Articles | Volume 18, issue 12
https://doi.org/10.5194/bg-18-3539-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-3539-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
High-resolution 14C bomb peak dating and climate response analyses of subseasonal stable isotope signals in wood of the African baobab – a case study from Oman
Franziska Slotta
Institute of Geological Sciences, Freie Universität Berlin,
Berlin, Germany
Section 4.3 Climate
Dynamics and Landscape Evolution, GFZ German Research Centre for Geosciences, Potsdam, Germany
Laboratory of Ion Beam Physics, ETH Zürich, Zurich,
Switzerland
Frank Riedel
Institute of Geological Sciences, Freie Universität Berlin,
Berlin, Germany
Karl-Uwe Heußner
Scientific Department of
the Head Office, Deutsches Archäologisches Institut, Berlin, Germany
Kai Hartmann
Institute of Geological Sciences, Freie Universität Berlin,
Berlin, Germany
Institute of Geological Sciences, Freie Universität Berlin,
Berlin, Germany
Section 4.3 Climate
Dynamics and Landscape Evolution, GFZ German Research Centre for Geosciences, Potsdam, Germany
Related authors
No articles found.
Luisa I. Minich, Dylan Geissbühler, Stefan Tobler, Annegret Udke, Alexander S. Brunmayr, Margaux Moreno Duborgel, Ciriaco McMackin, Lukas Wacker, Philip Gautschi, Negar Haghipour, Markus Egli, Ansgar Kahmen, Jens Leifeld, Timothy I. Eglinton, and Frank Hagedorn
EGUsphere, https://doi.org/10.5194/egusphere-2025-2267, https://doi.org/10.5194/egusphere-2025-2267, 2025
Short summary
Short summary
We developed a framework using rates and 14C-derived ages of soil-respired CO2 and its sources (autotrophic, heterotrophic) to identify carbon cycling pathways in different land-use types. Rates, ages and sources of respired CO2 varied across forests, grasslands, croplands, and managed peatlands. Our results suggest that the relationship between rates and ages of respired CO2 serves as a robust indicator of carbon retention or destabilization from natural to disturbed systems.
Giulia Zazzeri, Lukas Wacker, Negar Haghipour, Philip Gautschi, Thomas Laemmel, Sönke Szidat, and Heather Graven
Atmos. Meas. Tech., 18, 319–325, https://doi.org/10.5194/amt-18-319-2025, https://doi.org/10.5194/amt-18-319-2025, 2025
Short summary
Short summary
Radiocarbon (14C) is an optimal tracer of methane (CH4) emissions, as 14C measurements enable distinguishing between fossil methane and biogenic methane. However, these measurements are particularly challenging, mainly due to technical difficulties in the sampling procedure. We made the sample extraction much simpler and time efficient, providing a new technology that can be used by any research group, with the goal of expanding 14C measurements for an improved understanding of methane sources.
Viorica Nagavciuc, Gerhard Helle, Maria Rădoane, Cătălin-Constantin Roibu, Mihai-Gabriel Cotos, and Monica Ionita
Biogeosciences, 22, 55–69, https://doi.org/10.5194/bg-22-55-2025, https://doi.org/10.5194/bg-22-55-2025, 2025
Short summary
Short summary
We reconstructed drought conditions for the past 200 years for central and eastern parts of Europe (Romania) using δ18O in oak tree ring cellulose from Romania, revealing periods of both extreme wetness (e.g., 1905–1915) and dryness (e.g., 1818–1835). The most severe droughts occurred in the 19th and 21st centuries, likely linked to large-scale atmospheric circulation. This research highlights the potential of tree rings to improve our understanding of long-term climate variability in Europe.
Viorica Nagavciuc, Simon L. L. Michel, Daniel F. Balting, Gerhard Helle, Mandy Freund, Gerhard H. Schleser, David N. Steger, Gerrit Lohmann, and Monica Ionita
Clim. Past, 20, 573–595, https://doi.org/10.5194/cp-20-573-2024, https://doi.org/10.5194/cp-20-573-2024, 2024
Short summary
Short summary
The main aim of this paper is to present the summer vapor pressure deficit (VPD) reconstruction dataset for the last 400 years over Europe based on δ18O records by using a random forest approach. We provide both a spatial and a temporal long-term perspective on the past summer VPD and new insights into the relationship between summer VPD and large-scale atmospheric circulation. This is the first gridded reconstruction of the European summer VPD over the past 400 years.
Achim Brauer, Ingo Heinrich, Markus J. Schwab, Birgit Plessen, Brian Brademann, Matthias Köppl, Sylvia Pinkerneil, Daniel Balanzategui, Gerhard Helle, and Theresa Blume
DEUQUA Spec. Pub., 4, 41–58, https://doi.org/10.5194/deuquasp-4-41-2022, https://doi.org/10.5194/deuquasp-4-41-2022, 2022
Daniel Balting, Simon Michel, Viorica Nagavciuc, Gerhard Helle, Mandy Freund, Gerhard H. Schleser, David Steger, Gerrit Lohmann, and Monica Ionita
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-47, https://doi.org/10.5194/essd-2022-47, 2022
Preprint withdrawn
Short summary
Short summary
Vapor pressure deficit is a key component of vegetation dynamics, soil science, meteorology, and soil science. In this study, we reconstruct the variability of the vapor pressure deficit in the past and examine the changes in future scenarios using climate models. In this way, past, present and future changes of the vapor pressure deficit can be detected locally, regionally, and continentally with higher statistical significance.
Caroline Welte, Jens Fohlmeister, Melina Wertnik, Lukas Wacker, Bodo Hattendorf, Timothy I. Eglinton, and Christoph Spötl
Clim. Past, 17, 2165–2177, https://doi.org/10.5194/cp-17-2165-2021, https://doi.org/10.5194/cp-17-2165-2021, 2021
Short summary
Short summary
Stalagmites are valuable climate archives, but unlike other proxies the use of stable carbon isotopes (δ13C) is still difficult. A stalagmite from the Austrian Alps was analyzed using a new laser ablation method for fast radiocarbon (14C) analysis. This allowed 14C and δ13C to be combined, showing that besides soil and bedrock a third source is contributing during periods of warm, wet climate: old organic matter.
Daniel F. Balting, Monica Ionita, Martin Wegmann, Gerhard Helle, Gerhard H. Schleser, Norel Rimbu, Mandy B. Freund, Ingo Heinrich, Diana Caldarescu, and Gerrit Lohmann
Clim. Past, 17, 1005–1023, https://doi.org/10.5194/cp-17-1005-2021, https://doi.org/10.5194/cp-17-1005-2021, 2021
Short summary
Short summary
To extend climate information back in time, we investigate the climate sensitivity of a δ18O network from tree rings, consisting of 26 European sites and covering the last 400 years. Our results suggest that the δ18O variability is associated with large-scale anomaly patterns that resemble those observed for the El Niño–Southern Oscillation. We conclude that the investigation of large-scale climate signals far beyond instrumental records can be done with a δ18O network derived from tree rings.
Ove H. Meisel, Joshua F. Dean, Jorien E. Vonk, Lukas Wacker, Gert-Jan Reichart, and Han Dolman
Biogeosciences, 18, 2241–2258, https://doi.org/10.5194/bg-18-2241-2021, https://doi.org/10.5194/bg-18-2241-2021, 2021
Short summary
Short summary
Arctic permafrost lakes form thaw bulbs of unfrozen soil (taliks) beneath them where carbon degradation and greenhouse gas production are increased. We analyzed the stable carbon isotopes of Alaskan talik sediments and their porewater dissolved organic carbon and found that the top layers of these taliks are likely more actively degraded than the deeper layers. This in turn implies that these top layers are likely also more potent greenhouse gas producers than the underlying deeper layers.
Cited articles
Anchukaitis, K. J., Evans, M. N., Wheelwright, N. T., and Schrag, D. P.:
Stable isotope chronology and climate signal calibration in neotropical
montane cloud forest trees, J. Geophys. Res.-Biogeo.,
113, 1–17, https://doi.org/10.1029/2007JG000613, 2008.
Andreu-Hayles, L., Santos, G. M., Herrera-Ramirez, D. A., Martin-Fernandez,
J., Ruiz-Carrascal, D., Boza-Espinoza, T. E., Fuentes, A. F., and Jorgensen,
P. M.: Matching denrochronological dates with the southern hemisphere C-14
bomb curve to confirm annual tree rings in Pseudolmedia rigida from Bolivia, Radiocarbon, 57,
1–13, https://doi.org/10.2458/azu_rc.57.18192, 2015.
Araguas, L. A., Danesi, P., Froehlich, K., and Rozanski, K.: Global
monitoring of the isotopic composition of precipitation, J. Radio. Nucl. Ch.
Ar., 205, 189–200, 1996.
Baker, J. C. A., Hunt, S. F. P., Clerici, S. J., Newton, R. J., Bottrell, S.
H., Leng, M. J., Heaton, T. H. E., Helle, G., Argollo, J., Gloor, M., and
Brienen, R. J. W.: Oxygen isotopes in tree rings show good coherence between
species and sites in Bolivia, Glob. Planet. Change, 133, 298–308,
https://doi.org/10.1016/j.gloplacha.2015.09.008, 2015.
Baker, J. C. A., Gloor, M., Spracklen, D. V., Arnold, S. R., Tindall, J. C.,
Clerici, S. J., Leng, M. J., and Brienen, R. J. W.: What drives interannual
variation in tree ring oxygen isotopes in the Amazon?, Geophys. Res.
Lett., 43, 11831–11840, https://doi.org/10.1002/2016gl071507, 2016.
Baker, J. C. A., Santos, G. M., Gloor, M., and Brienen, R. J. W.: Does
Cedrela always form annual rings? Testing ring periodicity across South America
using radiocarbon dating, Trees-Struct. Funct., 31, 1999–2009,
https://doi.org/10.1007/s00468-017-1604-9, 2017.
Becker, J. J., Sandwell, D. T. , Smith, W. H. F., Braud, J., Binder, B.,
Depner, J., Fabre, D., Factor, J., Ingalls, S.,Kim, S-H., Ladner, R., Marks,
K., Nelson, S., Pharaoh, A., Sharman, G., Trimmer, R., Von Rosenburg, J.,
Wallace, G., and Weatherall., P.: Global Bathymetry and Elevation Data at 30 Arc
Seconds Resolution: SRTM30_PLUS, Mar. Geod., 32,
355–371, 2009.
Beramendi-Orosco, L. E., Johnson, K. R., Noronha, A. L., Gonzalez-Hernandez,
G., and Villanueva-Diaz, J.: High precision radiocarbon concentrations in
tree rings from Northeastern Mexico: A new record with annual resolution for
dating the recent past, Quaternary Geochronol., 48, 1–6,
https://doi.org/10.1016/j.quageo.2018.07.007, 2018.
Boysen, B. M. M., Evans, M. N., and Baker, P. J.: delta O-18 (Murphy et al.,
1997) Conifer Agathis robusta Records ENSO-Related Precipitation Variations, Plos One, 9, e102336,
https://doi.org/10.1371/journal.pone.0102336, 2014.
Brehm, N., Bayliss, A., Christl, M., Synal, H.-A., Adolphi, F., Beer, J.,
Kromer, B., Muscheler, R., Solanki, S. K., Usoskin, I., Bleicher, N.,
Bollhalder, S., Tyers, C., and Wacker, L.: Eleven-year solar cycles over the
last millennium revealed by radiocarbon in tree rings, Nat. Geosci., 14,
10–15, https://doi.org/10.1038/s41561-020-00674-0, 2021.
Breitenbach, F. v.: Aantekening oor die groeitempo van aangeplante
kremetartbome (Adansonia digitata) en opmerkinge ten opsigte van lewenstyd, groeifases en
genetiese variasie van die spesie, Dendrologiese Tydskrif, 5, 1–21, 1985.
Brienen, R. J. W., Wanek, W., and Hietz, P.: Stable carbon isotopes in tree
rings indicate improved water use efficiency and drought responses of a
tropical dry forest tree species, Trees, 25, 103–113,
https://doi.org/10.1007/s00468-010-0474-1, 2011.
Brienen, R. J. W., Helle, G., Pons, T. L., Guyot, J.-L., and Gloor, M.:
Oxygen isotopes in tree rings are a good proxy for Amazon precipitation and
El Nino-Southern Oscillation variability, P. Natl.
Acad. Sci. USA, 109, 16957–16962,
https://doi.org/10.1073/pnas.1205977109, 2012.
Brienen, R. J. W., Hietz, P., Wanek, W., and Gloor, M.: Oxygen isotopes in
tree rings record variation in precipitation delta O-18 and amount effects
in the south of Mexico, J. Geophys. Res.-Biogeo., 118,
1604–1615, https://doi.org/10.1002/2013jg002304, 2013.
Bronk Ramsey, C.: Methods for summarizing radiocarbon datasets, Radiocarbon,
59, 1809–1833, 2017.
Bunn, A., Korpela, M., Biondi, F., Campole, F., Mérian, P., Qeadan, F.,
Zang, C., Pucha-Cofrep, D., and Wernicke, J.: dplR: Dendrochronology Program
Library in R, Computer Program downloaded from webpage: https://r-forge.r-project.org/projects/dplr/, 2018.
Cernusak, L. A., Marshall, J. D., Comstock, J. P., and Balster, N. J.:
Carbon isotope discrimination in photosynthetic bark, Oecologia, 128, 24–35,
https://doi.org/10.1007/s004420100629, 2001.
Chakraborty, S., Ramesh, R., and Krishnaswami, S.: Air sea exchange of CO2
in the Gulf of Kutch, northern Arabian Sea based on bomb-carbon in corals
and tree rings, Proceedings of the Indian Academy of Sciences – Earth and Planetary Sciences, 103 329–340, https://doi.org/10.1007/BF02839542, 1994.
Chakraborty, S., Dutta, K., Bhattacharyya, A., Nigam, M., Schuur, E. A. G.,
and Shah, S. K.: Atmospheric 14C Variability Recorded in Tree Rings from
Peninsular India: Implications for Fossil Fuel CO2 Emission and Atmospheric
Transport, Radiocarbon, 50, 321–330,
https://doi.org/10.1017/S0033822200053467, 2008.
Chapotin, S. M., Razanameharizaka, J. H., and Holbrook, N. M.: Water
relations of baobab trees (Adansonia spp. L.) during the rainy season: does stem water
buffer daily water deficits?, Plant Cell Environ., 29, 1021–1032,
https://doi.org/10.1111/j.1365-3040.2005.01456.x, 2006a.
Chapotin, S. M., Razanameharizaka, J. H., and Holbrook, N. M.: Baobab trees
(Adansonia) in Madagascar use stored water to flush new leaves but not to support
stomatal opening before the rainy season, New Phytol., 169, 549–559,
https://doi.org/10.1111/j.1469-8137.2005.01618.x, 2006b.
Chapotin, S. M., Razanameharizaka, J. H., and Holbrook, N. M.:
Abiomechanical perspective on the role of large stem volume and high water
content in baobab trees (Adansonia spp.; Bombacaceae), Am. J. Bot., 93,
1251–1264, https://doi.org/10.3732/ajb.93.9.1251, 2006c.
Charabi, Y., Al-Yahyai, S., and Gastli, A.: Evaluation of NWP performance
for wind energy resource assessment in Oman, Renew. Sustain.
Energ. Rev., 15, 1545–1555, 2011
Clark, I., Fritz, P., Quinn, O., Rippon, P., Nash, H., and Al-Said, S.:
Modern and fossil groundwater in an arid environment: a look at the
hydrogeology of southern Oman, Proc. Symp. on Isotope Techniques in Water
Resources Development, IAEA (Int. At. Energy Agency), Vienna, 1987, 167–187,
Dansgaard, W.: Stable isotopes in precipitation, Tellus, 16, 437–468, 1964.
Evans, M. N. and Schrag, D. P.: A stable isotope-based approach to tropical
dendroclimatology, Geochim. Cosmochim. Ac., 68, 3295–3305, 2004.
Farquhar, G. D. and Cernusak, L. A.: Ternary effects on the gas exchange of
isotopologues of carbon dioxide, Plant Cell Environ., 35,
1221–1231, https://doi.org/10.1111/j.1365-3040.2012.02484.x, 2012.
Farquhar, G. D., O'Leary, M. H., and Berry, J. A.: On the Relationship
between Carbon Isotope Discrimination and the Intercellular Carbon Dioxide
Concentration in Leaves, Austr. J. Plant Physiol., 9, 121–137,
https://doi.org/10.1071/PP9820121 1982.
Farquhar, G. D., Ehleringer, J. R., and Hubick, K. T.: Carbon isotope
discrimination and photosynthesis, Annu. Rev. Plant Physiol. Plant Mol.
Biol., 40, 503–537, 1989.
Fichtler, E., Clark, D. A., and Worbes, M.: Age and Long-term Growth of
Trees in an Old-growth Tropical Rain Forest: Based on Analyses of Tree Rings
and 14C, Biotropica, 35, 306–317, 2003.
Fichtler, E., Helle, G., and Worbes, M.: Stable-carbon isotope time series
from tropical tree rings indicate a precipitation signal, Tree-Ring
Res., 66, 35–49, 2010.
Fisher, J. B.: Wound healing by exposed secondary xylem in Adansonia (Bombacaceae),
IAWA Bulletin N.S., 2, 193–199, https://doi.org/10.1163/22941932-90000732, 1981.
Fritts, H. C.: Tree Rings and Climate, Academic Press Inc., London, UK,
1976.
Guy, G. L.: Adansonia digitata and its rate of growth in relation to rainfall in south central Africa., Proceedings and transactions – Rhodesia Scientific Association, 54, 68–84, 1970.
Harris, I., Osborn, T. J., Jones, P., and Lister, D.: Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset, Sci Data, 7, 109, https://doi.org/10.1038/s41597-020-0453-3, 2020.
Hartl-Meier, C., Zang, C., Büntgen, U., Esper, J., Rothe, A., Gottlein,
A., Dirnbock, T., and Treydte, K.: Uniform climate sensitivity in tree-ring
stable isotopes across species and sites in a mid-latitude temperate forest,
Tree Physiol., 35, 4–15, https://doi.org/10.1093/treephys/tpu096, 2015.
Helle, G., Pauly, M., Balanzategui, D., Heinrich, I., and Schollän, K.:
Stable isotope signatures of wood, its constituents and methods of cellulose
extraction, in: Stable Isotopes in Tree Rings: Inferring Physiological,
Climatic and Environmental Responses, edited by: Siegwolf, R., Brooks, J.
R., Roden, J., and Saurer, M., Springer Nature, Zürich, 2021.
Holmes, R. L.: Computer-assisted quality control in tree-ring dating and
measurement, Tree-Ring Bull., 43, 68–78, 1983.
Helle, G., and Schleser, G. H.: Beyond CO2-fixation by Rubisco – an
interpretation of C-13/C-12 variations in tree rings from novel
intra-seasonal studies on broad-leaf trees, Plant Cell Environ., 27,
367–380, 2004.
Hildebrandt, A. and Eltahir, E. A. B.: Forest on the edge: Seasonal cloud
forest in Oman creates its own ecological niche, Geophys. Res.
Lett., 33, L11401, https://doi.org/10.1029/2006GL026022, 2006.
Hogg, A. G., Hua, Q., Blackwell, P. G., Niu, M., Buck, C. E., Guilderson, T. P., Heaton, T. J., Palmer, J. G., Reimer, P. J., Reimer, R. W., Turney, C. S. M., and Zimmerman, S. R. H.: SHcal13 Southern Hemisphere Calibration, 0-50,000 Years Cal Bp, Radiocarbon, 55, 1889–1903, https://doi.org/10.2458/azu_js_rc.55.16783, 2013.
Hua, Q., Barbetti, M., Jacobsen, G. E., Zoppi, U., and Lawson, E. M.: Bomb
radiocarbon in annual tree rings from Thailand and Australia, Nucl. Instrum.
Meth. B, 172, 359–365, https://doi.org/10.1016/s0168-583x(00)00147-6, 2000.
Hua, Q., Barbetti, M., Zoppi, U., Chapman, D. M., and Thomson, B.: Bomb
radiocarbon in tree rings from northern new south Wales, Australia:
Implications for dendrochronology, atmospheric transport, and air-sea
exchange of CO2, Radiocarbon, 45, 431–447, https://doi.org/10.1017/s0033822200032793, 2003.
Hua, Q., Barbetti, M., and Zoppi, U.: Radiocarbon in annual tree rings from
Thailand during the pre-bomb period, AD 1938–1954, Radiocarbon, 46, 925–932,
https://doi.org/10.1017/s0033822200035979, 2004.
Hua, Q., Barbetti, M., and Rakowski, A. Z.: Atmospheric Radiocarbon for the
Period 1950–2010, Radiocarbon, 55, 2059–2072,
https://doi.org/10.2458/azu_js_rc.v55i2.16177, 2013.
IPCC: Climate Change 2007: Impacts, Adaptions and Vulnerability.
Contribution of working group II to the Fourth Assessment Report of the
Intergovernmental Panel on Climate Change, Cambridge, UK, 2007.
IPCC: Climate Change 2013: The Physical Science Basis. Contribution of
Working Group I to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change, Cambridge, UK, New York, NY, USA, 2013.
Johansson, M.: The baobab tree in Kondoa Irangi Hills, Tanzania, Minor field studies, Swedish University of Agricultural Sciences, International Office, Uppsala, Sweden, 74, https://stud.epsilon.slu.se/12738/1/johansson_m_171019.pdf, 1999.
Kahmen, A., Sachse, D., Arndt, S. K., Tu, K. P., Farrington, H., Vitousek,
P. M., and Dawson, T. E.: Cellulose δ18O is an index of
leaf-to-air vapor pressure difference (VPD) in tropical plants, P. Natl. Acad. Sci. USA, 108,
1981–1986, https://doi.org/10.1073/pnas.1018906108, 2011.
Kotina, E. L., Oskolski, A. A., Tilney, P. M., and Van Wyk, B. E.: Bark
anatomy of Adansonia digitata L. (Malvaceae), Adansonia, 39, 31–40, https://doi.org/10.5252/a2017n1a3,
2017.
Kürschner, H., Hein, P., Kilian, N., and Hubaishan, M. A.: The Hybantho
durae-Anogeissetum dhofaricae ass. nova-phytosociology, structure and ecology of an endemic South
Arabian forest community, Phytocoenologia, 34, 569–612, 2004.
Kürschner, W. M.: Leaf stomata as biosensors of
palaeoatmospheric CO2 levels, LPP Contribut. Ser., 5, 1–152, 1996
Kwarteng, A. Y., Dorvlo, A. S., and Vijaya Kumar, G. T.: Analysis of a
27-year rainfall data (1977–2003) in the Sultanate of Oman, Int.
J. Climatol., 29, 605–617, https://doi.org/10.1002/joc.1727, 2009.
Lambs, L., Gurumurthy, G. P., and Balakrishna, K.: Tracing the sources of
water using stable isotopes: first results along the Mangalore-Udupi region,
south-west coast of India, Rapid Commun. Mass Sp., 25,
2769–2776, https://doi.org/10.1002/rcm.5104, 2011.
Laumer, W., Andreu, L., Helle, G., Schleser, G. H., Wieloch, T., and Wissel,
H.: A novel approach for the homogenization of cellulose to use
micro-amounts for stable isotope analyses, Rapid Commun. Mass
Sp., 23, 1934–1940, https://doi.org/10.1002/Rcm.4105, 2009.
Lefevre, J. C., Gillot, P. Y., Cardellini, C., Gresse, M., Lesage, L.,
Chiodini, G., and Oberlin, C.: Use of the radiocarbon activity deficit in
vegetation as a sensor of CO2 soil degassing: example from la Solfatara
(Naples, Southern Italy), Radiocarbon, 60, 549–560, https://doi.org/10.1017/rdc.2017.76,
2018.
Linares, R., Santos, H. C., Brandes, A. F. N., Barros, C. F., Lisi, C. S.,
Balieiro, F. C., and de Faria, S. M.: Exploring the C-14 bomb peak with tree
rings of tropical species from the Amazon rain forest, Radiocarbon, 59,
303–313, https://doi.org/10.1017/rdc.2017.10, 2017.
Morris, H., Plavcova, L., Cvecko, P., Fichtler, E., Gillingham, M., Martinez
Cabrera, H., McGlinn, D., Wheeler, E., Zheng, J., Ziemińska, K., and
Jansen, S.: A global analysis of parenchyma tissue fractions in secondary
xylem of seed plants, New Phytol., 209, 1553–1565,
https://doi.org/10.1111/nph.13737, 2016.
Murphy, J. O., Lawson, E. M., Fink, D., Hotchkis, M. A. C., Hua, Q.,
Jacobsen, G. E., Smith, A. M., and Tuniz, C.: 14C AMS measurements of the
bomb pulse in N- and S-Hemisphere tropical trees, Nucl. Instrum.
Meth. B, 123, 447–450, 1997.
Němec, M., Wacker, L., Hajdas, I., and Gäggeler, H.: Alternative
methods for cellulose preparation for AMS measurement, Radiocarbon, 52,
1358–1370, https://doi.org/10.1017/S0033822200046440, 2010.
Neumann, K., Schoch, W., Détienne, P., and Schweingruber, F. H.: Woods
of the Sahara and Sahel: an anatomical atlas/Bois du Sahara et du Sahel:
atlas d'anatomie/Hölzer der Sahara und des Sahel: ein anatomischer
Atlas, edited by: Birmensdorf, E. F. W., Haupt Verlag, Bern, 2001.
Nydal, R. and Lövseth, K.: Tracing bomb 14C in the atmosphere
1962–1980, J. Geophys. Res., 88, 3621–3642,
https://doi.org/10.1029/JC088iC06p03621, 1983.
Ohashi, S., Durgante, F. M., Kagawa, A., Kajimoto, T., Trumbore, S. E., Xu,
X. M., Ishizuka, M., and Higuchi, N.: Seasonal variations in the stable
oxygen isotope ratio of wood cellulose reveal annual rings of trees in a
Central Amazon terra firme forest, Oecologia, 180, 685–696,
https://doi.org/10.1007/s00442-015-3509-x, 2016.
Patrut, A., Woodborne, S., Patrut, R. T., Hall, G., Rakosy, L., Von Reden,
K. F., Lowy, D., and Margineanu, D.: Radiocarbon dating of African baobabs
with two false cavities: The investigation of Luna tree, Stud. Univ.
Babes-Bolyai Chem., 60, 7–20, 2015a.
Patrut, A., Woodborne, S., von Reden, K. F., Hall, G., Hofmeyr, M., Lowy, D.
A., and Patrut, R. T.: African Baobabs with False Inner Cavities: The
Radiocarbon Investigation of the Lebombo Eco Trail Baobab, Plos One, 10, e0117193,
https://doi.org/10.1371/journal.pone.0117193, 2015b.
Patrut, A., Woodborne, S., Patrut, R. T., Rakosy, L., Hall, G., Ratiu,
I.-A., and Von Reden, K. F.: Final Radiocarbon Investigation of Platland
Tree, the Biggest African Baobab, Studia Universitatis Babeş-Bolyai Chemia,
62, 347–354, https://doi.org/10.24193/subbchem.2017.2.27, 2017.
Patrut, A., Woodborne, S., Patrut, R. T., Rakosy, L., Lowy, D. A., Hall, G.,
and von Reden, K. F.: The demise of the largest and oldest African baobabs,
Nature Plant., 4, 423–426, https://doi.org/10.1038/s41477-018-0170-5, 2018.
Pedgley, D. E.: Cyclones along the Arabian coast, Weather, 24, 456–470,
1969.
Pons, T. L. and Helle, G.: Identification of anatomically non-distinct
annual rings in tropical trees using stable isotopes, Trees-Struct.
Funct., 25, 83–93, https://doi.org/10.1007/s00468-010-0527-5, 2011.
Poussart, P. F., Evans, M. N., and Schrag, D. P.: Resolving seasonality in
tropical trees: multi-decade, high-resolution oxygen and carbon isotope
records from Indonesia and Thailand, Earth Planet. Sc. Lett.,
218, 301–316, 2004.
Rajput, K. S.: Formation of Unusual Tissue Complex in the Stem of Adansonia digitata Linn.
(Bombacaceae), Beiträge zur Biologie der Pflanzen, 73, 331–342, 2004.
Reimer, P. J., Brown, T. A., and Reimer, R. W.: Discussion: Reporting and
calibration of post-bomb 14C data, Radiocarbon, 46, 1299–1304, 2004.
Richardson, A. D., Carbone, M. S., Keenan, T. F., Czimczik, C. I.,
Hollinger, D. Y., Murakami, P., Schaberg, P. G., and Xu, X.: Seasonal
dynamics and age of stemwood nonstructural carbohydrates in temperate forest
trees, New Phytol., 197, 850–861, https://doi.org/10.1111/nph.12042, 2013.
Richardson, A. D., Carbone, M. S., Huggett, B. A., Furze, M. E., Czimczik,
C. I., Walker, J. C., Xu, X., Schaberg, P. G., and Murakami, P.:
Distribution and mixing of old and new nonstructural carbon in two temperate
trees, New Phytol., 206, 590–597, 2015.
Riedel, F., Henderson, A. C. G., Heussner, K. U., Kaufmann, G., Kossler, A.,
Leipe, C., Shemang, E., and Taft, L.: Dynamics of a Kalahari long-lived
mega-lake system: hydromorphological and limnological changes in the
Makgadikgadi Basin (Botswana) during the terminal 50 ka, Hydrobiologia, 739,
25–53, https://doi.org/10.1007/s10750-013-1647-x, 2014.
Robertson, I., Loader, N. J., Froyd, C. A., Zambatis, N., Whyte, I., and
Woodborne, S.: The potential of the baobab (Adansonia digitata L.) as a proxy climate archive,
Appl. Geochem., 21, 1674–1680, https://doi.org/10.1016/j.apgeochem.2006.07.005,
2006.
Roden, J. S., Lin, G. G., and Ehleringer, J. R.: A mechanistic model for
interpretation of hydrogen and oxygen isotope ratios in tree-ring cellulose,
Geochim. Cosmochim. Ac., 64, 21–35, 2000.
Sass-Klaassen, U., Leuschner, H. H., Buerkert, A., and Helle, G.: Tree-ring
analysis of Juniperus excelsa from northern Oman mountains., TRACE, Tree
Rings in Archeology, Climatology and Ecology, Riga, Latvia, 99–108, 2008.
Scheidegger, Y., Saurer, M., Bahn, M., and Siegwolf, R.: Linking stable
oxygen and carbon isotopes with stomatal conductance and photosynthetic
capacity: a conceptual model, Oecologia, 125, 350–357,
https://doi.org/10.1007/s004420000466, 2000.
Schneider, U., Becker, A., Finger, P., Meyer-Christoffer, A., Rudolf, B.,
and Ziese, M.: GPCC Full Data Reanalysis Version 7.0 at 0.5∘:
Monthly Land-Surface Precipitation from Rain-Gauges built on GTS-based and
Historic Data, Edition 7.0, Global Precipitation Climatology Centre (GPCC, available at:
http://gpcc.dwd.de/, last access: 17 October 2015) at Deutscher Wetterdienst 2015.
Schollaen, K., Heinrich, I., Neuwirth, B., Krusic, P. J., D'Arrigo, R. D.,
Karyanto, O., and Helle, G.: Multiple tree-ring chronologies (ring width,
delta C-13 and delta O-18) reveal dry and rainy season signals of rainfall
in Indonesia, Quat. Sci. Rev., 73, 170–181,
https://doi.org/10.1016/j.quascirev.2013.05.018, 2013.
Slotta, F., Helle, G., Heussner, K. U., Shemang, E., and Riedel, F.: Baobabs
on Kubu Island, Botswana – A dendrochronological multi-parameter study using
ring width and stable isotopes (δ13C, δ18O),
Erdkunde, 71, 23–43, https://doi.org/10.3112/erdkunde.2017.01.02, 2017.
Slotta, F., Wacker, L., Riedel, F., Heussner, K.-U., Hartmann, K., and Helle, G.: Normalized 14C activity ratios (F14C) of an African baobab (Adansonia digitata) tree from Oman [data set], PANGAEA, https://doi.pangaea.de/10.1594/PANGAEA.905626, last access 21 April 2019.
Smith, K. T.: An organismal view of dendrochronology, Dendrochronologia, 26,
185–193, https://doi.org/10.1016/j.dendro.2008.06.002, 2008.
Spicer, R.: Symplasmic networks in secondary vascular tissues: parenchyma
distribution and activity supporting long-distance transport, J. Exp. Bot., 65,
1829–1848, https://doi.org/10.1093/jxb/ert459, 2014.
Sreeush, M. G., Valsala, V., Pentakota, S., Prasad, K. V. S. R., and
Murtugudde, R.: Biological production in the Indian Ocean upwelling
zones – Part 1: refined estimation via the use of a variable compensation
depth in ocean carbon models, Biogeosciences, 115, 1895–1918,
https://doi.org/10.5194/bg-15-1895-2018, 2018.
Strauch, G., Al-Mashaikhi, K. S., Bawain, A., Knoller, K., Friesen, J., and
Muller, T.: Stable H and O isotope variations reveal sources of recharge in
Dhofar, Sultanate of Oman, Isot. Environ. Health S., 50,
475–490, https://doi.org/10.1080/10256016.2014.961451, 2014.
Sookdeo, A., Kromer, B., Büntgen, U., Friedrich, M., Friedrich, R.,
Helle, G., Pauly, M., Nievergelt, D., Reinig, F., Treydte, K., Synal, H.-A.,
and Wacker, L.: Quality Dating: A Well-Defined Protocol Implemented at ETH
for High-Precision 14C-Dates Tested on Late Glacial Wood, Radiocarbon, 62,
891–899, https://doi.org/10.1017/RDC.2019.132, 2019.
Sprenger, M., Tetzlaff, D., and Soulsby, C.: Soil water stable isotopes reveal evaporation dynamics at the soil–plant–atmosphere interface of the critical zone, Hydrol. Earth Syst. Sci., 21, 3839–3858, https://doi.org/10.5194/hess-21-3839-2017, 2017.
Swart, E. R.: Age of the Baobab Tree, Nature, 198, 708–709,
https://doi.org/10.1038/198708b0, 1963.
Szejner, P., Wright, W. E., Babst, F., Belmecheri, S., Trouet, V., Leavitt,
S. W., Ehleringer, J. R., and Monson, R. K.: latitudinal gradients in
tree-ring stable carbon and oxygen isotopes reveal differential climate
influences of the North American Monsoon System, J. Geophys. Res.-Biogeo., 121, 1978–1991, https://doi.org/10.1002/2016JG003460, 2016.
Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A.,
Chipman, D. W., Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson,
A., Bakker, D. C. E., Schuster, U., Metzl, N., Yoshikawa-Inoue, H., Ishii,
M., Midorikawa, T., Nojiri, Y., Körtzinger, A., Steinhoff, T., Hoppema,
M., Olafsson, J., Arnarson, T. S., Tilbrook, B., Johannessen, T., Olsen, A.,
Bellerby, R., Wong, C. S., Delille, B., Bates, N. R., and de Baar, H. J. W.:
Climatological mean and decadal change in surface ocean pCO2, and net
sea–air CO2 flux over the global oceans, Deep-Sea Res. Pt. II, 56, 554–577,
https://doi.org/10.1016/j.dsr2.2008.12.009, 2009.
Treydte, K., Frank, D., Esper, J., Andreu, L., Bednarz, Z., Berninger, F.,
Boettger, T., D'Alessandro, C. M., Etien, N., Filot, M., Grabner, M.,
Guillemin, M. T., Gutierrez, E., Haupt, M., Helle, G., Hilasvuori, E.,
Jungner, H., Kalela-Brundin, M., Krapiec, M., Leuenberger, M., Loader, N.
J., Masson-Delmotte, V., Pazdur, A., Pawelczyk, S., Pierre, M., Planells,
O., Pukiene, R., Reynolds-Henne, C. E., Rinne, K. T., Saracino, A., Saurer,
M., Sonninen, E., Stievenard, M., Switsur, V. R., Szczepanek, M.,
Szychowska-Krapiec, E., Todaro, L., Waterhouse, J. S., Weigl, M., and
Schleser, G. H.: Signal strength and climate calibration of a European
tree-ring isotope network, Geophys. Res. Lett., 34, L24302,
https://doi.org/10.1029/2007gl031106, 2007.
Treydte, K., Boda, S., Graf Pannatier, E., Fonti, P., Frank, D., Ullrich,
B., Saurer, M., Siegwolf, R., Battipaglia, G., Werner, W., and Gessler, A.:
Seasonal transfer of oxygen isotopes from precipitation and soil to the tree
ring: source water versus needle water enrichment, New Phytol., 202,
772–783, https://doi.org/10.1111/nph.12741, 2014.
Turnbull, J. C., Fletcher, S. E. M., Ansell, I., Brailsford, G. W., Moss, R.
C., Norris, M. W., and Steinkamp, K.: Sixty years of radiocarbon dioxide
measurements at Wellington, New Zealand: 1954–2014, Atmos. Chem. Phys., 17,
14771–14784, https://doi.org/10.5194/acp-17-14771-2017, 2017.
Turney, C. S. M., Palmer, J., Maslin, M. A., Hogg, A., Fogwill, C. J.,
Southon, J., Fenwick, P., Helle, G., Wilmshurst, J. M., McGlone, M., Bronk
Ramsey, C., Thomas, Z., Lipson, M., Beaven, B., Jones, R. T., Andrews, O.,
and Hua, Q.: Global Peak in Atmospheric Radiocarbon Provides a Potential
Definition for the Onset of the Anthropocene Epoch in 1965, Sci. Rep. 8, 3293, https://doi.org/10.1038/s41598-018-20970-5, 2018.
van der Sleen, P., Groenendijk, P., and Zuidema, P. A.: Tree-ring delta O-18
in African mahogany (Entandrophragma utile) records regional precipitation and can be used for
climate reconstructions, Glob. Planet. Change, 127, 58–66,
https://doi.org/10.1016/j.gloplacha.2015.01.014, 2015.
van der Sleen, P., Zuidema, P. A., and Pons, T. L.: Stable isotopes in
tropical tree rings: theory, methods and applications, Funct. Ecol.,
31, 1674–1689, https://doi.org/10.1111/1365-2435.12889, 2017.
Vicente-Serrano, S. M., Beguería, S., and López-Moreno, J. I.: A
multiscalar drought index sensitive to global warming: the standardized
precipitation evapotranspiration index, J. Clim., 23, 1696–1718,
2010a.
Vicente-Serrano, S. M., Beguería, S., López-Moreno, J. I., Angulo,
M., and El Kenawy, A.: A new global 0.5 gridded dataset (1901–2006) of a
multiscalar drought index: comparison with current drought index datasets
based on the Palmer Drought Severity Index, J. Hydrometeorol., 11,
1033–1043, 2010b.
Vicente-Serrano, S. M., Van der Schrier, G., Beguería, S.,
Azorin-Molina, C., and Lopez-Moreno, J.-I.: Contribution of precipitation
and reference evapotranspiration to drought indices under different
climates, J. Hydrol., 526, 42–54, 2015.
Wacker, L., Bonani, G., Friedrich, M., Hajdas, I., Kromer, B., Němec,
M., Ruff, M., Suter, M., Synal, H., and Vockenhuber, C.: MICADAS: routine
and high-precision radiocarbon dating, Radiocarbon, 52, 252–262, 2010a.
Wacker, L., Němec, M., and Bourquin, J.: A revolutionary graphitisation
system: Fully automated, compact and simple, Nucl. Inst. Method.
Phys. Res. Sect. B,
268, 931–934, https://doi.org/10.1016/j.nimb.2009.10.067, 2010b.
Walters, K. R. and Sjoberg, W. F.: The Persian Gulf Region. A
Climatological Study, Air Force Environmental Technical Applications Center
Scott AFB, IL, Technical Note, Accession Number: ADA222654, 1–73, https://apps.dtic.mil/sti/pdfs/ADA222654.pdf 1990.
White, J. W. C., Vaughn, B. H., and Michel, S. E.: Stable Isotopic Composition of
Atmospheric Carbon Dioxide (13C and 18O) from the NOAA ESRL Carbon Cycle
Cooperative Global Air Sampling Network, 1990–2014, Version: 2015-10-26,
ftp://aftp.cmdl.noaa.gov/data/trace_gases/co2c13/flask/surface/README_surface_flask_co2c13.html
(last access: 28 November 2015), University of Colorado, Institute of Arctic and Alpine Research (INSTAAR),
2015.
Wickens, G. E.: The uses of the baobab (Adansonia digitata L.) in Africa, in: Browse in
Africa: The current state of knowledge, edited by: Le Houérou, H. N.,
International Livestock Centre for Africa, Addis Ababa, 1979.
Wickens, G. E. and Lowe, P.: The Baobabs: Pachycauls of Africa, Madagascar
and Australia, Springer Verlag, London, UK, 2008.
Wieloch, T., Helle, G., Heinrich, I., Voigt, M., and Schyma, P.:
A novel device for batch-wise isolation of α-cellulose from small-amount wholewood samples, Dendrochronologia, 29,
115–117, https://doi.org/10.1016/j.dendro.2010.08.008, 2011.
Witt, G. B., English, N. B., Balanzategui, D., Hua, Q., Gadd, P., Heijnis, H.,
and Bird, M. I.: The climate reconstruction potential of Acacia cambagei (gidgee) for
semi-arid regions of Australia using stable isotopes and elemental
abundances, J. Arid Environ., 136, 19–27,
https://doi.org/10.1016/j.jaridenv.2016.10.002, 2015.
Woodborne, S., Hall, G., Robertson, I., Patrut, A., Rouault, M., Loader, N.
J., and Hofmeyr, M.: A 1000-Year Carbon Isotope Rainfall Proxy Record from
South African Baobab Trees (Adansonia digitata L.), PLoS ONE, 10, e0124202,
https://doi.org/10.1371/journal.pone.0124202, 2015.
Woodborne, S., Gandiwa, P., Hall, G., Patrut, A., and Finch, J.: A Regional
Stable Carbon Isotope Dendro-Climatology from the South African Summer
Rainfall Area, PLoS ONE, 11, e0159361, https://doi.org/10.1371/journal.pone.0159361, 2016.
Woodborne, S., Hall, G., Jones, C. W., Loader, N. J., Patrut, A., Patrut, R.
T., Robertson, I., Winkler, S. R., and Winterbach, C. W.: A 250-year
isotopic proxy rainfall record from southern Botswana, Stud. Univ.
Babes-Bolyai Chem., 63, 109–123, https://doi.org/10.24193/subbchem.2018.1.09, 2018.
Worbes, M. and Junk, W. J.: Dating tropical trees by means of 14C from bomb tests, Ecology, 70, 503–507, 1989.
Wushiki, H.: 18O 16O and D H of the Meteoric Waters in South
Arabia, Journal of the Mass Spectrometry Society of Japan, 39, 239—250, 1991.
Xu, C. X., Sano, M., Yoshimura, K., and Nakatsuka, T.: Oxygen isotopes as a
valuable tool for measuring annual growth in tropical trees that lack
distinct annual rings, Geochem. J., 48, 371–378,
https://doi.org/10.2343/geochemj.2.0312, 2014.
Short summary
The African baobab is a challenging climate and environmental archive for its semi-arid habitat due to dating uncertainties and parenchyma-rich wood anatomy. Annually resolved F14C data of tree-ring cellulose (1941–2005) from a tree in Oman show the annual character of the baobab’s growth rings but were up to 8.8 % lower than expected for 1964–1967. Subseasonal δ13C and δ18O patterns reveal years with low average monsoon rain as well as heavy rainfall events from pre-monsoonal cyclones.
The African baobab is a challenging climate and environmental archive for its semi-arid habitat...
Altmetrics
Final-revised paper
Preprint