvey, Svein Kristiansen, Rolf Gradinger, Ulrike Dietrich, and Christoph Völker
Biogeosciences, 18, 1719–1747, https://doi.org/10.5194/bg-18-1719-2021,https://doi.org/10.5194/bg-18-1719-2021, 2021
Short summary

Cited articles

Akaike, H.: A new look at the statistical model identification, IEEE Trans. Automat. Contr., 19, 716–723, https://doi.org/10.1109/TAC.1974.1100705, 1974. 
Allen, J. I. and Clarke, K. R.: Effects of demersal trawling on ecosystem functioning in the North Sea: A modelling study, Mar. Ecol. Prog. Ser., 336, 63–75, https://doi.org/10.3354/meps336063, 2007. 
Almroth, E., Tengberg, A., Andersson, J. H., Pakhomova, S., and Hall, P. O. J.: Effects of resuspension on benthic fluxes of oxygen, nutrients, dissolved inorganic carbon, iron and manganese in the Gulf of Finland, Baltic Sea, Cont. Shelf Res., 29, 807–818, https://doi.org/10.1016/j.csr.2008.12.011, 2009. 
Bergman, M. J. N. and Hup, M.: Direct effects of beamtrawling on macrofauna in a sandy sediment in the southern north sea, ICES J. Mar. Sci., 49, 5–11, https://doi.org/10.1093/icesjms/49.1.5, 1992. 
Download
Short summary
Bottom trawling alters benthic mineralization: the recycling of organic material (OM) to free nutrients. To better understand how this occurs, trawling events were added to a model of seafloor OM recycling. Results show that bottom trawling reduces OM and free nutrients in sediments through direct removal thereof and of fauna which transport OM to deeper sediment layers protected from fishing. Our results support temporospatial trawl restrictions to allow key sediment functions to recover.
Altmetrics
Final-revised paper
Preprint