Articles | Volume 18, issue 11
https://doi.org/10.5194/bg-18-3391-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-3391-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A survey of proximal methods for monitoring leaf phenology in temperate deciduous forests
Kamel Soudani
CORRESPONDING AUTHOR
Ecologie
Systématique et Evolution, Université Paris-Saclay, CNRS, AgroParisTech, 91405, Orsay, France
Nicolas Delpierre
Ecologie
Systématique et Evolution, Université Paris-Saclay, CNRS, AgroParisTech, 91405, Orsay, France
Daniel Berveiller
Ecologie
Systématique et Evolution, Université Paris-Saclay, CNRS, AgroParisTech, 91405, Orsay, France
Gabriel Hmimina
Laboratoire de Météorologie Dynamique, IPSL, CNRS/UPMC,
Paris, France
Jean-Yves Pontailler
Ecologie
Systématique et Evolution, Université Paris-Saclay, CNRS, AgroParisTech, 91405, Orsay, France
Lou Seureau
Ecologie
Systématique et Evolution, Université Paris-Saclay, CNRS, AgroParisTech, 91405, Orsay, France
Gaëlle Vincent
Ecologie
Systématique et Evolution, Université Paris-Saclay, CNRS, AgroParisTech, 91405, Orsay, France
Éric Dufrêne
Ecologie
Systématique et Evolution, Université Paris-Saclay, CNRS, AgroParisTech, 91405, Orsay, France
Related authors
Arsène Druel, Julien Ruffault, Hendrik Davi, André Chanzy, Olivier Marloie, Miquel De Cáceres, Albert Olioso, Florent Mouillot, Christophe François, Kamel Soudani, and Nicolas K. Martin-StPaul
Biogeosciences, 22, 1–18, https://doi.org/10.5194/bg-22-1-2025, https://doi.org/10.5194/bg-22-1-2025, 2025
Short summary
Short summary
Accurate radiation data are essential for understanding ecosystem functions and dynamics. Traditional large-scale data lack the precision needed for complex terrain. This study introduces a new model, which accounts for sub-daily direct and diffuse radiation effects caused by terrain features, to enhance the radiation data resolution using elevation maps. Tested on a mountainous area, this method significantly improved radiation estimates, benefiting predictions of forest functions.
Hamadou Balde, Gabriel Hmimina, Yves Goulas, Gwendal Latouche, Abderrahmane Ounis, Daniel Berveiller, and Kamel Soudani
EGUsphere, https://doi.org/10.5194/egusphere-2024-657, https://doi.org/10.5194/egusphere-2024-657, 2024
Preprint archived
Short summary
Short summary
To understand the drivers of GPP and SIF changes and of their links, we examined how SIF and GPP changed at daily and seasonal scales considering canopy structure and abiotic conditions in a deciduous oak forest. The data show that leaf and canopy properties variations, seasonal cycle of PAR, and abiotic factors control not only SIF and GPP changes, but also their links. Further, during the heatwaves in 2022, we noticed that SIF was a proxy of GPP, while VIs were not.
Hamadou Balde, Gabriel Hmimina, Yves Goulas, Gwendal Latouche, Abderrahmane Ounis, and Kamel Soudani
Biogeosciences, 21, 1259–1276, https://doi.org/10.5194/bg-21-1259-2024, https://doi.org/10.5194/bg-21-1259-2024, 2024
Short summary
Short summary
We show that FyieldLIF was not correlated with SIFy at the diurnal timescale, and the diurnal patterns in SIF and PAR did not match under clear-sky conditions due to canopy structure. Φk was sensitive to canopy structure. RF models show that Φk can be predicted using reflectance in different bands. RF models also show that FyieldLIF was more sensitive to reflectance and radiation than SIF and SIFy, indicating that the combined effect of reflectance bands could hide the SIF physiological trait.
Hamadou Balde, Gabriel Hmimina, Yves Goulas, Gwendal Latouche, and Kamel Soudani
Biogeosciences, 20, 1473–1490, https://doi.org/10.5194/bg-20-1473-2023, https://doi.org/10.5194/bg-20-1473-2023, 2023
Short summary
Short summary
This study focuses on the relationship between sun-induced chlorophyll fluorescence (SIF) and ecosystem gross primary productivity (GPP) across the ICOS European flux tower network. It shows that SIF, coupled with reflectance observations, explains over 80 % of the GPP variability across diverse ecosystems but fails to bring new information compared to reflectance alone at coarse spatial scales (~5 km). These findings have applications in agriculture and ecophysiological studies.
Jan Pisek, Angela Erb, Lauri Korhonen, Tobias Biermann, Arnaud Carrara, Edoardo Cremonese, Matthias Cuntz, Silvano Fares, Giacomo Gerosa, Thomas Grünwald, Niklas Hase, Michal Heliasz, Andreas Ibrom, Alexander Knohl, Johannes Kobler, Bart Kruijt, Holger Lange, Leena Leppänen, Jean-Marc Limousin, Francisco Ramon Lopez Serrano, Denis Loustau, Petr Lukeš, Lars Lundin, Riccardo Marzuoli, Meelis Mölder, Leonardo Montagnani, Johan Neirynck, Matthias Peichl, Corinna Rebmann, Eva Rubio, Margarida Santos-Reis, Crystal Schaaf, Marius Schmidt, Guillaume Simioni, Kamel Soudani, and Caroline Vincke
Biogeosciences, 18, 621–635, https://doi.org/10.5194/bg-18-621-2021, https://doi.org/10.5194/bg-18-621-2021, 2021
Short summary
Short summary
Understory vegetation is the most diverse, least understood component of forests worldwide. Understory communities are important drivers of overstory succession and nutrient cycling. Multi-angle remote sensing enables us to describe surface properties by means that are not possible when using mono-angle data. Evaluated over an extensive set of forest ecosystem experimental sites in Europe, our reported method can deliver good retrievals, especially over different forest types with open canopies.
Arsène Druel, Julien Ruffault, Hendrik Davi, André Chanzy, Olivier Marloie, Miquel De Cáceres, Albert Olioso, Florent Mouillot, Christophe François, Kamel Soudani, and Nicolas K. Martin-StPaul
Biogeosciences, 22, 1–18, https://doi.org/10.5194/bg-22-1-2025, https://doi.org/10.5194/bg-22-1-2025, 2025
Short summary
Short summary
Accurate radiation data are essential for understanding ecosystem functions and dynamics. Traditional large-scale data lack the precision needed for complex terrain. This study introduces a new model, which accounts for sub-daily direct and diffuse radiation effects caused by terrain features, to enhance the radiation data resolution using elevation maps. Tested on a mountainous area, this method significantly improved radiation estimates, benefiting predictions of forest functions.
Guohua Liu, Mirco Migliavacca, Christian Reimers, Basil Kraft, Markus Reichstein, Andrew D. Richardson, Lisa Wingate, Nicolas Delpierre, Hui Yang, and Alexander J. Winkler
Geosci. Model Dev., 17, 6683–6701, https://doi.org/10.5194/gmd-17-6683-2024, https://doi.org/10.5194/gmd-17-6683-2024, 2024
Short summary
Short summary
Our study employs long short-term memory (LSTM) networks to model canopy greenness and phenology, integrating meteorological memory effects. The LSTM model outperforms traditional methods, enhancing accuracy in predicting greenness dynamics and phenological transitions across plant functional types. Highlighting the importance of multi-variate meteorological memory effects, our research pioneers unlock the secrets of vegetation phenology responses to climate change with deep learning techniques.
Hamadou Balde, Gabriel Hmimina, Yves Goulas, Gwendal Latouche, Abderrahmane Ounis, Daniel Berveiller, and Kamel Soudani
EGUsphere, https://doi.org/10.5194/egusphere-2024-657, https://doi.org/10.5194/egusphere-2024-657, 2024
Preprint archived
Short summary
Short summary
To understand the drivers of GPP and SIF changes and of their links, we examined how SIF and GPP changed at daily and seasonal scales considering canopy structure and abiotic conditions in a deciduous oak forest. The data show that leaf and canopy properties variations, seasonal cycle of PAR, and abiotic factors control not only SIF and GPP changes, but also their links. Further, during the heatwaves in 2022, we noticed that SIF was a proxy of GPP, while VIs were not.
Hamadou Balde, Gabriel Hmimina, Yves Goulas, Gwendal Latouche, Abderrahmane Ounis, and Kamel Soudani
Biogeosciences, 21, 1259–1276, https://doi.org/10.5194/bg-21-1259-2024, https://doi.org/10.5194/bg-21-1259-2024, 2024
Short summary
Short summary
We show that FyieldLIF was not correlated with SIFy at the diurnal timescale, and the diurnal patterns in SIF and PAR did not match under clear-sky conditions due to canopy structure. Φk was sensitive to canopy structure. RF models show that Φk can be predicted using reflectance in different bands. RF models also show that FyieldLIF was more sensitive to reflectance and radiation than SIF and SIFy, indicating that the combined effect of reflectance bands could hide the SIF physiological trait.
Jianhong Lin, Daniel Berveiller, Christophe François, Heikki Hänninen, Alexandre Morfin, Gaëlle Vincent, Rui Zhang, Cyrille Rathgeber, and Nicolas Delpierre
Geosci. Model Dev., 17, 865–879, https://doi.org/10.5194/gmd-17-865-2024, https://doi.org/10.5194/gmd-17-865-2024, 2024
Short summary
Short summary
Currently, the high variability of budburst between individual trees is overlooked. The consequences of this neglect when projecting the dynamics and functioning of tree communities are unknown. Here we develop the first process-oriented model to describe the difference in budburst dates between individual trees in plant populations. Beyond budburst, the model framework provides a basis for studying the dynamics of phenological traits under climate change, from the individual to the community.
Ivan Cornut, Nicolas Delpierre, Jean-Paul Laclau, Joannès Guillemot, Yann Nouvellon, Otavio Campoe, Jose Luiz Stape, Vitoria Fernanda Santos, and Guerric le Maire
Biogeosciences, 20, 3093–3117, https://doi.org/10.5194/bg-20-3093-2023, https://doi.org/10.5194/bg-20-3093-2023, 2023
Short summary
Short summary
Potassium is an essential element for living organisms. Trees are dependent upon this element for certain functions that allow them to build their trunks using carbon dioxide. Using data from experiments in eucalypt plantations in Brazil and a simplified computer model of the plantations, we were able to investigate the effect that a lack of potassium can have on the production of wood. Understanding nutrient cycles is useful to understand the response of forests to environmental change.
Ivan Cornut, Guerric le Maire, Jean-Paul Laclau, Joannès Guillemot, Yann Nouvellon, and Nicolas Delpierre
Biogeosciences, 20, 3119–3135, https://doi.org/10.5194/bg-20-3119-2023, https://doi.org/10.5194/bg-20-3119-2023, 2023
Short summary
Short summary
After simulating the effects of low levels of potassium on the canopy of trees and the uptake of carbon dioxide from the atmosphere by leaves in Part 1, here we tried to simulate the way the trees use the carbon they have acquired and the interaction with the potassium cycle in the tree. We show that the effect of low potassium on the efficiency of the trees in acquiring carbon is enough to explain why they produce less wood when they are in soils with low levels of potassium.
Hamadou Balde, Gabriel Hmimina, Yves Goulas, Gwendal Latouche, and Kamel Soudani
Biogeosciences, 20, 1473–1490, https://doi.org/10.5194/bg-20-1473-2023, https://doi.org/10.5194/bg-20-1473-2023, 2023
Short summary
Short summary
This study focuses on the relationship between sun-induced chlorophyll fluorescence (SIF) and ecosystem gross primary productivity (GPP) across the ICOS European flux tower network. It shows that SIF, coupled with reflectance observations, explains over 80 % of the GPP variability across diverse ecosystems but fails to bring new information compared to reflectance alone at coarse spatial scales (~5 km). These findings have applications in agriculture and ecophysiological studies.
Rafael Poyatos, Víctor Granda, Víctor Flo, Mark A. Adams, Balázs Adorján, David Aguadé, Marcos P. M. Aidar, Scott Allen, M. Susana Alvarado-Barrientos, Kristina J. Anderson-Teixeira, Luiza Maria Aparecido, M. Altaf Arain, Ismael Aranda, Heidi Asbjornsen, Robert Baxter, Eric Beamesderfer, Z. Carter Berry, Daniel Berveiller, Bethany Blakely, Johnny Boggs, Gil Bohrer, Paul V. Bolstad, Damien Bonal, Rosvel Bracho, Patricia Brito, Jason Brodeur, Fernando Casanoves, Jérôme Chave, Hui Chen, Cesar Cisneros, Kenneth Clark, Edoardo Cremonese, Hongzhong Dang, Jorge S. David, Teresa S. David, Nicolas Delpierre, Ankur R. Desai, Frederic C. Do, Michal Dohnal, Jean-Christophe Domec, Sebinasi Dzikiti, Colin Edgar, Rebekka Eichstaedt, Tarek S. El-Madany, Jan Elbers, Cleiton B. Eller, Eugénie S. Euskirchen, Brent Ewers, Patrick Fonti, Alicia Forner, David I. Forrester, Helber C. Freitas, Marta Galvagno, Omar Garcia-Tejera, Chandra Prasad Ghimire, Teresa E. Gimeno, John Grace, André Granier, Anne Griebel, Yan Guangyu, Mark B. Gush, Paul J. Hanson, Niles J. Hasselquist, Ingo Heinrich, Virginia Hernandez-Santana, Valentine Herrmann, Teemu Hölttä, Friso Holwerda, James Irvine, Supat Isarangkool Na Ayutthaya, Paul G. Jarvis, Hubert Jochheim, Carlos A. Joly, Julia Kaplick, Hyun Seok Kim, Leif Klemedtsson, Heather Kropp, Fredrik Lagergren, Patrick Lane, Petra Lang, Andrei Lapenas, Víctor Lechuga, Minsu Lee, Christoph Leuschner, Jean-Marc Limousin, Juan Carlos Linares, Maj-Lena Linderson, Anders Lindroth, Pilar Llorens, Álvaro López-Bernal, Michael M. Loranty, Dietmar Lüttschwager, Cate Macinnis-Ng, Isabelle Maréchaux, Timothy A. Martin, Ashley Matheny, Nate McDowell, Sean McMahon, Patrick Meir, Ilona Mészáros, Mirco Migliavacca, Patrick Mitchell, Meelis Mölder, Leonardo Montagnani, Georgianne W. Moore, Ryogo Nakada, Furong Niu, Rachael H. Nolan, Richard Norby, Kimberly Novick, Walter Oberhuber, Nikolaus Obojes, A. Christopher Oishi, Rafael S. Oliveira, Ram Oren, Jean-Marc Ourcival, Teemu Paljakka, Oscar Perez-Priego, Pablo L. Peri, Richard L. Peters, Sebastian Pfautsch, William T. Pockman, Yakir Preisler, Katherine Rascher, George Robinson, Humberto Rocha, Alain Rocheteau, Alexander Röll, Bruno H. P. Rosado, Lucy Rowland, Alexey V. Rubtsov, Santiago Sabaté, Yann Salmon, Roberto L. Salomón, Elisenda Sánchez-Costa, Karina V. R. Schäfer, Bernhard Schuldt, Alexandr Shashkin, Clément Stahl, Marko Stojanović, Juan Carlos Suárez, Ge Sun, Justyna Szatniewska, Fyodor Tatarinov, Miroslav Tesař, Frank M. Thomas, Pantana Tor-ngern, Josef Urban, Fernando Valladares, Christiaan van der Tol, Ilja van Meerveld, Andrej Varlagin, Holm Voigt, Jeffrey Warren, Christiane Werner, Willy Werner, Gerhard Wieser, Lisa Wingate, Stan Wullschleger, Koong Yi, Roman Zweifel, Kathy Steppe, Maurizio Mencuccini, and Jordi Martínez-Vilalta
Earth Syst. Sci. Data, 13, 2607–2649, https://doi.org/10.5194/essd-13-2607-2021, https://doi.org/10.5194/essd-13-2607-2021, 2021
Short summary
Short summary
Transpiration is a key component of global water balance, but it is poorly constrained from available observations. We present SAPFLUXNET, the first global database of tree-level transpiration from sap flow measurements, containing 202 datasets and covering a wide range of ecological conditions. SAPFLUXNET and its accompanying R software package
sapfluxnetrwill facilitate new data syntheses on the ecological factors driving water use and drought responses of trees and forests.
Jan Pisek, Angela Erb, Lauri Korhonen, Tobias Biermann, Arnaud Carrara, Edoardo Cremonese, Matthias Cuntz, Silvano Fares, Giacomo Gerosa, Thomas Grünwald, Niklas Hase, Michal Heliasz, Andreas Ibrom, Alexander Knohl, Johannes Kobler, Bart Kruijt, Holger Lange, Leena Leppänen, Jean-Marc Limousin, Francisco Ramon Lopez Serrano, Denis Loustau, Petr Lukeš, Lars Lundin, Riccardo Marzuoli, Meelis Mölder, Leonardo Montagnani, Johan Neirynck, Matthias Peichl, Corinna Rebmann, Eva Rubio, Margarida Santos-Reis, Crystal Schaaf, Marius Schmidt, Guillaume Simioni, Kamel Soudani, and Caroline Vincke
Biogeosciences, 18, 621–635, https://doi.org/10.5194/bg-18-621-2021, https://doi.org/10.5194/bg-18-621-2021, 2021
Short summary
Short summary
Understory vegetation is the most diverse, least understood component of forests worldwide. Understory communities are important drivers of overstory succession and nutrient cycling. Multi-angle remote sensing enables us to describe surface properties by means that are not possible when using mono-angle data. Evaluated over an extensive set of forest ecosystem experimental sites in Europe, our reported method can deliver good retrievals, especially over different forest types with open canopies.
Chris R. Flechard, Andreas Ibrom, Ute M. Skiba, Wim de Vries, Marcel van Oijen, David R. Cameron, Nancy B. Dise, Janne F. J. Korhonen, Nina Buchmann, Arnaud Legout, David Simpson, Maria J. Sanz, Marc Aubinet, Denis Loustau, Leonardo Montagnani, Johan Neirynck, Ivan A. Janssens, Mari Pihlatie, Ralf Kiese, Jan Siemens, André-Jean Francez, Jürgen Augustin, Andrej Varlagin, Janusz Olejnik, Radosław Juszczak, Mika Aurela, Daniel Berveiller, Bogdan H. Chojnicki, Ulrich Dämmgen, Nicolas Delpierre, Vesna Djuricic, Julia Drewer, Eric Dufrêne, Werner Eugster, Yannick Fauvel, David Fowler, Arnoud Frumau, André Granier, Patrick Gross, Yannick Hamon, Carole Helfter, Arjan Hensen, László Horváth, Barbara Kitzler, Bart Kruijt, Werner L. Kutsch, Raquel Lobo-do-Vale, Annalea Lohila, Bernard Longdoz, Michal V. Marek, Giorgio Matteucci, Marta Mitosinkova, Virginie Moreaux, Albrecht Neftel, Jean-Marc Ourcival, Kim Pilegaard, Gabriel Pita, Francisco Sanz, Jan K. Schjoerring, Maria-Teresa Sebastià, Y. Sim Tang, Hilde Uggerud, Marek Urbaniak, Netty van Dijk, Timo Vesala, Sonja Vidic, Caroline Vincke, Tamás Weidinger, Sophie Zechmeister-Boltenstern, Klaus Butterbach-Bahl, Eiko Nemitz, and Mark A. Sutton
Biogeosciences, 17, 1583–1620, https://doi.org/10.5194/bg-17-1583-2020, https://doi.org/10.5194/bg-17-1583-2020, 2020
Short summary
Short summary
Experimental evidence from a network of 40 monitoring sites in Europe suggests that atmospheric nitrogen deposition to forests and other semi-natural vegetation impacts the carbon sequestration rates in ecosystems, as well as the net greenhouse gas balance including other greenhouse gases such as nitrous oxide and methane. Excess nitrogen deposition in polluted areas also leads to other environmental impacts such as nitrogen leaching to groundwater and other pollutant gaseous emissions.
Elodie Alice Courtois, Clément Stahl, Benoit Burban, Joke Van den Berge, Daniel Berveiller, Laëtitia Bréchet, Jennifer Larned Soong, Nicola Arriga, Josep Peñuelas, and Ivan August Janssens
Biogeosciences, 16, 785–796, https://doi.org/10.5194/bg-16-785-2019, https://doi.org/10.5194/bg-16-785-2019, 2019
Short summary
Short summary
Measuring greenhouse gases (GHGs) from a natural ecosystem remains a contemporary challenge. We tested the use of appropriate technology for the estimation of soil fluxes of the three main GHGs in a tropical rainforest for 4 months. We showed that our design allowed the continuous high-frequency measurement of the three gases in a tropical biome and provide recommendations for its implementation. This study is a major step in the estimation of the global GHG budget of tropical forests.
J. Guillemot, N. K. Martin-StPaul, E. Dufrêne, C. François, K. Soudani, J. M. Ourcival, and N. Delpierre
Biogeosciences, 12, 2773–2790, https://doi.org/10.5194/bg-12-2773-2015, https://doi.org/10.5194/bg-12-2773-2015, 2015
Short summary
Short summary
We provide an evaluation of the spatio-temporal dynamics of the annual C allocation to wood in French forests. Our study supports the premise that the growth of European tree species is subject to complex control processes that include both source and sink limitations. We suggest a straightforward modelling framework with which to implement these combined forest growth limitations into terrestrial biosphere models.
J. Otto, D. Berveiller, F.-M. Bréon, N. Delpierre, G. Geppert, A. Granier, W. Jans, A. Knohl, A. Kuusk, B. Longdoz, E. Moors, M. Mund, B. Pinty, M.-J. Schelhaas, and S. Luyssaert
Biogeosciences, 11, 2411–2427, https://doi.org/10.5194/bg-11-2411-2014, https://doi.org/10.5194/bg-11-2411-2014, 2014
Related subject area
Biodiversity and Ecosystem Function: Terrestrial
Soil smoldering in temperate forests: a neglected contributor to fire carbon emissions revealed by atmospheric mixing ratios
Enhancing environmental models with a new downscaling method for global radiation in complex terrain
On the predictability of turbulent fluxes from land: PLUMBER2 MIP experimental description and preliminary results
Crowd-sourced trait data can be used to delimit global biomes
Biomass yield potential, feedstock quality, and nutrient removal of perennial buffer strips under continuous zero fertilizer application
Leaf habit drives leaf nutrient resorption globally alongside nutrient availability and climate
Dune establishment drivers on the beach: narrowing down the window of opportunity
Linking geomorphological processes and wildlife microhabitat selection: nesting birds select refuges generated by permafrost degradation in the Arctic
Distinguishing mature and immature trees allows estimating forest carbon uptake from stand structure
“Blooming” of litter-mixing effects: the role of flower and leaf litter interactions on decomposition in terrestrial and aquatic ecosystems
Combined effects of topography, soil moisture and snow cover regimes on growth responses of grasslands in a low mountain range (Vosges, France)
From simple labels to semantic image segmentation: leveraging citizen science plant photographs for tree species mapping in drone imagery
Elephant megacarcasses increase local nutrient pools in African savanna soils and plants
Plant functional traits modulate the effects of soil acidification on above- and belowground biomass
Regional effects and local climate jointly shape the global distribution of sexual systems in woody flowering plants
Ideas and perspectives: Sensing energy and matter fluxes in a biota-dominated Patagonian landscape through environmental seismology – introducing the Pumalín Critical Zone Observatory
Comparison of carbon and water fluxes and the drivers of ecosystem water use efficiency in a temperate rainforest and a peatland in southern South America
Kilometre-scale simulations over Fennoscandia reveal a large loss of tundra due to climate warming
Microclimate mapping using novel radiative transfer modelling
Root distributions predict shrub–steppe responses to precipitation intensity
Thermophilisation of Afromontane forest stands demonstrated in an elevation gradient experiment
Above-treeline ecosystems facing drought: lessons from the 2022 European summer heat wave
Canopy gaps and associated losses of biomass – combining UAV imagery and field data in a central Amazon forest
Ideas and perspectives: Beyond model evaluation – combining experiments and models to advance terrestrial ecosystem science
Primary succession and its driving variables – a sphere-spanning approach applied in proglacial areas in the upper Martell Valley (Eastern Italian Alps)
Contemporary biodiversity pattern is affected by climate change at multiple temporal scales in steppes on the Mongolian Plateau
Water usage of old growth oak at elevated CO2 in the FACE of climate change
Quantifying vegetation indices using terrestrial laser scanning: methodological complexities and ecological insights from a Mediterranean forest
Revisiting and attributing the global controls over terrestrial ecosystem functions of climate and plant traits at FLUXNET sites via causal graphical models
Dynamics of short-term ecosystem carbon fluxes induced by precipitation events in a semiarid grassland
Throughfall exclusion and fertilization effects on tropical dry forest tree plantations, a large-scale experiment
Tectonic controls on the ecosystem of the Mara River basin, East Africa, from geomorphological and spectral index analysis
Spruce bark beetles (Ips typographus) cause up to 700 times higher bark BVOC emission rates compared to healthy Norway spruce (Picea abies)
Technical note: Novel estimates of the leaf relative uptake rate of carbonyl sulfide from optimality theory
Observed water and light limitation across global ecosystems
A question of scale: modeling biomass, gain and mortality distributions of a tropical forest
Seed traits and phylogeny explain plants' geographic distribution
Effect of the presence of plateau pikas on the ecosystem services of alpine meadows
Allometric equations and wood density parameters for estimating aboveground and woody debris biomass in Cajander larch (Larix cajanderi) forests of northeast Siberia
Strong influence of trees outside forest in regulating microclimate of intensively modified Afromontane landscapes
Excess radiation exacerbates drought stress impacts on canopy conductance along aridity gradients
Dispersal of bacteria and stimulation of permafrost decomposition by Collembola
Modeling the effects of alternative crop–livestock management scenarios on important ecosystem services for smallholder farming from a landscape perspective
Contrasting strategies of nutrient demand and use between savanna and forest ecosystems in a neotropical transition zone
Monitoring post-fire recovery of various vegetation biomes using multi-wavelength satellite remote sensing
Updated estimation of forest biomass carbon pools in China, 1977–2018
Estimating dry biomass and plant nitrogen concentration in pre-Alpine grasslands with low-cost UAS-borne multispectral data – a comparison of sensors, algorithms, and predictor sets
Fire in lichen-rich subarctic tundra changes carbon and nitrogen cycling between ecosystem compartments but has minor effects on stocks
Mass concentration measurements of autumn bioaerosol using low-cost sensors in a mature temperate woodland free-air carbon dioxide enrichment (FACE) experiment: investigating the role of meteorology and carbon dioxide levels
Phosphorus stress strongly reduced plant physiological activity, but only temporarily, in a mesocosm experiment with Zea mays colonized by arbuscular mycorrhizal fungi
Lilian Vallet, Charbel Abdallah, Thomas Lauvaux, Lilian Joly, Michel Ramonet, Philippe Ciais, Morgan Lopez, Irène Xueref-Remy, and Florent Mouillot
Biogeosciences, 22, 213–242, https://doi.org/10.5194/bg-22-213-2025, https://doi.org/10.5194/bg-22-213-2025, 2025
Short summary
Short summary
The 2022 fire season had a huge impact on European temperate forest, with several large fires exhibiting prolonged soil combustion reported. We analyzed CO and CO2 concentration recorded at nearby atmospheric towers, revealing intense smoldering combustion. We refined a fire emission model to incorporate this process. We estimated 7.95 Mteq CO2 fire emission, twice the global estimate. Fires contributed to 1.97 % of France's annual carbon footprint, reducing forest carbon sink by 30 % this year.
Arsène Druel, Julien Ruffault, Hendrik Davi, André Chanzy, Olivier Marloie, Miquel De Cáceres, Albert Olioso, Florent Mouillot, Christophe François, Kamel Soudani, and Nicolas K. Martin-StPaul
Biogeosciences, 22, 1–18, https://doi.org/10.5194/bg-22-1-2025, https://doi.org/10.5194/bg-22-1-2025, 2025
Short summary
Short summary
Accurate radiation data are essential for understanding ecosystem functions and dynamics. Traditional large-scale data lack the precision needed for complex terrain. This study introduces a new model, which accounts for sub-daily direct and diffuse radiation effects caused by terrain features, to enhance the radiation data resolution using elevation maps. Tested on a mountainous area, this method significantly improved radiation estimates, benefiting predictions of forest functions.
Gab Abramowitz, Anna Ukkola, Sanaa Hobeichi, Jon Cranko Page, Mathew Lipson, Martin G. De Kauwe, Samuel Green, Claire Brenner, Jonathan Frame, Grey Nearing, Martyn Clark, Martin Best, Peter Anthoni, Gabriele Arduini, Souhail Boussetta, Silvia Caldararu, Kyeungwoo Cho, Matthias Cuntz, David Fairbairn, Craig R. Ferguson, Hyungjun Kim, Yeonjoo Kim, Jürgen Knauer, David Lawrence, Xiangzhong Luo, Sergey Malyshev, Tomoko Nitta, Jerome Ogee, Keith Oleson, Catherine Ottlé, Phillipe Peylin, Patricia de Rosnay, Heather Rumbold, Bob Su, Nicolas Vuichard, Anthony P. Walker, Xiaoni Wang-Faivre, Yunfei Wang, and Yijian Zeng
Biogeosciences, 21, 5517–5538, https://doi.org/10.5194/bg-21-5517-2024, https://doi.org/10.5194/bg-21-5517-2024, 2024
Short summary
Short summary
This paper evaluates land models – computer-based models that simulate ecosystem dynamics; land carbon, water, and energy cycles; and the role of land in the climate system. It uses machine learning and AI approaches to show that, despite the complexity of land models, they do not perform nearly as well as they could given the amount of information they are provided with about the prediction problem.
Simon Scheiter, Sophie Wolf, and Teja Kattenborn
Biogeosciences, 21, 4909–4926, https://doi.org/10.5194/bg-21-4909-2024, https://doi.org/10.5194/bg-21-4909-2024, 2024
Short summary
Short summary
Biomes are widely used to map vegetation patterns at large spatial scales and to assess impacts of climate change, yet there is no consensus on a generally valid biome classification scheme. We used crowd-sourced species distribution data and trait data to assess whether trait information is suitable for delimiting biomes. Although the trait data were heterogeneous and had large gaps with respect to the spatial distribution, we found that a global trait-based biome classification was possible.
Cheng-Hsien Lin, Colleen Zumpf, Chunhwa Jang, Thomas Voigt, Guanglong Tian, Olawale Oladeji, Albert Cox, Rehnuma Mehzabin, and DoKyoung Lee
Biogeosciences, 21, 4765–4784, https://doi.org/10.5194/bg-21-4765-2024, https://doi.org/10.5194/bg-21-4765-2024, 2024
Short summary
Short summary
Riparian areas are subject to environmental issues (nutrient leaching) associated with low productivity. Perennial grasses can improve ecosystem services from riparian zones while producing forage/bioenergy feedstock biomass as potential income for farmers. The forage-type buffer can be an ideal short-term candidate due to its great efficiency of nutrient scavenging; the bioenergy-type buffer showed better sustainability than the forage buffer and a continuous yield supply potential.
Gabriela Sophia, Silvia Caldararu, Benjamin David Stocker, and Sönke Zaehle
Biogeosciences, 21, 4169–4193, https://doi.org/10.5194/bg-21-4169-2024, https://doi.org/10.5194/bg-21-4169-2024, 2024
Short summary
Short summary
Through an extensive global dataset of leaf nutrient resorption and a multifactorial analysis, we show that the majority of spatial variation in nutrient resorption may be driven by leaf habit and type, with thicker, longer-lived leaves having lower resorption efficiencies. Climate, soil fertility and soil-related factors emerge as strong drivers with an additional effect on its role. These results are essential for comprehending plant nutrient status, plant productivity and nutrient cycling.
Jan-Markus Homberger, Sasja van Rosmalen, Michel Riksen, and Juul Limpens
EGUsphere, https://doi.org/10.5194/egusphere-2024-1944, https://doi.org/10.5194/egusphere-2024-1944, 2024
Short summary
Short summary
Understanding what determines establishment of dune-building vegetation could help to better predict coastal dune initiation and development. We monitored the establishment of dune building grasses and dune initiation in a large field experiment. Our results show that dune initiation takes place during peaks in dune-building grass establishment, which depend on favorable environmental conditions. Our findings can potentially be integrated into beach restoration and management strategies.
Madeleine-Zoé Corbeil-Robitaille, Éliane Duchesne, Daniel Fortier, Christophe Kinnard, and Joël Bêty
Biogeosciences, 21, 3401–3423, https://doi.org/10.5194/bg-21-3401-2024, https://doi.org/10.5194/bg-21-3401-2024, 2024
Short summary
Short summary
In the Arctic tundra, climate change is transforming the landscape, and this may impact wildlife. We focus on three nesting bird species and the islets they select as refuges from their main predator, the Arctic fox. A geomorphological process, ice-wedge polygon degradation, was found to play a key role in creating these refuges. This process is likely to affect predator–prey dynamics in the Arctic tundra, highlighting the connections between nature's physical and ecological systems.
Samuel M. Fischer, Xugao Wang, and Andreas Huth
Biogeosciences, 21, 3305–3319, https://doi.org/10.5194/bg-21-3305-2024, https://doi.org/10.5194/bg-21-3305-2024, 2024
Short summary
Short summary
Understanding the drivers of forest productivity is key for accurately assessing forests’ role in the global carbon cycle. Yet, despite significant research effort, it is not fully understood how the productivity of a forest can be deduced from its stand structure. We suggest tackling this problem by identifying the share and structure of immature trees within forests and show that this approach could significantly improve estimates of forests’ net productivity and carbon uptake.
Mery Ingrid Guimarães de Alencar, Rafael D. Guariento, Bertrand Guenet, Luciana S. Carneiro, Eduardo L. Voigt, and Adriano Caliman
Biogeosciences, 21, 3165–3182, https://doi.org/10.5194/bg-21-3165-2024, https://doi.org/10.5194/bg-21-3165-2024, 2024
Short summary
Short summary
Flowers are ephemeral organs for reproduction, and their litter is functionally different from leaf litter. Flowers can affect decomposition and interact with leaf litter, influencing decomposition non-additively. We show that mixing flower and leaf litter from the Tabebuia aurea tree creates reciprocal synergistic effects on decomposition in both terrestrial and aquatic environments. We highlight that flower litter input can generate biogeochemical hotspots in terrestrial ecosystems.
Pierre-Alexis Herrault, Albin Ullmann, and Damien Ertlen
EGUsphere, https://doi.org/10.5194/egusphere-2024-1935, https://doi.org/10.5194/egusphere-2024-1935, 2024
Short summary
Short summary
Mountain grasslands are impacted by Climate Change and need to adapt. Low mountain grasslands are poorly understood compared to High Mountains massif. Thanks to satellite archives, we found that grasslands occurring in the Vosges Mountains (France) exhibited stable productivity or tended to decrease in specific regions of the massif, a reverse signal observed in High Mountains massif. We also noted a high responsiveness in their growth strategy to soil moisture, snow regimes and topography.
Salim Soltani, Olga Ferlian, Nico Eisenhauer, Hannes Feilhauer, and Teja Kattenborn
Biogeosciences, 21, 2909–2935, https://doi.org/10.5194/bg-21-2909-2024, https://doi.org/10.5194/bg-21-2909-2024, 2024
Short summary
Short summary
In this research, we developed a novel method using citizen science data as alternative training data for computer vision models to map plant species in unoccupied aerial vehicle (UAV) images. We use citizen science plant photographs to train models and apply them to UAV images. We tested our approach on UAV images of a test site with 10 different tree species, yielding accurate results. This research shows the potential of citizen science data to advance our ability to monitor plant species.
Courtney G. Reed, Michelle L. Budny, Johan T. du Toit, Ryan Helcoski, Joshua P. Schimel, Izak P. J. Smit, Tercia Strydom, Aimee Tallian, Dave I. Thompson, Helga van Coller, Nathan P. Lemoine, and Deron E. Burkepile
EGUsphere, https://doi.org/10.5194/egusphere-2024-1514, https://doi.org/10.5194/egusphere-2024-1514, 2024
Short summary
Short summary
We seek to understand the ecological legacies of elephants after they die. We sampled elephant carcasses in South Africa and found that they release nutrients into soil, which then enter plants and are available for consumption by other herbivores. This research reveals a key way that these elephants contribute to nutrient cycling on the savanna after death. It also highlights an important process that may be lost on savannas in areas where elephant populations are in decline.
Xue Feng, Ruzhen Wang, Tianpeng Li, Jiangping Cai, Heyong Liu, Hui Li, and Yong Jiang
Biogeosciences, 21, 2641–2653, https://doi.org/10.5194/bg-21-2641-2024, https://doi.org/10.5194/bg-21-2641-2024, 2024
Short summary
Short summary
Plant functional traits have been considered as reflecting adaptations to environmental variations, indirectly affecting ecosystem productivity. How soil acidification affects above- and belowground biomass by altering leaf and root traits remains poorly understood. We found divergent trait responses driven by soil environmental conditions in two dominant species, resulting in a decrease in aboveground biomass and an increase in belowground biomass.
Minhua Zhang, Xiaoqing Hu, and Fangliang He
Biogeosciences, 21, 2133–2142, https://doi.org/10.5194/bg-21-2133-2024, https://doi.org/10.5194/bg-21-2133-2024, 2024
Short summary
Short summary
Plant sexual systems are important to understanding the evolution and maintenance of plant diversity. We quantified region effects on their proportions while incorporating local climate factors and evolutionary history. We found regional processes and climate effects both play important roles in shaping the geographic distribution of sexual systems, providing a baseline for predicting future changes in forest communities in the context of global change.
Christian H. Mohr, Michael Dietze, Violeta Tolorza, Erwin Gonzalez, Benjamin Sotomayor, Andres Iroume, Sten Gilfert, and Frieder Tautz
Biogeosciences, 21, 1583–1599, https://doi.org/10.5194/bg-21-1583-2024, https://doi.org/10.5194/bg-21-1583-2024, 2024
Short summary
Short summary
Coastal temperate rainforests, among Earth’s carbon richest biomes, are systematically underrepresented in the global network of critical zone observatories (CZOs). Introducing here a first CZO in the heart of the Patagonian rainforest, Chile, we investigate carbon sink functioning, biota-driven landscape evolution, fluxes of matter and energy, and disturbance regimes. We invite the community to join us in cross-disciplinary collaboration to advance science in this particular environment.
Jorge F. Perez-Quezada, David Trejo, Javier Lopatin, David Aguilera, Bruce Osborne, Mauricio Galleguillos, Luca Zattera, Juan L. Celis-Diez, and Juan J. Armesto
Biogeosciences, 21, 1371–1389, https://doi.org/10.5194/bg-21-1371-2024, https://doi.org/10.5194/bg-21-1371-2024, 2024
Short summary
Short summary
For 8 years we sampled a temperate rainforest and a peatland in Chile to estimate their efficiency to capture carbon per unit of water lost. The efficiency is more related to the water lost than to the carbon captured and is mainly driven by evaporation instead of transpiration. This is the first report from southern South America and highlights that ecosystems might behave differently in this area, likely explained by the high annual precipitation (~ 2100 mm) and light-limited conditions.
Fredrik Lagergren, Robert G. Björk, Camilla Andersson, Danijel Belušić, Mats P. Björkman, Erik Kjellström, Petter Lind, David Lindstedt, Tinja Olenius, Håkan Pleijel, Gunhild Rosqvist, and Paul A. Miller
Biogeosciences, 21, 1093–1116, https://doi.org/10.5194/bg-21-1093-2024, https://doi.org/10.5194/bg-21-1093-2024, 2024
Short summary
Short summary
The Fennoscandian boreal and mountain regions harbour a wide range of ecosystems sensitive to climate change. A new, highly resolved high-emission climate scenario enabled modelling of the vegetation development in this region at high resolution for the 21st century. The results show dramatic south to north and low- to high-altitude shifts of vegetation zones, especially for the open tundra environments, which will have large implications for nature conservation, reindeer husbandry and forestry.
Florian Zellweger, Eric Sulmoni, Johanna T. Malle, Andri Baltensweiler, Tobias Jonas, Niklaus E. Zimmermann, Christian Ginzler, Dirk Nikolaus Karger, Pieter De Frenne, David Frey, and Clare Webster
Biogeosciences, 21, 605–623, https://doi.org/10.5194/bg-21-605-2024, https://doi.org/10.5194/bg-21-605-2024, 2024
Short summary
Short summary
The microclimatic conditions experienced by organisms living close to the ground are not well represented in currently used climate datasets derived from weather stations. Therefore, we measured and mapped ground microclimate temperatures at 10 m spatial resolution across Switzerland using a novel radiation model. Our results reveal a high variability in microclimates across different habitats and will help to better understand climate and land use impacts on biodiversity and ecosystems.
Andrew Kulmatiski, Martin C. Holdrege, Cristina Chirvasă, and Karen H. Beard
Biogeosciences, 21, 131–143, https://doi.org/10.5194/bg-21-131-2024, https://doi.org/10.5194/bg-21-131-2024, 2024
Short summary
Short summary
Warmer air and larger precipitation events are changing the way water moves through the soil and into plants. Here we show that detailed descriptions of root distributions can predict plant growth responses to changing precipitation patterns. Shrubs and forbs increased growth, while grasses showed no response to increased precipitation intensity, and these responses were predicted by plant rooting distributions.
Bonaventure Ntirugulirwa, Etienne Zibera, Nkuba Epaphrodite, Aloysie Manishimwe, Donat Nsabimana, Johan Uddling, and Göran Wallin
Biogeosciences, 20, 5125–5149, https://doi.org/10.5194/bg-20-5125-2023, https://doi.org/10.5194/bg-20-5125-2023, 2023
Short summary
Short summary
Twenty tropical tree species native to Africa were planted along an elevation gradient (1100 m, 5.4 °C difference). We found that early-successional (ES) species, especially from lower elevations, grew faster at warmer sites, while several of the late-successional (LS) species, especially from higher elevations, did not respond or grew slower. Moreover, a warmer climate increased tree mortality in LS species, but not much in ES species.
Philippe Choler
Biogeosciences, 20, 4259–4272, https://doi.org/10.5194/bg-20-4259-2023, https://doi.org/10.5194/bg-20-4259-2023, 2023
Short summary
Short summary
The year 2022 was unique in that the summer heat wave and drought led to a widespread reduction in vegetation growth at high elevation in the European Alps. This impact was unprecedented in the southwestern, warm, and dry part of the Alps. Over the last 2 decades, water has become a co-dominant control of vegetation activity in areas that were, so far, primarily controlled by temperature, and the growth of mountain grasslands has become increasingly sensitive to moisture availability.
Adriana Simonetti, Raquel Fernandes Araujo, Carlos Henrique Souza Celes, Flávia Ranara da Silva e Silva, Joaquim dos Santos, Niro Higuchi, Susan Trumbore, and Daniel Magnabosco Marra
Biogeosciences, 20, 3651–3666, https://doi.org/10.5194/bg-20-3651-2023, https://doi.org/10.5194/bg-20-3651-2023, 2023
Short summary
Short summary
We combined 2 years of monthly drone-acquired RGB (red–green–blue) imagery with field surveys in a central Amazon forest. Our results indicate that small gaps associated with branch fall were the most frequent. Biomass losses were partially controlled by gap area, with branch fall and snapping contributing the least and greatest relative values, respectively. Our study highlights the potential of drone images for monitoring canopy dynamics in dense tropical forests.
Silvia Caldararu, Victor Rolo, Benjamin D. Stocker, Teresa E. Gimeno, and Richard Nair
Biogeosciences, 20, 3637–3649, https://doi.org/10.5194/bg-20-3637-2023, https://doi.org/10.5194/bg-20-3637-2023, 2023
Short summary
Short summary
Ecosystem manipulative experiments are large experiments in real ecosystems. They include processes such as species interactions and weather that would be omitted in more controlled settings. They offer a high level of realism but are underused in combination with vegetation models used to predict the response of ecosystems to global change. We propose a workflow using models and ecosystem experiments together, taking advantage of the benefits of both tools for Earth system understanding.
Katharina Ramskogler, Bettina Knoflach, Bernhard Elsner, Brigitta Erschbamer, Florian Haas, Tobias Heckmann, Florentin Hofmeister, Livia Piermattei, Camillo Ressl, Svenja Trautmann, Michael H. Wimmer, Clemens Geitner, Johann Stötter, and Erich Tasser
Biogeosciences, 20, 2919–2939, https://doi.org/10.5194/bg-20-2919-2023, https://doi.org/10.5194/bg-20-2919-2023, 2023
Short summary
Short summary
Primary succession in proglacial areas depends on complex driving forces. To concretise the complex effects and interaction processes, 39 known explanatory variables assigned to seven spheres were analysed via principal component analysis and generalised additive models. Key results show that in addition to time- and elevation-dependent factors, also disturbances alter vegetation development. The results are useful for debates on vegetation development in a warming climate.
Zijing Li, Zhiyong Li, Xuze Tong, Lei Dong, Ying Zheng, Jinghui Zhang, Bailing Miao, Lixin Wang, Liqing Zhao, Lu Wen, Guodong Han, Frank Yonghong Li, and Cunzhu Liang
Biogeosciences, 20, 2869–2882, https://doi.org/10.5194/bg-20-2869-2023, https://doi.org/10.5194/bg-20-2869-2023, 2023
Short summary
Short summary
We used random forest models and structural equation models to assess the relative importance of the present climate and paleoclimate as determinants of diversity and aboveground biomass. Results showed that paleoclimate changes and modern climate jointly determined contemporary biodiversity patterns, while community biomass was mainly affected by modern climate. These findings suggest that contemporary biodiversity patterns may be affected by processes at divergent temporal scales.
Susan Elizabeth Quick, Giulio Curioni, Nicholas J. Harper, Stefan Krause, and Angus Rob MacKenzie
EGUsphere, https://doi.org/10.5194/egusphere-2023-1522, https://doi.org/10.5194/egusphere-2023-1522, 2023
Short summary
Short summary
To study the effects of rising carbon dioxide levels on water usage of old growth temperate oak forest, we monitored trees in an open-air elevated CO2 experiment for five years. We found no significant changes in water usage for ~34 % increase in atmospheric CO2. Stresses under this experiment may take longer to show their effect. Tree water usage depends on tree size, i.e. stem size and the canopy area, across all treatments. Experimental infrastructure changed the water demand of the trees.
William Rupert Moore Flynn, Harry Jon Foord Owen, Stuart William David Grieve, and Emily Rebecca Lines
Biogeosciences, 20, 2769–2784, https://doi.org/10.5194/bg-20-2769-2023, https://doi.org/10.5194/bg-20-2769-2023, 2023
Short summary
Short summary
Quantifying vegetation indices is crucial for ecosystem monitoring and modelling. Terrestrial laser scanning (TLS) has potential to accurately measure vegetation indices, but multiple methods exist, with little consensus on best practice. We compare three methods and extract wood-to-plant ratio, a metric used to correct for wood in leaf indices. We show corrective metrics vary with tree structure and variation among methods, highlighting the value of TLS data and importance of rigorous testing.
Haiyang Shi, Geping Luo, Olaf Hellwich, Alishir Kurban, Philippe De Maeyer, and Tim Van de Voorde
Biogeosciences, 20, 2727–2741, https://doi.org/10.5194/bg-20-2727-2023, https://doi.org/10.5194/bg-20-2727-2023, 2023
Short summary
Short summary
In studies on the relationship between ecosystem functions and climate and plant traits, previously used data-driven methods such as multiple regression and random forest may be inadequate for representing causality due to limitations such as covariance between variables. Based on FLUXNET site data, we used a causal graphical model to revisit the control of climate and vegetation traits over ecosystem functions.
Josué Delgado-Balbuena, Henry W. Loescher, Carlos A. Aguirre-Gutiérrez, Teresa Alfaro-Reyna, Luis F. Pineda-Martínez, Rodrigo Vargas, and Tulio Arredondo
Biogeosciences, 20, 2369–2385, https://doi.org/10.5194/bg-20-2369-2023, https://doi.org/10.5194/bg-20-2369-2023, 2023
Short summary
Short summary
In the semiarid grassland, an increase in soil moisture at shallow depths instantly enhances carbon release through respiration. In contrast, deeper soil water controls plant carbon uptake but with a delay of several days. Previous soil conditions, biological activity, and the size and timing of precipitation are factors that determine the amount of carbon released into the atmosphere. Thus, future changes in precipitation patterns could convert ecosystems from carbon sinks to carbon sources.
German Vargas Gutiérrez, Daniel Pérez-Aviles, Nanette Raczka, Damaris Pereira-Arias, Julián Tijerín-Triviño, L. David Pereira-Arias, David Medvigy, Bonnie G. Waring, Ember Morrisey, Edward Brzostek, and Jennifer S. Powers
Biogeosciences, 20, 2143–2160, https://doi.org/10.5194/bg-20-2143-2023, https://doi.org/10.5194/bg-20-2143-2023, 2023
Short summary
Short summary
To study whether nutrient availability controls tropical dry forest responses to reductions in soil moisture, we established the first troughfall exclusion experiment in a tropical dry forest plantation system crossed with a fertilization scheme. We found that the effects of fertilization on net primary productivity are larger than the effects of a ~15 % reduction in soil moisture, although in many cases we observed an interaction between drought and nutrient additions, suggesting colimitation.
Alina Lucia Ludat and Simon Kübler
Biogeosciences, 20, 1991–2012, https://doi.org/10.5194/bg-20-1991-2023, https://doi.org/10.5194/bg-20-1991-2023, 2023
Short summary
Short summary
Satellite-based analysis illustrates the impact of geological processes for the stability of the ecosystem in the Mara River basin (Kenya/Tanzania). Newly detected fault activity influences the course of river networks and modifies erosion–deposition patterns. Tectonic surface features and variations in rock chemistry lead to localized enhancement of clay and soil moisture values and seasonally stabilised vegetation growth patterns in this climatically vulnerable region.
Erica Jaakkola, Antje Gärtner, Anna Maria Jönsson, Karl Ljung, Per-Ola Olsson, and Thomas Holst
Biogeosciences, 20, 803–826, https://doi.org/10.5194/bg-20-803-2023, https://doi.org/10.5194/bg-20-803-2023, 2023
Short summary
Short summary
Increased spruce bark beetle outbreaks were recently seen in Sweden. When Norway spruce trees are attacked, they increase their production of VOCs, attempting to kill the beetles. We provide new insights into how the Norway spruce act when infested and found the emitted volatiles to increase up to 700 times and saw a change in compound blend. We estimate that the 2020 bark beetle outbreak in Sweden could have increased the total monoterpene emissions from the forest by more than 10 %.
Georg Wohlfahrt, Albin Hammerle, Felix M. Spielmann, Florian Kitz, and Chuixiang Yi
Biogeosciences, 20, 589–596, https://doi.org/10.5194/bg-20-589-2023, https://doi.org/10.5194/bg-20-589-2023, 2023
Short summary
Short summary
The trace gas carbonyl sulfide (COS), which is taken up by plant leaves in a process very similar to photosynthesis, is thought to be a promising proxy for the gross uptake of carbon dioxide by plants. Here we propose a new framework for estimating a key metric to that end, the so-called leaf relative uptake rate. The values we deduce by applying principles of plant optimality are considerably lower than published values and may help reduce the uncertainty of the global COS budget.
François Jonard, Andrew F. Feldman, Daniel J. Short Gianotti, and Dara Entekhabi
Biogeosciences, 19, 5575–5590, https://doi.org/10.5194/bg-19-5575-2022, https://doi.org/10.5194/bg-19-5575-2022, 2022
Short summary
Short summary
We investigate the spatial and temporal patterns of light and water limitation in plant function at the ecosystem scale. Using satellite observations, we characterize the nonlinear relationships between sun-induced chlorophyll fluorescence (SIF) and water and light availability. This study highlights that soil moisture limitations on SIF are found primarily in drier environments, while light limitations are found in intermediately wet regions.
Nikolai Knapp, Sabine Attinger, and Andreas Huth
Biogeosciences, 19, 4929–4944, https://doi.org/10.5194/bg-19-4929-2022, https://doi.org/10.5194/bg-19-4929-2022, 2022
Short summary
Short summary
The biomass of forests is determined by forest growth and mortality. These quantities can be estimated with different methods such as inventories, remote sensing and modeling. These methods are usually being applied at different spatial scales. The scales influence the obtained frequency distributions of biomass, growth and mortality. This study suggests how to transfer between scales, when using forest models of different complexity for a tropical forest.
Kai Chen, Kevin S. Burgess, Fangliang He, Xiang-Yun Yang, Lian-Ming Gao, and De-Zhu Li
Biogeosciences, 19, 4801–4810, https://doi.org/10.5194/bg-19-4801-2022, https://doi.org/10.5194/bg-19-4801-2022, 2022
Short summary
Short summary
Why does plants' distributional range size vary enormously? This study provides evidence that seed mass, intraspecific seed mass variation, seed dispersal mode and phylogeny contribute to explaining species distribution variation on a geographic scale. Our study clearly shows the importance of including seed life-history traits in modeling and predicting the impact of climate change on species distribution of seed plants.
Ying Ying Chen, Huan Yang, Gen Sheng Bao, Xiao Pan Pang, and Zheng Gang Guo
Biogeosciences, 19, 4521–4532, https://doi.org/10.5194/bg-19-4521-2022, https://doi.org/10.5194/bg-19-4521-2022, 2022
Short summary
Short summary
Investigating the effect of the presence of plateau pikas on ecosystem services of alpine meadows is helpful to understand the role of the presence of small mammalian herbivores in grasslands. The results of this study showed that the presence of plateau pikas led to higher biodiversity conservation, soil nitrogen and phosphorus maintenance, and carbon sequestration of alpine meadows, whereas it led to lower forage available to livestock and water conservation of alpine meadows.
Clement Jean Frédéric Delcourt and Sander Veraverbeke
Biogeosciences, 19, 4499–4520, https://doi.org/10.5194/bg-19-4499-2022, https://doi.org/10.5194/bg-19-4499-2022, 2022
Short summary
Short summary
This study provides new equations that can be used to estimate aboveground tree biomass in larch-dominated forests of northeast Siberia. Applying these equations to 53 forest stands in the Republic of Sakha (Russia) resulted in significantly larger biomass stocks than when using existing equations. The data presented in this work can help refine biomass estimates in Siberian boreal forests. This is essential to assess changes in boreal vegetation and carbon dynamics.
Iris Johanna Aalto, Eduardo Eiji Maeda, Janne Heiskanen, Eljas Kullervo Aalto, and Petri Kauko Emil Pellikka
Biogeosciences, 19, 4227–4247, https://doi.org/10.5194/bg-19-4227-2022, https://doi.org/10.5194/bg-19-4227-2022, 2022
Short summary
Short summary
Tree canopies are strong moderators of understory climatic conditions. In tropical areas, trees cool down the microclimates. Using remote sensing and field measurements we show how even intermediate canopy cover and agroforestry trees contributed to buffering the hottest temperatures in Kenya. The cooling effect was the greatest during hot days and in lowland areas, where the ambient temperatures were high. Adopting agroforestry practices in the area could assist in mitigating climate change.
Jing Wang and Xuefa Wen
Biogeosciences, 19, 4197–4208, https://doi.org/10.5194/bg-19-4197-2022, https://doi.org/10.5194/bg-19-4197-2022, 2022
Short summary
Short summary
Excess radiation and low temperatures exacerbate drought impacts on canopy conductance (Gs) among transects. The primary determinant of drought stress on Gs was soil moisture on the Loess Plateau (LP) and the Mongolian Plateau (MP), whereas it was the vapor pressure deficit on the Tibetan Plateau (TP). Radiation exhibited a negative effect on Gs via drought stress within transects, while temperature had negative effects on stomatal conductance on the TP but no effect on the LP and MP.
Sylvain Monteux, Janine Mariën, and Eveline J. Krab
Biogeosciences, 19, 4089–4105, https://doi.org/10.5194/bg-19-4089-2022, https://doi.org/10.5194/bg-19-4089-2022, 2022
Short summary
Short summary
Quantifying the feedback from the decomposition of thawing permafrost soils is crucial to establish adequate climate warming mitigation scenarios. Past efforts have focused on abiotic and to some extent microbial drivers of decomposition but not biotic drivers such as soil fauna. We added soil fauna (Collembola Folsomia candida) to permafrost, which introduced bacterial taxa without affecting bacterial communities as a whole but increased CO2 production (+12 %), presumably due to priming.
Mirjam Pfeiffer, Munir P. Hoffmann, Simon Scheiter, William Nelson, Johannes Isselstein, Kingsley Ayisi, Jude J. Odhiambo, and Reimund Rötter
Biogeosciences, 19, 3935–3958, https://doi.org/10.5194/bg-19-3935-2022, https://doi.org/10.5194/bg-19-3935-2022, 2022
Short summary
Short summary
Smallholder farmers face challenges due to poor land management and climate change. We linked the APSIM crop model and the aDGVM2 vegetation model to investigate integrated management options that enhance ecosystem functions and services. Sustainable intensification moderately increased yields. Crop residue grazing reduced feed gaps but not for dry-to-wet season transitions. Measures to improve soil water and nutrient status are recommended. Landscape-level ecosystem management is essential.
Marina Corrêa Scalon, Imma Oliveras Menor, Renata Freitag, Karine S. Peixoto, Sami W. Rifai, Beatriz Schwantes Marimon, Ben Hur Marimon Junior, and Yadvinder Malhi
Biogeosciences, 19, 3649–3661, https://doi.org/10.5194/bg-19-3649-2022, https://doi.org/10.5194/bg-19-3649-2022, 2022
Short summary
Short summary
We investigated dynamic nutrient flow and demand in a typical savanna and a transition forest to understand how similar soils and the same climate dominated by savanna vegetation can also support forest-like formations. Savanna relied on nutrient resorption from wood, and nutrient demand was equally partitioned between leaves, wood and fine roots. Transition forest relied on resorption from the canopy biomass and nutrient demand was predominantly driven by leaves.
Emma Bousquet, Arnaud Mialon, Nemesio Rodriguez-Fernandez, Stéphane Mermoz, and Yann Kerr
Biogeosciences, 19, 3317–3336, https://doi.org/10.5194/bg-19-3317-2022, https://doi.org/10.5194/bg-19-3317-2022, 2022
Short summary
Short summary
Pre- and post-fire values of four climate variables and four vegetation variables were analysed at the global scale, in order to observe (i) the general fire likelihood factors and (ii) the vegetation recovery trends over various biomes. The main result of this study is that L-band vegetation optical depth (L-VOD) is the most impacted vegetation variable and takes the longest to recover over dense forests. L-VOD could then be useful for post-fire vegetation recovery studies.
Chen Yang, Yue Shi, Wenjuan Sun, Jiangling Zhu, Chengjun Ji, Yuhao Feng, Suhui Ma, Zhaodi Guo, and Jingyun Fang
Biogeosciences, 19, 2989–2999, https://doi.org/10.5194/bg-19-2989-2022, https://doi.org/10.5194/bg-19-2989-2022, 2022
Short summary
Short summary
Quantifying China's forest biomass C pool is important in understanding C cycling in forests. However, most of studies on forest biomass C pool were limited to the period of 2004–2008. Here, we used a biomass expansion factor method to estimate C pool from 1977 to 2018. The results suggest that afforestation practices, forest growth, and environmental changes were the main drivers of increased C sink. Thus, this study provided an essential basis for achieving China's C neutrality target.
Anne Schucknecht, Bumsuk Seo, Alexander Krämer, Sarah Asam, Clement Atzberger, and Ralf Kiese
Biogeosciences, 19, 2699–2727, https://doi.org/10.5194/bg-19-2699-2022, https://doi.org/10.5194/bg-19-2699-2022, 2022
Short summary
Short summary
Actual maps of grassland traits could improve local farm management and support environmental assessments. We developed, assessed, and applied models to estimate dry biomass and plant nitrogen (N) concentration in pre-Alpine grasslands with drone-based multispectral data and canopy height information. Our results indicate that machine learning algorithms are able to estimate both parameters but reach a better level of performance for biomass.
Ramona J. Heim, Andrey Yurtaev, Anna Bucharova, Wieland Heim, Valeriya Kutskir, Klaus-Holger Knorr, Christian Lampei, Alexandr Pechkin, Dora Schilling, Farid Sulkarnaev, and Norbert Hölzel
Biogeosciences, 19, 2729–2740, https://doi.org/10.5194/bg-19-2729-2022, https://doi.org/10.5194/bg-19-2729-2022, 2022
Short summary
Short summary
Fires will probably increase in Arctic regions due to climate change. Yet, the long-term effects of tundra fires on carbon (C) and nitrogen (N) stocks and cycling are still unclear. We investigated the long-term fire effects on C and N stocks and cycling in soil and aboveground living biomass.
We found that tundra fires did not affect total C and N stocks because a major part of the stocks was located belowground in soils which were largely unaltered by fire.
Aileen B. Baird, Edward J. Bannister, A. Robert MacKenzie, and Francis D. Pope
Biogeosciences, 19, 2653–2669, https://doi.org/10.5194/bg-19-2653-2022, https://doi.org/10.5194/bg-19-2653-2022, 2022
Short summary
Short summary
Forest environments contain a wide variety of airborne biological particles (bioaerosols) important for plant and animal health and biosphere–atmosphere interactions. Using low-cost sensors and a free-air carbon dioxide enrichment (FACE) experiment, we monitor the impact of enhanced CO2 on airborne particles. No effect of the enhanced CO2 treatment on total particle concentrations was observed, but a potential suppression of high concentration bioaerosol events was detected under enhanced CO2.
Melanie S. Verlinden, Hamada AbdElgawad, Arne Ven, Lore T. Verryckt, Sebastian Wieneke, Ivan A. Janssens, and Sara Vicca
Biogeosciences, 19, 2353–2364, https://doi.org/10.5194/bg-19-2353-2022, https://doi.org/10.5194/bg-19-2353-2022, 2022
Short summary
Short summary
Zea mays grows in mesocosms with different soil nutrition levels. At low phosphorus (P) availability, leaf physiological activity initially decreased strongly. P stress decreased over the season. Arbuscular mycorrhizal fungi (AMF) symbiosis increased over the season. AMF symbiosis is most likely responsible for gradual reduction in P stress.
Cited articles
Anderson, H. B., Nilsen, L., Tømmervik, H., Karlsen, S. R., Nagai, S., and Cooper, E. J.: Using Ordinary Digital Cameras in Place of Near-Infrared Sensors to Derive Vegetation Indices for Phenology Studies of High Arctic Vegetation, Remote Sens., 8, 847, https://doi.org/10.3390/rs8100847, 2016.
Badeck, F. W., Bondeau, A., Böttcher, K., Doktor, D., Lucht, W., Schaber,
J., and Sitch, S.: Responses of spring phenology to climate change, New
Phytol., 162, 295–309, https://doi.org/10.1111/j.1469-8137.2004.01059.x, 2004.
Baldocchi, D. D., Matt, D. R., Hutchison, B. A., and McMillen, R. T.: Solar
radiation within an oak-hickory forest: an evaluation of extinction
coefficients for several radiation components during fully leafed and
leafless periods, Agr. Forest Meteorol., 32, 307–322, https://doi.org/10.1016/0168-1923(84)90056-X, 1984.
Baldocchi, D. D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S.,
Anthoni, P., Bernhofer, C., Davis, K., Fuentes, J., Goldstein, A., Katul,
G., Law, B., Lee, X., Malhi, Y., Meyers, T., Munger, J. W., Oechel, W.,
Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S., Vesala, T., Wilson,
K., and Wofsy, S.: FLUXNET: a new tool to study the temporal and spatial
variability of ecosystem-scale carbon dioxide, water vapor and energy flux
densities, B. Am. Meteorol. Soc., 82, 2415–2435,
https://doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2, 2001.
Campbell, G. S.: Extinction coefficients for radiation in plant canopies
calculated using an ellipsoidal inclination angle distribution,
Agr. Forest Meteorol., 36, 317–321, https://doi.org/10.1016/0168-1923(86)90010-9, 1986.
Campbell, G. S. and Norman, J. M.: The Light Environment of Plant Canopies, in: An Introduction to Environmental Biophysics, Springer, New York, USA,
1998.
Delpierre, N., Berveiller, D., Granda, E., and Dufrêne, E.: Wood
phenology, not carbon input, controls the interannual variability of wood
growth in a temperate oak forest, New Phytol., 210, 459–470,
https://doi.org/10.1111/nph.13771, 2016.
Delpierre, N., Soudani, K., François, C., Köstner, B., Pontailler,
J., Nikinmaa, E., Misson, L., Aubinet, M., Bernhofer, C., Granier, A.,
Grünwald, T., Heinesch, B., Longdoz, B., Ourcival, J., Rambal, S.,
Vesala, T., and Dufrene, E.: Exceptional carbon uptake in European forests
during the warm spring of 2007: a data-model analysis, Global Change Biol.,
15, 1455–1474, https://doi.org/10.1111/j.1365-2486.2008.01835.x, 2009a.
Delpierre, N., Dufrêne, E., Soudani, K., Ulrich, E., Cecchini, S.,
Boé, J., and François, C.: Modelling interannual and spatial
variability of leaf senescence for three deciduous tree species in France,
Agr. Forest Meteorol., 149, 938–948, https://doi.org/10.1016/j.agrformet.2008.11.014, 2009b.
Delpierre, N., Soudani, K., Berveiller, D., Dufrêne, E., Hmimina, G.,
and Vincent, G.: “Green pointillism”: detecting the within-population
variability of budburst in temperate deciduous trees with phenological
cameras, Int. J. Biometeorol., 64, 663–670, https://doi.org/10.1101/771477, 2020.
Denéchère, R., Delpierre, N., Apostol, E., Berveiller, D., Bonne,
F., Cole, E., Delzon, S., Dufrêne, E., Gressler, E., Jean, F.,
Lebourgeois, F., Liu, G., Louvet, J., Parmentier, J., Soudani, K., and
Vincent, G.: The within-population variability of leaf spring and autumn
phenology is influenced by temperature in temperate deciduous trees, Int. J.
Biometeorol., 65, 369–379, https://doi.org/10.1007/s00484-019-01762-6, 2019.
Dragoni, D., Schmid, H. P., Wayson, C. A., Potter, H., Grimmond C. S. B., and
Randolph, J. C.: Evidence of increased net ecosystem productivity associated
with a longer vegetated season in a deciduous forest in south-central
Indiana, USA, Global Change Biol., 17, 886–897,
https://doi.org/10.1111/j.1365-2486.2010.02281.x, 2011.
Eklundh, L., Jin, H., Schubert, P., Guzinski, R., and Heliasz, M.: An
optical sensor network for vegetation phenology monitoring and satellite
data calibration, Sensors, 11, 7678–7709, https://doi.org/10.3390/s110807678, 2011.
Franz, D., Acosta, M., Altimir, N., Arriga, N., Arrouays, D., Aubinet, M.,
Aurela, M., Ayres, E., López-Ballesteros, A., Barbaste, M., Berveiller,
D., Biraud, S., Boukir, H., Brown, T., Brümmer, C., Buchmann, N., Burba,
G., Carrara, A., Cescatti, A., Ceschia, E., Clement, R., Cremonese, E.,
Crill, P., Darenova, E., Dengel, S., D'Odorico, P., Gianluca, F., Fleck, S.,
Fratini, G., Fuß, R., Gielen, B., Gogo, S., Grace, J., Graf, A., Grelle,
A., Gross, P., Grünwald, T., Haapanala, S., Hehn, M., Heinesch, B.,
Heiskanen, J., Herbst, M., Herschlein, C., Hörtnagl, L., Hufkens, K.,
Ibrom, A., Jolivet, C., Joly, L., Jones, M., Kiese, R., Klemedtsson, L.,
Kljun, N., Klumpp, K., Kolari, P., Kolle, O., Kowalski, A., Kutsch, W.,
Laurila, T., De Ligne, A., Linder, S., Lindroth, A., Lohila, A., Longdoz,
B., Mammarella, I., Manise, T., Marañon-Jimenez, S., Matteucci, G.,
Mauder, M., Meier, P., Merbold, L., Mereu, S., Metzger, S., Migliavacca, M.,
Mölder, M., Montagnani, L., Moureaux, C., Nelson, D., Nemitz, E.,
Nicolini, G., Nilsson, M. B., Op de Beeck, M., Osborne, B., Ottosson Löfvenius, M., Pavelka, M., Peichl, M., Peltola, O., Pihlatie, M., Pitacco, A., Pokorny, R., Pumpanen, J., Ratié, C., Schrumpf, M.,
Sedlák, P., Serrano Ortiz, P., Siebicke, L., Šigut, L.,
Silvennoinen, H., Simioni, G., Skiba, U., Sonnentag, O., Soudani, K.,
Soulé, P., Steinbrecher, R., Tallec, T., Thimonier, A., Tuittila, E.,
Tuovinen, J., Vestin, P., Vincent, G., Vincke, C., Vitale, D., Waldner, P.,
Weslien, P., Wingate, L., Wohlfahrt, G., Zahniser, M., and Vesala, T.:
Towards long-term standardised carbon and greenhouse gas observations for
monitoring Europe's terrestrial ecosystems: a review, Int.
Agrophys., 32, 439–455, https://doi.org/10.1515/intag-2017-0039, 2018.
Garrity, S. R., Bohrer, G., Maurer, K. D., Mueller, K. L., Vogel, C. S., and Curtis, P. S.: A comparison of multiple phenology data sources for estimating
seasonal transitions in deciduous forest carbon exchange, Agr. Forest Meteorol., 151, 1741–1752, https://doi.org/10.1016/j.agrformet.2011.07.008, 2011.
Gielen, B., Acosta, M., Altimir, N., Buchmann, N., Cescatti, A., Ceschia,
E., Fleck, S., Hörtnagl, L., Klumpp, K., Kolari, P., Lohila, A.,
Loustau, D., Marañon-Jimenez, S., Manise, T., Matteucci, G., Merbold,
L., Metzger, C., Moureaux, C., Montagnani, L., Nilsson, M. B., Osborne, B.,
Papale, D., Pavelka, M., Saunders, M., Simioni, G., Soudani, K., Sonnentag,
O., Tallec, T., Tuittila, E., Peichl, M., Pokorny, R., Vincke, C., and
Wohlfahrt, G.: Ancillary vegetation measurements at ICOS ecosystem stations,
Int. Agrophys., 10, 645–664, https://doi.org/10.1515/intag-2017-0048, 2018.
Gonsamo, A., Chen, J. M., and D'Odorico, P.: Deriving land surface phenology
indicators from CO2 eddy covariance measurements, Ecol. Indic. 29, 203–207, https://doi.org/10.1016/j.ecolind.2012.12.026, 2013.
Goulden, M. L., Munger, J. W., Fan, S. M., Daube, B. C., and Wofsy, S. C.:
Exchange of carbon dioxide by a deciduous forest: response to interannual
climate variability, Science, 271, 1576–1578, https://doi.org/10.1126/science.271.5255.1576, 1996.
Hmimina, G., Dufrene, E., Pontailler, J.-Y., Delpierre, N., Aubinet, M.,
Caquet, B., de Grandcourt, A., Burban, B., Flechard, C., Granier, A., Gross,
P., Heinesch, B., Longdoz, B., Moureaux, C., Ourcival, J.-M., Rambal, S.,
Saint-André, L., and Soudani, K.: Evaluation of the potential of MODIS
satellite data to predict vegetation phenology in different biomes: An
investigation using ground based NDVI measurements, Remote Sens. Environ.,
132, 145–158, https://doi.org/10.1016/j.rse.2013.01.010, 2013.
Holst, T., Hauser, S., Kirchgässner, A., Matzarakis, A., Mayer, H., and
Schindler, D.: Measuring and modelling plant area index in beech
stands, Int. J. Biometeorol., 48, 192–201, https://doi.org/10.1007/s00484-004-0201-y, 2004.
Huemmrich, K. F., Black, T. A., Jarvis, P. G., McCaughey, J. H., and Hall,
F. G.: High temporal resolution NDVI phenology from micrometeorological
radiation sensors, J. Geophys. Res.-Atmos., 104, 27935–27944,
https://doi.org/10.1029/1999JD900164, 1999.
Jenkins, J. P., Richardson, A. D., Braswell, B. H., Ollinger, S. V., Hollinger,
D. Y., and Smith, M.-L.: Refining light-use efficiency calculations for a
deciduous forest canopy using simultaneous tower-based carbon flux and
radiometric measurements, Agr. Forest Meteorol., 143, 64–79,
https://doi.org/10.1016/j.agrformet.2006.11.008, 2006.
Keenan, T. F., Darby, B., Felts, E., Sonnentag, O., Friedl, M. A., Hufkens,
K., O'Keefe, J., Klosterman, S., Munger, J. W., Toomey, M., and Richardson,
A. D.: Tracking Forest Phenology and Seasonal Physiology Using Digital
Repeat Photography: A Critical Assessment, Ecol. Appl., 24, 1478–1489, https://doi.org/10.1890/13-0652.1, 2014.
Klosterman, S. T., Hufkens, K., Gray, J. M., Melaas, E., Sonnentag, O., Lavine, I., Mitchell, L., Norman, R., Friedl, M. A., and Richardson, A. D.: Evaluating remote sensing of deciduous forest phenology at multiple spatial scales using PhenoCam imagery, Biogeosciences, 11, 4305–4320, https://doi.org/10.5194/bg-11-4305-2014, 2014.
Kobayashi, H., Nagai, S., Kim, Y., Yang, W., Ikeda, K., Ikawa, H., Nagano,
H., and Suzuki, R.: In situ observations reveal how spectral reflectance
responds to growing season phenology of an open evergreen forest in Alaska,
Remote Sens.-Basel, 10, 1071, https://doi.org/10.3390/rs10071071, 2018.
Link, T. E., Marks, D., and Hardy, J.: A deterministic method to characterize
canopy radiative transfer properties, Hydrol. Process., 18, 3583–3594,
https://doi.org/10.1002/hyp.5793, 2004.
Liu, F., Wang, X., and Wang, C.: Autumn phenology of a temperate deciduous
forest: Validation of remote sensing approach with decadal leaf-litterfall
measurements, Agr. Forest Meteorol., 15, 107758,
https://doi.org/10.1016/j.agrformet.2019.107758, 2019.
Liu, Y., Wu, C., Sonnentag, O., Desai, A. R., and Wang, J.: Using the red
chromatic coordinate to characterize the phenology of forest canopy
photosynthesis, Agr. Forest Meteorol., 285–286, 107910,
https://doi.org/10.1016/j.agrformet.2020.107910, 2020.
Liu, Z., Hu, H., Yu, H., Yang, X., Yang, H., Ruan, C., Wang, Y., and Tang,
J.: Relationship between leaf physiologic traits and canopy color indices
during the leaf expansion period in an oak forest, Ecosphere, 6, 259,
https://doi.org/10.1890/ES14-00452.1, 2015.
Lu, X., Liu, Z., Zhou, Y., Liu, Y., An, S., and Tang, J.: Comparison of
Phenology Estimated from Reflectance-Based Indices and Solar-Induced
Chlorophyll Fluorescence (SIF) Observations in a Temperate Forest Using
GPP-Based Phenology as the Standard, Remote Sens.-Basel, 10, 932,
https://doi.org/10.3390/rs10060932, 2018.
McCree, K. J.: Test of current definitions of photosynthetically active
radiation against leaf photosynthesis data, Agr. Meteorol., 10,
443–453, https://doi.org/10.1016/0002-1571(72)90045-3, 1972.
Menzel, A., Sparks, T. H., Estrella, N., Koch, E., Aasa, A., Ahas, R.,
Alm-Kübler, K., Bissolli, P., Braslavská, O., Briede, A.,
Chmielewski, F. M., Crepinsek, Z., Curnel, Y., Dahl, Å., Defila, C.,
Donnelly, A., Filella, Y., Jatczak, K., Måge, F., Mestre, A., Nordli,
Ø., Peñuelas, J., Pirinen, P., Remišová, V., Scheifinger, H.,
Striz, M., Susnik, A., Van Vliet, A. J. H., Wielgolaski, F.-E., Zach, S., and
Zust, A.: European phenological response to climate change matches the
warming pattern, Global Change Biol., 12, 1969–1976,
https://doi.org/10.1111/j.1365-2486.2006.01193.x, 2006.
Motohka, T., Nasahara, K. N., Oguma, H., and Tsuchida, S.: Applicability of
green-red vegetation index for remote sensing of vegetation phenology,
Remote Sens.-Basel, 2, 2369–2387, https://doi.org/10.3390/rs2102369, 2010.
Nagai, S., Saitoh, T. M., Kobayashi, H., Ishihara, M., Motohka, T., Suzuki,
R., Nasahara, K. N., and Muraoka, H.: In situ examination for the
relationship between various vegetation indices and tree phenology in an
evergreen coniferous forest, Japan, Int. J. Remote Sens., 33, 6202–6214,
https://doi.org/10.1080/01431161.2012.682660, 2012.
Perot, T., Balandier, P., Couteau, C., Perret, S., Seigner, V., and
Korboulewsky, N.: Transmitted light as a tool to monitor tree leaf phenology
and development applied to Quercus petraea, Agr. Forest Meteorol., 275,
37–46, https://doi.org/10.1016/j.agrformet.2019.05.010, 2019.
Petach, A. R., Toomey, M., Aubrecht, D. M., and Richardson, A. D.: Monitoring
vegetation phenology using an infrared-enabled security camera, Agr. Forest Meteorol., 195–196, 143–151, https://doi.org/10.1016/j.agrformet.2014.05.008, 2014.
Piao, S., Liu, Q., Chen, A., Janssens, I., Fu, Y., Dai, J., Liu, L., Lian,
X., Shen, M., and Zhu, X.: Plant phenology and global climate change:
current progresses and challenges, Global Change Biol., 25, 1922–1940,
https://doi.org/10.1111/gcb.14619, 2019.
Pontailler, J.-Y.: A Cheap Quantum Sensor Using a Gallium Arsenide
Photodiode, Funct. Ecol., 4, 591–596, https://doi.org/10.2307/2389327, 1990.
Pontailler, J.-Y., Hymus, G. J., and Drake, B. G.: Estimation of leaf area
index using ground-based remote sensed NDVI measurements: Validation and
comparison with two indirect techniques, Can. J. Remote Sens., 29, 381–387,
https://doi.org/10.5589/m03-009, 2003.
Richardson, A. D.: Tracking seasonal rhythms of plants in diverse ecosystems
with digital camera imagery, New Phytol., 222, 1742–1750,
https://doi.org/10.1111/nph.15591, 2019.
Richardson, A. D., Jenkins, J. P., Braswell, B. H., Hollinger, D. Y.,
Ollinger, S. V., and Smith, M. L.: Use of digital webcam images to track
spring green-up in a deciduous broadleaf forest, Oecologia, 152, 323–334,
https://doi.org/10.1007/s00442-006-0657-z, 2007.
Richardson, A. D., Black, T. A., Ciais, P., Delbart, N., Friedl, M. A., Gobron, N., Hollinger, D. Y., Kutsch, W. L., Longdoz, B., Luyssaert, S., Migliavacca, M., Montagnani, L., Munger, J. W., Moors, E., Piao, S., Rebmann, C., Reichstein, M., Saigusa, N., Tomelleri, E., Vargas, R., and Varlagin, A.:
Influence of spring and autumn phenological transitions on forest ecosystem
productivity, Philos. T. Roy. Soc. B, 365, 3227–3246,
https://doi.org/10.1098/rstb.2010.0102, 2010.
Richardson, A. D., Hufkens, K., Milliman, T., and Frolking, S.: Intercomparison
of phenological transition dates derived from the PhenoCam Dataset V1.0 and
MODIS satellite remote sensing, Sci. Rep.-UK, 8, 5679,
https://doi.org/10.1038/s41598-018-23804-6, 2018a.
Richardson, A. D., Hufkens, K., Milliman, T., Aubrecht, D. M., Chen, M., Gray, J. M., Johnston, M. R., Keenan, T. F., Klosterman, S. T., Kosmala, M., Melaas, E. K., Friedl, M. A., and Frolking, S.: Tracking vegetation phenology across diverse North American biomes using PhenoCam imagery, Scientific Data, 5, 180028, https://doi.org/10.1038/sdata.2018.28, 2018b.
Roetzer, T., Wittenzeller, M., Haeckel, H., and Nekovar, J.: Phenology in
central Europe: difference and trends of spring phenophases in urban and
rural areas, Int. J. Biometeorol., 44, 60–66,
https://doi.org/10.1007/s004840000062, 2000.
Ryu, Y., Baldocchi, D. D., Verfaillie, J., Ma, S., Falk, M., Ruiz-Mercado,
I., Hehn, T., and Sonnentag, O.: Testing the performance of a novel spectral
reflectance sensor, built with light emitting diodes (LEDs), to monitor
ecosystem metabolism, structure and function, Agr. Forest Meteorol.,
150, 1597–1606, https://doi.org/10.1016/j.agrformet.2010.08.009, 2010.
Sakamoto, T., Gitelson, A. A., Nguy-Robertson, A. L., Arkebauer, T. J.,
Wardlow, B. D., Suyker, A. E., Verma, S. B., and Shibayama, M.: An alternative
method using digital cameras for continuous monitoring of crop status,
Agr. Forest Meteorol., 154–155, 113–126, https://doi.org/10.1016/j.agrformet.2011.10.014, 2012.
Schaber, J.: Phenology in Germany in the 20th century: methods, analyses and
models, University of Potsdam, Germany, 2002.
Schaber, J. and Badeck, F. W.: Evaluation of methods for the combination of
phenological time series and outlier detection, Tree Physiol., 22, 973–982,
https://doi.org/10.1093/treephys/22.14.973, 2002.
Sims, D. A. and Gamon, J. A.: Relationship between leaf pigment content and
spectral reflectance across a wide range species, leaf structures and
development stages, Remote Sens. Environ., 81, 337–354,
https://doi.org/10.1016/S0034-4257(02)00010-X, 2002.
Sonnentag, O., Hufkens, K., Teshera-Sterne, C., Young, A. M., Friedl, M.,
Braswell, B. H., Milliman, T., O'Keefe, J., and Richardson, A. D.: Digital
repeat photography for phenological research in forest ecosystems, Agr. Forest Meteorol., 152, 159–177, https://doi.org/10.1016/j.agrformet.2011.09.009,
2012.
Soudani, K., le Maire, G., Dufrêne, E., François, C., Delpierre, N.,
Ulrich, E., and Cecchini, S.: Evaluation of the onset of green-up in
temperate deciduous broadleaf forests derived from Moderate Resolution
Imaging Spectroradiometer (MODIS) data, Remote Sens. Environ., 12,
2643–2655, https://doi.org/10.1016/j.rse.2007.12.004, 2008.
Soudani, K., Hmimina, G., Delpierre, N., Pontailler, J.-Y., Aubinet, M.,
Bonal, D., Caquet, B., de Grandcourt, A., Burban, B., Flechard, C., Guyon,
D., Granier, A., Gross, P., Heinesh, B., Longdoz, B., Loustau, D., Moureaux,
C., Ourcival, J.-M., Rambal, S., Saint André, L., and Dufrêne, E.:
Ground-based Network of NDVI measurements for tracking temporal dynamics of
canopy structure and vegetation phenology in different biomes,
Remote Sens. Environ., 123, 234–245, https://doi.org/10.1016/j.rse.2012.03.012, 2012.
Sparks, T. H. and Carey, P. D.: The responses of species to climate over two
centuries: an analysis of the Marsham phenological record, 1736–1947, J.
Ecol., 83, 321–329, https://doi.org/10.2307/2261570, 1995.
Toda, M. and Richardson, A. D.: Estimation of plant area index and
phenological transition dates from digital repeat photography and
radiometric approaches in a hardwood forest in the Northeastern United
States, Agr. Forest Meteorol., 249, 457–466,
https://doi.org/10.1016/j.agrformet.2017.09.004, 2018.
Toomey, M., Friedl, M. A., Frolking, S., Hufkens, K., Klosterman, S.,
Sonnentag, O., Baldocchi, D. D., Bernacchi, C. J., Biraud, S. C., Bohrer, G.,
Brzostek, E., Burns, S. P., Coursolle, C., Hollinger, D. Y., Margolis, H. A.,
McCaughey, H., Monson, R. K., Munger, J. W., Pallardy, S., Phillips, R. P.,
Torn, M. S., Wharton, S., Zeri, M., and Richardson, A. D.: Greenness indices
from digital cameras predict the timing and seasonal dynamics of
canopy-scale photosynthesis, Ecol. Appl., 25, 99-115,
https://doi.org/10.1890/14-0005.1, 2015.
Wang, Q., Tenhunen, J., Dinh, N. Q., Reichstein, M., Vesala, T., and Keronen,
P.: Similarities in ground- and satellite-based NDVI time-series and their
relationship to physiological activity of a Scots pine forest in Finland,
Remote Sens. Environ., 93, 225–237, https://doi.org/10.1016/j.rse.2004.07.006, 2004.
Wang, Q., Tenhunen, J., Schmidt, M., Kolcun, O., Droesler, M., and
Reichstein, M.: Estimation of total, direct and diffuse PAR under clear
skies in complex alpine terrain of the National Park Berchtesgaden, Germany,
Ecol. Model., 196, 149–162, https://doi.org/10.1016/j.ecolmodel.2006.02.005, 2006.
Webster, C., Rutter, N., Zahner, F., and Jonas, T.: Measurement of incoming
radiation below forest canopies: A comparison of different radiometer
configurations, J. Hydrometeorol., 17, 853–864,
https://doi.org/10.1175/JHM-D-15-0125.1, 2016.
Wilson, T. B. and Meyers, T. B.: Determining vegetation indices from solar and photosynthetically active radiation fluxes, Agr. Forest Meteorol., 144,
160–179, https://doi.org/10.1016/j.agrformet.2007.04.001, 2007.
Wingate, L., Ogée, J., Cremonese, E., Filippa, G., Mizunuma, T., Migliavacca, M., Moisy, C., Wilkinson, M., Moureaux, C., Wohlfahrt, G., Hammerle, A., Hörtnagl, L., Gimeno, C., Porcar-Castell, A., Galvagno, M., Nakaji, T., Morison, J., Kolle, O., Knohl, A., Kutsch, W., Kolari, P., Nikinmaa, E., Ibrom, A., Gielen, B., Eugster, W., Balzarolo, M., Papale, D., Klumpp, K., Köstner, B., Grünwald, T., Joffre, R., Ourcival, J.-M., Hellstrom, M., Lindroth, A., George, C., Longdoz, B., Genty, B., Levula, J., Heinesch, B., Sprintsin, M., Yakir, D., Manise, T., Guyon, D., Ahrends, H., Plaza-Aguilar, A., Guan, J. H., and Grace, J.: Interpreting canopy development and physiology using a European phenology camera network at flux sites, Biogeosciences, 12, 5995–6015, https://doi.org/10.5194/bg-12-5995-2015, 2015.
Wohlfahrt, G., Pilloni, S., Hörtnagl, L., and Hammerle, A.: Estimating carbon dioxide fluxes from temperate mountain grasslands using broad-band vegetation indices, Biogeosciences, 7, 683–694, https://doi.org/10.5194/bg-7-683-2010, 2010.
Wu, C., Peng, D., Soudani, K., Siebicke, L., Gough, C. M., Arain, M. A.,
Bohrer, G., Lafleur, P. M., Peichl, M., Gonsamo, A., Shiguang, X., Fang, B.,
and Quansheng, G.: Land surface phenology derived from normalized difference
vegetation index (NDVI) at global FLUXNET sites, Agr. Forest Meteorol.,
233, 171–182, https://doi.org/10.1016/j.agrformet.2016.11.193, 2017.
Yang, X., Tang, J., and Mustard, J. F.: Beyond leaf color: Comparing
camera-based phenological metrics with leaf biochemical, biophysical, and
spectral properties throughout the growing season of a temperate deciduous
forest, J. Geophys. Res.-Biogeo., 119, 181–191, https://doi.org/10.1002/2013JG002460, 2014.
Zhang, X., Friedl, M. A., Schaaf, C. B., Strahler, A. H., Hodges, J. C. F.,
Gao, F., Reed, B. C., and Huete, A.: Monitoring vegetation phenology using
MODIS, Remote Sens. Environ., 84, 471–475,
https://doi.org/10.1016/S0034-4257(02)00135-9, 2003.
Short summary
We present an exhaustive comparative survey of eight proximal methods to estimate forest phenology. We focused on methodological aspects and thoroughly assessed deviations between predicted and observed phenological dates and pointed out their main causes. We show that proximal methods provide robust phenological metrics. They can be used to retrieve long-term phenological series at flux measurement sites and help interpret the interannual variability and trends of mass and energy exchanges.
We present an exhaustive comparative survey of eight proximal methods to estimate forest...
Altmetrics
Final-revised paper
Preprint