Articles | Volume 18, issue 8
https://doi.org/10.5194/bg-18-2539-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-2539-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Impact of bottom trawling on sediment biogeochemistry: a modelling approach
Emil De Borger
CORRESPONDING AUTHOR
Department of Biology, Marine Biology Research
Group, Ghent University, Krijgslaan 281/S8, 9000 Ghent, Belgium
Department of
Estuarine and Delta Systems, Royal Netherlands Institute of Sea Research (NIOZ), Utrecht University, Korringaweg 7, P.O. Box
140, 4401 NT Yerseke, the Netherlands
Justin Tiano
Department of
Estuarine and Delta Systems, Royal Netherlands Institute of Sea Research (NIOZ), Utrecht University, Korringaweg 7, P.O. Box
140, 4401 NT Yerseke, the Netherlands
Department of Biology, Marine Biology Research
Group, Ghent University, Krijgslaan 281/S8, 9000 Ghent, Belgium
Ulrike Braeckman
Department of Biology, Marine Biology Research
Group, Ghent University, Krijgslaan 281/S8, 9000 Ghent, Belgium
Adriaan D. Rijnsdorp
Wageningen Marine Research, Wageningen University and Research,
IJmuiden, the Netherlands
Karline Soetaert
Department of
Estuarine and Delta Systems, Royal Netherlands Institute of Sea Research (NIOZ), Utrecht University, Korringaweg 7, P.O. Box
140, 4401 NT Yerseke, the Netherlands
Department of Biology, Marine Biology Research
Group, Ghent University, Krijgslaan 281/S8, 9000 Ghent, Belgium
Related authors
No articles found.
Marilaure Grégoire, Luc Vandenbulcke, Séverine Chevalier, Mathurin Choblet, Ilya Drozd, Jean-François Grailet, Evgeny Ivanov, Loïc Macé, Polina Verezemskaya, Haolin Yu, Lauranne Alaerts, Ny Riana Randresihaja, Victor Mangeleer, Guillaume Maertens de Noordhout, Arthur Capet, Catherine Meulders, Anne Mouchet, Guy Munhoven, and Karline Soetaert
EGUsphere, https://doi.org/10.5194/egusphere-2025-4196, https://doi.org/10.5194/egusphere-2025-4196, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
This paper describes the ocean BiogeochemicAl Model for Hypoxic and Benthic Influenced areas (BAMHBI). BAMHBI is a moderate complexity marine biogeochemical model that describes the cycling of carbon, nitrogen, phosphorus, silicon and oxygen through the marine foodweb. BAMHBI is a stand-alone biogeochemical model that can be coupled to any hydrodynamical model and is particularly appropriate for modelling low oxygen environments and the generation of sulfidic waters.
Evert de Froe, Christian Mohn, Karline Soetaert, Anna-Selma van der Kaaden, Gert-Jan Reichart, Laurence H. De Clippele, Sandra R. Maier, and Dick van Oevelen
EGUsphere, https://doi.org/10.5194/egusphere-2025-3385, https://doi.org/10.5194/egusphere-2025-3385, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
Cold-water corals are important reef-building animals in the deep sea, and are found all over the world. So far, researchers have been mapping and predicting where cold-water corals can be found using video transects and statistics. This study provides the first process-based model in which corals are predicted based on ocean currents and food particle movement. The renewal of food by tidal currents close to the seafloor and corals proved essential in predicting where they can grow or not.
Marius Buydens, Emil De Borger, Lorenz Meire, Samuel Bodé, Antonio Schirone, Karline Soetaert, Ann Vanreusel, and Ulrike Braeckman
EGUsphere, https://doi.org/10.5194/egusphere-2025-102, https://doi.org/10.5194/egusphere-2025-102, 2025
Short summary
Short summary
As the Greenland Ice Sheet retreats, it is important to understand how this impacts the carbon burial in Greenland fjords. By comparing a fjord with marine-terminating glaciers versus one fed by a land-terminating glacier, we see that the productive waters associated to marine-terminating glaciers not necessary lead to enhanced carbon burial. Instead, we highlight the complex interplay of physical, biological, and sedimentary processes that mediate carbon dynamics in these fjords.
Sarah Paradis, Justin Tiano, Emil De Borger, Antonio Pusceddu, Clare Bradshaw, Claudia Ennas, Claudia Morys, and Marija Sciberras
Earth Syst. Sci. Data, 16, 3547–3563, https://doi.org/10.5194/essd-16-3547-2024, https://doi.org/10.5194/essd-16-3547-2024, 2024
Short summary
Short summary
DISOM is a database that compiles data of 71 independent studies that assess the effect of demersal fisheries on sedimentological and biogeochemical properties. This database also provides crucial metadata (i.e. environmental and fishing descriptors) needed to understand the effects of demersal fisheries in a global context.
Anna-Selma van der Kaaden, Dick van Oevelen, Christian Mohn, Karline Soetaert, Max Rietkerk, Johan van de Koppel, and Theo Gerkema
Ocean Sci., 20, 569–587, https://doi.org/10.5194/os-20-569-2024, https://doi.org/10.5194/os-20-569-2024, 2024
Short summary
Short summary
Cold-water corals (CWCs) and tidal waves in the interior of the ocean have been connected in case studies. We demonstrate this connection globally using hydrodynamic simulations and a CWC database. Internal-tide generation shows a similar depth pattern with slope steepness and latitude as CWCs. Our results suggest that internal-tide generation can be a useful predictor of CWC habitat and that current CWC habitats might change following climate-change-related shoaling of internal-tide generation.
Anna-Selma van der Kaaden, Sandra R. Maier, Siluo Chen, Laurence H. De Clippele, Evert de Froe, Theo Gerkema, Johan van de Koppel, Furu Mienis, Christian Mohn, Max Rietkerk, Karline Soetaert, and Dick van Oevelen
Biogeosciences, 21, 973–992, https://doi.org/10.5194/bg-21-973-2024, https://doi.org/10.5194/bg-21-973-2024, 2024
Short summary
Short summary
Combining hydrodynamic simulations and annotated videos, we separated which hydrodynamic variables that determine reef cover are engineered by cold-water corals and which are not. Around coral mounds, hydrodynamic zones seem to create a typical reef zonation, restricting corals from moving deeper (the expected response to climate warming). But non-engineered downward velocities in winter (e.g. deep winter mixing) seem more important for coral reef growth than coral engineering.
Caroline Ulses, Claude Estournel, Patrick Marsaleix, Karline Soetaert, Marine Fourrier, Laurent Coppola, Dominique Lefèvre, Franck Touratier, Catherine Goyet, Véronique Guglielmi, Fayçal Kessouri, Pierre Testor, and Xavier Durrieu de Madron
Biogeosciences, 20, 4683–4710, https://doi.org/10.5194/bg-20-4683-2023, https://doi.org/10.5194/bg-20-4683-2023, 2023
Short summary
Short summary
Deep convection plays a key role in the circulation, thermodynamics, and biogeochemical cycles in the Mediterranean Sea, considered to be a hotspot of biodiversity and climate change. In this study, we investigate the seasonal and annual budget of dissolved inorganic carbon in the deep-convection area of the northwestern Mediterranean Sea.
Stanley I. Nmor, Eric Viollier, Lucie Pastor, Bruno Lansard, Christophe Rabouille, and Karline Soetaert
Geosci. Model Dev., 15, 7325–7351, https://doi.org/10.5194/gmd-15-7325-2022, https://doi.org/10.5194/gmd-15-7325-2022, 2022
Short summary
Short summary
The coastal marine environment serves as a transition zone in the land–ocean continuum and is susceptible to episodic phenomena such as flash floods, which cause massive organic matter deposition. Here, we present a model of sediment early diagenesis that explicitly describes this type of deposition while also incorporating unique flood deposit characteristics. This model can be used to investigate the temporal evolution of marine sediments following abrupt changes in environmental conditions.
Justin C. Tiano, Jochen Depestele, Gert Van Hoey, João Fernandes, Pieter van Rijswijk, and Karline Soetaert
Biogeosciences, 19, 2583–2598, https://doi.org/10.5194/bg-19-2583-2022, https://doi.org/10.5194/bg-19-2583-2022, 2022
Short summary
Short summary
This study gives an assessment of bottom trawling on physical, chemical, and biological characteristics in a location known for its strong currents and variable habitats. Although trawl gears only removed the top 1 cm of the seabed surface, impacts on reef-building tubeworms significantly decreased carbon and nutrient cycling. Lighter trawls slightly reduced the impact on fauna and nutrients. Tubeworms were strongly linked to biogeochemical and faunal aspects before but not after trawling.
Alice E. Webb, Didier M. de Bakker, Karline Soetaert, Tamara da Costa, Steven M. A. C. van Heuven, Fleur C. van Duyl, Gert-Jan Reichart, and Lennart J. de Nooijer
Biogeosciences, 18, 6501–6516, https://doi.org/10.5194/bg-18-6501-2021, https://doi.org/10.5194/bg-18-6501-2021, 2021
Short summary
Short summary
The biogeochemical behaviour of shallow reef communities is quantified to better understand the impact of habitat degradation and species composition shifts on reef functioning. The reef communities investigated barely support reef functions that are usually ascribed to conventional coral reefs, and the overall biogeochemical behaviour is found to be similar regardless of substrate type. This suggests a decrease in functional diversity which may therefore limit services provided by this reef.
Chiu H. Cheng, Jaco C. de Smit, Greg S. Fivash, Suzanne J. M. H. Hulscher, Bas W. Borsje, and Karline Soetaert
Earth Surf. Dynam., 9, 1335–1346, https://doi.org/10.5194/esurf-9-1335-2021, https://doi.org/10.5194/esurf-9-1335-2021, 2021
Short summary
Short summary
Shells are biogenic particles that are widespread throughout natural sandy environments and can affect the bed roughness and seabed erodibility. As studies are presently lacking, we experimentally measured ripple formation and migration using natural sand with increasing volumes of shell material under unidirectional flow in a racetrack flume. We show that shells expedite the onset of sediment transport, reduce ripple dimensions and slow their migration rate.
Cited articles
Akaike, H.: A new look at the statistical model identification, IEEE Trans.
Automat. Contr., 19, 716–723, https://doi.org/10.1109/TAC.1974.1100705, 1974.
Allen, J. I. and Clarke, K. R.: Effects of demersal trawling on ecosystem functioning in the North Sea: A modelling study, Mar. Ecol. Prog. Ser., 336, 63–75, https://doi.org/10.3354/meps336063, 2007.
Almroth, E., Tengberg, A., Andersson, J. H., Pakhomova, S., and Hall, P. O.
J.: Effects of resuspension on benthic fluxes of oxygen, nutrients,
dissolved inorganic carbon, iron and manganese in the Gulf of Finland,
Baltic Sea, Cont. Shelf Res., 29, 807–818,
https://doi.org/10.1016/j.csr.2008.12.011, 2009.
Amoroso, R. O., Pitcher, C. R., Rijnsdorp, A. D., McConnaughey, R. A.,
Parma, A. M., Suuronen, P., Eigaard, O. R., Bastardie, F., Hintzen, N. T.,
Althaus, F., Baird, S. J., Black, J., Buhl-Mortensen, L., Campbell, A. B.,
Catarino, R., Collie, J., Cowan, J. H., Durholtz, D., Engstrom, N.,
Fairweather, T. P., Fock, H. O., Ford, R., Gálvez, P. A., Gerritsen, H.,
Góngora, M. E., González, J. A., Hiddink, J. G., Hughes, K. M.,
Intelmann, S. S., Jenkins, C., Jonsson, P., Kainge, P., Kangas, M., Kathena,
J. N., Kavadas, S., Leslie, R. W., Lewise, S. G., Lundy, M., Makin, D.,
Martin, J., Mazor, T., Gonzalez-Mirelis, G., Newman, S. J., Papadopoulou,
N., Posen, P. E., Rochester, W., Russok, T., Salal, A., Semmens, J. M.,
Silvan, C., Tsoloso, A., Vanelslander, B., Wakefield, C. B., Wood, B. A.,
Hilborn, R., Kaiser, M. J., and Jennings, S.: Bottom trawl fishing footprints
on the world's continental shelves, P. Natl. Acad. Sci. USA,
115, E10275–E10282, https://doi.org/10.1073/pnas.1802379115, 2018.
Bergman, M. J. N. and Hup, M.: Direct effects of beamtrawling on macrofauna
in a sandy sediment in the southern north sea, ICES J. Mar. Sci., 49,
5–11, https://doi.org/10.1093/icesjms/49.1.5, 1992.
Bergman, M. J. N. and Van Santbrink, J. W.: Mortality in megafaunal benthic
populations caused by trawl fisheries on the Dutch continental shelf in the
North Sea in 1994, ICES J. Mar. Sci., 57, 1321–1331,
https://doi.org/10.1006/jmsc.2000.0917, 2000.
Boudreau, B. P.: The diffusive tortuosity of fine-grained unlithified
sediments, Geochim. Cosmochim. Ac., 60, 3139–3142,
https://doi.org/10.1016/0016-7037(96)00158-5, 1996.
Braeckman, U., Foshtomi, M. Y., Van Gansbeke, D., Meysman, F., Soetaert, K.,
Vincx, M., and Vanaverbeke, J.: Variable Importance of Macrofaunal Functional
Biodiversity for Biogeochemical Cycling in Temperate Coastal Sediments,
Ecosystems, 17, 720–737, https://doi.org/10.1007/s10021-014-9755-7, 2014.
Brylinsky, M., Gibson, J., and Gordon Jr., D. C.: Impacts of Flounder Trawls
on the Intertidal Habitat and Community of the Minas Basin, Bay of Fundy,
Can. J. Fish. Aquat. Sci., 51, 650–661, https://doi.org/10.1139/f94-066, 1994.
Butenschön, M., Clark, J., Aldridge, J. N., Icarus Allen, J., Artioli,
Y., Blackford, J., Bruggeman, J., Cazenave, P., Ciavatta, S., Kay, S.,
Lessin, G., Van Leeuwen, S., Van Der Molen, J., De Mora, L., Polimene, L.,
Sailley, S., Stephens, N., and Torres, R.: ERSEM 15.06: A generic model for
marine biogeochemistry and the ecosystem dynamics of the lower trophic
levels, Geosci. Model Dev., 9, 1293–1339, https://doi.org/10.5194/gmd-9-1293-2016,
2016.
Cashion, T., Al-Abdulrazzak, D., Belhabib, D., Derrick, B., Divovich, E.,
Moutopoulos, D. K., Noël, S. L., Palomares, M. L. D., Teh, L. C. L.,
Zeller, D., and Pauly, D.: Reconstructing global marine fishing gear use:
Catches and landed values by gear type and sector, Fish. Res., 206,
57–64, https://doi.org/10.1016/j.fishres.2018.04.010, 2018.
Copernicus Marine Service Information: Atlantic- European North West
Shelf- Ocean Biogeochemistry Reanalysis, available at:
http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=NORTHWESTSHELF_REANALYSIS_BIO_004_011 (last access: 4 April 2020), 2020.
Couceiro, F., Fones, G. R., Thompson, C. E. L., Statham, P. J., Sivyer, D.
B., Parker, R., Kelly-Gerreyn, B. A., and Amos, C. L.: Impact of resuspension
of cohesive sediments at the Oyster Grounds (North Sea) on nutrient exchange
across the sediment-water interface, Biogeochemistry, 113, 37–52,
https://doi.org/10.1007/s10533-012-9710-7, 2013.
Dauwe, B., Herman, P. M. J., and Heip, C. H. R.: Community structure and
bioturbation potential of macrofauna at four North Sea stations with
contrasting food supply, Mar. Ecol. Prog. Ser., 173, 67–83,
https://doi.org/10.3354/meps173067, 1998.
De Borger, E. and Soetaert, K.: edeborger/Trawling_Biogeochemistry_BGS: Trawling disturbance model, Zenodo, https://doi.org/10.5281/zenodo.4697277, 2021.
De Borger, E., Braeckman, U., and Soetaert, K.: Rapid organic matter cycling
in North Sea sediments, Cont. Shelf Res., 214, 104327,
https://doi.org/10.1016/j.csr.2020.104327, 2021.
Depestele, J., Ivanović, A., Degrendele, K., Esmaeili, M., Polet, H.,
Roche, M., Summerbell, K., Teal, L. R., Vanelslander, B., and O'Neill, F. G.:
Measuring and assessing the physical impact of beam trawling, ICES J. Mar.
Sci., 73, i15–i26, https://doi.org/10.1093/icesjms/fsv056,
2016.
Depestele, J., Degrendele, K., Esmaeili, M., Ivanovic, A., Kröger, S.,
O'Neill, F. G., Parker, R., Polet, H., Roche, M., Teal, L. R., Vanelslander,
B., and Rijnsdorp, A. D.: Comparison of mechanical disturbance in soft
sediments due to tickler-chain SumWing trawl vs. Electro-fitted PulseWing
trawl, ICES J. Mar. Sci., 76, 312–329, https://doi.org/10.1093/icesjms/fsy124, 2019.
Dounas, C. G., Davies, I. M., Hayes, P. J., Arvanitidis, C. D., and Koulouri,
P. T.: The effect of different types of otter trawl ground rope on benthic
nutrient releases and sediment biogeochemistry, Benthic Habitats Eff. Fish.,
41, 539–544, 2005.
Duplisea, D. E., Jennings, S., Malcolm, S. J., Parker, R., and Sivyer, D. B.:
Modelling potential impacts of bottom trawl fisheries on soft sediment
biogeochemistry in the North Sea, Geochem. Trans., 2, 112–117,
https://doi.org/10.1039/b108342b, 2001.
Durrieu de Madron, X., Ferré, B., Le Corre, G., Grenz, C., Conan, P.,
Pujo-Pay, M., Buscail, R., and Bodiot, O.: Trawling-induced resuspension and
dispersal of muddy sediments and dissolved elements in the Gulf of Lion (NW
Mediterranean), Cont. Shelf Res., 25, 2387–2409,
https://doi.org/10.1016/j.csr.2005.08.002, 2005.
Ehrenhauss, S., Witte, U., Janssen, F., and Huettel, M.: Decomposition of
diatoms and nutrient dynamics in permeable North Sea sediments, Cont. Shelf
Res., 24, 721–737, https://doi.org/10.1016/j.csr.2004.01.002, 2004.
Eigaard, O. R., Bastardie, F., Hintzen, N. T., Buhl-Mortensen, L.,
Buhl-Mortensen, P., Catarino, R., Dinesen, G. E., Egekvist, J., Fock, H. O.,
Geitner, K., Gerritsen, H. D., González, M. M., Jonsson, P., Kavadas,
S., Laffargue, P., Lundy, M., Gonzalez-Mirelis, G., Nielsen, J. R.,
Papadopoulou, N., Posen, P. E., Pulcinella, J., Russo, T., Sala, A., Silva,
C., Smith, C. J., Vanelslander, B., and Rijnsdorp, A. D.: The footprint of
bottom trawling in European waters: Distribution, intensity, and seabed
integrity, ICES J. Mar. Sci., 74, 847–865, https://doi.org/10.1093/icesjms/fsw194,
2017.
Ferguson, A. J. P., Oakes, J., and Eyre, B. D.: Bottom trawling reduces
benthic denitrification and has the potential to influence the global
nitrogen cycle, Limnol. Oceanogr. Lett., 5, 237–245, https://doi.org/10.1002/lol2.10150, 2020.
Fick, A.: Ueber Diffusion, Ann. Phys. Chem., 170, 59–86,
https://doi.org/10.1002/andp.18551700105, 1855.
Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R.
W., Seitzinger, S. P., Asner, G. P., Cleveland, C. C., Green, P. A.,
Holland, E. A., Karl, D. M., Michaels, A. F., Porter, J. H., Townsend, A. R.,
and Vorosmarty, C. J.: Nitrogen Cycles: Past, Present, and Future,
Biogeochemistry, 70, 153–226, https://doi.org/10.1007/s10533-004-0370-0, 2004.
GEBCO Compilation Group: GEBCO 2020 Grid,
https://doi.org/10.5285/a29c5465-b138-234d-e053-6c86abc040b9, 2020.
Hale, R., Godbold, J. A., Sciberras, M., Dwight, J., Wood, C., Hiddink, J. G., and Solan, M.: Mediation of macronutrients and carbon by post-disturbance shelf sea sediment communities, Biogeochemistry, 135, 121–133, https://doi.org/10.1007/s10533-017-0350-9, 2017.
Hiddink, J. G., Jennings, S., Sciberras, M., Szostek, C. L., Hughes, K. M.,
Ellis, N., Rijnsdorp, A. D., McConnaughey, R. A., Mazor, T., Hilborn, R.,
Collie, J. S., Pitcher, C. R., Amoroso, R. O., Parma, A. M., Suuronen, P.,
and Kaiser, M. J.: Global analysis of depletion and recovery of seabed biota
after bottom trawling disturbance, P. Natl. Acad. Sci. USA, 114,
8301–8306, https://doi.org/10.1073/pnas.1618858114, 2017.
Hiddink, J. G., Jennings, S., Sciberras, M., Bolam, S. G., Cambiè, G.,
McConnaughey, R. A., Mazor, T., Hilborn, R., Collie, J. S., Pitcher, C. R.,
Parma, A. M., Suuronen, P., Kaiser, M. J., and Rijnsdorp, A. D.: Assessing
bottom trawling impacts based on the longevity of benthic invertebrates, J.
Appl. Ecol., 56, 1075–1084, https://doi.org/10.1111/1365-2664.13278, 2019.
Huettel, M. and Gust, G.: Impact of bioroughness on interfacial solute
exchange in permeable sediments, Mar. Ecol. Prog. Ser., 89, 253–267,
https://doi.org/10.3354/meps089253, 1992.
Huettel, M. and Rusch, A.: Transport and degradation of phytoplankton in
permeable sediment, Limnol. Oceanogr., 45, 534–549,
https://doi.org/10.4319/lo.2000.45.3.0534, 2000.
ICES: Working Group on Electrical Trawling (WGELECTRA), ICES Sci. Reports/Rapp. Sci. du Ciem, 1, 87 pp., https://doi.org/10.17895/ices.pub.5619, 2020.
Kaiser, M. J., Clarke, K. R., Hinz, H., Austen, M. C. V., Somerfield, P. J.,
and Karakassis, I.: Global analysis of response and recovery of benthic
biota to fishing, Mar. Ecol. Prog. Ser., 311, 1–14,
https://doi.org/10.3354/meps311001, 2006.
Le Bot, S., Lafite, R., Fournier, M., Baltzer, A., and Desprez, M.:
Morphological and sedimentary impacts and recovery on a mixed sandy to
pebbly seabed exposed to marine aggregate extraction (Eastern English
Channel, France), Estuar. Coast. Shelf Sci., 89, 221–233,
https://doi.org/10.1016/j.ecss.2010.06.012, 2010.
Lucchetti, A. and Sala, A.: Impact and performance of mediterranean fishing
gear by side-scan sonar technology, Can. J. Fish. Aquat. Sci., 69,
1806–1816, https://doi.org/10.1139/f2012-107, 2012.
Martín, J., Puig, P., Masqué, P., Palanques, A., and
Sánchez-Gómez, A.: Impact of bottom trawling on deep-sea sediment
properties along the flanks of a submarine canyon, PLoS One, 9, e104536,
https://doi.org/10.1371/journal.pone.0104536, 2014.
Mayer, L. M.: Surface area control of organic carbon accumulation in
continental shelf sediments, Geochim. Cosmochim. Ac., 58, 1271–1284,
https://doi.org/10.1016/0016-7037(94)90381-6, 1994.
Mayer, L. M., Schick, D. F., Findlay, R. H., and Rice, D. L.: Effects of
commercial dragging on sedimentary organic matter, Mar. Environ. Res.,
31, 249–261, https://doi.org/10.1016/0141-1136(91)90015-Z, 1991.
McConnaughey, R. A., Hiddink, J. G., Jennings, S., Pitcher, C. R., Kaiser,
M. J., Suuronen, P., Sciberras, M., Rijnsdorp, A. D., Collie, J. S., Mazor,
T., Amoroso, R. O., Parma, A. M., and Hilborn, R.: Choosing best practices
for managing impacts of trawl fishing on seabed habitats and biota, Fish
Fish., 21, 319–337, https://doi.org/10.1111/faf.12431, 2020.
Mengual, B., Cayocca, F., Le Hir, P., Draye, R., Laffargue, P., Vincent, B.,
and Garlan, T.: Influence of bottom trawling on sediment resuspension in the
“Grande-Vasière” area (Bay of Biscay, France), Ocean Dyn., 66,
1181–1207, https://doi.org/10.1007/s10236-016-0974-7, 2016.
Mengual, B., Le Hir, P., Cayocca, F. and Garlan, T.: Bottom trawling
contribution to the spatio-temporal variability of sediment fluxes on the
continental shelf of the Bay of Biscay (France), Mar. Geol., 414(May),
77–91, https://doi.org/10.1016/j.margeo.2019.05.009, 2019.
Middelburg, J. J., Soetaert, K., Herman, P. M. J., and Heip, C. H. R.:
Denitrification in marine sediments: A model study, Global Biogeochem.
Cy., 10, 661–673, https://doi.org/10.1029/96GB02562, 1996.
Morato, T., Watson, R., Pitcher, T. J., and Pauly, D.: Fishing down the deep,
Fish Fish., 7, 24–34, https://doi.org/10.1111/j.1467-2979.2006.00205.x, 2006.
Murray, F., Copland, P., Boulcott, P., Robertson, M., and Bailey, N.: Impacts
of electrofishing for razor clams (Ensis spp.) on benthic fauna, Fish. Res.,
174, 40–46, https://doi.org/10.1016/j.fishres.2015.08.028, 2016.
Norse, E. A., Brooke, S., Cheung, W. W. L., Clark, M. R., Ekeland, I.,
Froese, R., Gjerde, K. M., Haedrich, R. L., Heppell, S. S., Morato, T.,
Morgan, L. E., Pauly, D., Sumaila, R., and Watson, R.: Sustainability of
deep-sea fisheries, Mar. Policy, 36, 307–320,
https://doi.org/10.1016/j.marpol.2011.06.008, 2012.
O'Neill, F. G. and Ivanović, A.: The physical impact of towed demersal
fishing gears on soft sediments, ICES J. Mar. Sci., 73, i5–i14, https://doi.org/10.1093/icesjms/fsv125, 2016.
O'Neill, F. G. and Summerbell, K.: The mobilisation of sediment by demersal
otter trawls, Mar. Pollut. Bull., 62, 1088–1097,
https://doi.org/10.1016/j.marpolbul.2011.01.038, 2011.
Palanques, A., Puig, P., Guillén, J., Demestre, M., and Martín, J.:
Effects of bottom trawling on the Ebro continental shelf sedimentary system
(NW Mediterranean), Cont. Shelf Res., 72, 83–98,
https://doi.org/10.1016/j.csr.2013.10.008, 2014.
Paradis, S., Pusceddu, A., Masqué, P., Puig, P., Moccia, D., Russo, T., and Lo Iacono, C.: Organic matter contents and degradation in a highly trawled area during fresh particle inputs (Gulf of Castellammare, southwestern Mediterranean), Biogeosciences, 16, 4307–4320, https://doi.org/10.5194/bg-16-4307-2019, 2019.
Paradis, S., Goñi, M., Masqué, P., Durán, R., Arjona-Camas, M.,
Palanques, A., and Puig, P.: Persistence of Biogeochemical Alterations of
Deep-Sea Sediments by Bottom Trawling, Geophys. Res. Lett., 48, 1–12,
https://doi.org/10.1029/2020gl091279, 2021.
Paschen, M., Richter, U., and Köpnick, W.: Trawl Penetration in the
Seabed (TRAPESE), Final report Contract No. 96-006, 2000.
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., and R Core Team:
{nlme}: Linear and Nonlinear Mixed Effects
Models, available at: https://cran.r-project.org/package=nlme (last access: 19 April 2021),
2019.
Pinheiro, J. C. and Bates, D. M.: Mixed-Effects Models in S and S-PLUS,
edited by: Chambers, J., Eddy, W., Hardle, W., Sheater, S., and Tierney, L.,
Springer-Verlag, New York, 2000.
Pitcher, C. R., Ellis, N., Jennings, S., Hiddink, J. G., Mazor, T., Kaiser,
M. J., Kangas, M. I., McConnaughey, R. A., Parma, A. M., Rijnsdorp, A. D.,
Suuronen, P., Collie, J. S., Amoroso, R., Hughes, K. M., and Hilborn, R.:
Estimating the sustainability of towed fishing-gear impacts on seabed
habitats: a simple quantitative risk assessment method applicable to
data-limited fisheries, Methods Ecol. Evol., 8, 472–480,
https://doi.org/10.1111/2041-210X.12705, 2017.
Polymenakou, P. N., Pusceddu, A., Tselepides, A., Polychronaki, T.,
Giannakourou, A., Fiordelmondo, C., Hatziyanni, E., and Danovaro, R.: Benthic
microbial abundance and activities in an intensively trawled ecosystem
(Thermaikos Gulf, Aegean Sea), Cont. Shelf Res., 25, 2570–2584,
https://doi.org/10.1016/j.csr.2005.08.018, 2005.
Poos, J.-J., Hintzen, N. T., van Rijssel, J. C., and Rijnsdorp, A. D.:
Efficiency changes in bottom trawling for flatfish species as a result of
the replacement of mechanical stimulation by electric stimulation, edited by:
Pol, M., ICES J. Mar. Sci., 77, 2635–2645, https://doi.org/10.1093/icesjms/fsaa126, 2020.
Price, W. L.: A controlled random search procedure for global optimisation,
Comput. J., 20, 367–370, https://doi.org/10.1093/comjnl/20.4.367, 1977.
Provoost, P., Braeckman, U., Van Gansbeke, D., Moodley, L., Soetaert, K.,
Middelburg, J. J., and Vanaverbeke, J.: Modelling benthic oxygen consumption
and benthic-pelagic coupling at a shallow station in the southern North Sea,
Estuar. Coast. Shelf Sci., 120, 1–11, https://doi.org/10.1016/j.ecss.2013.01.008, 2013.
Puig, P., Canals, M., Company, J. B., Martín, J., Amblas, D., Lastras,
G., Palanques, A., and Calafat, A. M.: Ploughing the deep sea floor, Nature,
489, 286–289, https://doi.org/10.1038/nature11410, 2012.
Pusceddu, A., Bianchelli, S., Martín, J., Puig, P., Palanques, A.,
Masqué, P., and Danovaro, R.: Chronic and intensive bottom trawling
impairs deep-sea biodiversity and ecosystem functioning, P. Natl. Acad.
Sci. USA, 111, 8861–8866, https://doi.org/10.1073/pnas.1405454111, 2014.
Pusceddu, A., Fiordelmondo, C., Polymenakou, P., Polychronaki, T.,
Tselepides, A., and Danovaro, R.: Effects of bottom trawling on the quantity
and biochemical composition of organic matter in coastal marine sediments
(Thermaikos Gulf, northwestern Aegean Sea), Cont. Shelf Res., 25,
2491–2505, https://doi.org/10.1016/j.csr.2005.08.013, 2005.
R Core Team: R: A language and environment for statistical computing,
available at: http://www.r-project.org/ (last access: 19 April 2021), 2020.
Riemann, B. and Hoffmann, E.: Ecological consequences of dredging and bottom
trawling in the Limfjord, Denmark, Mar. Ecol. Prog. Ser., 69,
171–178, https://doi.org/10.3354/meps069171, 1991.
Rijnsdorp, A.: Micro-scale distribution of beam trawl effort in the southern
North Sea between 1993 and 1996 in relation to the trawling frequency of the
sea bed and the impact on benthic organisms, ICES J. Mar. Sci., 55,
403–419, https://doi.org/10.1006/jmsc.1997.0326, 1998.
Rijnsdorp, A. D., Bastardie, F., Bolam, S. G., Buhl-Mortensen, L., Eigaard,
O. R., Hamon, K. G., Hiddink, J. G., Hintzen, N. T., Ivanović, A.,
Kenny, A., Laffargue, P., Nielsen, J. R., O'Neill, F. G., Piet, G. J.,
Polet, H., Sala, A., Smith, C., van Denderen, P. D., van Kooten, T., and
Zengin, M.: Towards a framework for the quantitative assessment of trawling
impact on the seabed and benthic ecosystem, ICES J. Mar. Sci.,
73, i127–i138, https://doi.org/10.1093/icesjms/fsv207, 2016.
Rijnsdorp, A. D., Bolam, S. G., Garcia, C., Hiddink, J. G., Hintzen, N. T.,
van Denderen, P. D., and van Kooten, T.: Estimating sensitivity of seabed
habitats to disturbance by bottom trawling based on the longevity of benthic
fauna, Ecol. Appl., 28, 1302–1312, https://doi.org/10.1002/eap.1731, 2018.
Rijnsdorp, A. D., Boute, P., Tiano, J., Lankheet, M., Soetaert, K.,
Beier, U., De Borger, E., and Hintzen, N.: The implications of a transition
from tickler chain beam trawl to electric pulse trawl on the sustainability
and ecosystem effects of the fishery for North Sea sole: an impact
assessment, IJmuiden, 108 pp., 2020a.
Rijnsdorp, A. D., Depestele, J., Eigaard, O. R., Hintzen, N. T.,
Ivanović, A., Molenaar, P., O'Neill, F. G., Polet, H., Poos, J. J., and
van Kooten, T. : Mitigating seafloor disturbance of bottom trawl fisheries
for North Sea sole Solea solea by replacing mechanical with electrical
stimulation, PLoS One, 15, e0228528, https://doi.org/10.1371/journal.pone.0228528, 2020b.
Robinson, J. E., Newell, R. C., Seiderer, L. J., and Simpson, N. M.: Impacts
of aggregate dredging on sediment composition and associated benthic fauna
at an offshore dredge site in the southern North Sea, Mar. Environ. Res.,
60, 51–68, https://doi.org/10.1016/j.marenvres.2004.09.001, 2005.
Sciberras, M., Parker, R., Powell, C., Robertson, C., Kröger, S., Bolam,
S., and Geert Hiddink, J.: Impacts of bottom fishing on the sediment infaunal
community and biogeochemistry of cohesive and non-cohesive sediments,
Limnol. Oceanogr., 61, 2076–2089, https://doi.org/10.1002/lno.10354, 2016.
Sciberras, M., Hiddink, J. G., Jennings, S., Szostek, C. L., Hughes, K. M.,
Kneafsey, B., Clarke, L. J., Ellis, N., Rijnsdorp, A. D., McConnaughey, R.
A., Hilborn, R., Collie, J. S., Pitcher, C. R., Amoroso, R. O., Parma, A.
M., Suuronen, P., and Kaiser, M. J.: Response of benthic fauna to
experimental bottom fishing: A global meta-analysis, Fish Fish., 19,
698–715, https://doi.org/10.1111/faf.12283, 2018.
Seitzinger, S., Harrison, J. A., Böhlke, J. K., Bouwman, A. F.,
Lowrance, R., Peterson, B., Tobias, C., and Van Drecht, G.: Denitrification
across landscapes and waterscapes: A synthesis, Ecol. Appl., 16,
2064–2090, https://doi.org/10.1890/1051-0761(2006)016[2064:DALAWA]2.0.CO;2, 2006.
Soetaert, K.: rootSolve: Nonlinear root finding, equilibrium and
steady-state analysis of ordinary differential equations, available at: https://CRAN.R-project.org/package=rootSolve, (last access: 19 April 2021), 2009.
Soetaert, K. and Meysman, F.: Reactive transport in aquatic ecosystems:
Rapid model prototyping in the open source software R, Environ. Model.
Softw., 32, 49–60, https://doi.org/10.1016/j.envsoft.2011.08.011, 2012.
Soetaert, K. and Middelburg, J. J.: Modeling eutrophication and
oligotrophication of shallow-water marine systems: The importance of
sediments under stratified and well-mixed conditions, Hydrobiologia, 629,
239–254, https://doi.org/10.1007/s10750-009-9777-x, 2009.
Soetaert, K. and Petzoldt, T.: Inverse Modelling, Sensitivity and Monte
Carlo analysis in R Using PAckage FME, J. Stat. Softw., 33, 1–28,
https://doi.org/10.18637/jss.v033.i03, 2010.
Soetaert, K. and Petzoldt, T.: marelac: Tools for Aquatic Sciences, available at: https://cran.r-project.org/package=marelac (last access: 19 April 2021), 2018.
Soetaert, K., Herman, P. M. J., and Middelburg, J. J.: A model of early
diagenetic processes from the shelf to abyssal depths, Geochim. Cosmochim.
Ac., 60, 1019–1040, https://doi.org/10.1016/0016-7037(96)00013-0, 1996a.
Soetaert, K., Herman, P. M. J., and Middelburg, J. J.: Dynamic response of
deep-sea sediments to seasonal variations: A model, Limnol. Oceanogr.,
41, 1651–1668, https://doi.org/10.4319/lo.1996.41.8.1651, 1996b.
Soetaert, K., Petzoldt, T., and Setzer, R. W.: Solving Differential Equations
in R: Package deSolve, J. Stat. Softw., 33, 1–25,
https://doi.org/10.18637/jss.v033.i09, 2010.
Soetaert, M., Chiers, K., Duchateau, L., Polet, H., Verschueren, B., and
Decostere, A.: Determining the safety range of electrical pulses for two
benthic invertebrates: brown shrimp (Crangon crangon L.) and ragworm (Alitta virens S.), ICES J. Mar. Sci., 72, 973–980, https://doi.org/10.1093/icesjms/fsu176,
2015a.
Soetaert, M., Decostere, A., Polet, H., Verschueren, B., and Chiers, K.:
Electrotrawling: a promising alternative fishing technique warranting
further exploration, Fish Fish., 16, 104–124, https://doi.org/10.1111/faf.12047,
2015b.
Soetaert, M., Verschueren, B., Chiers, K., Duchateau, L., Polet, H., and
Decostere, A.: Laboratory Study of the Impact of Repetitive Electrical and
Mechanical Stimulation on Brown Shrimp Crangon crangon, Mar. Coast. Fish.,
8, 404–411, https://doi.org/10.1080/19425120.2016.1180333, 2016.
Tiano, J. C., Witbaard, R., Bergman, M. J. N., Van Rijswijk, P., Tramper,
A., Van Oevelen, D., Soetaert, K., and Degraer, S.: Acute impacts of bottom
trawl gears on benthic metabolism and nutrient cycling, ICES J. Mar. Sci.,
76, 1917–1930, https://doi.org/10.1093/icesjms/fsz060, 2019.
Tiano, J. C., van der Reijden, K. J., O'Flynn, S., Beauchard, O., van der
Ree, S., van der Wees, J., Ysebaert, T., and Soetaert, K.: Experimental
bottom trawling finds resilience in large-bodied infauna but vulnerability
for epifauna and juveniles in the Frisian Front, Mar. Environ. Res.,
159, 104964, https://doi.org/10.1016/j.marenvres.2020.104964, 2020.
Toussaint, E., De Borger, E., Braeckman, U., De Backer, A., Soetaert, K., and
Vanaverbeke, J.: Faunal and environmental drivers of carbon and nitrogen
cycling along a permeability gradient in shallow North Sea sediments, Sci.
Total Environ., 767, 144994, https://doi.org/10.1016/j.scitotenv.2021.144994, 2021.
Trimmer, M., Petersen, J., Sivyer, D., Mills, C., Young, E., and Parker, E.:
Impact of long-term benthic trawl disturbance on sediment sorting and
biogeochemistry in the southern North Sea, Mar. Ecol. Prog. Ser., 298,
79–94, https://doi.org/10.3354/meps298079, 2005.
van der Molen, J., Aldridge, J. N., Coughlan, C., Parker, E. R., Stephens,
D., and Ruardij, P.: Modelling marine ecosystem response to climate change
and trawling in the North Sea, Biogeochemistry, 113, 213–236,
https://doi.org/10.1007/s10533-012-9763-7, 2013.
Van De Velde, S., Van Lancker, V., Hidalgo-Martinez, S., Berelson, W. M., and
Meysman, F. J. R.: Anthropogenic disturbance keeps the coastal seafloor
biogeochemistry in a transient state, Sci. Rep., 8, 5582,
https://doi.org/10.1038/s41598-018-23925-y, 2018.
van Marlen, B., de Haan, D., van Gool, A., and Burggraaf, D.: The effect of
pulse stimulation on marine biota – Research in relation to ICES advice –
Progress report on the effects on benthic invertebrates, Inst. Mar. Resour. Ecosyst. Stud. Rep., C103/09, 53, 2009.
van Marlen, B., Wiegerinck, J. A. M., van Os-Koomen, E., and van Barneveld,
E.: Catch comparison of flatfish pulse trawls and a tickler chain beam
trawl, Fish. Res., 151, 57–69, https://doi.org/10.1016/j.fishres.2013.11.007, 2014.
Watling, L., Findlay, R. H., Mayer, L. M., and Schick, D. F.: Impact of a
scallop drag on the sediment chemistry, microbiota, and faunal assemblages
of a shallow subtidal marine benthic community, J. Sea Res., 46,
309–324, https://doi.org/10.1016/S1385-1101(01)00083-1, 2001.
Watson, R. A. and Morato, T.: Fishing down the deep: Accounting for
within-species changes in depth of fishing, Fish. Res., 140, 63–65,
https://doi.org/10.1016/j.fishres.2012.12.004, 2013.
West, B. T., Welch, K. B., and Galecki, A. T.: Linear Mixed Models, Chapman
and Hall/CRC, London, https://doi.org/10.1201/b17198, 2014.
Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A., and Smith, G. M.:
Mixed effects models and extensions in ecology with R, Springer New York,
New York, NY, 2009.
Short summary
Bottom trawling alters benthic mineralization: the recycling of organic material (OM) to free nutrients. To better understand how this occurs, trawling events were added to a model of seafloor OM recycling. Results show that bottom trawling reduces OM and free nutrients in sediments through direct removal thereof and of fauna which transport OM to deeper sediment layers protected from fishing. Our results support temporospatial trawl restrictions to allow key sediment functions to recover.
Bottom trawling alters benthic mineralization: the recycling of organic material (OM) to free...
Altmetrics
Final-revised paper
Preprint