Articles | Volume 18, issue 8
https://doi.org/10.5194/bg-18-2573-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-2573-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Decoupling salinity and carbonate chemistry: low calcium ion concentration rather than salinity limits calcification in Baltic Sea mussels
Marine Ecology, Helmholtz Centre for Ocean Research (GEOMAR), Kiel,
Germany
currently at: School of Ocean and Earth Science, National Oceanography Centre
Southampton, University of Southampton, Southampton, UK
Jörn Thomsen
Marine Ecology, Helmholtz Centre for Ocean Research (GEOMAR), Kiel,
Germany
Jens Daniel Müller
Environmental Physics, Institute of Biogeochemistry and Pollutant
Dynamics, ETH Zurich, Zurich, Switzerland
Department of Marine Chemistry, Leibniz Institute for Baltic Sea
Research, Warnemünde, Germany
Gregor Rehder
Department of Marine Chemistry, Leibniz Institute for Baltic Sea
Research, Warnemünde, Germany
Frank Melzner
Marine Ecology, Helmholtz Centre for Ocean Research (GEOMAR), Kiel,
Germany
Related authors
No articles found.
Daniel L. Pönisch, Henry C. Bittig, Martin Kolbe, Ingo Schuffenhauer, Stefan Otto, Peter Holtermann, Kusala Premaratne, and Gregor Rehder
Biogeosciences, 22, 3583–3614, https://doi.org/10.5194/bg-22-3583-2025, https://doi.org/10.5194/bg-22-3583-2025, 2025
Short summary
Short summary
Rewetted peatlands exhibit natural spatiotemporal biogeochemical heterogeneity, influenced by water level and vegetation. This study investigated the variability of greenhouse gas distribution in a peatland rewetted with brackish water. Two innovative sensor-equipped platforms were used to measure a wide range of marine physicochemical variables at high temporal resolution. The measurements revealed strong fluctuations in CO2 and CH4, expressed as multi-day, diurnal, and event-based variability.
Pratirupa Bardhan, Claudia Frey, Gregor Rehder, and Hermann W. Bange
EGUsphere, https://doi.org/10.5194/egusphere-2025-2518, https://doi.org/10.5194/egusphere-2025-2518, 2025
Short summary
Short summary
Nitrous oxide (N2O), a potent greenhouse gas, is released from coastal seas & estuaries, yet we don't fully understand how it is formed and consumed. In this study we collected water from several sites in the central Baltic Sea. N2O came from ammonia in oxic waters. Deep waters with low to no oxygen noted more active N2O cycling. The seafloor was a source in some areas. Typically N2O is produced by bacteria, but our results indicate possibility of other players like fungi or chemical reactions.
Li-Qing Jiang, Amanda Fay, Jens Daniel Müller, Lydia Keppler, Dustin Carroll, Siv K. Lauvset, Tim DeVries, Judith Hauck, Christian Rödenbeck, Luke Gregor, Nicolas Metzl, Andrea J. Fassbender, Jean-Pierre Gattuso, Peter Landschützer, Rik Wanninkhof, Christopher Sabine, Simone R. Alin, Mario Hoppema, Are Olsen, Matthew P. Humphreys, Kumiko Azetsu-Scott, Dorothee C. E. Bakker, Leticia Barbero, Nicholas R. Bates, Nicole Besemer, Henry C. Bittig, Albert E. Boyd, Daniel Broullón, Wei-Jun Cai, Brendan R. Carter, Thi-Tuyet-Trang Chau, Chen-Tung Arthur Chen, Frédéric Cyr, John E. Dore, Ian Enochs, Richard A. Feely, Hernan E. Garcia, Marion Gehlen, Lucas Gloege, Melchor González-Dávila, Nicolas Gruber, Yosuke Iida, Masao Ishii, Esther Kennedy, Alex Kozyr, Nico Lange, Claire Lo Monaco, Derek P. Manzello, Galen A. McKinley, Natalie M. Monacci, Xose A. Padin, Ana M. Palacio-Castro, Fiz F. Pérez, Alizée Roobaert, J. Magdalena Santana-Casiano, Jonathan Sharp, Adrienne Sutton, Jim Swift, Toste Tanhua, Maciej Telszewski, Jens Terhaar, Ruben van Hooidonk, Anton Velo, Andrew J. Watson, Angelicque E. White, Zelun Wu, Hyelim Yoo, and Jiye Zeng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-255, https://doi.org/10.5194/essd-2025-255, 2025
Preprint under review for ESSD
Short summary
Short summary
This review article provides an overview of 60 existing ocean carbonate chemistry data products, encompassing a broad range of types, including compilations of cruise datasets, gap-filled observational products, model simulations, and more. It is designed to help researchers identify and access the data products that best support their scientific objectives, thereby facilitating progress in understanding the ocean's changing carbonate chemistry.
Silvie Lainela, Erik Jacobs, Stella-Theresa Luik, Gregor Rehder, and Urmas Lips
Biogeosciences, 21, 4495–4519, https://doi.org/10.5194/bg-21-4495-2024, https://doi.org/10.5194/bg-21-4495-2024, 2024
Short summary
Short summary
We evaluate the variability of carbon dioxide and methane in the surface layer of the north-eastern basins of the Baltic Sea in 2018. We show that the shallower coastal areas have considerably higher spatial variability and seasonal amplitude of surface layer pCO2 and cCH4 than measured in the offshore areas of the Baltic Sea. Despite this high variability, caused mostly by coastal physical processes, the average annual air–sea CO2 fluxes differed only marginally between the sub-basins.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Marta Álvarez, Kumiko Azetsu-Scott, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Mario Hoppema, Matthew P. Humphreys, Masao Ishii, Emil Jeansson, Akihiko Murata, Jens Daniel Müller, Fiz F. Pérez, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Adam Ulfsbo, Anton Velo, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 16, 2047–2072, https://doi.org/10.5194/essd-16-2047-2024, https://doi.org/10.5194/essd-16-2047-2024, 2024
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2023 is the fifth update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality controlling, including systematic evaluation of measurement biases. This version contains data from 1108 hydrographic cruises covering the world's oceans from 1972 to 2021.
Henry C. Bittig, Erik Jacobs, Thomas Neumann, and Gregor Rehder
Earth Syst. Sci. Data, 16, 753–773, https://doi.org/10.5194/essd-16-753-2024, https://doi.org/10.5194/essd-16-753-2024, 2024
Short summary
Short summary
We present a pCO2 climatology of the Baltic Sea using a new approach to extrapolate from individual observations to the entire Baltic Sea. The extrapolation approach uses (a) a model to inform on how data at one location are connected to data at other locations, together with (b) very accurate pCO2 observations from 2003 to 2021 as the base data. The climatology can be used e.g. to assess uptake and release of CO2 or to identify extreme events.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Ingrid T. Luijkx, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Peter Anthoni, Leticia Barbero, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Bertrand Decharme, Laurent Bopp, Ida Bagus Mandhara Brasika, Patricia Cadule, Matthew A. Chamberlain, Naveen Chandra, Thi-Tuyet-Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Xinyu Dou, Kazutaka Enyo, Wiley Evans, Stefanie Falk, Richard A. Feely, Liang Feng, Daniel J. Ford, Thomas Gasser, Josefine Ghattas, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Fortunat Joos, Etsushi Kato, Ralph F. Keeling, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Xin Lan, Nathalie Lefèvre, Hongmei Li, Junjie Liu, Zhiqiang Liu, Lei Ma, Greg Marland, Nicolas Mayot, Patrick C. McGuire, Galen A. McKinley, Gesa Meyer, Eric J. Morgan, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin M. O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Melf Paulsen, Denis Pierrot, Katie Pocock, Benjamin Poulter, Carter M. Powis, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Roland Séférian, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Erik van Ooijen, Rik Wanninkhof, Michio Watanabe, Cathy Wimart-Rousseau, Dongxu Yang, Xiaojuan Yang, Wenping Yuan, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, https://doi.org/10.5194/essd-15-5301-2023, 2023
Short summary
Short summary
The Global Carbon Budget 2023 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2023). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Daniel L. Pönisch, Anne Breznikar, Cordula N. Gutekunst, Gerald Jurasinski, Maren Voss, and Gregor Rehder
Biogeosciences, 20, 295–323, https://doi.org/10.5194/bg-20-295-2023, https://doi.org/10.5194/bg-20-295-2023, 2023
Short summary
Short summary
Peatland rewetting is known to reduce dissolved nutrients and greenhouse gases; however, short-term nutrient leaching and high CH4 emissions shortly after rewetting are likely to occur. We investigated the rewetting of a coastal peatland with brackish water and its effects on nutrient release and greenhouse gas fluxes. Nutrient concentrations were higher in the peatland than in the adjacent bay, leading to an export. CH4 emissions did not increase, which is in contrast to freshwater rewetting.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Simone Alin, Marta Álvarez, Kumiko Azetsu-Scott, Leticia Barbero, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Mario Hoppema, Matthew P. Humphreys, Masao Ishii, Emil Jeansson, Li-Qing Jiang, Steve D. Jones, Claire Lo Monaco, Akihiko Murata, Jens Daniel Müller, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Adam Ulfsbo, Anton Velo, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 14, 5543–5572, https://doi.org/10.5194/essd-14-5543-2022, https://doi.org/10.5194/essd-14-5543-2022, 2022
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2022 is the fourth update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality controlling, including systematic evaluation of measurement biases. This version contains data from 1085 hydrographic cruises covering the world's oceans from 1972 to 2021.
Thomas Neumann, Hagen Radtke, Bronwyn Cahill, Martin Schmidt, and Gregor Rehder
Geosci. Model Dev., 15, 8473–8540, https://doi.org/10.5194/gmd-15-8473-2022, https://doi.org/10.5194/gmd-15-8473-2022, 2022
Short summary
Short summary
Marine ecosystem models are usually constrained by the elements nitrogen and phosphorus and consider carbon in organic matter in a fixed ratio. Recent observations show a substantial deviation from the simulated carbon cycle variables. In this study, we present a marine ecosystem model for the Baltic Sea which allows for a flexible uptake ratio for carbon, nitrogen, and phosphorus. With this extension, the model reflects much more reasonable variables of the marine carbon cycle.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Corinne Le Quéré, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Rob B. Jackson, Simone R. Alin, Peter Anthoni, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Laurent Bopp, Thi Tuyet Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Kim I. Currie, Bertrand Decharme, Laique M. Djeutchouang, Xinyu Dou, Wiley Evans, Richard A. Feely, Liang Feng, Thomas Gasser, Dennis Gilfillan, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Ingrid T. Luijkx, Atul Jain, Steve D. Jones, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Sebastian Lienert, Junjie Liu, Gregg Marland, Patrick C. McGuire, Joe R. Melton, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Clemens Schwingshackl, Roland Séférian, Adrienne J. Sutton, Colm Sweeney, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco Tubiello, Guido R. van der Werf, Nicolas Vuichard, Chisato Wada, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, and Jiye Zeng
Earth Syst. Sci. Data, 14, 1917–2005, https://doi.org/10.5194/essd-14-1917-2022, https://doi.org/10.5194/essd-14-1917-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2021 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Karol Kuliński, Gregor Rehder, Eero Asmala, Alena Bartosova, Jacob Carstensen, Bo Gustafsson, Per O. J. Hall, Christoph Humborg, Tom Jilbert, Klaus Jürgens, H. E. Markus Meier, Bärbel Müller-Karulis, Michael Naumann, Jørgen E. Olesen, Oleg Savchuk, Andreas Schramm, Caroline P. Slomp, Mikhail Sofiev, Anna Sobek, Beata Szymczycha, and Emma Undeman
Earth Syst. Dynam., 13, 633–685, https://doi.org/10.5194/esd-13-633-2022, https://doi.org/10.5194/esd-13-633-2022, 2022
Short summary
Short summary
The paper covers the aspects related to changes in carbon, nitrogen, and phosphorus (C, N, P) external loads; their transformations in the coastal zone; changes in organic matter production (eutrophication) and remineralization (oxygen availability); and the role of sediments in burial and turnover of C, N, and P. Furthermore, this paper also focuses on changes in the marine CO2 system, the structure of the microbial community, and the role of contaminants for biogeochemical processes.
Martti Honkanen, Jens Daniel Müller, Jukka Seppälä, Gregor Rehder, Sami Kielosto, Pasi Ylöstalo, Timo Mäkelä, Juha Hatakka, and Lauri Laakso
Ocean Sci., 17, 1657–1675, https://doi.org/10.5194/os-17-1657-2021, https://doi.org/10.5194/os-17-1657-2021, 2021
Short summary
Short summary
The exchange of carbon dioxide (CO2) between the sea and the atmosphere is regulated by the gradient of CO2 partial pressure (pCO2) between the sea and the air. The daily variation of the seawater pCO2 recorded at the fixed station Utö in the Baltic Sea was found to be mainly biologically driven. Calculation of the annual net exchange of CO2 between the sea and atmosphere based on daily measurements of pCO2 carried out using the same sampling time every day could introduce a bias of up to 12 %.
Jens Daniel Müller, Bernd Schneider, Ulf Gräwe, Peer Fietzek, Marcus Bo Wallin, Anna Rutgersson, Norbert Wasmund, Siegfried Krüger, and Gregor Rehder
Biogeosciences, 18, 4889–4917, https://doi.org/10.5194/bg-18-4889-2021, https://doi.org/10.5194/bg-18-4889-2021, 2021
Short summary
Short summary
Based on profiling pCO2 measurements from a field campaign, we quantify the biomass production of a cyanobacteria bloom in the Baltic Sea, the export of which would foster deep water deoxygenation. We further demonstrate how this biomass production can be accurately reconstructed from long-term surface measurements made on cargo vessels in combination with modelled temperature profiles. This approach enables a better understanding of a severe concern for the Baltic’s good environmental status.
Erik Jacobs, Henry C. Bittig, Ulf Gräwe, Carolyn A. Graves, Michael Glockzin, Jens D. Müller, Bernd Schneider, and Gregor Rehder
Biogeosciences, 18, 2679–2709, https://doi.org/10.5194/bg-18-2679-2021, https://doi.org/10.5194/bg-18-2679-2021, 2021
Short summary
Short summary
We use a unique data set of 8 years of continuous carbon dioxide (CO2) and methane (CH4) surface water measurements from a commercial ferry to study upwelling in the Baltic Sea. Its seasonality and regional and interannual variability are examined. Strong upwelling events drastically increase local surface CO2 and CH4 levels and are mostly detected in late summer after long periods of impaired mixing. We introduce an extrapolation method to estimate regional upwelling-induced trace gas fluxes.
Anna Rose Canning, Peer Fietzek, Gregor Rehder, and Arne Körtzinger
Biogeosciences, 18, 1351–1373, https://doi.org/10.5194/bg-18-1351-2021, https://doi.org/10.5194/bg-18-1351-2021, 2021
Short summary
Short summary
The paper describes a novel, fully autonomous, multi-gas flow-through set-up for multiple gases that combines established, high-quality oceanographic sensors in a small and robust system designed for use across all salinities and all types of platforms. We describe the system and its performance in all relevant detail, including the corrections which improve the accuracy of these sensors, and illustrate how simultaneous multi-gas set-ups can provide an extremely high spatiotemporal resolution.
Meike Becker, Are Olsen, Peter Landschützer, Abdirhaman Omar, Gregor Rehder, Christian Rödenbeck, and Ingunn Skjelvan
Biogeosciences, 18, 1127–1147, https://doi.org/10.5194/bg-18-1127-2021, https://doi.org/10.5194/bg-18-1127-2021, 2021
Short summary
Short summary
We developed a simple method to refine existing open-ocean maps towards different coastal seas. Using a multi-linear regression, we produced monthly maps of surface ocean fCO2 in the northern European coastal seas (the North Sea, the Baltic Sea, the Norwegian Coast and the Barents Sea) covering a time period from 1998 to 2016. Based on this fCO2 map, we calculate trends in surface ocean fCO2, pH and the air–sea gas exchange.
Samuel T. Wilson, Alia N. Al-Haj, Annie Bourbonnais, Claudia Frey, Robinson W. Fulweiler, John D. Kessler, Hannah K. Marchant, Jana Milucka, Nicholas E. Ray, Parvadha Suntharalingam, Brett F. Thornton, Robert C. Upstill-Goddard, Thomas S. Weber, Damian L. Arévalo-Martínez, Hermann W. Bange, Heather M. Benway, Daniele Bianchi, Alberto V. Borges, Bonnie X. Chang, Patrick M. Crill, Daniela A. del Valle, Laura Farías, Samantha B. Joye, Annette Kock, Jabrane Labidi, Cara C. Manning, John W. Pohlman, Gregor Rehder, Katy J. Sparrow, Philippe D. Tortell, Tina Treude, David L. Valentine, Bess B. Ward, Simon Yang, and Leonid N. Yurganov
Biogeosciences, 17, 5809–5828, https://doi.org/10.5194/bg-17-5809-2020, https://doi.org/10.5194/bg-17-5809-2020, 2020
Short summary
Short summary
The oceans are a net source of the major greenhouse gases; however there has been little coordination of oceanic methane and nitrous oxide measurements. The scientific community has recently embarked on a series of capacity-building exercises to improve the interoperability of dissolved methane and nitrous oxide measurements. This paper derives from a workshop which discussed the challenges and opportunities for oceanic methane and nitrous oxide research in the near future.
Cited articles
Allison, N., Cohen, I., Finch, A. A., Erez, J., Tudhope, A. W., and
Edinburgh Ion Microprobe Facility: Corals concentrate dissolved inorganic
carbon to facilitate calcification, Nat. Commun., 5, 5741, https://doi.org/10.1038/ncomms6741, 2014.
Attard, K. M., Rodil, I. F., Berg, P., Mogg, A. O. M., Westerbom, M.,
Norkko, A., and Gludd, R. N.: Metabolism of a subtidal rocky mussel reef in
a high-temperate setting: pathways of organic C flow, Mar. Ecol.-Prog. Ser.,
645, 41–54, https://doi.org/10.3354/meps13372, 2020.
Bach, L. T.: Reconsidering the role of carbonate ion concentration in calcification by marine organisms, Biogeosciences, 12, 4939–4951, https://doi.org/10.5194/bg-12-4939-2015, 2015.
Beldowski, J., Löffler, A., Schneider, B., and Joensuu, L.: Distribution
and biogeochemical control of the total CO2 and total alkalinity in the
Baltic Sea, J. Marine Syst., 81, 252–259, https://doi.org/10.1016/j.jmarsys.2009.12.020, 2010.
Cyronak, T., Schulz, K. G., and Jokiel, P. L.: The Omega myth: what really
drives lower calcification rates in an acidifying ocean, ICES J. Mar. Sci.,
73, 558–562, https://doi.org/10.1093/icesjms/fsv075, 2016.
Dickson, A. G.: Standard potential of the reaction – AgCl(s) + 12H2 = Ag(s) + HCl(aq) and the standard acidity constant of the ion HSO in
synthetic sea-water from 273.15-K to 318.15-K, J. Chem. Thermodyn., 22,
113–127, https://doi.org/10.1016/0021-9614(90)90074-Z, 1990.
Dickson, A. G., Afgan, J. D., and Anderson, G. C.: Reference materials for
oceanic CO2 analysis: a method for the certification of total alkalinity,
Mar. Chem., 80, 185–197, https://doi.org/10.1016/S0304-4203(02)00133-0, 2003.
Dickson, A. G., Sabine, C.vL., and Christian, J. R. (Eds.): Guide to Best Practices for Ocean CO2 Measurements, PICES Special Publication 3, IOCCP Report No. 8, 191 pp., 2007.
Elmgren, R. and Hill, C. (Eds.): Ecosystem function at low biodiversity –
the Baltic example, in: Marine Biodiversity: Patterns and Processes, edited
by: Ormond, R. F. G., Gage, J. D., and Angel, M. V., Cambridge University
Press, Cambridge, UK, 319–336, https://doi.org/10.1017/CBO9780511752360, 1997.
EU, Copernicus Marine Service: Copernicus Marine Environment Monitoring
Service – CMEMS, available at: http://marine.copernicus.eu/, last access:
7 February 2018.
Fassbender, A. J., Sabine, C. L., and Feifel, K. M.: Consideration of
coastal carbonate chemistry in understanding biological calcification,
Geophys. Res. Lett., 43, 4467–4476, https://doi.org/10.1002/2016GL068860, 2016.
Gräwe, U., Friedland, R., and Burchard, H.: The future of the western
Baltic Sea: two possible scenarios, Ocean Dynam., 63, 901–921, https://doi.org/10.1007/s10236-013-0634-0, 2013.
Gustafsson, E. and Gustafsson, B. G.: Future acidification of the Baltic
Sea – A sensitivity study, J. Marine Syst., 211, 103397, https://doi.org/10.1016/j.jmarsys.2020.103397, 2020.
Gustafsson, E., Hagens, M., Sun, X., Reed, D. C., Humborg, C., Slomp, C. P., and Gustafsson, B. G.: Sedimentary alkalinity generation and long-term alkalinity development in the Baltic Sea, Biogeosciences, 16, 437–456, https://doi.org/10.5194/bg-16-437-2019, 2019.
Hammer, K., Schneider, B., Kuliński, K., and Schulz-Bull, D. E.:
Precision and accuracy of spectrophotometric pH measurements at
environmental conditions in the Baltic Sea, Estuar. Coast. Shelf S., 146,
24–32, https://doi.org/10.1016/j.ecss.2014.05.003, 2014.
Hawkins, A. J. S. and Hilbish, T. J.: The cost of cell volume regulation:
protein metabolism during hyperosmotic adjustment, J. Mar. Biol. Assoc.
UK, 72, 569–578, https://doi.org/10.1017/S002531540005935X,
1992.
Heckwolf, M. J., Peterson, A., Jänes, H., Horne, P., Künne, J.,
Liversage, K., Sajeva, M., Reusch, T. B. H., and Kotta, J.: From ecosystems
to socio-economic benefits: A systematic review of coastal ecosystem
services in the Baltic Sea, Sci. Total Environ., 755, 142565, https://doi.org/10.1016/j.scitotenv.2020.142565, 2021.
Heinemann, A., Fietzke, J., Melzner, F., Böhm, F., Thomsen, J.,
Garbe-Schönberg, D., and Eisenhauer, A.: Conditions of Mytilus edulis extracellular
body fluids and shell composition in a pH-treatment experiment: Acid-base
status, trace elements and δ11B, Geochem. Geophy. Geosy., 13,
Q01005, https://doi.org/10.1029/2011GC003790, 2012.
Hiebenthal, C., Fietzek, P., Müller, J. D., Otto, S., Rehder, G.,
Paulsen, M., Stuhr, A., Clemmesen, C., and Melzner, F.: Kiel Fjord carbonate
chemistry data between 2015 (January) and 2016 (January), GEOMAR –
Helmholtz Centre for Ocean Research Kiel, PANGEA, https://doi.org/10.1594/PANGAEA.876551, 2017.
Hu, H. Y., Yan, J.-J., Petersen, I., Himmerkus, N., Bleich, M., and Stumpp,
M.: A SLC4 family bicarbonate transporter is critical for intracellular pH
regulation and biomineralization in sea urchin embryos, eLife, 7, e36600,
https://doi.org/10.7554/eLife.36600.001, 2018.
Ivanina, A. V., Jarrett, A., Bell, T., Rimkevicius, T., Beniash, E., and
Sokolova, I. M.: Effects of seawater salinity and pH on cellular metabolism
and enzyme activities in biomineralizing tissues of marine bivalves, Comp.
Biochem. Phys. A, 248, 110748, https://doi.org/10.1016/j.cbpa.2020.110748, 2020.
Jokiel, P. L.: Coral reef calcification: carbonate, bicarbonate and proton
flux under conditions of increasing ocean acidification, P. Roy. Soc. B,
280, 20130031, https://doi.org/10.1098/rspb.2013.0031, 2013.
Kautsky, N., Johannesson, K., and Tedengren, M.: Genotypic and phenotypic
differences between Baltic and North Sea populations of Mytilus edulis evaluated through
reciprocal transplantations. I. Growth and morphology, Mar. Ecol.-Prog.
Ser., 59, 203–210, https://doi.org/10.3354/meps059203, 1990.
Kester, D. R., Duedall, I. W., Connors, D. N., and Pytkowicz, R. M.:
Preparation of artificial seawater, Limnol. Oceanogr., 12, 176–179,
https://doi.org/10.4319/lo.1967.12.1.0176, 1967.
Koivisto, M. E. and Westerbom, M.: Habitat structure and complexity as
determinants of biodiversity in blue mussel beds on sublittoral rocky
shores, Mar. Biol., 157, 1463–1474, https://doi.org/10.1007/s00227-010-1421-9, 2010.
Kossak, U.: How climate change translates into ecological change: Impacts of
warming and desalination on prey properties and predator-prey interactions
in the Baltic Sea, PhD Thesis, Mathematics and Natural Sciences faculty of
Christian Albrechts University, Kiel, 2006.
Kotta, J., Futter, M., Kaasik, A., Liversage, K., Rätsep, M., Barboza,
F. R., Bergström, L., Bergström, P., Bobsien, I., Díaz, E.,
Herkül, K., Jonsson, P. R., Korpinen, S., Kraufvelin, P., Krost, P.,
Lindahl, O., Lindegarth, M., Lyngsgaard, M. M., Mühl, M., Sandman, A.
N., Orav-Kotta, H., Orlova, M., Skov, H., Rissanen, J., Šiaulys, A.,
Vidakovic, A., and Virtanen, E.: Cleaning up seas using blue growth
initiatives: Mussel farming for eutrophication control in the Baltic Sea,
Sci. Total Environ., 709, 136144, https://doi.org/10.1016/j.scitotenv.2019.136144, 2020.
Kremling, K. and Wilhelm, G.: Recent increase of the calcium concentrations
in Baltic Sea waters, Mar. Pollut. Bull., 34, 763–767, https://doi.org/10.1016/S0025-326X(97)00048-9, 1997.
Kuliński, K., Schneider, B., Hammer, K., Machulik, U., and Schulz-Bull,
D.: The influence of dissolved organic matter on the acid-base system of the
Baltic Sea, J. Marine Syst., 132, 106–115, https://doi.org/10.1016/j.jmarsys.2014.01.011, 2014.
Maar, M., Saurel, C., Landes, A., Dolmer, P., and Petersen, J. K.: Growth
potential of blue mussels (M. edulis) exposed to different salinities evaluated by a
Dynamic Energy Budget model, J. Marine Syst., 148, 48–55, https://doi.org/10.1016/j.jmarsys.2015.02.003, 2015.
McConnaughey, T. A. and Whelan, J. F.: Calcification generates protons for
nutrient and bicarbonate uptake, Earth-Sci. Rev., 42, 95–117, https://doi.org/10.1016/S0012-8252(96)00036-0, 1997.
Meier, H. E. M.: Baltic Sea climate in the late twenty-first century: a
dynamical downscaling approach using two global models and two emission
scenarios, Clim. Dynam., 27, 39–68, https://doi.org/10.1007/s00382-006-0124-x, 2006.
Melzner, F., Gutowska, M. A., Langenbuch, M., Dupont, S., Lucassen, M., Thorndyke, M. C., Bleich, M., and Pörtner, H.-O.: Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny?, Biogeosciences, 6, 2313–2331, https://doi.org/10.5194/bg-6-2313-2009, 2009.
Melzner, F., Stange, P., Trübenbach, K., Thomsen, J., Casties, I.,
Panknin, U., Gorb, S. N., and Gutowska, M.: Food supply and seawater pCO2
impact calcification and internal shell dissolution in the blue mussel
Mytilus edulis, PLoS ONE, 6, e24223, https://doi.org/10.1371/journal.pone.0024223, 2011.
Melzner, F., Thomsen, J., Koeve, W., Oschlies, W., Gutowska, M. A., Bange,
H. W., Hansen, H. P., and Körtzinger, A.: Future ocean acidification
will be amplified by hypoxia in coastal habitats, Mar. Biol., 160,
1875–1888, https://doi.org/10.1007/s00227-012-1954-1, 2013.
Miller, A. W., Reynolds, A. C., Sobrino, C., and Riedel, G. F.: Shellfish
face uncertain future in high CO2 world: Influence of acidification on
oyster larvae calcification and growth in estuaries, PLoS ONE, 4, E5661,
https://doi.org/10.1371/journal.pone.0005661, 2009.
Millero, F.: The conductivity-density-salinity-chlorinity relationships for
estuarine water, Limnol. Oceanogr., 29, 1317–1321, https://doi.org/10.4319/lo.1984.29.6.1317, 1984.
Millero, F. J.: Carbonate constants for estuarine waters, Mar. Freshwater
Res., 61, 139–142, https://doi.org/10.1071/MF09254, 2010.
Millero, F. J., Lee, K., and Roche, M.: Distribution of alkalinity in the
surface waters of the major oceans, Mar. Chem., 60, 111–130, https://doi.org/10.1016/S0304-4203(97)00084-4, 1998.
Mohrholz, V., Naumann, M., Nausch, G., Krüger, S., and Gräwe, U.:
Fresh oxygen for the Baltic Sea – an exceptional saline inflow after a
decade of stagnation, J. Marine Syst. 148, 152–166, https://doi.org/10.1016/j.jmarsys.2015.03.005, 2015.
Müller, J. D. and Rehder, G.: Metrology of pH Measurements in Brackish
Waters – Part 2: Experimental Characterization of Purified meta-Cresol
Purple for Spectrophotometric pHT Measurements, Front. Mar. Sci., 5, 177,
https://doi.org/10.3389/fmars.2018.00177, 2018.
Müller, J. D., Schneider, B., and Rehder, G.: Long-term alkalinity
trends in the Baltic Sea and their implications for CO2-induced
acidification, Limnol. Oceanogr., 61, 1984–2002, https://doi.org/10.1002/lno.10349, 2016.
Neufeld, D. S. and Wright, S. H.: Response of cell volume in Mytilus gill to acute
salinity change, J. Exp. Biol., 199, 473–484, 1996.
Neumann, T.: Climate-change effects on the Baltic Sea ecosystem: A model
study, J. Marine Syst., 81, 213–224, https://doi.org/10.1016/j.jmarsys.2009.12.001, 2010.
Niggli, V., Sigel, E., and Carafoli, E.: The purified Ca2+ pump of
human erythrocyte membranes catalyzes an electroneutral Ca2+-H+
exchange in reconstituted liposomal systems, Cell Calcium, 257, 2350–2356, https://doi.org/10.1016/0143-4160(82)90010-0, 1982.
Norling, P. and Kautsky, N.: Patches of the mussel Mytilus sp. are islands of high
biodiversity in subtidal sediment habitats in the Baltic Sea, Aquat. Biol.,
4, 75–87, https://doi.org/10.3354/ab00096, 2008.
Palmer, A. R.: Calcification in marine molluscs: How costly is it?, P.
Natl. Acad. Sci. USA, 89, 1379–1382, https://doi.org/10.1073/pnas.89.4.1379, 1992.
R Core Team: R: A language and environment for statistical computing, R
Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (last access: 12 March 2021), 2020.
Ramesh, K., Hu, M. Y., Thomsen, J., Bleich, M., and Melzner, F.: Mussel
larvae modify calcifying fluid carbonate chemistry to promote calcification,
Nat. Commun., 8, 1709, https://doi.org/10.1038/s41467-017-01806-8, 2017.
Ries, J. B., Ghazaleh, M. N., Connolly, B., Westfiel, I., and Castillo, K.
D.: Impacts of seawater saturation state (ΩA = 0.4–4.6) and
temperature (10, 25 ∘C) on the dissolution kinetics of
whole-shell biogenic carbonates, Geochim. Cosmochim. Ac., 192, 318–337,
https://doi.org/10.1016/j.gca.2016.07.001, 2016.
Riisgård, H. U., Pleissner, D., Lundgreen, K., and Larse, P. S.: Growth
of mussels Mytlus edulis, at algal (Rhodomonas salina) concentrations below and above saturation levels
for reduced filtration rate, Mar. Biol. Res., 9, 1005–1017, https://doi.org/10.1080/17451000.2012.742549, 2013.
Riisgård, H. U., Larsen, P. S., Turja, R., and Lundgreen, K.: Dwarfism
of blue mussels in the low saline Baltic Sea – growth to the lower salinity
limit, Mar. Ecol.-Prog. Ser., 517, 181–192, https://doi.org/10.3354/meps11011, 2014.
Roleda, M. Y., Boyd, P. W., and Hurd, C. L.: Before ocean acidification:
calcifier chemistry lessons (1), J. Phycol., 48, 840–843, https://doi.org/10.1111/j.1529-8817.2012.01195.x, 2012.
Saderne, V., Fietzek, P., and Herman, P. M. J.: Extreme variations of pCO2
and pH in a macrophyte meadow of the Baltic Sea in summer: evidence of the
effect of photosynthesis and local upwelling, PLoS ONE, 8, e62689,
https://doi.org/10.1371/journal.pone.0062689, 2013.
Sanders, T., Schmittmann, L., Nascimento-Schulze, J., and Melzner, F.: High
calcification costs limit mussel growth at low salinity, Front. Mar. Sci.,
5, 352, https://doi.org/10.3389/fmars.2018.00352, 2018.
Sanders, T., Thomsen, J., Müller, J. D., Rehder, G., and Melzner, F.: Mussel calcification in the Baltic Sea under natural and manipulated carbonate chemistry parameters, PANGAEA, https://doi.org/10.1594/PANGAEA.925017, 2020.
Sillanpää, J. K., Cardoso, J. C. R., Félix, R. C., Anjos, L.,
Power, D. M., and Sundell, K.: Dilution of seawater affects the Ca2+
transport in the outer mantle epithelium of Crassostrea gigas, Front. Physiol., 11, 1, https://doi.org/10.3389/fphys.2020.00001, 2020.
Stuckas, H., Knöbel, L., Schade, H., Breusing, C., Hinrichsen, H. H.,
Bartel, M., Langguth, C., and Melzner, F.: Combining hydrodynamic modelling
with genetics: can passive larval drift shape the genetic structure of
Baltic Mytilus populations?, Mol. Ecol., 26, 2765–2782, https://doi.org/10.1111/mec.14075, 2017.
Tedengren, M. and Kautsky, N.: Comparative study of the physiology and its
probable effect on size in blue mussels (Mytilus edulis L.) from the North Sea and the
Northern Baltic Proper, Ophelia, 25, 147–155, https://doi.org/10.1080/00785326.1986.10429746, 1986.
Telesca, L., Peck, L. S., Sanders, T., Thyrring, J., Sejr, M. K., and
Harper, E. M.: Biomineralization plasticity and environmental heterogeneity
predict geographical resilience patterns of foundation species to future
change, Glob. Change Biol., 25, 4179–4193, https://doi.org/10.1111/gcb.14758, 2019.
Thomas, H. and Schneider, B.: The seasonal cycle of carbon dioxide in
Baltic Sea surface waters, J. Marine Syst., 22, 53–67, https://doi.org/10.1016/S0924-7963(99)00030-5, 1999.
Thomsen, J., Gutowska, M. A., Saphörster, J., Heinemann, A., Trübenbach, K., Fietzke, J., Hiebenthal, C., Eisenhauer, A., Körtzinger, A., Wahl, M., and Melzner, F.: Calcifying invertebrates succeed in a naturally CO2-rich coastal habitat but are threatened by high levels of future acidification, Biogeosciences, 7, 3879–3891, https://doi.org/10.5194/bg-7-3879-2010, 2010.
Thomsen, J., Casties, I., Pansch, C., Körtzinger, A., and Melzner, F.:
Food availability outweighs ocean acidification effects in juvenile Mytilus edulis:
laboratory and field experiments, Glob. Change Biol., 19, 1017–1027,
https://doi.org/10.1111/gcb.12109, 2013.
Thomsen, J., Haynert, K., Wegner, K. M., and Melzner, F.: Impact of seawater carbonate chemistry on the calcification of marine bivalves, Biogeosciences, 12, 4209–4220, https://doi.org/10.5194/bg-12-4209-2015, 2015.
Thomsen, J., Ramesh, K., Sanders, T., Bleich, M., and Melzner, F.: Calcification in a marginal sea – influence of seawater [Ca2+] and carbonate chemistry on bivalve shell formation, Biogeosciences, 15, 1469–1482, https://doi.org/10.5194/bg-15-1469-2018, 2018.
Tresguerres, M.: Novel and potential physiological roles of vacuolar-type
H+-ATPase in marine organisms, J. Exp. Biol., 219, 2088–2097, https://doi.org/10.1242/jeb.128389, 2016.
Tyrrell, T., Schneider, B., Charalampopoulou, A., and Riebesell, U.: Coccolithophores and calcite saturation state in the Baltic and Black Seas, Biogeosciences, 5, 485–494, https://doi.org/10.5194/bg-5-485-2008, 2008.
Vuorinen, I., Antsulevich, A. E., and Maximovich, N. V.: Spatial
distribution and growth of the common mussel Mytilus edulis L. in the archipelago of
SW-Finland, northern Baltic Sea, Boreal Environ. Res., 7, 41–52, 2002.
Vuorinen, I., Hänninen, J., Rajasilta, M., Laine, P., Eklund, J.,
Montesine-Pouzols, F., Corona, F., Junker, K., Meier, H. E. M., and Dippner,
J. W.: Scenario simulations of future salinity and ecological consequences
in the Baltic Sea and adjacent North Sea areas – implications for
environmental monitoring, Ecol. Indic., 50, 196–205, https://doi.org/10.1016/j.ecolind.2014.10.019, 2015.
Wahl, M., Schneider Covachã, S., Saderne, V., Hiebenthal, C.,
Müller, J. D., Pansch, C., and Sawall, Y.: Macroalgae may mitigate ocean
acidification effects on mussel calcification by increasing pH and its
fluctuations, Limnol. Oceanogr., 63, 3–21, https://doi.org/10.1002/lno.10608, 2017.
Waldbusser, G. G., Brunner, E. L., Haley, B. A., Hales, B., Langdon, C. J.,
and Prahl, F. G.: A developmental and energetic basis linking larval oyster
shell formation to acidification sensitivity, Geophys. Res. Lett., 40,
2171–2176, https://doi.org/10.1002/grl.50449, 2013.
Waldbusser, G. G., Hales, B., Langdon, C. J., Haley, B. A., Schrader, P.,
Brunner, E. L., Gray, M. W., Miller, C. A., and Gimenez, I.:
Saturation-state sensitivity of marine bivalve larvae to ocean
acidification, Nat. Clim. Change, 5, 273–280, https://doi.org/10.1038/nclimate2479, 2014.
Wasmund, N., Tuimala, J., Suikkanen, S., Vandepitte, L., and Kraberg, A.:
Long-term trends in phytoplankton composition in the western and central
Baltic Sea, J. Marine Syst., 87, 145–159, https://doi.org/10.1016/j.jmarsys.2011.03.010, 2011.
Westerbom, M., Kilpi, M., and Mustonen, O.: Blue mussels, Mytilus edulis, at the edge of
the range: population structure, growth and biomass along a salinity
gradient in the north-eastern Baltic Sea, Mar. Biol., 140, 991–999, https://doi.org/10.1007/s00227-001-0765-6, 2002.
Westerbom, M., Mustonen, O., Jaatinen, K., Kilpi, M., and Norkko, A.:
Population dynamics at the range margin: Implications of climate change on
sublittoral blue mussels (Mytilus trossulus), Front. Mar. Sci., 6, 292, https://doi.org/10.3389/fmars.2019.00292, 2019.
Willmer, P. G.: Volume regulation and solute balance in the nervous tissue
of an osmoconforming bivalve (Mytilus edulis), J. Exp. Biol., 77, 157–179, 1978.
Zeebe, R. E. and Wolf-Gladrow, D. A.: CO2 in seawater: Equilibrium,
kinetics, isotopes, Amsterdam, Elsevier Oceanography Series, 2001.
Zoccola, D., Ganot, P., Bertucci, A., Caminiti-Segonds, N., Techer, N.,
Voolstra, C. R., Aranda, M., Tambutté, É., Allemand, D., Casey, J.
R., and Tambutté, S.: Bicarbonate transporters in corals point towards a
key step in the evolution of cnidarian calcification, Sci. Rep.-UK, 5, 9983,
https://doi.org/10.1038/srep09983, 2015.
Short summary
The Baltic Sea is expected to experience a rapid drop in salinity and increases in acidity and warming in the next century. Calcifying mussels dominate Baltic Sea seafloor ecosystems yet are sensitive to changes in seawater chemistry. We combine laboratory experiments and a field study and show that a lack of calcium causes extremely slow growth rates in mussels at low salinities. Subsequently, climate change in the Baltic may have drastic ramifications for Baltic seafloor ecosystems.
The Baltic Sea is expected to experience a rapid drop in salinity and increases in acidity and...
Altmetrics
Final-revised paper
Preprint