Articles | Volume 18, issue 11
https://doi.org/10.5194/bg-18-3391-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-3391-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A survey of proximal methods for monitoring leaf phenology in temperate deciduous forests
Kamel Soudani
CORRESPONDING AUTHOR
Ecologie
Systématique et Evolution, Université Paris-Saclay, CNRS, AgroParisTech, 91405, Orsay, France
Nicolas Delpierre
Ecologie
Systématique et Evolution, Université Paris-Saclay, CNRS, AgroParisTech, 91405, Orsay, France
Daniel Berveiller
Ecologie
Systématique et Evolution, Université Paris-Saclay, CNRS, AgroParisTech, 91405, Orsay, France
Gabriel Hmimina
Laboratoire de Météorologie Dynamique, IPSL, CNRS/UPMC,
Paris, France
Jean-Yves Pontailler
Ecologie
Systématique et Evolution, Université Paris-Saclay, CNRS, AgroParisTech, 91405, Orsay, France
Lou Seureau
Ecologie
Systématique et Evolution, Université Paris-Saclay, CNRS, AgroParisTech, 91405, Orsay, France
Gaëlle Vincent
Ecologie
Systématique et Evolution, Université Paris-Saclay, CNRS, AgroParisTech, 91405, Orsay, France
Éric Dufrêne
Ecologie
Systématique et Evolution, Université Paris-Saclay, CNRS, AgroParisTech, 91405, Orsay, France
Related authors
Arsène Druel, Julien Ruffault, Hendrik Davi, André Chanzy, Olivier Marloie, Miquel De Cáceres, Albert Olioso, Florent Mouillot, Christophe François, Kamel Soudani, and Nicolas K. Martin-StPaul
Biogeosciences, 22, 1–18, https://doi.org/10.5194/bg-22-1-2025, https://doi.org/10.5194/bg-22-1-2025, 2025
Short summary
Short summary
Accurate radiation data are essential for understanding ecosystem functions and dynamics. Traditional large-scale data lack the precision needed for complex terrain. This study introduces a new model, which accounts for sub-daily direct and diffuse radiation effects caused by terrain features, to enhance the radiation data resolution using elevation maps. Tested on a mountainous area, this method significantly improved radiation estimates, benefiting predictions of forest functions.
Hamadou Balde, Gabriel Hmimina, Yves Goulas, Gwendal Latouche, Abderrahmane Ounis, Daniel Berveiller, and Kamel Soudani
EGUsphere, https://doi.org/10.5194/egusphere-2024-657, https://doi.org/10.5194/egusphere-2024-657, 2024
Preprint archived
Short summary
Short summary
To understand the drivers of GPP and SIF changes and of their links, we examined how SIF and GPP changed at daily and seasonal scales considering canopy structure and abiotic conditions in a deciduous oak forest. The data show that leaf and canopy properties variations, seasonal cycle of PAR, and abiotic factors control not only SIF and GPP changes, but also their links. Further, during the heatwaves in 2022, we noticed that SIF was a proxy of GPP, while VIs were not.
Hamadou Balde, Gabriel Hmimina, Yves Goulas, Gwendal Latouche, Abderrahmane Ounis, and Kamel Soudani
Biogeosciences, 21, 1259–1276, https://doi.org/10.5194/bg-21-1259-2024, https://doi.org/10.5194/bg-21-1259-2024, 2024
Short summary
Short summary
We show that FyieldLIF was not correlated with SIFy at the diurnal timescale, and the diurnal patterns in SIF and PAR did not match under clear-sky conditions due to canopy structure. Φk was sensitive to canopy structure. RF models show that Φk can be predicted using reflectance in different bands. RF models also show that FyieldLIF was more sensitive to reflectance and radiation than SIF and SIFy, indicating that the combined effect of reflectance bands could hide the SIF physiological trait.
Hamadou Balde, Gabriel Hmimina, Yves Goulas, Gwendal Latouche, and Kamel Soudani
Biogeosciences, 20, 1473–1490, https://doi.org/10.5194/bg-20-1473-2023, https://doi.org/10.5194/bg-20-1473-2023, 2023
Short summary
Short summary
This study focuses on the relationship between sun-induced chlorophyll fluorescence (SIF) and ecosystem gross primary productivity (GPP) across the ICOS European flux tower network. It shows that SIF, coupled with reflectance observations, explains over 80 % of the GPP variability across diverse ecosystems but fails to bring new information compared to reflectance alone at coarse spatial scales (~5 km). These findings have applications in agriculture and ecophysiological studies.
Jan Pisek, Angela Erb, Lauri Korhonen, Tobias Biermann, Arnaud Carrara, Edoardo Cremonese, Matthias Cuntz, Silvano Fares, Giacomo Gerosa, Thomas Grünwald, Niklas Hase, Michal Heliasz, Andreas Ibrom, Alexander Knohl, Johannes Kobler, Bart Kruijt, Holger Lange, Leena Leppänen, Jean-Marc Limousin, Francisco Ramon Lopez Serrano, Denis Loustau, Petr Lukeš, Lars Lundin, Riccardo Marzuoli, Meelis Mölder, Leonardo Montagnani, Johan Neirynck, Matthias Peichl, Corinna Rebmann, Eva Rubio, Margarida Santos-Reis, Crystal Schaaf, Marius Schmidt, Guillaume Simioni, Kamel Soudani, and Caroline Vincke
Biogeosciences, 18, 621–635, https://doi.org/10.5194/bg-18-621-2021, https://doi.org/10.5194/bg-18-621-2021, 2021
Short summary
Short summary
Understory vegetation is the most diverse, least understood component of forests worldwide. Understory communities are important drivers of overstory succession and nutrient cycling. Multi-angle remote sensing enables us to describe surface properties by means that are not possible when using mono-angle data. Evaluated over an extensive set of forest ecosystem experimental sites in Europe, our reported method can deliver good retrievals, especially over different forest types with open canopies.
Tanguy Postic, François de Coligny, Isabelle Chuine, Louis Devresse, Daniel Berveiller, Hervé Cochard, Matthias Cuntz, Nicolas Delpierre, Émilie Joetzjer, Jean-Marc Limousin, Jean-Marc Ourcival, François Pimont, Julien Ruffault, Guillaume Simioni, Nicolas K. Martin-StPaul, and Xavier Morin
EGUsphere, https://doi.org/10.5194/egusphere-2025-2110, https://doi.org/10.5194/egusphere-2025-2110, 2025
Short summary
Short summary
PHOREAU is a forest dynamic model that links plant traits with water use, growth, and climate responses to explore how species diversity affects productivity and resilience. Validated across European forests, PHOREAU simulates how tree communities function under drought and warming. Our findings support the use of trait-based modeling to guide forest adaptation strategies under future climate scenarios.
Arsène Druel, Julien Ruffault, Hendrik Davi, André Chanzy, Olivier Marloie, Miquel De Cáceres, Albert Olioso, Florent Mouillot, Christophe François, Kamel Soudani, and Nicolas K. Martin-StPaul
Biogeosciences, 22, 1–18, https://doi.org/10.5194/bg-22-1-2025, https://doi.org/10.5194/bg-22-1-2025, 2025
Short summary
Short summary
Accurate radiation data are essential for understanding ecosystem functions and dynamics. Traditional large-scale data lack the precision needed for complex terrain. This study introduces a new model, which accounts for sub-daily direct and diffuse radiation effects caused by terrain features, to enhance the radiation data resolution using elevation maps. Tested on a mountainous area, this method significantly improved radiation estimates, benefiting predictions of forest functions.
Guohua Liu, Mirco Migliavacca, Christian Reimers, Basil Kraft, Markus Reichstein, Andrew D. Richardson, Lisa Wingate, Nicolas Delpierre, Hui Yang, and Alexander J. Winkler
Geosci. Model Dev., 17, 6683–6701, https://doi.org/10.5194/gmd-17-6683-2024, https://doi.org/10.5194/gmd-17-6683-2024, 2024
Short summary
Short summary
Our study employs long short-term memory (LSTM) networks to model canopy greenness and phenology, integrating meteorological memory effects. The LSTM model outperforms traditional methods, enhancing accuracy in predicting greenness dynamics and phenological transitions across plant functional types. Highlighting the importance of multi-variate meteorological memory effects, our research pioneers unlock the secrets of vegetation phenology responses to climate change with deep learning techniques.
Hamadou Balde, Gabriel Hmimina, Yves Goulas, Gwendal Latouche, Abderrahmane Ounis, Daniel Berveiller, and Kamel Soudani
EGUsphere, https://doi.org/10.5194/egusphere-2024-657, https://doi.org/10.5194/egusphere-2024-657, 2024
Preprint archived
Short summary
Short summary
To understand the drivers of GPP and SIF changes and of their links, we examined how SIF and GPP changed at daily and seasonal scales considering canopy structure and abiotic conditions in a deciduous oak forest. The data show that leaf and canopy properties variations, seasonal cycle of PAR, and abiotic factors control not only SIF and GPP changes, but also their links. Further, during the heatwaves in 2022, we noticed that SIF was a proxy of GPP, while VIs were not.
Hamadou Balde, Gabriel Hmimina, Yves Goulas, Gwendal Latouche, Abderrahmane Ounis, and Kamel Soudani
Biogeosciences, 21, 1259–1276, https://doi.org/10.5194/bg-21-1259-2024, https://doi.org/10.5194/bg-21-1259-2024, 2024
Short summary
Short summary
We show that FyieldLIF was not correlated with SIFy at the diurnal timescale, and the diurnal patterns in SIF and PAR did not match under clear-sky conditions due to canopy structure. Φk was sensitive to canopy structure. RF models show that Φk can be predicted using reflectance in different bands. RF models also show that FyieldLIF was more sensitive to reflectance and radiation than SIF and SIFy, indicating that the combined effect of reflectance bands could hide the SIF physiological trait.
Jianhong Lin, Daniel Berveiller, Christophe François, Heikki Hänninen, Alexandre Morfin, Gaëlle Vincent, Rui Zhang, Cyrille Rathgeber, and Nicolas Delpierre
Geosci. Model Dev., 17, 865–879, https://doi.org/10.5194/gmd-17-865-2024, https://doi.org/10.5194/gmd-17-865-2024, 2024
Short summary
Short summary
Currently, the high variability of budburst between individual trees is overlooked. The consequences of this neglect when projecting the dynamics and functioning of tree communities are unknown. Here we develop the first process-oriented model to describe the difference in budburst dates between individual trees in plant populations. Beyond budburst, the model framework provides a basis for studying the dynamics of phenological traits under climate change, from the individual to the community.
Ivan Cornut, Nicolas Delpierre, Jean-Paul Laclau, Joannès Guillemot, Yann Nouvellon, Otavio Campoe, Jose Luiz Stape, Vitoria Fernanda Santos, and Guerric le Maire
Biogeosciences, 20, 3093–3117, https://doi.org/10.5194/bg-20-3093-2023, https://doi.org/10.5194/bg-20-3093-2023, 2023
Short summary
Short summary
Potassium is an essential element for living organisms. Trees are dependent upon this element for certain functions that allow them to build their trunks using carbon dioxide. Using data from experiments in eucalypt plantations in Brazil and a simplified computer model of the plantations, we were able to investigate the effect that a lack of potassium can have on the production of wood. Understanding nutrient cycles is useful to understand the response of forests to environmental change.
Ivan Cornut, Guerric le Maire, Jean-Paul Laclau, Joannès Guillemot, Yann Nouvellon, and Nicolas Delpierre
Biogeosciences, 20, 3119–3135, https://doi.org/10.5194/bg-20-3119-2023, https://doi.org/10.5194/bg-20-3119-2023, 2023
Short summary
Short summary
After simulating the effects of low levels of potassium on the canopy of trees and the uptake of carbon dioxide from the atmosphere by leaves in Part 1, here we tried to simulate the way the trees use the carbon they have acquired and the interaction with the potassium cycle in the tree. We show that the effect of low potassium on the efficiency of the trees in acquiring carbon is enough to explain why they produce less wood when they are in soils with low levels of potassium.
Hamadou Balde, Gabriel Hmimina, Yves Goulas, Gwendal Latouche, and Kamel Soudani
Biogeosciences, 20, 1473–1490, https://doi.org/10.5194/bg-20-1473-2023, https://doi.org/10.5194/bg-20-1473-2023, 2023
Short summary
Short summary
This study focuses on the relationship between sun-induced chlorophyll fluorescence (SIF) and ecosystem gross primary productivity (GPP) across the ICOS European flux tower network. It shows that SIF, coupled with reflectance observations, explains over 80 % of the GPP variability across diverse ecosystems but fails to bring new information compared to reflectance alone at coarse spatial scales (~5 km). These findings have applications in agriculture and ecophysiological studies.
Rafael Poyatos, Víctor Granda, Víctor Flo, Mark A. Adams, Balázs Adorján, David Aguadé, Marcos P. M. Aidar, Scott Allen, M. Susana Alvarado-Barrientos, Kristina J. Anderson-Teixeira, Luiza Maria Aparecido, M. Altaf Arain, Ismael Aranda, Heidi Asbjornsen, Robert Baxter, Eric Beamesderfer, Z. Carter Berry, Daniel Berveiller, Bethany Blakely, Johnny Boggs, Gil Bohrer, Paul V. Bolstad, Damien Bonal, Rosvel Bracho, Patricia Brito, Jason Brodeur, Fernando Casanoves, Jérôme Chave, Hui Chen, Cesar Cisneros, Kenneth Clark, Edoardo Cremonese, Hongzhong Dang, Jorge S. David, Teresa S. David, Nicolas Delpierre, Ankur R. Desai, Frederic C. Do, Michal Dohnal, Jean-Christophe Domec, Sebinasi Dzikiti, Colin Edgar, Rebekka Eichstaedt, Tarek S. El-Madany, Jan Elbers, Cleiton B. Eller, Eugénie S. Euskirchen, Brent Ewers, Patrick Fonti, Alicia Forner, David I. Forrester, Helber C. Freitas, Marta Galvagno, Omar Garcia-Tejera, Chandra Prasad Ghimire, Teresa E. Gimeno, John Grace, André Granier, Anne Griebel, Yan Guangyu, Mark B. Gush, Paul J. Hanson, Niles J. Hasselquist, Ingo Heinrich, Virginia Hernandez-Santana, Valentine Herrmann, Teemu Hölttä, Friso Holwerda, James Irvine, Supat Isarangkool Na Ayutthaya, Paul G. Jarvis, Hubert Jochheim, Carlos A. Joly, Julia Kaplick, Hyun Seok Kim, Leif Klemedtsson, Heather Kropp, Fredrik Lagergren, Patrick Lane, Petra Lang, Andrei Lapenas, Víctor Lechuga, Minsu Lee, Christoph Leuschner, Jean-Marc Limousin, Juan Carlos Linares, Maj-Lena Linderson, Anders Lindroth, Pilar Llorens, Álvaro López-Bernal, Michael M. Loranty, Dietmar Lüttschwager, Cate Macinnis-Ng, Isabelle Maréchaux, Timothy A. Martin, Ashley Matheny, Nate McDowell, Sean McMahon, Patrick Meir, Ilona Mészáros, Mirco Migliavacca, Patrick Mitchell, Meelis Mölder, Leonardo Montagnani, Georgianne W. Moore, Ryogo Nakada, Furong Niu, Rachael H. Nolan, Richard Norby, Kimberly Novick, Walter Oberhuber, Nikolaus Obojes, A. Christopher Oishi, Rafael S. Oliveira, Ram Oren, Jean-Marc Ourcival, Teemu Paljakka, Oscar Perez-Priego, Pablo L. Peri, Richard L. Peters, Sebastian Pfautsch, William T. Pockman, Yakir Preisler, Katherine Rascher, George Robinson, Humberto Rocha, Alain Rocheteau, Alexander Röll, Bruno H. P. Rosado, Lucy Rowland, Alexey V. Rubtsov, Santiago Sabaté, Yann Salmon, Roberto L. Salomón, Elisenda Sánchez-Costa, Karina V. R. Schäfer, Bernhard Schuldt, Alexandr Shashkin, Clément Stahl, Marko Stojanović, Juan Carlos Suárez, Ge Sun, Justyna Szatniewska, Fyodor Tatarinov, Miroslav Tesař, Frank M. Thomas, Pantana Tor-ngern, Josef Urban, Fernando Valladares, Christiaan van der Tol, Ilja van Meerveld, Andrej Varlagin, Holm Voigt, Jeffrey Warren, Christiane Werner, Willy Werner, Gerhard Wieser, Lisa Wingate, Stan Wullschleger, Koong Yi, Roman Zweifel, Kathy Steppe, Maurizio Mencuccini, and Jordi Martínez-Vilalta
Earth Syst. Sci. Data, 13, 2607–2649, https://doi.org/10.5194/essd-13-2607-2021, https://doi.org/10.5194/essd-13-2607-2021, 2021
Short summary
Short summary
Transpiration is a key component of global water balance, but it is poorly constrained from available observations. We present SAPFLUXNET, the first global database of tree-level transpiration from sap flow measurements, containing 202 datasets and covering a wide range of ecological conditions. SAPFLUXNET and its accompanying R software package
sapfluxnetrwill facilitate new data syntheses on the ecological factors driving water use and drought responses of trees and forests.
Jan Pisek, Angela Erb, Lauri Korhonen, Tobias Biermann, Arnaud Carrara, Edoardo Cremonese, Matthias Cuntz, Silvano Fares, Giacomo Gerosa, Thomas Grünwald, Niklas Hase, Michal Heliasz, Andreas Ibrom, Alexander Knohl, Johannes Kobler, Bart Kruijt, Holger Lange, Leena Leppänen, Jean-Marc Limousin, Francisco Ramon Lopez Serrano, Denis Loustau, Petr Lukeš, Lars Lundin, Riccardo Marzuoli, Meelis Mölder, Leonardo Montagnani, Johan Neirynck, Matthias Peichl, Corinna Rebmann, Eva Rubio, Margarida Santos-Reis, Crystal Schaaf, Marius Schmidt, Guillaume Simioni, Kamel Soudani, and Caroline Vincke
Biogeosciences, 18, 621–635, https://doi.org/10.5194/bg-18-621-2021, https://doi.org/10.5194/bg-18-621-2021, 2021
Short summary
Short summary
Understory vegetation is the most diverse, least understood component of forests worldwide. Understory communities are important drivers of overstory succession and nutrient cycling. Multi-angle remote sensing enables us to describe surface properties by means that are not possible when using mono-angle data. Evaluated over an extensive set of forest ecosystem experimental sites in Europe, our reported method can deliver good retrievals, especially over different forest types with open canopies.
Cited articles
Anderson, H. B., Nilsen, L., Tømmervik, H., Karlsen, S. R., Nagai, S., and Cooper, E. J.: Using Ordinary Digital Cameras in Place of Near-Infrared Sensors to Derive Vegetation Indices for Phenology Studies of High Arctic Vegetation, Remote Sens., 8, 847, https://doi.org/10.3390/rs8100847, 2016.
Badeck, F. W., Bondeau, A., Böttcher, K., Doktor, D., Lucht, W., Schaber,
J., and Sitch, S.: Responses of spring phenology to climate change, New
Phytol., 162, 295–309, https://doi.org/10.1111/j.1469-8137.2004.01059.x, 2004.
Baldocchi, D. D., Matt, D. R., Hutchison, B. A., and McMillen, R. T.: Solar
radiation within an oak-hickory forest: an evaluation of extinction
coefficients for several radiation components during fully leafed and
leafless periods, Agr. Forest Meteorol., 32, 307–322, https://doi.org/10.1016/0168-1923(84)90056-X, 1984.
Baldocchi, D. D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S.,
Anthoni, P., Bernhofer, C., Davis, K., Fuentes, J., Goldstein, A., Katul,
G., Law, B., Lee, X., Malhi, Y., Meyers, T., Munger, J. W., Oechel, W.,
Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S., Vesala, T., Wilson,
K., and Wofsy, S.: FLUXNET: a new tool to study the temporal and spatial
variability of ecosystem-scale carbon dioxide, water vapor and energy flux
densities, B. Am. Meteorol. Soc., 82, 2415–2435,
https://doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2, 2001.
Campbell, G. S.: Extinction coefficients for radiation in plant canopies
calculated using an ellipsoidal inclination angle distribution,
Agr. Forest Meteorol., 36, 317–321, https://doi.org/10.1016/0168-1923(86)90010-9, 1986.
Campbell, G. S. and Norman, J. M.: The Light Environment of Plant Canopies, in: An Introduction to Environmental Biophysics, Springer, New York, USA,
1998.
Delpierre, N., Berveiller, D., Granda, E., and Dufrêne, E.: Wood
phenology, not carbon input, controls the interannual variability of wood
growth in a temperate oak forest, New Phytol., 210, 459–470,
https://doi.org/10.1111/nph.13771, 2016.
Delpierre, N., Soudani, K., François, C., Köstner, B., Pontailler,
J., Nikinmaa, E., Misson, L., Aubinet, M., Bernhofer, C., Granier, A.,
Grünwald, T., Heinesch, B., Longdoz, B., Ourcival, J., Rambal, S.,
Vesala, T., and Dufrene, E.: Exceptional carbon uptake in European forests
during the warm spring of 2007: a data-model analysis, Global Change Biol.,
15, 1455–1474, https://doi.org/10.1111/j.1365-2486.2008.01835.x, 2009a.
Delpierre, N., Dufrêne, E., Soudani, K., Ulrich, E., Cecchini, S.,
Boé, J., and François, C.: Modelling interannual and spatial
variability of leaf senescence for three deciduous tree species in France,
Agr. Forest Meteorol., 149, 938–948, https://doi.org/10.1016/j.agrformet.2008.11.014, 2009b.
Delpierre, N., Soudani, K., Berveiller, D., Dufrêne, E., Hmimina, G.,
and Vincent, G.: “Green pointillism”: detecting the within-population
variability of budburst in temperate deciduous trees with phenological
cameras, Int. J. Biometeorol., 64, 663–670, https://doi.org/10.1101/771477, 2020.
Denéchère, R., Delpierre, N., Apostol, E., Berveiller, D., Bonne,
F., Cole, E., Delzon, S., Dufrêne, E., Gressler, E., Jean, F.,
Lebourgeois, F., Liu, G., Louvet, J., Parmentier, J., Soudani, K., and
Vincent, G.: The within-population variability of leaf spring and autumn
phenology is influenced by temperature in temperate deciduous trees, Int. J.
Biometeorol., 65, 369–379, https://doi.org/10.1007/s00484-019-01762-6, 2019.
Dragoni, D., Schmid, H. P., Wayson, C. A., Potter, H., Grimmond C. S. B., and
Randolph, J. C.: Evidence of increased net ecosystem productivity associated
with a longer vegetated season in a deciduous forest in south-central
Indiana, USA, Global Change Biol., 17, 886–897,
https://doi.org/10.1111/j.1365-2486.2010.02281.x, 2011.
Eklundh, L., Jin, H., Schubert, P., Guzinski, R., and Heliasz, M.: An
optical sensor network for vegetation phenology monitoring and satellite
data calibration, Sensors, 11, 7678–7709, https://doi.org/10.3390/s110807678, 2011.
Franz, D., Acosta, M., Altimir, N., Arriga, N., Arrouays, D., Aubinet, M.,
Aurela, M., Ayres, E., López-Ballesteros, A., Barbaste, M., Berveiller,
D., Biraud, S., Boukir, H., Brown, T., Brümmer, C., Buchmann, N., Burba,
G., Carrara, A., Cescatti, A., Ceschia, E., Clement, R., Cremonese, E.,
Crill, P., Darenova, E., Dengel, S., D'Odorico, P., Gianluca, F., Fleck, S.,
Fratini, G., Fuß, R., Gielen, B., Gogo, S., Grace, J., Graf, A., Grelle,
A., Gross, P., Grünwald, T., Haapanala, S., Hehn, M., Heinesch, B.,
Heiskanen, J., Herbst, M., Herschlein, C., Hörtnagl, L., Hufkens, K.,
Ibrom, A., Jolivet, C., Joly, L., Jones, M., Kiese, R., Klemedtsson, L.,
Kljun, N., Klumpp, K., Kolari, P., Kolle, O., Kowalski, A., Kutsch, W.,
Laurila, T., De Ligne, A., Linder, S., Lindroth, A., Lohila, A., Longdoz,
B., Mammarella, I., Manise, T., Marañon-Jimenez, S., Matteucci, G.,
Mauder, M., Meier, P., Merbold, L., Mereu, S., Metzger, S., Migliavacca, M.,
Mölder, M., Montagnani, L., Moureaux, C., Nelson, D., Nemitz, E.,
Nicolini, G., Nilsson, M. B., Op de Beeck, M., Osborne, B., Ottosson Löfvenius, M., Pavelka, M., Peichl, M., Peltola, O., Pihlatie, M., Pitacco, A., Pokorny, R., Pumpanen, J., Ratié, C., Schrumpf, M.,
Sedlák, P., Serrano Ortiz, P., Siebicke, L., Šigut, L.,
Silvennoinen, H., Simioni, G., Skiba, U., Sonnentag, O., Soudani, K.,
Soulé, P., Steinbrecher, R., Tallec, T., Thimonier, A., Tuittila, E.,
Tuovinen, J., Vestin, P., Vincent, G., Vincke, C., Vitale, D., Waldner, P.,
Weslien, P., Wingate, L., Wohlfahrt, G., Zahniser, M., and Vesala, T.:
Towards long-term standardised carbon and greenhouse gas observations for
monitoring Europe's terrestrial ecosystems: a review, Int.
Agrophys., 32, 439–455, https://doi.org/10.1515/intag-2017-0039, 2018.
Garrity, S. R., Bohrer, G., Maurer, K. D., Mueller, K. L., Vogel, C. S., and Curtis, P. S.: A comparison of multiple phenology data sources for estimating
seasonal transitions in deciduous forest carbon exchange, Agr. Forest Meteorol., 151, 1741–1752, https://doi.org/10.1016/j.agrformet.2011.07.008, 2011.
Gielen, B., Acosta, M., Altimir, N., Buchmann, N., Cescatti, A., Ceschia,
E., Fleck, S., Hörtnagl, L., Klumpp, K., Kolari, P., Lohila, A.,
Loustau, D., Marañon-Jimenez, S., Manise, T., Matteucci, G., Merbold,
L., Metzger, C., Moureaux, C., Montagnani, L., Nilsson, M. B., Osborne, B.,
Papale, D., Pavelka, M., Saunders, M., Simioni, G., Soudani, K., Sonnentag,
O., Tallec, T., Tuittila, E., Peichl, M., Pokorny, R., Vincke, C., and
Wohlfahrt, G.: Ancillary vegetation measurements at ICOS ecosystem stations,
Int. Agrophys., 10, 645–664, https://doi.org/10.1515/intag-2017-0048, 2018.
Gonsamo, A., Chen, J. M., and D'Odorico, P.: Deriving land surface phenology
indicators from CO2 eddy covariance measurements, Ecol. Indic. 29, 203–207, https://doi.org/10.1016/j.ecolind.2012.12.026, 2013.
Goulden, M. L., Munger, J. W., Fan, S. M., Daube, B. C., and Wofsy, S. C.:
Exchange of carbon dioxide by a deciduous forest: response to interannual
climate variability, Science, 271, 1576–1578, https://doi.org/10.1126/science.271.5255.1576, 1996.
Hmimina, G., Dufrene, E., Pontailler, J.-Y., Delpierre, N., Aubinet, M.,
Caquet, B., de Grandcourt, A., Burban, B., Flechard, C., Granier, A., Gross,
P., Heinesch, B., Longdoz, B., Moureaux, C., Ourcival, J.-M., Rambal, S.,
Saint-André, L., and Soudani, K.: Evaluation of the potential of MODIS
satellite data to predict vegetation phenology in different biomes: An
investigation using ground based NDVI measurements, Remote Sens. Environ.,
132, 145–158, https://doi.org/10.1016/j.rse.2013.01.010, 2013.
Holst, T., Hauser, S., Kirchgässner, A., Matzarakis, A., Mayer, H., and
Schindler, D.: Measuring and modelling plant area index in beech
stands, Int. J. Biometeorol., 48, 192–201, https://doi.org/10.1007/s00484-004-0201-y, 2004.
Huemmrich, K. F., Black, T. A., Jarvis, P. G., McCaughey, J. H., and Hall,
F. G.: High temporal resolution NDVI phenology from micrometeorological
radiation sensors, J. Geophys. Res.-Atmos., 104, 27935–27944,
https://doi.org/10.1029/1999JD900164, 1999.
Jenkins, J. P., Richardson, A. D., Braswell, B. H., Ollinger, S. V., Hollinger,
D. Y., and Smith, M.-L.: Refining light-use efficiency calculations for a
deciduous forest canopy using simultaneous tower-based carbon flux and
radiometric measurements, Agr. Forest Meteorol., 143, 64–79,
https://doi.org/10.1016/j.agrformet.2006.11.008, 2006.
Keenan, T. F., Darby, B., Felts, E., Sonnentag, O., Friedl, M. A., Hufkens,
K., O'Keefe, J., Klosterman, S., Munger, J. W., Toomey, M., and Richardson,
A. D.: Tracking Forest Phenology and Seasonal Physiology Using Digital
Repeat Photography: A Critical Assessment, Ecol. Appl., 24, 1478–1489, https://doi.org/10.1890/13-0652.1, 2014.
Klosterman, S. T., Hufkens, K., Gray, J. M., Melaas, E., Sonnentag, O., Lavine, I., Mitchell, L., Norman, R., Friedl, M. A., and Richardson, A. D.: Evaluating remote sensing of deciduous forest phenology at multiple spatial scales using PhenoCam imagery, Biogeosciences, 11, 4305–4320, https://doi.org/10.5194/bg-11-4305-2014, 2014.
Kobayashi, H., Nagai, S., Kim, Y., Yang, W., Ikeda, K., Ikawa, H., Nagano,
H., and Suzuki, R.: In situ observations reveal how spectral reflectance
responds to growing season phenology of an open evergreen forest in Alaska,
Remote Sens.-Basel, 10, 1071, https://doi.org/10.3390/rs10071071, 2018.
Link, T. E., Marks, D., and Hardy, J.: A deterministic method to characterize
canopy radiative transfer properties, Hydrol. Process., 18, 3583–3594,
https://doi.org/10.1002/hyp.5793, 2004.
Liu, F., Wang, X., and Wang, C.: Autumn phenology of a temperate deciduous
forest: Validation of remote sensing approach with decadal leaf-litterfall
measurements, Agr. Forest Meteorol., 15, 107758,
https://doi.org/10.1016/j.agrformet.2019.107758, 2019.
Liu, Y., Wu, C., Sonnentag, O., Desai, A. R., and Wang, J.: Using the red
chromatic coordinate to characterize the phenology of forest canopy
photosynthesis, Agr. Forest Meteorol., 285–286, 107910,
https://doi.org/10.1016/j.agrformet.2020.107910, 2020.
Liu, Z., Hu, H., Yu, H., Yang, X., Yang, H., Ruan, C., Wang, Y., and Tang,
J.: Relationship between leaf physiologic traits and canopy color indices
during the leaf expansion period in an oak forest, Ecosphere, 6, 259,
https://doi.org/10.1890/ES14-00452.1, 2015.
Lu, X., Liu, Z., Zhou, Y., Liu, Y., An, S., and Tang, J.: Comparison of
Phenology Estimated from Reflectance-Based Indices and Solar-Induced
Chlorophyll Fluorescence (SIF) Observations in a Temperate Forest Using
GPP-Based Phenology as the Standard, Remote Sens.-Basel, 10, 932,
https://doi.org/10.3390/rs10060932, 2018.
McCree, K. J.: Test of current definitions of photosynthetically active
radiation against leaf photosynthesis data, Agr. Meteorol., 10,
443–453, https://doi.org/10.1016/0002-1571(72)90045-3, 1972.
Menzel, A., Sparks, T. H., Estrella, N., Koch, E., Aasa, A., Ahas, R.,
Alm-Kübler, K., Bissolli, P., Braslavská, O., Briede, A.,
Chmielewski, F. M., Crepinsek, Z., Curnel, Y., Dahl, Å., Defila, C.,
Donnelly, A., Filella, Y., Jatczak, K., Måge, F., Mestre, A., Nordli,
Ø., Peñuelas, J., Pirinen, P., Remišová, V., Scheifinger, H.,
Striz, M., Susnik, A., Van Vliet, A. J. H., Wielgolaski, F.-E., Zach, S., and
Zust, A.: European phenological response to climate change matches the
warming pattern, Global Change Biol., 12, 1969–1976,
https://doi.org/10.1111/j.1365-2486.2006.01193.x, 2006.
Motohka, T., Nasahara, K. N., Oguma, H., and Tsuchida, S.: Applicability of
green-red vegetation index for remote sensing of vegetation phenology,
Remote Sens.-Basel, 2, 2369–2387, https://doi.org/10.3390/rs2102369, 2010.
Nagai, S., Saitoh, T. M., Kobayashi, H., Ishihara, M., Motohka, T., Suzuki,
R., Nasahara, K. N., and Muraoka, H.: In situ examination for the
relationship between various vegetation indices and tree phenology in an
evergreen coniferous forest, Japan, Int. J. Remote Sens., 33, 6202–6214,
https://doi.org/10.1080/01431161.2012.682660, 2012.
Perot, T., Balandier, P., Couteau, C., Perret, S., Seigner, V., and
Korboulewsky, N.: Transmitted light as a tool to monitor tree leaf phenology
and development applied to Quercus petraea, Agr. Forest Meteorol., 275,
37–46, https://doi.org/10.1016/j.agrformet.2019.05.010, 2019.
Petach, A. R., Toomey, M., Aubrecht, D. M., and Richardson, A. D.: Monitoring
vegetation phenology using an infrared-enabled security camera, Agr. Forest Meteorol., 195–196, 143–151, https://doi.org/10.1016/j.agrformet.2014.05.008, 2014.
Piao, S., Liu, Q., Chen, A., Janssens, I., Fu, Y., Dai, J., Liu, L., Lian,
X., Shen, M., and Zhu, X.: Plant phenology and global climate change:
current progresses and challenges, Global Change Biol., 25, 1922–1940,
https://doi.org/10.1111/gcb.14619, 2019.
Pontailler, J.-Y.: A Cheap Quantum Sensor Using a Gallium Arsenide
Photodiode, Funct. Ecol., 4, 591–596, https://doi.org/10.2307/2389327, 1990.
Pontailler, J.-Y., Hymus, G. J., and Drake, B. G.: Estimation of leaf area
index using ground-based remote sensed NDVI measurements: Validation and
comparison with two indirect techniques, Can. J. Remote Sens., 29, 381–387,
https://doi.org/10.5589/m03-009, 2003.
Richardson, A. D.: Tracking seasonal rhythms of plants in diverse ecosystems
with digital camera imagery, New Phytol., 222, 1742–1750,
https://doi.org/10.1111/nph.15591, 2019.
Richardson, A. D., Jenkins, J. P., Braswell, B. H., Hollinger, D. Y.,
Ollinger, S. V., and Smith, M. L.: Use of digital webcam images to track
spring green-up in a deciduous broadleaf forest, Oecologia, 152, 323–334,
https://doi.org/10.1007/s00442-006-0657-z, 2007.
Richardson, A. D., Black, T. A., Ciais, P., Delbart, N., Friedl, M. A., Gobron, N., Hollinger, D. Y., Kutsch, W. L., Longdoz, B., Luyssaert, S., Migliavacca, M., Montagnani, L., Munger, J. W., Moors, E., Piao, S., Rebmann, C., Reichstein, M., Saigusa, N., Tomelleri, E., Vargas, R., and Varlagin, A.:
Influence of spring and autumn phenological transitions on forest ecosystem
productivity, Philos. T. Roy. Soc. B, 365, 3227–3246,
https://doi.org/10.1098/rstb.2010.0102, 2010.
Richardson, A. D., Hufkens, K., Milliman, T., and Frolking, S.: Intercomparison
of phenological transition dates derived from the PhenoCam Dataset V1.0 and
MODIS satellite remote sensing, Sci. Rep.-UK, 8, 5679,
https://doi.org/10.1038/s41598-018-23804-6, 2018a.
Richardson, A. D., Hufkens, K., Milliman, T., Aubrecht, D. M., Chen, M., Gray, J. M., Johnston, M. R., Keenan, T. F., Klosterman, S. T., Kosmala, M., Melaas, E. K., Friedl, M. A., and Frolking, S.: Tracking vegetation phenology across diverse North American biomes using PhenoCam imagery, Scientific Data, 5, 180028, https://doi.org/10.1038/sdata.2018.28, 2018b.
Roetzer, T., Wittenzeller, M., Haeckel, H., and Nekovar, J.: Phenology in
central Europe: difference and trends of spring phenophases in urban and
rural areas, Int. J. Biometeorol., 44, 60–66,
https://doi.org/10.1007/s004840000062, 2000.
Ryu, Y., Baldocchi, D. D., Verfaillie, J., Ma, S., Falk, M., Ruiz-Mercado,
I., Hehn, T., and Sonnentag, O.: Testing the performance of a novel spectral
reflectance sensor, built with light emitting diodes (LEDs), to monitor
ecosystem metabolism, structure and function, Agr. Forest Meteorol.,
150, 1597–1606, https://doi.org/10.1016/j.agrformet.2010.08.009, 2010.
Sakamoto, T., Gitelson, A. A., Nguy-Robertson, A. L., Arkebauer, T. J.,
Wardlow, B. D., Suyker, A. E., Verma, S. B., and Shibayama, M.: An alternative
method using digital cameras for continuous monitoring of crop status,
Agr. Forest Meteorol., 154–155, 113–126, https://doi.org/10.1016/j.agrformet.2011.10.014, 2012.
Schaber, J.: Phenology in Germany in the 20th century: methods, analyses and
models, University of Potsdam, Germany, 2002.
Schaber, J. and Badeck, F. W.: Evaluation of methods for the combination of
phenological time series and outlier detection, Tree Physiol., 22, 973–982,
https://doi.org/10.1093/treephys/22.14.973, 2002.
Sims, D. A. and Gamon, J. A.: Relationship between leaf pigment content and
spectral reflectance across a wide range species, leaf structures and
development stages, Remote Sens. Environ., 81, 337–354,
https://doi.org/10.1016/S0034-4257(02)00010-X, 2002.
Sonnentag, O., Hufkens, K., Teshera-Sterne, C., Young, A. M., Friedl, M.,
Braswell, B. H., Milliman, T., O'Keefe, J., and Richardson, A. D.: Digital
repeat photography for phenological research in forest ecosystems, Agr. Forest Meteorol., 152, 159–177, https://doi.org/10.1016/j.agrformet.2011.09.009,
2012.
Soudani, K., le Maire, G., Dufrêne, E., François, C., Delpierre, N.,
Ulrich, E., and Cecchini, S.: Evaluation of the onset of green-up in
temperate deciduous broadleaf forests derived from Moderate Resolution
Imaging Spectroradiometer (MODIS) data, Remote Sens. Environ., 12,
2643–2655, https://doi.org/10.1016/j.rse.2007.12.004, 2008.
Soudani, K., Hmimina, G., Delpierre, N., Pontailler, J.-Y., Aubinet, M.,
Bonal, D., Caquet, B., de Grandcourt, A., Burban, B., Flechard, C., Guyon,
D., Granier, A., Gross, P., Heinesh, B., Longdoz, B., Loustau, D., Moureaux,
C., Ourcival, J.-M., Rambal, S., Saint André, L., and Dufrêne, E.:
Ground-based Network of NDVI measurements for tracking temporal dynamics of
canopy structure and vegetation phenology in different biomes,
Remote Sens. Environ., 123, 234–245, https://doi.org/10.1016/j.rse.2012.03.012, 2012.
Sparks, T. H. and Carey, P. D.: The responses of species to climate over two
centuries: an analysis of the Marsham phenological record, 1736–1947, J.
Ecol., 83, 321–329, https://doi.org/10.2307/2261570, 1995.
Toda, M. and Richardson, A. D.: Estimation of plant area index and
phenological transition dates from digital repeat photography and
radiometric approaches in a hardwood forest in the Northeastern United
States, Agr. Forest Meteorol., 249, 457–466,
https://doi.org/10.1016/j.agrformet.2017.09.004, 2018.
Toomey, M., Friedl, M. A., Frolking, S., Hufkens, K., Klosterman, S.,
Sonnentag, O., Baldocchi, D. D., Bernacchi, C. J., Biraud, S. C., Bohrer, G.,
Brzostek, E., Burns, S. P., Coursolle, C., Hollinger, D. Y., Margolis, H. A.,
McCaughey, H., Monson, R. K., Munger, J. W., Pallardy, S., Phillips, R. P.,
Torn, M. S., Wharton, S., Zeri, M., and Richardson, A. D.: Greenness indices
from digital cameras predict the timing and seasonal dynamics of
canopy-scale photosynthesis, Ecol. Appl., 25, 99-115,
https://doi.org/10.1890/14-0005.1, 2015.
Wang, Q., Tenhunen, J., Dinh, N. Q., Reichstein, M., Vesala, T., and Keronen,
P.: Similarities in ground- and satellite-based NDVI time-series and their
relationship to physiological activity of a Scots pine forest in Finland,
Remote Sens. Environ., 93, 225–237, https://doi.org/10.1016/j.rse.2004.07.006, 2004.
Wang, Q., Tenhunen, J., Schmidt, M., Kolcun, O., Droesler, M., and
Reichstein, M.: Estimation of total, direct and diffuse PAR under clear
skies in complex alpine terrain of the National Park Berchtesgaden, Germany,
Ecol. Model., 196, 149–162, https://doi.org/10.1016/j.ecolmodel.2006.02.005, 2006.
Webster, C., Rutter, N., Zahner, F., and Jonas, T.: Measurement of incoming
radiation below forest canopies: A comparison of different radiometer
configurations, J. Hydrometeorol., 17, 853–864,
https://doi.org/10.1175/JHM-D-15-0125.1, 2016.
Wilson, T. B. and Meyers, T. B.: Determining vegetation indices from solar and photosynthetically active radiation fluxes, Agr. Forest Meteorol., 144,
160–179, https://doi.org/10.1016/j.agrformet.2007.04.001, 2007.
Wingate, L., Ogée, J., Cremonese, E., Filippa, G., Mizunuma, T., Migliavacca, M., Moisy, C., Wilkinson, M., Moureaux, C., Wohlfahrt, G., Hammerle, A., Hörtnagl, L., Gimeno, C., Porcar-Castell, A., Galvagno, M., Nakaji, T., Morison, J., Kolle, O., Knohl, A., Kutsch, W., Kolari, P., Nikinmaa, E., Ibrom, A., Gielen, B., Eugster, W., Balzarolo, M., Papale, D., Klumpp, K., Köstner, B., Grünwald, T., Joffre, R., Ourcival, J.-M., Hellstrom, M., Lindroth, A., George, C., Longdoz, B., Genty, B., Levula, J., Heinesch, B., Sprintsin, M., Yakir, D., Manise, T., Guyon, D., Ahrends, H., Plaza-Aguilar, A., Guan, J. H., and Grace, J.: Interpreting canopy development and physiology using a European phenology camera network at flux sites, Biogeosciences, 12, 5995–6015, https://doi.org/10.5194/bg-12-5995-2015, 2015.
Wohlfahrt, G., Pilloni, S., Hörtnagl, L., and Hammerle, A.: Estimating carbon dioxide fluxes from temperate mountain grasslands using broad-band vegetation indices, Biogeosciences, 7, 683–694, https://doi.org/10.5194/bg-7-683-2010, 2010.
Wu, C., Peng, D., Soudani, K., Siebicke, L., Gough, C. M., Arain, M. A.,
Bohrer, G., Lafleur, P. M., Peichl, M., Gonsamo, A., Shiguang, X., Fang, B.,
and Quansheng, G.: Land surface phenology derived from normalized difference
vegetation index (NDVI) at global FLUXNET sites, Agr. Forest Meteorol.,
233, 171–182, https://doi.org/10.1016/j.agrformet.2016.11.193, 2017.
Yang, X., Tang, J., and Mustard, J. F.: Beyond leaf color: Comparing
camera-based phenological metrics with leaf biochemical, biophysical, and
spectral properties throughout the growing season of a temperate deciduous
forest, J. Geophys. Res.-Biogeo., 119, 181–191, https://doi.org/10.1002/2013JG002460, 2014.
Zhang, X., Friedl, M. A., Schaaf, C. B., Strahler, A. H., Hodges, J. C. F.,
Gao, F., Reed, B. C., and Huete, A.: Monitoring vegetation phenology using
MODIS, Remote Sens. Environ., 84, 471–475,
https://doi.org/10.1016/S0034-4257(02)00135-9, 2003.
Short summary
We present an exhaustive comparative survey of eight proximal methods to estimate forest phenology. We focused on methodological aspects and thoroughly assessed deviations between predicted and observed phenological dates and pointed out their main causes. We show that proximal methods provide robust phenological metrics. They can be used to retrieve long-term phenological series at flux measurement sites and help interpret the interannual variability and trends of mass and energy exchanges.
We present an exhaustive comparative survey of eight proximal methods to estimate forest...
Altmetrics
Final-revised paper
Preprint