Articles | Volume 18, issue 9
https://doi.org/10.5194/bg-18-2957-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-2957-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Climate change and elevated CO2 favor forest over savanna under different future scenarios in South Asia
Dushyant Kumar
CORRESPONDING AUTHOR
Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
Mirjam Pfeiffer
Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
Camille Gaillard
Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
Liam Langan
Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
Simon Scheiter
Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
Related authors
No articles found.
Simon Scheiter, Jinfeng Chang, Philippe Ciais, Marie Dury, Louis Francois, Matthew Forrest, Alexandra Henrot, Christopher P. O. Reyer, Sonia Seneviratne, Jörg Steinkamp, Wim Thiery, Wenfang Xu, and Thomas Hickler
EGUsphere, https://doi.org/10.5194/egusphere-2026-221, https://doi.org/10.5194/egusphere-2026-221, 2026
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Our study shows how climate change may reshape the world's major biomes, such as forests, grasslands, and tundra. Using dynamic vegetation models, machine learning and real-world observations, we found that many biomes are likely to shift toward the poles as temperatures rise. Even under low-emission scenarios, large areas could change. These results help identify regions most susceptible to climate change and support global efforts to protect and manage natural ecosystems in the future.
Mateus Dantas de Paula, Tatiana Reichert, Laynara F. Lugli, Erica McGale, Kerstin Pierick, João Paulo Darela-Filho, Liam Langan, Jürgen Homeier, Anja Rammig, and Thomas Hickler
Biogeosciences, 22, 2707–2732, https://doi.org/10.5194/bg-22-2707-2025, https://doi.org/10.5194/bg-22-2707-2025, 2025
Short summary
Short summary
This study explores how plant roots with different forms and functions rely on fungal partnerships for nutrient uptake. This relationship was integrated into a vegetation model and was tested in a tropical forest in Ecuador. The model accurately predicted root traits and showed that without fungi, biomass decreased by up to 80 %. The findings highlight the critical role of fungi in ecosystem processes and suggest that root–fungal interactions should be considered in vegetation models.
Simon Scheiter, Sophie Wolf, and Teja Kattenborn
Biogeosciences, 21, 4909–4926, https://doi.org/10.5194/bg-21-4909-2024, https://doi.org/10.5194/bg-21-4909-2024, 2024
Short summary
Short summary
Biomes are widely used to map vegetation patterns at large spatial scales and to assess impacts of climate change, yet there is no consensus on a generally valid biome classification scheme. We used crowd-sourced species distribution data and trait data to assess whether trait information is suitable for delimiting biomes. Although the trait data were heterogeneous and had large gaps with respect to the spatial distribution, we found that a global trait-based biome classification was possible.
Mirjam Pfeiffer, Munir P. Hoffmann, Simon Scheiter, William Nelson, Johannes Isselstein, Kingsley Ayisi, Jude J. Odhiambo, and Reimund Rötter
Biogeosciences, 19, 3935–3958, https://doi.org/10.5194/bg-19-3935-2022, https://doi.org/10.5194/bg-19-3935-2022, 2022
Short summary
Short summary
Smallholder farmers face challenges due to poor land management and climate change. We linked the APSIM crop model and the aDGVM2 vegetation model to investigate integrated management options that enhance ecosystem functions and services. Sustainable intensification moderately increased yields. Crop residue grazing reduced feed gaps but not for dry-to-wet season transitions. Measures to improve soil water and nutrient status are recommended. Landscape-level ecosystem management is essential.
Angelica Feurdean, Andrei-Cosmin Diaconu, Mirjam Pfeiffer, Mariusz Gałka, Simon M. Hutchinson, Geanina Butiseaca, Natalia Gorina, Spassimir Tonkov, Aidin Niamir, Ioan Tantau, Hui Zhang, and Sergey Kirpotin
Clim. Past, 18, 1255–1274, https://doi.org/10.5194/cp-18-1255-2022, https://doi.org/10.5194/cp-18-1255-2022, 2022
Short summary
Short summary
We used palaeoecological records from peatlands in southern Siberia. We showed that warmer climate conditions have lowered the water level and increased the fuel amount and flammability, consequently also increasing the frequency and severity of fires as well as the composition of tree types.
Cited articles
Acharya, B. S., Kharel, G., Zou, C. B., Wilcox, B. P., and Halihan, T.: Woody
plant encroachment impacts on groundwater recharge: A review, Water, 10,
1466, https://doi.org/10.3390/w10101466, 2018. a
Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., Church, J. A., Clarke, L., Dahe, Q., Dasgupta, P., and Dubash, N. K.: IPCC fifth assessment synthesis report-climate change 2014 synthesis report, Intergovernmental Panel on Climate Change, Geneva, Switzerland, 2014. a
Archer, S. R., Andersen, E. M., Predick, K. I., Schwinning, S., Steidl, R. J., and Woods, S. R.: Woody plant encroachment: causes and consequences, in: Rangeland systems, Springer, Cham, Switzerland, 25–84,
https://doi.org/10.1007/978-3-319-46709-2_2, 2017. a
Bednarz, S. T., Dybala, T., Muttiah, R. S., Rosenthal, W., and Dugas, W. A.:
Brush/water yield feasibility studies, Blackland Research Center, Temple,
Texas, USA, 2001. a
Bera, S. K., Basumatary, S. K., Agarwal, A., and Ahmed, M.: Conversion of
forest land in Garo Hills, Meghalaya for construction of roads: A
threat to the environment and biodiversity, Curr. Sci. India, 91, 281–284, 2006. a
Boulangeat, I., Philippe, P., Abdulhak, S., Douzet, R., Garraud, L., Lavergne, S., Lavorel, S., Van Es, J., Vittoz, P., and Thuiller, W.: Improving plant functional groups for dynamic models of biodiversity: at the crossroads between functional and community ecology, Global Change Biol., 18, 3464–3475, https://doi.org/10.1111/j.1365-2486.2012.02783.x, 2012. a
Brienen, R. J., Phillips, O. L., Feldpausch, T. R., Gloor, E., Baker, T. R.,
Lloyd, J., Lopez-Gonzalez, G., Monteagudo-Mendoza, A., Malhi, Y., and Lewis,
S. L.: Long-term decline of the Amazon carbon sink, Nature, 519, 344–348, 2015. a
Brodie, J. F., Aslan, C. E., Rogers, H. S., Redford, K. H., Maron, J. L.,
Bronstein, J. L., and Groves, C. R.: Secondary extinctions of biodiversity,
Trends Ecol. Evol., 29, 664–672,
https://doi.org/10.1016/j.tree.2014.09.012, 2014. a
Buitenwerf, R., Rose, L., and Higgins, S. I.: Three decades of
multi-dimensional change in global leaf phenology, Nat. Clim. Change, 5,
364–368, https://doi.org/10.1038/nclimate2533, 2015. a
Cao, L., Bala, G., Caldeira, K., Nemani, R., and Ban-Weiss, G.: Importance of
carbon dioxide physiological forcing to future climate change, P. Natl. Acad. Sci. USA, 107, 9513–9518, https://doi.org/10.1073/pnas.0913000107, 2010. a
Chapin, F. S., Walker, B. H., Hobbs, R. J., Hooper, D. U., Lawton, J. H., Sala, O. E., and Tilman, D.: Biotic control over the functioning of ecosystems, Science, 277, 500–504, https://doi.org/10.1126/science.277.5325.500, 1997. a
Chaturvedi, R. K., Gopalakrishnan, R., Jayaraman, M., Bala, G., Joshi, N. V.,
Sukumar, R., and Ravindranath, N. H.: Impact of climate change on Indian
forests: a dynamic vegetation modeling approach, Mitig. Adapt. Strat. Gl., 16, 119–142, https://doi.org/10.1007/s11027-010-9257-7, 2011. a, b
Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B., and Thomas, C. D.: Rapid range shifts of species associated with high levels of climate warming,
Science, 333, 1024–1026, https://doi.org/10.1126/science.1206432, 2011. a
Choat, B., Brodribb, T. J., Brodersen, C. R., Duursma, R. A., López, R.,
and Medlyn, B. E.: Triggers of tree mortality under drought, Nature, 558,
531–539, https://doi.org/10.1038/s41586-018-0240-x, 2018. a
Choudhury, B. J., DiGirolamo, N. E., Susskind, J., Darnell, W. L., Gupta,
S. K., and Asrar, G.: A biophysical process-based estimate of global land
surface evaporation using satellite and ancillary data II, Regional and
global patterns of seasonal and annual variations, J. Hydrol., 205,
186–204, https://doi.org/10.1016/s0022-1694(97)00149-2, 1998. a
Cleland, E. E., Chuine, I., Menzel, A., Mooney, H. A., and Schwartz, M. D.:
Shifting plant phenology in response to global change, Trends Ecol. Evol., 22, 357–365, https://doi.org/10.1016/j.tree.2007.04.003, 2007. a
Collatz, G. J., Ball, J. T., Grivet, C., and Berry, J. A.: Physiological and
environmental regulation of stomatal conductance, photosynthesis and
transpiration: a model that includes a laminar boundary layer, Agr. Forest Meteorol., 54, 107–136, https://doi.org/10.1016/0168-1923(91)90002-8, 1991. a
Collatz, G. J., Ribas-Carbo, M., and Berry, J. A.: Coupled
photosynthesis-stomatal conductance model for leaves of C4 plants,
Funct. Plant Biol., 19, 519–538, https://doi.org/10.1071/pp9920519, 1992. a, b, c
Deb, J., Phinn, S. R., Butt, N., and McAlpine, C. A.: Summary of climate change impacts on tree species distribution, phenology, forest structure and
composition for each of the 85 studies reviewed, The University of Queensland [Data Collection], https://doi.org/10.14264/uql.2017.814,
2017. a
Doherty, R. M., Sitch, S., Smith, B., Lewis, S. L., and Thornton, P. K.:
Implications of future climate and atmospheric CO2 content
for regional biogeochemistry, biogeography and ecosystem services across
East Africa, Global Change Biol., 16, 617–640,
https://doi.org/10.1111/j.1365-2486.2009.01997.x, 2010. a
Dormann, C. and Woodin, S. J.: Climate change in the Arctic: using plant
functional types in a meta-analysis of field experiments, Funct. Ecol.,
16, 4–17, https://doi.org/10.1046/j.0269-8463.2001.00596.x, 2002. a
Eckstein, D., Hutfils, M., and Winges, M.: Global climate risk index 2019:
Who suffers most from extreme weather events? Weather-related loss events
in 2017 and 1998 to 2017, Germanwatch, Bonn, Germany, 2018. a
Ehleringer, J. R. and Cerling, T. E.: C3 and C4 photosynthesis, Encyclopedia of Global Environmental Change, 2, 186–190, 2002. a
Farquhar, G. D., von Caemmerer, S. V., and Berry, J. A.: A biochemical model of photosynthetic CO2 assimilation in leaves of
C3 species, Planta, 149, 78–90, https://doi.org/10.1007/bf00386231, 1980. a
Fatichi, S., Leuzinger, S., and Körner, C.: Moving beyond photosynthesis: from carbon source to sink-driven vegetation modeling, New Phytol., 201,
1086–1095, https://doi.org/10.1111/nph.12614, 2014. a
Feng, H., Zou, B., and Luo, J.: Coverage-dependent amplifiers of vegetation
change on global water cycle dynamics, J. Hydrol., 550, 220–229,
https://doi.org/10.1016/j.jhydrol.2017.04.056, 2017. a
Field, C. B., Lobell, D. B., Peters, H. A., and Chiariello, N. R.: Feedbacks of terrestrial ecosystems to climate change, Annu. Rev. Env. Resour., 32,
1–29, https://doi.org/10.1146/annurev.energy.32.053006.141119, 2007. a
Fischlin, A., Midgley, G. F., Price, J. T., Leemans, R., Gopal, B., Turley,
C. M., Rounsevell, M. D. A., Dube, P., Tarazona, J., and Velichko, A.:
Impacts adaptation and vulnerability, in: Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Parry, M. L., Canziani, O. F., Palutikof, J. P., van der Linden, P. J., and Hanson, C. E., Cambridge University Press, Cambridge, UK, 391–431, 2007. a
Fisher, J. B., Whittaker, R. J., and Malhi, Y.: ET come home: potential
evapotranspiration in geographical ecology, Global Ecol. Biogeogr.,
20, 1–18, https://doi.org/10.1111/j.1466-8238.2010.00578.x, 2011. a
Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., Haywood, J., Lean, J., Lowe, D. C., Myhre, G., Nganga, J., Prinn, R., Raga, G., Schulz, M., and Van Dorland, R.: Changes in Atmospheric Constituents and in Radiative Forcing, in: Climate Change 2007:
The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate
Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., Cambridge University
Press, Cambridge, United Kingdom and New York, NY, USA, 2007. a
Frank, D., Reichstein, M., Bahn, M., Thonicke, K., Frank, D., Mahecha, M. D.,
Smith, P., Van der Velde, M., Vicca, S., and Babst, F.: Effects of climate
extremes on the terrestrial carbon cycle: concepts, processes and potential
future impacts, Global Change Biol., 21, 2861–2880,
https://doi.org/10.1111/gcb.12916, 2015. a
Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N.,
Sibley, A., and Huang, X.: MODIS Collection 5 global land cover:
Algorithm refinements and characterization of new datasets, Remote Sens. Environ., 114, 168–182, https://doi.org/10.1016/j.rse.2009.08.016, 2010. a, b
Friedlingstein, P., Cox, P., Betts, R., Bopp, L., von Bloh, W., Brovkin, V.,
Cadule, P., Doney, S., Eby, M., and Fung, I.: Climate–carbon cycle feedback
analysis: results from the C4MIP model intercomparison,
J. Climate, 19, 3337–3353, https://doi.org/10.1175/jcli3800.1, 2006. a
Gaillard, C., Langan, L., Pfeiffer, M., Kumar, D., Martens, C., Higgins, S. I., and Scheiter, S.: African shrub distribution emerges via a trade‐off between height and sapwood conductivity, 45, 2815–2826, https://doi.org/10.1111/jbi.13447, 2018. a, b, c
Gallardo-Cruz, J. A., Pérez-García, E. A., and Meave, J. A.: β-Diversity and vegetation structure as influenced by slope aspect and altitude in a seasonally dry tropical landscape, Landscape Ecol., 24, 473–482, https://doi.org/10.1007/s10980-009-9332-1, 2009. a
Gates, D. M.: Transpiration and leaf temperature, Ann. Rev. Plant Physio., 19, 211–238, https://doi.org/10.1146/annurev.pp.19.060168.001235, 1968. a
Hansen, A. J., Neilson, R. P., Dale, V. H., Flather, C. H., Iverson, L. R.,
Currie, D. J., Shafer, S., Cook, R., and Bartlein, P. J.: Global change in
forests: responses of species, communities, and biomes: interactions between
climate change and land use are projected to cause large shifts in
biodiversity, BioScience, 51, 765–779, https://doi.org/10.1641/0006-3568(2001)051[0765:GCIFRO]2.0.CO;2, 2001. a
Herring, S. C., Christidis, N., Hoell, A., Kossin, J. P., Schreck III, C. J.,
and Stott, P. A.: Explaining extreme events of 2016 from a climate
perspective, B. Am. Meteorol. Soc., 99, 1–157,
https://doi.org/10.1175/bams-explainingextremeevents2016.1, 2018. a
Hickler, T., Prentice, I. C., Smith, B., Sykes, M. T., and Zaehle, S.:
Implementing plant hydraulic architecture within the LPJ Dynamic Global
Vegetation Model, Global Ecol. Biogeogr., 15, 567–577,
https://doi.org/10.1111/j.1466-8238.2006.00254.x, 2006. a
Hickler, T., Rammig, A., and Werner, C.: Modelling CO2 impacts on forest productivity, Current Forestry Reports, 1, 69–80,
https://doi.org/10.1007/s40725-015-0014-8, 2015. a
Hijmans, R. J. and van Etten, J.: raster: Geographic analysis and modeling
with raster data, R package version 2.0–12, 2012. a
Holmgren, M. and Scheffer, M.: El Niño as a window of opportunity for the restoration of degraded arid ecosystems, Ecosystems, 4, 151–159,
https://doi.org/10.1007/s100210000065, 2001. a
Huang, J., Yu, H., Guan, X., Wang, G., and Guo, R.: Accelerated dryland
expansion under climate change, Nat. Clim. Change, 6, 166–171, https://doi.org/10.1038/nclimate2837, 2016. a
Jarvis, A., Reuter, H. I., Nelson, A., and Guevara, E.: Hole-filled SRTM for the globe Version 4, available from the CGIAR-CSI SRTM 90 m
Database, 2008. a
Jucker, T., Bongalov, B., Burslem, D. F., Nilus, R., Dalponte, M., Lewis,
S. L., Phillips, O. L., Qie, L., and Coomes, D. A.: Topography shapes the
structure, composition and function of tropical forest landscapes,
Ecol. Lett., 21, 989–1000, https://doi.org/10.1111/ele.12964, 2018. a
Kattge, J. and Knorr, W.: Temperature acclimation in a biochemical model of
photosynthesis: a reanalysis of data from 36 species, Plant Cell Environ., 30, 1176–1190, https://doi.org/10.1111/j.1365-3040.2007.01690.x, 2007. a, b
Kergoat, L., Lafont, S., Douville, H., Berthelot, B., Dedieu, G., Planton, S., and Royer, J.-F.: Impact of doubled CO2 on global-scale leaf
area index and evapotranspiration: Conflicting stomatal conductance and
LAI responses, J. Geophys. Res.-Atmos., 107, 4808,
https://doi.org/10.1029/2001jd001245, 2002. a
Kgope, B. S., Bond, W. J., and Midgley, G. F.: Growth responses of African
savanna trees implicate atmospheric CO2 as a driver of past
and current changes in savanna tree cover, Austral Ecol., 35, 451–463, https://doi.org/10.1111/j.1442-9993.2009.02046.x,
2010. a
Kikuzawa, K. and Lechowicz, M. J.: Ecology of leaf longevity, in: Ecology of Leaf Longevity, 1–6, Springer, Tokyo, 2011. a
Kirschbaum, M. U. F.: Direct and indirect climate change effects on
photosynthesis and transpiration, Plant Biology, 6, 242–253,
https://doi.org/10.1055/s-2004-820883, 2004. a
Körner, C.: Paradigm shift in plant growth control,
Curr. Opin. Plant Biol., 25, 107–114, https://doi.org/10.1016/j.pbi.2015.05.003, 2015. a, b
Körner, C., Asshoff, R., Bignucolo, O., Hättenschwiler, S., Keel, S. G., Peláez-Riedl, S., Pepin, S., Siegwolf, R. T., and Zotz, G.: Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2, Science, 309, 1360–1362, https://doi.org/10.1126/science.1113977, 2005. a
Kumar, D. and Scheiter, S.: Biome diversity in South Asia – How can we
improve vegetation models to understand global change impact at regional
level?, Sci. Total Environ., 671, 1001–1016,
https://doi.org/10.1016/j.scitotenv.2019.03.251, 2019. a, b
Kumar, D., Pfeiffer, M., Gaillard, C., Langan, L., Martens, C., and Scheiter,
S.: Misinterpretation of Asian savannas as degraded forest can mislead
management and conservation policy under climate change, Biol. Conserv., 241, 108293, https://doi.org/10.1016/j.biocon.2019.108293, 2020. a, b, c
Lapola, D. M., Priess, J. A., and Bondeau, A.: Modeling the land requirements
and potential productivity of sugarcane and jatropha in Brazil and India
using the LPJmL dynamic global vegetation model, Biomass Bioenerg., 33,
1087–1095, https://doi.org/10.1016/j.biombioe.2009.04.005, 2009. a
Leakey, A. D., Ainsworth, E. A., Bernacchi, C. J., Rogers, A., Long, S. P., and Ort, D. R.: Elevated CO2 effects on plant carbon, nitrogen,
and water relations: six important lessons from FACE,
J. Exp. Bot., 60, 2859–2876, https://doi.org/10.1093/jxb/erp096, 2009. a, b, c
Lin, D., Xia, J., and Wan, S.: Climate warming and biomass accumulation of
terrestrial plants: a meta-analysis, New Phytol., 188, 187–198, https://doi.org/10.1111/j.1469-8137.2010.03347.x, 2010. a, b
Liu, M., Tian, H., Chen, G., Ren, W., Zhang, C., and Liu, J.: Effects of
Land-Use and Land-Cover Change on Evapotranspiration and Water
Yield in China During 1900–2000, J. Am. Water Resour. As., 44, 1193–1207, https://doi.org/10.1111/j.1752-1688.2008.00243.x, 2008. a
Liu, M.-Z. and Osborne, C. P.: Leaf cold acclimation and freezing injury in
C3 and C4 grasses of the Mongolian Plateau,
J. Exp. Bot., 59, 4161–4170, https://doi.org/10.1093/jxb/ern257, 2008. a
Lloyd, J., Bird, M. I., Vellen, L., Miranda, A. C., Veenendaal, E. M.,
Djagbletey, G., Miranda, H. S., Cook, G., and Farquhar, G. D.: Contributions
of woody and herbaceous vegetation to tropical savanna ecosystem
productivity: a quasi-global estimate, Tree Physiol., 28, 451–468,
https://doi.org/10.1093/treephys/28.3.451, 2008. a
Lombardozzi, D. L., Bonan, G. B., Smith, N. G., Dukes, J. S., and Fisher,
R. A.: Temperature acclimation of photosynthesis and respiration: A key
uncertainty in the carbon cycle-climate feedback,
Geophys. Res. Lett., 42, 8624–8631, https://doi.org/10.1002/2015gl065934, 2015. a
Long, S. P., Ainsworth, E. A., Rogers, A., and Ort, D. R.: Rising atmospheric
carbon dioxide: plants FACE the future, Annu. Rev. Plant Biol., 55,
591–628, https://doi.org/10.1146/annurev.arplant.55.031903.141610, 2004. a, b
Loreau, M., Naeem, S., Inchausti, P., Bengtsson, J., Grime, J. P., Hector, A., Hooper, D. U., Huston, M. A., Raffaelli, D., and Schmid, B.: Biodiversity and ecosystem functioning: current knowledge and future challenges, Science, 294, 804–808, https://doi.org/10.1126/science.1064088, 2001. a
Mao, J., Fu, W., Shi, X., Ricciuto, D. M., Fisher, J. B., Dickinson, R. E.,
Wei, Y., Shem, W., Piao, S., and Wang, K.: Disentangling climatic and
anthropogenic controls on global terrestrial evapotranspiration trends,
Environ. Res. Lett., 10, 094008,
https://doi.org/10.1088/1748-9326/10/9/094008, 2015. a
Mcdowell, N. G., Williams, A., Xu, C., Pockman, W., Dickman, L., Sevanto, S.,
Pangle, R., Limousin, J., Plaut, J., Mackay, D. S., and Ogee, J.: Multi-scale
predictions of massive conifer mortality due to chronic temperature rise,
Nat. Clim. Change, 6, 295–300, https://doi.org/10.1038/nclimate3143, 2016. a
McSweeney, C. F. and Jones, R. G.: How representative is the spread of climate projections from the 5 CMIP5 GCMs used in ISI-MIP?, Climate Services, 1, 24–29, https://doi.org/10.1016/j.cliser.2016.02.001, 2016. a
Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M. L. T.,
Lamarque, J.-F., Matsumoto, K., Montzka, S. A., Raper, S. C. B., and Riahi,
K.: The RCP greenhouse gas concentrations and their extensions from 1765 to
2300, Climatic Change, 109, 213, https://doi.org/10.1007/s10584-011-0156-z, 2011. a, b
Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A., and Kent, J.: Biodiversity hotspots for conservation priorities, Nature, 403, 853–858, https://doi.org/10.1038/35002501, 2000. a, b, c
Nachtergaele, F., van Velthuizen, H., Verelst, L., Batjes, N., Dijkshoorn, K., Van Engelen, V., Fischer, G., Jones, A., Montanarella, L., and Petri, M.:
Harmonized world soil database (version 1.1), FAO, Rome, Italy, IIASA,
Laxenburg, Austria, 2009. a
Nolan, C., Overpeck, J. T., Allen, J. R., Anderson, P. M., Betancourt, J. L.,
Binney, H. A., Brewer, S., Bush, M. B., Chase, B. M., and Cheddadi, R.: Past
and future global transformation of terrestrial ecosystems under climate
change, Science, 361, 920–923, https://doi.org/10.1126/science.aan5360, 2018. a, b
Norby, R. J. and Luo, Y.: Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi-factor world,
New Phytol., 162, 281–293, https://doi.org/10.1111/j.1469-8137.2004.01047.x, 2004. a
Norby, R. J. and Zak, D. R.: Ecological lessons from free-air CO2 enrichment (FACE) experiments, Annu. Rev. Ecol. Evol. S., 42, 181–203, https://doi.org/10.1146/annurev-ecolsys-102209-144647, 2011. a, b, c, d
Overpeck, J. T., Rind, D., and Goldberg, R.: Climate-induced changes in forest disturbance and vegetation, Nature, 343, 51–53, https://doi.org/10.1038/343051a0, 1990. a
Parr, C. L., Gray, E. F., and Bond, W. J.: Cascading biodiversity and
functional consequences of a global change–induced biome switch, Divers. Distrib., 18, 493–503, https://doi.org/10.1111/j.1472-4642.2012.00882.x, 2012. a
Parr, C. L., Lehmann, C. E., Bond, W. J., Hoffmann, W. A., and Andersen, A. N.: Tropical grassy biomes: misunderstood, neglected, and under threat, Trends Ecol. Evol., 29, 205–213, https://doi.org/10.1016/j.tree.2014.02.004, 2014. a
Parton, W., Scurlock, J., Ojima, D., Gilmanov, T., Scholes, R., Schimel, D. S., Kirchner, T., Menaut, J.-C., Seastedt, T., Garcia Moya, E., and Kamnalrut, A.:
Observations and modeling of biomass and soil organic matter dynamics for the
grassland biome worldwide, Global Biogeochem. Cy., 7, 785–809, https://doi.org/10.1029/93GB02042, 1993. a
Pfeiffer, M., Langan, L., Linstädter, A., Martens, C., Gaillard, C., Ruppert, J. C., Higgins, S. I., Mudongo, E. I., and Scheiter, S.: Grazing and aridity reduce perennial grass abundance in semi-arid rangelands – Insights from a trait-based dynamic vegetation model, Ecol. Model., 395, 11–22, https://doi.org/10.1016/j.ecolmodel.2018.12.013, 2019. a, b
Piao, S., Friedlingstein, P., Ciais, P., Zhou, L., and Chen, A.: Effect of
climate and CO2 changes on the greening of the Northern Hemisphere over the past two decades, Geophys. Res. Lett., 33, L23402,
https://doi.org/10.1029/2006gl028205, 2006. a
Piao, S., Wang, X., Park, T., Chen, C., Lian, X., He, Y., Bjerke, J. W., Chen, A., Ciais, P., Tømmervik, H., and Nemani, R. R.: Characteristics, drivers and
feedbacks of global greening, Nat. Rev. Earth Environ., 1, 14–27, https://doi.org/10.1038/s43017-019-0001-x, 2019. a
Prentice, I. C., Bondeau, A., Cramer, W., Harrison, S. P., Hickler, T., Lucht, W., Sitch, S., Smith, B., and Sykes, M. T.: Dynamic global vegetation modeling: quantifying terrestrial ecosystem responses to large-scale environmental change. In Terrestrial ecosystems in a changing world, 175–192, Springer, Berlin, Heidelberg, 2007. a, b
Proença, V., Martin, L. J., Pereira, H. M., Fernandez, M., McRae, L., Belnap, J., Böhm, M., Brummitt, N., García-Moreno, J., and Gregory, R. D.: Global biodiversity monitoring: from data sources to essential biodiversity variables, Biol. Conserv., 213, 256–263,
https://doi.org/10.1016/j.biocon.2016.07.014, 2017. a
Ramankutty, N., Foley, J. A., Hall, F., Collatz, G., Meeson, B., Los, S., Brown De Colstoun, E., and Landis, D.: ISLSCP II Potential Natural
Vegetation Cover, ORNL DAAC, Oak Ridge, Tennessee, USA, https://doi.org/10.3334/ornldaac/961, 2010. a
Ratnam, J., Tomlinson, K. W., Rasquinha, D. N., and Sankaran, M.: Savannahs of Asia: antiquity, biogeography, and an uncertain future, Philos. T. Roy. Soc. B, 371, 20150305, https://doi.org/10.1098/rstb.2015.0305, 2016. a, b
Ravindranath, N. H., Somashekhar, B. S., and Gadgil, M.: Carbon flow in
Indian forests, Climatic Change, 35, 297–320,
https://doi.org/10.1023/A:1005303405404, 1997. a
Ravindranath, N. H., Murali, K. S., and Sudha, P.: Community forestry
initiatives in Southeast Asia: a review of ecological impacts,
International Journal of Environment and Sustainable Development (IJESD), 5, 1–11, https://doi.org/10.1504/ijesd.2006.008678, 2006. a, b
Richardson, A. D., Keenan, T. F., Migliavacca, M., Ryu, Y., Sonnentag, O., and Toomey, M.: Climate change, phenology, and phenological control of vegetation feedbacks to the climate system,
Agr. Forest Meteorol., 169, 156–173, https://doi.org/10.1016/j.agrformet.2012.09.012, 2013. a
Rodgers, W. A. and Panwar, H. S.: Planning a wildlife protected area network in India, A report. Wildlife Institute of India, Dehradun, 1988. a
Running, S. W. and Hunt Jr, E. R.: Generalization of a forest ecosystem process model for other biomes, BIOME-BCG, and an application for global-scale models, in: Scaling Physiological Processes: Leaf to Globe, edited by: Ehleringer, J. R. and Field, C. B., Academic Press Inc., San Diego, CA, USA, 141–158, 1993. a
Rustad, L., Campbell, J., Marion, G., Norby, R., Mitchell, M., Hartley, A.,
Cornelissen, J., and Gurevitch, J.: A meta-analysis of the response of soil
respiration, net nitrogen mineralization, and aboveground plant growth to
experimental ecosystem warming, Oecologia, 126, 543–562,
https://doi.org/10.1007/s004420000544, 2001. a
Saatchi, S. S., Harris, N. L., Brown, S., Lefsky, M., Mitchard, E. T., Salas,
W., Zutta, B. R., Buermann, W., Lewis, S. L., and Hagen, S.: Benchmark map of
forest carbon stocks in tropical regions across three continents,
P. Natl. Acad. Sci. USA, 108, 9899–9904,
https://doi.org/10.1073/pnas.1019576108, 2011. a, b
Saikia, P., Deka, J., Bharali, S., Kumar, A., Tripathi, O. P., Singha, L. B.,
Dayanandan, S., and Khan, M. L.: Plant diversity patterns and conservation
status of eastern Himalayan forests in Arunachal Pradesh, Northeast
India, Forest Ecosystems, 4, 28, https://doi.org/10.1186/s40663-017-0117-8, 2017. a
Sakschewski, B., Bloh, W., Boit, A., Rammig, A., Kattge, J., Poorter, L.,
Peñuelas, J., and Thonicke, K.: Leaf and stem economics spectra drive
diversity of functional plant traits in a dynamic global vegetation model,
Global Change Biol., 21, 2711–2725, https://doi.org/10.1111/gcb.12870, 2015. a, b
Sato, H., Itoh, A., and Kohyama, T.: SEIB–DGVM: A new Dynamic
Global Vegetation Model using a spatially explicit individual-based
approach, Ecol. Model., 200, 279–307,
https://doi.org/10.1016/j.ecolmodel.2006.09.006, 2007. a
Scheiter, S., Langan, L., and Higgins, S. I.: Next-generation dynamic global
vegetation models: learning from community ecology, New Phytol., 198,
957–969, https://doi.org/10.1111/nph.12210, 2013. a, b, c
Scheiter, S., Kumar, D., Corlett, R. T., Gaillard, C., Langan, L., Lapuz,
R. S., Martens, C., Pfeiffer, M., and Kyle, T. W.: Climate change promotes
transitions to tall evergreen vegetation in tropical Asia, Global Change Biol., 26, 5106–5124, https://doi.org/10.1111/gcb.15217, 2020. a, b
Schimel, D., Stephens, B. B., and Fisher, J. B.: Effect of increasing CO2 on the terrestrial carbon cycle, P. Natl. Acad. Sci. USA, 112, 436–441, https://doi.org/10.1073/pnas.1407302112, 2015. a
Sharkey, T. D., Bernacchi, C. J., Farquhar, G. D., and Singsaas, E. L.: Fitting photosynthetic carbon dioxide response curves for C3 leaves, Plant Cell Environ., 30, 1035–1040, https://doi.org/10.1111/j.1365-3040.2007.01710.x, 2007. a
Simard, M., Pinto, N., Fisher, J. B., and Baccini, A.: Mapping forest canopy
height globally with spaceborne lidar, J. Geophys. Res.-Biogeo., 116, G04021, https://doi.org/10.1029/2011jg001708, 2011. a, b
Sinha, S., Badola, H. K., Chhetri, B., Gaira, K. S., Lepcha, J., and Dhyani,
P. P.: Effect of altitude and climate in shaping the forest compositions of
Singalila National Park in Khangchendzonga Landscape, Eastern
Himalaya, India, J. Asia-Pac. Biodivers., 11, 267–275,
https://doi.org/10.1016/j.japb.2018.01.012, 2018. a
Sitch, S., Friedlingstein, P., Gruber, N., Jones, S. D., Murray-Tortarolo, G., Ahlström, A., Doney, S. C., Graven, H., Heinze, C., Huntingford, C., Levis, S., Levy, P. E., Lomas, M., Poulter, B., Viovy, N., Zaehle, S., Zeng, N., Arneth, A., Bonan, G., Bopp, L., Canadell, J. G., Chevallier, F., Ciais, P., Ellis, R., Gloor, M., Peylin, P., Piao, S. L., Le Quéré, C., Smith, B., Zhu, Z., and Myneni, R.: Recent trends and drivers of regional sources and sinks of carbon dioxide, Biogeosciences, 12, 653–679, https://doi.org/10.5194/bg-12-653-2015, 2015. a
Smith, B., Wårlind, D., Arneth, A., Hickler, T., Leadley, P., Siltberg, J., and Zaehle, S.: Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model, Biogeosciences, 11, 2027–2054, https://doi.org/10.5194/bg-11-2027-2014, 2014. a
Soh, W. K., Yiotis, C., Murray, M., Parnell, A., Wright, I. J., Spicer, R. A., Lawson, T., Caballero, R., and McElwain, J. C.: Rising CO2
drives divergence in water use efficiency of evergreen and deciduous plants,
Science Advances, 5, eaax7906, https://doi.org/10.1126/sciadv.aax7906, 2019. a, b
Song, J., Wan, S., Piao, S., Knapp, A. K., Classen, A. T., Vicca, S., Ciais,
P., Hovenden, M. J., Leuzinger, S., Beier, C., and Kardol, P.: A meta-analysis of
1119 manipulative experiments on terrestrial carbon-cycling responses to
global change, Nat. Ecol. Evol., 3, 1309–1320, https://doi.org/10.1038/s41559-019-0958-3, 2019. a
Sperry, J. S., Venturas, M. D., Todd, H. N., Trugman, A. T., Anderegg, W. R.,
Wang, Y., and Tai, X.: The impact of rising CO2 and acclimation on the response of US forests to global warming, P. Natl. Acad. Sci. USA, 116, 25734–25744, https://doi.org/10.1073/pnas.1913072116, 2019. a
Stephenson, N.: Actual evapotranspiration and deficit: biologically meaningful correlates of vegetation distribution across spatial scales, J. Biogeogr., 25, 855–870, https://doi.org/10.1046/j.1365-2699.1998.00233.x, 1998. a
Stevens, N., Lehmann, C. E., Murphy, B. P., and Durigan, G.: Savanna woody
encroachment is widespread across three continents, Global Change Biol.,
23, 235–244, https://doi.org/10.1111/gcb.13409, 2017. a, b, c
Terrer, C., Vicca, S., Stocker, B. D., Hungate, B. A., Phillips, R. P., Reich, P. B., Finzi, A. C., and Prentice, I. C.: Ecosystem responses to elevated CO2 governed by plant–soil interactions and the cost of
nitrogen acquisition, New Phytol., 217, 507–522,
https://doi.org/10.1111/nph.14872, 2018. a
Terrer, C., Jackson, R. B., Prentice, I. C., Keenan, T. F., Kaiser, C., Vicca, S., Fisher, J. B., Reich, P. B., Stocker, B. D., Hungate, B. A., and Penuelas, J.: Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass, Nat. Clim. Change, 9, 684–689, https://doi.org/10.1038/s41558-020-0808-y, 2019. a, b
Thuiller, W., Albert, C., Araújo, M. B., Berry, P. M., Cabeza, M., Guisan, A., Hickler, T., Midgley, G. F., Paterson, J., Schurr, F. M., and Sykes, M. T.: Predicting global change impacts on plant species' distributions: future challenges, Perspect. Plant Ecol., 9, 137–152, https://doi.org/10.1016/j.ppees.2007.09.004, 2008. a
Tian, H., Melillo, J., Kicklighter, D., McGuire, A., and Helfrich, J.: The
sensitivity of terrestrial carbon storage to historical climate variability
and atmospheric CO2 in the United States,
Tellus B, 51, 414–452, https://doi.org/10.1034/j.1600-0889.1999.00021.x, 1999. a
Tuanmu, M.-N. and Jetz, W.: A global 1 km consensus land-cover product for
biodiversity and ecosystem modelling, Global Ecol. Biogeogr., 23,
1031–1045, https://doi.org/10.1111/geb.12182, 2014. a, b
Urban, J., Ingwers, M., McGuire, M. A., and Teskey, R. O.: Stomatal conductance increases with rising temperature, Plant Signaling & Behavior 12, e1356534, https://doi.org/10.1080/15592324.2017.1356534, 2017. a
Van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard,
K., Hurtt, G. C., Kram, T., Krey, V., and Lamarque, J.-F.: The representative
concentration pathways: an overview, Climatic Change, 109, 5,
https://doi.org/10.1007/s10584-011-0148-z, 2011. a, b
Verstraete, M. M., Scholes, R. J., and Smith, M. S.: Climate and
desertification: looking at an old problem through new lenses,
Front. Ecol. Environ., 7, 421–428, https://doi.org/10.1890/080119, 2009. a
Walker, M. D., Wahren, C. H., Hollister, R. D., Henry, G. H., Ahlquist, L. E., Alatalo, J. M., Bret-Harte, M. S., Calef, M. P., Callaghan, T. V., Carroll, A. B., and Epstein, H. E.: Plant community responses to experimental warming across the tundra biome, P. Natl. Acad. Sci. USA, 103, 1342–1346, 2006. a
Wang, X., Wang, T., Liu, D., Guo, H., Huang, H., and Zhao, Y.: Moisture-induced greening of the South Asia over the past three decades, Global Change Biol., 23, 4995–5005, https://doi.org/10.1111/gcb.13762, 2017. a
Warszawski, L., Frieler, K., Huber, V., Piontek, F., Serdeczny, O., and Schewe, J.: The inter-sectoral impact model intercomparison project (ISI–MIP): project framework, P. Natl. Acad. Sci. USA, 111, 3228–3232, https://doi.org/10.1073/pnas.1312330110, 2014. a
Wingfield, J. C.: Ecological processes and the ecology of stress: the impacts
of abiotic environmental factors, Funct. Ecol., 27, 37–44,
https://doi.org/10.1111/1365-2435.12039, 2013. a
Woodrow, I. E. and Berry, J.: Enzymatic regulation of photosynthetic CO2, fixation in C3 plants, Annu. Rev. Plant Phys., 39, 533–594, 1988. a
Wright, I. J., Reich, P. B., Cornelissen, J. H., Falster, D. S., Groom, P. K., Hikosaka, K., Lee, W., Lusk, C. H., Niinemets, Ü., and Oleksyn, J.: Modulation of leaf economic traits and trait relationships by climate, Global Ecol. Biogeogr., 14, 411–421,
https://doi.org/10.1111/j.1466-822x.2005.00172.x, 2005. a
Yuan, W., Zheng, Y., Piao, S., Ciais, P., Lombardozzi, D., Wang, Y., Ryu, Y.,
Chen, G., Dong, W., Hu, Z., and Jain, A. K.: Increased atmospheric vapor pressure
deficit reduces global vegetation growth, Science Advances, 5, eaax1396, https://doi.org/10.1126/sciadv.aax1396,
2019.
a
Zemunik, G., Turner, B. L., Lambers, H., and Laliberté, E.: Diversity of plant nutrient-acquisition strategies increases during long-term ecosystem
development, Nat. Plants, 1, 15050, https://doi.org/10.1038/nplants.2015.50, 2015. a
Zhang, K., Kimball, J. S., Nemani, R. R., and Running, S. W.: A continuous
satellite-derived global record of land surface evapotranspiration from 1983
to 2006, Water Resour. Res., 46, W09522, https://doi.org/10.1029/2009wr008800, 2010. a, b
Zhang, Y., Peña-Arancibia, J. L., McVicar, T. R., Chiew, F. H., Vaze, J., Liu, C., Lu, X., Zheng, H., Wang, Y., and Liu, Y. Y.: Multi-decadal trends in
global terrestrial evapotranspiration and its components, Sci. Rep.-UK,
6, 19124, https://doi.org/10.1038/srep19124, 2016. a
Short summary
In this paper, we investigated the impact of climate change and rising CO2 on biomes using a vegetation model in South Asia, an often neglected region in global modeling studies. Understanding these impacts guides ecosystem management and biodiversity conservation. Our results indicate that savanna regions are at high risk of woody encroachment and transitioning into the forest, and the bioclimatic envelopes of biomes need adjustments to account for shifts caused by climate change and CO2.
In this paper, we investigated the impact of climate change and rising CO2 on biomes using a...
Altmetrics
Final-revised paper
Preprint