Articles | Volume 18, issue 2
https://doi.org/10.5194/bg-18-441-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-441-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Unraveling the physical and physiological basis for the solar- induced chlorophyll fluorescence and photosynthesis relationship using continuous leaf and canopy measurements of a corn crop
Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente,
7500 AE Enschede, the Netherlands
Christiaan van der Tol
Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente,
7500 AE Enschede, the Netherlands
Petya K. E. Campbell
Joint Center for Earth Systems Technology (JCET), University of
Maryland, Baltimore County,
Baltimore, MD 21228, USA
Biospheric Sciences Laboratory, NASA Goddard Space and Flight Center, Greenbelt, MD 20771, USA
Elizabeth M. Middleton
formerly at: Biospheric Sciences Laboratory, NASA Goddard Space and Flight Center, Greenbelt, MD 20771, USA
Related authors
Peiqi Yang, Egor Prikaziuk, Wout Verhoef, and Christiaan van der Tol
Geosci. Model Dev., 14, 4697–4712, https://doi.org/10.5194/gmd-14-4697-2021, https://doi.org/10.5194/gmd-14-4697-2021, 2021
Short summary
Short summary
Since the first publication 12 years ago, the SCOPE model has been applied in remote sensing studies of solar-induced chlorophyll fluorescence (SIF), energy balance fluxes, gross primary productivity (GPP), and directional thermal signals. Here, we present a thoroughly revised version, SCOPE 2.0, which features a number of new elements.
Yunfei Wang, Yijian Zeng, Lianyu Yu, Peiqi Yang, Christiaan Van der Tol, Qiang Yu, Xiaoliang Lü, Huanjie Cai, and Zhongbo Su
Geosci. Model Dev., 14, 1379–1407, https://doi.org/10.5194/gmd-14-1379-2021, https://doi.org/10.5194/gmd-14-1379-2021, 2021
Short summary
Short summary
This study integrates photosynthesis and transfer of energy, mass, and momentum in the soil–plant–atmosphere continuum system, via a simplified 1D root growth model. The results indicated that the simulation of land surface fluxes was significantly improved by considering the root water uptake, especially when vegetation was experiencing severe water stress. This finding highlights the importance of enhanced soil heat and moisture transfer in simulating ecosystem functioning.
Mostafa Gomaa Daoud, Fakhereh Alidoost, Yijian Zeng, Bart Schilperoort, Christiaan Van der Tol, Maciek W. Lubczynski, Mhd Suhyb Salama, Eric D. Morway, Christian D. Langevin, Prajwal Khanal, Zengjing Song, Lianyu Yu, Hong Zhao, Gualbert Oude Essink, Victor F. Bense, Michiel van der Molen, and Zhongbo Su
EGUsphere, https://doi.org/10.5194/egusphere-2025-4179, https://doi.org/10.5194/egusphere-2025-4179, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
This study investigates the groundwater role in soil-plant-atmosphere continuum. An integrated ecohydrological modelling approach was developed by coupling STEMMUS-SCOPE to MODFLOW 6 and applied at three sites over 8 years. The coupled model improved simulations of soil moisture and temperature, evapotranspiration, carbon fluxes and fluorescence. The findings highlight the groundwater critical role in ecosystem dynamics and its contribution to advancing water, energy and carbon cycle modelling.
Enting Tang, Yijian Zeng, Yunfei Wang, Zengjing Song, Danyang Yu, Hongyue Wu, Chenglong Qiao, Christiaan van der Tol, Lingtong Du, and Zhongbo Su
Biogeosciences, 21, 893–909, https://doi.org/10.5194/bg-21-893-2024, https://doi.org/10.5194/bg-21-893-2024, 2024
Short summary
Short summary
Our study shows that planting shrubs in a semiarid grassland reduced the soil moisture and increased plant water uptake and transpiration. Notably, the water used by the ecosystem exceeded the rainfall received during the growing seasons, indicating an imbalance in the water cycle. The findings demonstrate the effectiveness of the STEMMUS–SCOPE model as a tool to represent ecohydrological processes and highlight the need to consider energy and water budgets for future revegetation projects.
L. Červená, G. Pinlová, Z. Lhotáková, E. Neuwirthová, L. Kupková, M. Potůčková, J. Lysák, P. Campbell, and J. Albrechtová
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 381–388, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-381-2022, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-381-2022, 2022
Alby Duarte Rocha, Stenka Vulova, Christiaan van der Tol, Michael Förster, and Birgit Kleinschmit
Hydrol. Earth Syst. Sci., 26, 1111–1129, https://doi.org/10.5194/hess-26-1111-2022, https://doi.org/10.5194/hess-26-1111-2022, 2022
Short summary
Short summary
Evapotranspiration (ET) is a sum of soil evaporation and plant transpiration. ET produces a cooling effect to mitigate heat waves in urban areas. Our method uses a physical model with remote sensing and meteorological data to predict hourly ET. Designed for uniform vegetation, it overestimated urban ET. To correct it, we create a factor using vegetation fraction that proved efficient for reducing bias and improving accuracy. This approach was tested on two Berlin sites and can be used to map ET.
P. E. K. Campbell, K. F. Huemmrich, E. M. Middleton, J. Alfieri, C. van der Tol, and C. S. R. Neigh
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVI-1-W1-2021, 1–8, https://doi.org/10.5194/isprs-archives-XLVI-1-W1-2021-1-2022, https://doi.org/10.5194/isprs-archives-XLVI-1-W1-2021-1-2022, 2022
K. F. Huemmrich, P. E. K. Campbell, D. J. Harding, K. J. Ranson, R. Wynne, V. Thomas, and E. M. Middleton
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVI-1-W1-2021, 31–37, https://doi.org/10.5194/isprs-archives-XLVI-1-W1-2021-31-2022, https://doi.org/10.5194/isprs-archives-XLVI-1-W1-2021-31-2022, 2022
Peiqi Yang, Egor Prikaziuk, Wout Verhoef, and Christiaan van der Tol
Geosci. Model Dev., 14, 4697–4712, https://doi.org/10.5194/gmd-14-4697-2021, https://doi.org/10.5194/gmd-14-4697-2021, 2021
Short summary
Short summary
Since the first publication 12 years ago, the SCOPE model has been applied in remote sensing studies of solar-induced chlorophyll fluorescence (SIF), energy balance fluxes, gross primary productivity (GPP), and directional thermal signals. Here, we present a thoroughly revised version, SCOPE 2.0, which features a number of new elements.
Jan G. Hofste, Rogier van der Velde, Jun Wen, Xin Wang, Zuoliang Wang, Donghai Zheng, Christiaan van der Tol, and Zhongbo Su
Earth Syst. Sci. Data, 13, 2819–2856, https://doi.org/10.5194/essd-13-2819-2021, https://doi.org/10.5194/essd-13-2819-2021, 2021
Short summary
Short summary
The dataset reported in this paper concerns the measurement of microwave reflections from an alpine meadow over the Tibetan Plateau. These microwave reflections were measured continuously over 1 year. With it, variations in soil water content due to evaporation, precipitation, drainage, and soil freezing/thawing can be seen. A better understanding of the effects aforementioned processes have on microwave reflections may improve methods for estimating soil water content used by satellites.
Rafael Poyatos, Víctor Granda, Víctor Flo, Mark A. Adams, Balázs Adorján, David Aguadé, Marcos P. M. Aidar, Scott Allen, M. Susana Alvarado-Barrientos, Kristina J. Anderson-Teixeira, Luiza Maria Aparecido, M. Altaf Arain, Ismael Aranda, Heidi Asbjornsen, Robert Baxter, Eric Beamesderfer, Z. Carter Berry, Daniel Berveiller, Bethany Blakely, Johnny Boggs, Gil Bohrer, Paul V. Bolstad, Damien Bonal, Rosvel Bracho, Patricia Brito, Jason Brodeur, Fernando Casanoves, Jérôme Chave, Hui Chen, Cesar Cisneros, Kenneth Clark, Edoardo Cremonese, Hongzhong Dang, Jorge S. David, Teresa S. David, Nicolas Delpierre, Ankur R. Desai, Frederic C. Do, Michal Dohnal, Jean-Christophe Domec, Sebinasi Dzikiti, Colin Edgar, Rebekka Eichstaedt, Tarek S. El-Madany, Jan Elbers, Cleiton B. Eller, Eugénie S. Euskirchen, Brent Ewers, Patrick Fonti, Alicia Forner, David I. Forrester, Helber C. Freitas, Marta Galvagno, Omar Garcia-Tejera, Chandra Prasad Ghimire, Teresa E. Gimeno, John Grace, André Granier, Anne Griebel, Yan Guangyu, Mark B. Gush, Paul J. Hanson, Niles J. Hasselquist, Ingo Heinrich, Virginia Hernandez-Santana, Valentine Herrmann, Teemu Hölttä, Friso Holwerda, James Irvine, Supat Isarangkool Na Ayutthaya, Paul G. Jarvis, Hubert Jochheim, Carlos A. Joly, Julia Kaplick, Hyun Seok Kim, Leif Klemedtsson, Heather Kropp, Fredrik Lagergren, Patrick Lane, Petra Lang, Andrei Lapenas, Víctor Lechuga, Minsu Lee, Christoph Leuschner, Jean-Marc Limousin, Juan Carlos Linares, Maj-Lena Linderson, Anders Lindroth, Pilar Llorens, Álvaro López-Bernal, Michael M. Loranty, Dietmar Lüttschwager, Cate Macinnis-Ng, Isabelle Maréchaux, Timothy A. Martin, Ashley Matheny, Nate McDowell, Sean McMahon, Patrick Meir, Ilona Mészáros, Mirco Migliavacca, Patrick Mitchell, Meelis Mölder, Leonardo Montagnani, Georgianne W. Moore, Ryogo Nakada, Furong Niu, Rachael H. Nolan, Richard Norby, Kimberly Novick, Walter Oberhuber, Nikolaus Obojes, A. Christopher Oishi, Rafael S. Oliveira, Ram Oren, Jean-Marc Ourcival, Teemu Paljakka, Oscar Perez-Priego, Pablo L. Peri, Richard L. Peters, Sebastian Pfautsch, William T. Pockman, Yakir Preisler, Katherine Rascher, George Robinson, Humberto Rocha, Alain Rocheteau, Alexander Röll, Bruno H. P. Rosado, Lucy Rowland, Alexey V. Rubtsov, Santiago Sabaté, Yann Salmon, Roberto L. Salomón, Elisenda Sánchez-Costa, Karina V. R. Schäfer, Bernhard Schuldt, Alexandr Shashkin, Clément Stahl, Marko Stojanović, Juan Carlos Suárez, Ge Sun, Justyna Szatniewska, Fyodor Tatarinov, Miroslav Tesař, Frank M. Thomas, Pantana Tor-ngern, Josef Urban, Fernando Valladares, Christiaan van der Tol, Ilja van Meerveld, Andrej Varlagin, Holm Voigt, Jeffrey Warren, Christiane Werner, Willy Werner, Gerhard Wieser, Lisa Wingate, Stan Wullschleger, Koong Yi, Roman Zweifel, Kathy Steppe, Maurizio Mencuccini, and Jordi Martínez-Vilalta
Earth Syst. Sci. Data, 13, 2607–2649, https://doi.org/10.5194/essd-13-2607-2021, https://doi.org/10.5194/essd-13-2607-2021, 2021
Short summary
Short summary
Transpiration is a key component of global water balance, but it is poorly constrained from available observations. We present SAPFLUXNET, the first global database of tree-level transpiration from sap flow measurements, containing 202 datasets and covering a wide range of ecological conditions. SAPFLUXNET and its accompanying R software package
sapfluxnetrwill facilitate new data syntheses on the ecological factors driving water use and drought responses of trees and forests.
Yunfei Wang, Yijian Zeng, Lianyu Yu, Peiqi Yang, Christiaan Van der Tol, Qiang Yu, Xiaoliang Lü, Huanjie Cai, and Zhongbo Su
Geosci. Model Dev., 14, 1379–1407, https://doi.org/10.5194/gmd-14-1379-2021, https://doi.org/10.5194/gmd-14-1379-2021, 2021
Short summary
Short summary
This study integrates photosynthesis and transfer of energy, mass, and momentum in the soil–plant–atmosphere continuum system, via a simplified 1D root growth model. The results indicated that the simulation of land surface fluxes was significantly improved by considering the root water uptake, especially when vegetation was experiencing severe water stress. This finding highlights the importance of enhanced soil heat and moisture transfer in simulating ecosystem functioning.
Bart Schilperoort, Miriam Coenders-Gerrits, César Jiménez Rodríguez, Christiaan van der Tol, Bas van de Wiel, and Hubert Savenije
Biogeosciences, 17, 6423–6439, https://doi.org/10.5194/bg-17-6423-2020, https://doi.org/10.5194/bg-17-6423-2020, 2020
Short summary
Short summary
With distributed temperature sensing (DTS) we measured a vertical temperature profile in a forest, from the forest floor to above the treetops. Using this temperature profile we can see which parts of the forest canopy are colder (thus more dense) or warmer (and less dense) and study the effect this has on the suppression of turbulent mixing. This can be used to improve our knowledge of the interaction between the atmosphere and forests and improve carbon dioxide flux measurements over forests.
Cited articles
Adams, W. W., Diaz, M., and Winter, K.: Diurnal changes in photochemical
efficiency, the reduction state of Q, radiationless energy dissipation, and
non-photochemical fluorescence quenching in cacti exposed to natural
sunlight in northern Venezuela, Oecologia, 80, 553–561, 1989.
Baba, K., Shibata, R., and Sibuya, M.: Partial correlation and conditional
correlation as measures of conditional independence,
Aust. Nz. J. Stat., 46, 657–664, https://doi.org/10.1111/j.1467-842X.2004.00360.x, 2004.
Baker, N. R.: Chlorophyll fluorescence: A probe of photosynthesis in vivo,
Annu. Rev. Plant Biol., 59, 89–113,
https://doi.org/10.1146/annurev.arplant.59.032607.092759, 2008.
Campbell, P. K. E., Huemmrich, K. F., Middleton, E. M., Ward, L. A.,
Julitta, T., Daughtry, C. S. T., Burkart, A., Russ, A. L., and Kustas, W. P.:
Diurnal and seasonal variations in chlorophyll fluorescence associated with
photosynthesis at leaf and canopy scales, Remote Sens.-Basel, 11, p. 488,
https://doi.org/10.3390/rs11050488, 2019.
Chang, C. Y., Guanter, L., Frankenberg, C., Köhler, P., Gu, L., Magney,
T. S., Grossmann, K., and Sun, Y.: Systematic assessment of retrieval methods
for canopy far-red solar-induced chlorophyll fluorescence (SIF) using
high-frequency automated field spectroscopy, J. Geophys. Res.-Biogeo., 125, e2019JG005533, https://doi.org/10.1029/2019JG005533, 2020.
Cogliati, S., Verhoef, W., Kraft, S., Sabater, N., Alonso, L., Vicent, J.,
Moreno, J., Drusch, M., and Colombo, R.: Retrieval of sun-induced
fluorescence using advanced spectral fitting methods, Remote Sens. Environ.,
169, 344–357, https://doi.org/10.1016/j.rse.2015.08.022, 2015.
Collatz, G. J., Ribas-Carbo, M., and Berry, J. A.: Coupled photosynthesis-stomatal conductance model for leaves of C4 plants, Funct. Plant Biol., 19, 519–538, https://doi.org/10.1071/PP9920519, 1992.
Collatz, G. J., Ball, J. T., Grivet, C., and Berry, J. A.: Physiological and
environmental regulation of stomatal conductance, photosynthesis and
transpiration: a model that includes a laminar boundary layer,
Agr. Forest Meteorol., 54, 107–136, https://doi.org/10.1016/0168-1923(91)90002-8, 1991.
Dai, Y., Dickinson, R. E., and Wang, Y. P.: A two-big-leaf model for canopy
temperature, photosynthesis, and stomatal conductance, J. Climate, 17, 2281–2299, https://doi.org/10.1175/1520-0442(2004)017<2281:ATMFCT>2.0.CO;2, 2004.
Damm, A., Guanter, L., Paul-Limoges, E., van der Tol, C., Hueni, A.,
Buchmann, N., Eugster, W., Ammann, C., and Schaepman, M. E.: Far-red
sun-induced chlorophyll fluorescence shows ecosystem-specific relationships
to gross primary production: An assessment based on observational and
modeling approaches, Remote Sens. Environ., 166, 91–105,
https://doi.org/10.1016/j.rse.2015.06.004, 2015.
de la Fuente, A., Bing, N., Hoeschele, I., and Mendes, P.: Discovery of
meaningful associations in genomic data using partial correlation
coefficients, Bioinformatics, 20, 3565–3574,
https://doi.org/10.1093/bioinformatics/bth445, 2004.
De Lannoy, G. J. M., Verhoest, N. E. C., Houser, P. R., Gish, T. J., and Van Meirvenne, M.: Spatial and temporal characteristics of soil moisture in an intensively monitored agricultural field (OPE3), J. Hydrol., 331,
719–730, https://doi.org/10.1016/j.jhydrol.2006.06.016, 2006.
Dechant, B., Ryu, Y., Badgley, G., Zeng, Y., Berry, J. A., Zhang, Y.,
Goulas, Y., Li, Z., Zhang, Q., Kang, M., Li, J., and Moya, I.: Canopy
structure explains the relationship between photosynthesis and sun-induced
chlorophyll fluorescence in crops, Remote Sens. Environ., 241, 111733,
https://doi.org/10.1016/j.rse.2020.111733, 2020.
Demmig-Adams, B., Adams, W. W., Barker, D. H., Logan, B. A., Bowling, D. R.,
and Verhoeven, A. S.: Using chlorophyll fluorescence to assess the fraction
of absorbed light allocated to thermal dissipation of excess excitation,
Physiol. Plantarum, 98, 253–264, https://doi.org/10.1034/j.1399-3054.1996.980206.x,
1996.
Falkowski, P., Scholes, R. J., Boyle, E., Canadell, J., Canfield, D., Elser,
J., Gruber, N., Hibbard, K., Hogberg, P., Linder, S., Mackenzie, F. T.,
Moore, B., Pedersen, T., Rosental, Y., Seitzinger, S., Smetacek, V., and
Steffen, W.: The global carbon cycle: A test of our knowledge of earth as a
system, Science, 290, 291–296,
https://doi.org/10.1126/science.290.5490.291, 2000.
Friedlingstein, P.: Carbon cycle feedbacks and future climate change,
Philos. T. Roy. Soc. A., 373, 20140421, https://doi.org/10.1098/rsta.2014.0421, 2015.
Friend, A. D.: Modelling canopy CO2 fluxes: Are “big-leaf” simplifications justified?, Global Ecol. Biogeogr., 10, 603–619,
https://doi.org/10.1046/j.1466-822X.2001.00268.x, 2001.
Gamon, J. A., Peñuelas, J., and Field, C. B.: A narrow-waveband spectral
index that tracks diurnal changes in photosynthetic efficiency, Remote Sens.
Environ., 41, 35–44, https://doi.org/10.1016/0034-4257(92)90059-S, 1992.
Garbulsky, M. F., Peñuelas, J., Gamon, J., Inoue, Y., and Filella, I.:
The photochemical reflectance index (PRI) and the remote sensing of leaf,
canopy and ecosystem radiation use efficiencies, a review and meta-analysis,
Remote Sens. Environ., 115, 281–297, https://doi.org/10.1016/j.rse.2010.08.023, 2011.
Gastellu-Etchegorry, J.-P., Lauret, N., Yin, T., Landier, L., Kallel, A.,
Malenovský, Z., Al Bitar, A., Aval, J., Benhmida, S., and Qi, J.: DART:
recent advances in remote sensing data modeling with atmosphere,
polarization, and chlorophyll fluorescence,
IEEE J. Sel. Top. Appl., 10, 2640–2649, 2017.
Genty, B., Briantais, J. M., and Baker, N. R.: The relationship between the
quantum yield of photosynthetic electron transport and quenching of
chlorophyll fluorescence, Bba.-Gen. Subjects, 990,
87–92, https://doi.org/10.1016/S0304-4165(89)80016-9, 1989.
Givnish, T. J.: Adaptation to sun and shade: a whole-plant perspective,
Aust. J. Plant Physiol., 15, 63–92, https://doi.org/10.1071/pp9880063, 1988.
Gu, L., Han, J., Wood, J. D., Chang, C. Y. Y., and Sun, Y.: Sun-induced Chl
fluorescence and its importance for biophysical modeling of photosynthesis
based on light reactions, New Phytol., 223, 1179–1191,
https://doi.org/10.1111/nph.15796, 2019.
Guan, K., Berry, J. A., Zhang, Y., Joiner, J., Guanter, L., Badgley, G., and
Lobell, D. B.: Improving the monitoring of crop productivity using
spaceborne solar-induced fluorescence, Global Change Biol., 22, 716–726,
https://doi.org/10.1111/gcb.13136, 2016.
Guanter, L., Zhang, Y., Jung, M., Joiner, J., Voigt, M., Berry, J. A.,
Frankenberg, C., Huete, A. R., Zarco-Tejada, P., Lee, J. E., Moran, M. S.,
Ponce-Campos, G., Beer, C., Camps-Valls, G., Buchmann, N., Gianelle, D.,
Klumpp, K., Cescatti, A., Baker, J. M., and Griffis, T. J.: Global and
time-resolved monitoring of crop photosynthesis with chlorophyll
fluorescence, P. Natl. Acad. Sci. USA, 111, E1327–E1333,
https://doi.org/10.1073/pnas.1320008111, 2014.
He, L., Chen, J. M., Liu, J., Mo, G., and Joiner, J.: Angular normalization
of GOME-2 Sun-induced chlorophyll fluorescence observation as a better proxy
of vegetation productivity, Geophys. Res. Lett., 44, 5691–5699,
https://doi.org/10.1002/2017GL073708, 2017.
Heber, U., Lange, O. L., and Shuvalov, V. A.: Conservation and dissipation of
light energy as complementary processes: Homoiohydric and poikilohydric
autotrophs, J. Exp. Bot., 57, 1211–1223, https://doi.org/10.1093/jxb/erj104, 2006.
Hendrickson, L., Furbank, R. T., and Chow, W. S.: A simple alternative
approach to assessing the fate of absorbed light energy using chlorophyll
fluorescence, Photosynth. Res., 82, 73–81,
https://doi.org/10.1023/B:PRES.0000040446.87305.f4, 2004.
Hilker, T., Lyapustin, A., Hall, F. G., Wang, Y., Coops, N. C., Drolet, G.,
and Black, T. A.: An assessment of photosynthetic light use efficiency from
space: Modeling the atmospheric and directional impacts on PRI reflectance,
Remote Sens. Environ., 113, 2463–2475, https://doi.org/10.1016/j.rse.2009.07.012,
2009.
Houborg, R., Cescatti, A., Migliavacca, M., and Kustas, W. P.: Satellite
retrievals of leaf chlorophyll and photosynthetic capacity for improved
modeling of GPP, Agr. Forest Meteorol., 177, 10–23, 2013.
Huang, L. F., Zheng, J. H., Zhang, Y. Y., Hu, W. H., Mao, W. H., Zhou, Y. H.,
and Yu, J. Q.: Diurnal variations in gas exchange, chlorophyll fluorescence
quenching and light allocation in soybean leaves: the cause for midday
depression in CO2 assimilation, Sci. Hortic.-Amsterdam, 110, 214–218,
2006.
Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., and Ferreira, L.
G.: Overview of the radiometric and biophysical performance of the MODIS
vegetation indices, Remote Sens. Environ., 83, 195–213,
https://doi.org/10.1016/S0034-4257(02)00096-2, 2002.
Jackson, L. W. R.: Effect of Shade on Leaf Structure of Deciduous Tree
Species, Ecology, 48, 498–499, https://doi.org/10.2307/1932686, 1967.
Köhler, P., Guanter, L., Kobayashi, H., Walther, S., and Yang, W.:
Assessing the potential of sun-induced fluorescence and the canopy
scattering coefficient to track large-scale vegetation dynamics in Amazon
forests, Remote Sens. Environ., 204, 769–785,
https://doi.org/10.1016/j.rse.2017.09.025, 2018.
Liu, J., Chen, J. M., Cihlar, J., and Park, W. M.: A process-based boreal
ecosystem productivity simulator using remote sensing inputs, Remote Sens.
Environ., 62, 158–175, https://doi.org/10.1016/S0034-4257(97)00089-8, 1997.
Liu, L., Guan, L., and Liu, X.: Directly estimating diurnal changes in GPP
for C3 and C4 crops using far-red sun-induced chlorophyll fluorescence, Agr. Forest Meteorol., 232, 1–9, https://doi.org/10.1016/j.agrformet.2016.06.014, 2017.
Lu, X., Liu, Z., Zhao, F., and Tang, J.: Comparison of total emitted
solar-induced chlorophyll fluorescence (SIF) and top-of-canopy (TOC) SIF in
estimating photosynthesis, Remote Sens. Environ., 251, 112083,
https://doi.org/10.1016/j.rse.2020.112083, 2020.
Luo, X., Chen, J. M., Liu, J., Black, T. A., Croft, H., Staebler, R., He,
L., Arain, M. A., Chen, B., Mo, G., Gonsamo, A., and McCaughey, H.:
Comparison of Big-Leaf, Two-Big-Leaf, and Two-Leaf Upscaling Schemes for
Evapotranspiration Estimation Using Coupled Carbon-Water Modeling, J. Geophys. Res.-Biogeo., 123, 207–225, https://doi.org/10.1002/2017JG003978,
2018.
Magney, T. S., Bowling, D. R., Logan, B. A., Grossmann, K., Stutz, J.,
Blanken, P. D., Burns, S. P., Cheng, R., Garcia, M. A., Köhler, P., Lopez, S., Parazoo, N. C., Raczka, B., Schimel, D., and Frankenberg, C.: Mechanistic evidence for tracking the seasonality of photosynthesis with solar-induced fluorescence, P. Natl. Acad. Sci. USA, 116, 11640–11645,
https://doi.org/10.1073/pnas.1900278116, 2019.
Maxwell, K. and Johnson, G. N.: Chlorophyll fluorescence – a practical
guide, J. Exp. Bot., 51, 659–668, 2000.
Miao, G., Guan, K., Yang, X., Bernacchi, C. J., Berry, J. A., DeLucia, E.
H., Wu, J., Moore, C. E., Meacham, K., Cai, Y., Peng, B., Kimm, H., and
Masters, M. D.: Sun-Induced Chlorophyll Fluorescence, Photosynthesis, and
Light Use Efficiency of a Soybean Field from Seasonally Continuous
Measurements, J. Geophys. Res.-Biogeo., 123, 610–623,
https://doi.org/10.1002/2017JG004180, 2018.
Middleton, E. M., Cheng, Y. B., Hilker, T., Black, T. A., Krishnan, P.,
Coops, N. C., and Huemmrich, K. F.: Linking foliage spectral responses to
canopy-level ecosystem photosynthetic light-use efficiency at a douglas-fir
forest in canada, Can. J. Remote Sens., 35, 166–188,
https://doi.org/10.5589/m09-008, 2009.
Middleton, E. M., Huemmrich, K. F., Landis, D. R., Black, T. A., Barr, A. G.,
and McCaughey, J. H.: Photosynthetic efficiency of northern forest
ecosystems using a MODIS-derived Photochemical Reflectance Index (PRI),
Remote Sens. Environ., 187, 345–366, https://doi.org/10.1016/j.rse.2016.10.021, 2016.
Middleton, E. M., Huemmrich, K. F., Zhang, Q., Campbell, P. K. E., and
Landis, D. R.: Photosynthetic Efficiency and Vegetation Stress, Biophys.
Biochem. Charact. Plant Species Stud., III, 133–179,
https://doi.org/10.1201/9780429431180-5, 2019.
Migliavacca, M., Perez-Priego, O., Rossini, M., El-Madany, T. S., Moreno,
G., van der Tol, C., Rascher, U., Berninger, A., Bessenbacher, V., Burkart,
A., Carrara, A., Fava, F., Guan, J. H., Hammer, T. W., Henkel, K.,
Juarez-Alcalde, E., Julitta, T., Kolle, O., Martín, M. P., Musavi, T.,
Pacheco-Labrador, J., Pérez-Burgueño, A., Wutzler, T., Zaehle, S.,
and Reichstein, M.: Plant functional traits and canopy structure control the
relationship between photosynthetic CO2 uptake and far-red sun-induced
fluorescence in a Mediterranean grassland under different nutrient
availability, New Phytol., 214, 1078–1091, https://doi.org/10.1111/nph.14437, 2017.
Mohammed, G. H., Colombo, R., Middleton, E. M., Rascher, U., van der Tol,
C., Nedbal, L., Goulas, Y., Pérez-Priego, O., Damm, A., Meroni, M.,
Joiner, J., Cogliati, S., Verhoef, W., Malenovský, Z.,
Gastellu-Etchegorry, J. P., Miller, J. R., Guanter, L., Moreno, J., Moya,
I., Berry, J. A., Frankenberg, C., and Zarco-Tejada, P. J.: Remote sensing of
solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of
progress, Remote Sens. Environ., 231, 111177, https://doi.org/10.1016/j.rse.2019.04.030, 2019.
Monteith, J. L.: Climate and the efficiency of crop production in Britain,
Philos. T. R. Soc. Lon. B., 281, 277–294, https://doi.org/10.1098/rstb.1977.0140, 1977.
Müller, P., Li, X. P., and Niyogi, K. K.: Non-photochemical quenching, a
response to excess light energy, Plant Physiol., 125, 1558–1566,
https://doi.org/10.1104/pp.125.4.1558, 2001.
Norton, A. J., Rayner, P. J., Koffi, E. N., and Scholze, M.: Assimilating solar-induced chlorophyll fluorescence into the terrestrial biosphere model BETHY-SCOPE v1.0: model description and information content, Geosci. Model Dev., 11, 1517–1536, https://doi.org/10.5194/gmd-11-1517-2018, 2018.
Parazoo, N. C., Magney, T., Norton, A., Raczka, B., Bacour, C., Maignan, F., Baker, I., Zhang, Y., Qiu, B., Shi, M., MacBean, N., Bowling, D. R., Burns, S. P., Blanken, P. D., Stutz, J., Grossmann, K., and Frankenberg, C.: Wide discrepancies in the magnitude and direction of modeled solar-induced chlorophyll fluorescence in response to light conditions, Biogeosciences, 17, 3733–3755, https://doi.org/10.5194/bg-17-3733-2020, 2020.
Porcar-Castell, A., Pfündel, E., Korhonen, J. F. J., and Juurola, E.: A
new monitoring PAM fluorometer (MONI-PAM) to study the short- and long-term
acclimation of photosystem II in field conditions, Photosynth. Res., 96,
173–179, https://doi.org/10.1007/s11120-008-9292-3, 2008.
Porcar-Castell, A., Tyystjärvi, E., Atherton, J., van der Tol, C.,
Flexas, J., Pfündel, E. E., Moreno, J., Frankenberg, C., and Berry, J.
A.: Linking chlorophyll a fluorescence to photosynthesis for remote sensing
applications: Mechanisms and challenges, J. Exp. Bot., 65, 4065–4095,
https://doi.org/10.1093/jxb/eru191, 2014.
Qiu, B., Chen, J. M., Ju, W., Zhang, Q., and Zhang, Y.: Simulating emission
and scattering of solar-induced chlorophyll fluorescence at far-red band in
global vegetation with different canopy structures, Remote Sens. Environ.,
233, 111373, https://doi.org/10.1016/j.rse.2019.111373, 2019.
Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M.,
Berbigier, P., Bernhofer, C., Buchmann, N., Gilmanov, T., Granier, A.,
Grünwald, T., Havránková, K., Ilvesniemi, H., Janous, D., Knohl,
A., Laurila, T., Lohila, A., Loustau, D., Matteucci, G., Meyers, T.,
Miglietta, F., Ourcival, J. M., Pumpanen, J., Rambal, S., Rotenberg, E.,
Sanz, M., Tenhunen, J., Seufert, G., Vaccari, F., Vesala, T., Yakir, D., and
Valentini, R.: On the separation of net ecosystem exchange into assimilation
and ecosystem respiration: Review and improved algorithm, Global Change Biol., 11, 1424–1439, https://doi.org/10.1111/j.1365-2486.2005.001002.x, 2005.
Rosema, A., Verhoef, W., Schroote, J., and Snel, J. F. H.: Simulating
fluorescence light-canopy interaction in support of laser-induced
fluorescence measurements, Remote Sens. Environ., 37, 117–130,
https://doi.org/10.1016/0034-4257(91)90023-Y, 1991.
Rossini, M., Meroni, M., Migliavacca, M., Manca, G., Cogliati, S., Busetto,
L., Picchi, V., Cescatti, A., Seufert, G., and Colombo, R.: High resolution
field spectroscopy measurements for estimating gross ecosystem production in
a rice field, Agr. Forest Meteorol., 150, 1283–1296,
https://doi.org/10.1016/j.agrformet.2010.05.011, 2010.
Ryu, Y., Berry, J. A., and Baldocchi, D. D.: What is global photosynthesis?
History, uncertainties and opportunities, Remote Sens. Environ.,
223, 95–114, https://doi.org/10.1016/j.rse.2019.01.016, 2019.
Schreiber, U., Schliwa, U., and Bilger, W.: Continuous recording of
photochemical and non-photochemical chlorophyll fluorescence quenching with
a new type of modulation fluorometer, Photosynth. Res., 10, 51–62,
https://doi.org/10.1007/BF00024185, 1986.
Solomon, S., Plattner, G. K., Knutti, R., and Friedlingstein, P.:
Irreversible climate change due to carbon dioxide emissions, P. Natl. Acad. Sci. USA, 106, 1704–1709, https://doi.org/10.1073/pnas.0812721106, 2009.
Stenberg, P. and Manninen, T.: The effect of clumping on canopy scattering
and its directional properties: a model simulation using spectral
invariants, Int. J. Remote Sens., 36, 5178–5191,
https://doi.org/10.1080/01431161.2015.1049383, 2015.
van der Tol, C., Verhoef, W., Timmermans, J., Verhoef, A., and Su, Z.: An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance, Biogeosciences, 6, 3109–3129, https://doi.org/10.5194/bg-6-3109-2009, 2009.
van der Tol, C., Berry, J. A., Campbell, P. K. E., and Rascher, U.: Models of
fluorescence and photosynthesis for interpreting measurements of
solar-induced chlorophyll fluorescence, J. Geophys. Res.-Biogeo.,
119, 2312–2327, https://doi.org/10.1002/2014JG002713, 2014.
Verhoef, W.: Light scattering by leaf layers with application to canopy
reflectance modeling: The SAIL model, Remote Sens. Environ., 16,
125–141, https://doi.org/10.1016/0034-4257(84)90057-9, 1984.
Vilfan, N., van der Tol, C., Yang, P., Wyber, R., Malenovský, Z.,
Robinson, S. A., and Verhoef, W.: Extending Fluspect to simulate xanthophyll
driven leaf reflectance dynamics, Remote Sens. Environ., 211,
345–356, https://doi.org/10.1016/j.rse.2018.04.012, 2018.
Viña, A. and Gitelson, A. A.: New developments in the remote estimation
of the fraction of absorbed photosynthetically active radiation in crops,
Geophys. Res. Lett., 32, L17403, https://doi.org/10.1029/2005GL023647, 2005.
Wang, Y. P. and Leuning, R.: A two-leaf model for canopy conductance,
photosynthesis and partitioning of available energy I: Model description and
comparison with a multi-layered model, Agr. Forest Meteorol., 91,
89–111, https://doi.org/10.1016/S0168-1923(98)00061-6, 1998.
Wieneke, S., Ahrends, H., Damm, A., Pinto, F., Stadler, A., Rossini, M., and
Rascher, U.: Airborne based spectroscopy of red and far-red sun-induced
chlorophyll fluorescence: Implications for improved estimates of gross
primary productivity, Remote Sens. Environ., 184, 654–667,
https://doi.org/10.1016/j.rse.2016.07.025, 2016.
Wullschleger, S. D.: Biochemical limitations to carbon assimilation in C3 plants – a retrospective analysis of the A∕Ci curves from 109 species, J. Exp. Bot., 44, 907–920, 1993.
Xiao, X., Zhang, Q., Braswell, B., Urbanski, S., Boles, S., Wofsy, S.,
Moore, B., and Ojima, D.: Modeling gross primary production of temperate
deciduous broadleaf forest using satellite images and climate data, Remote
Sens. Environ., 91, 256–270, https://doi.org/10.1016/j.rse.2004.03.010, 2004.
Yang, K., Ryu, Y., Dechant, B., Berry, J. A., Hwang, Y., Jiang, C., Kang,
M., Kim, J., Kimm, H., Kornfeld, A., and Yang, X.: Sun-induced chlorophyll
fluorescence is more strongly related to absorbed light than to
photosynthesis at half-hourly resolution in a rice paddy, Remote Sens.
Environ., 216, 658–673, https://doi.org/10.1016/j.rse.2018.07.008, 2018.
Yang, P. and van der Tol, C.: Linking canopy scattering of far-red
sun-induced chlorophyll fluorescence with reflectance, Remote Sens.
Environ., 209, 456–467, https://doi.org/10.1016/j.rse.2018.02.029, 2018.
Yang, P., van der Tol, C., Verhoef, W., Damm, A., Schickling, A., Kraska, T., Muller, O., and Rascher, U.: Using reflectance to explain vegetation biochemical and structural effects on sun induced chlorophyll fluorescence, Remote Sens. Environ., 231, 110996, https://doi.org/10.1016/j.rse.2018.11.039, 2019.
Yang, P., van der Tol, C., Campbell, P. K. E., and Middleton, E. M.:
Fluorescence Correction Vegetation Index (FCVI): A physically based
reflectance index to separate physiological and non-physiological
information in far-red sun-induced chlorophyll fluorescence, Remote Sens.
Environ., 240, 111676, https://doi.org/10.1016/j.rse.2020.111676, 2020.
Yang, X., Tang, J., Mustard, J. F., Lee, J. E., Rossini, M., Joiner, J.,
Munger, J. W., Kornfeld, A., and Richardson, A. D.: Solar-induced chlorophyll
fluorescence that correlates with canopy photosynthesis on diurnal and
seasonal scales in a temperate deciduous forest, Geophys. Res. Lett., 42,
2977–2987, https://doi.org/10.1002/2015GL063201, 2015.
Zeng, Y., Badgley, G., Dechant, B., Ryu, Y., Chen, M. and Berry, J. A.: A
practical approach for estimating the escape ratio of near-infrared
solar-induced chlorophyll fluorescence, Remote Sens. Environ., 232, 111209,
https://doi.org/10.1016/j.rse.2019.05.028, 2019.
Zhang, Q., Chen, J. M., Ju, W., Wang, H., Qiu, F., Yang, F., Fan, W., Huang,
Q., Wang, Y.-P., Feng, Y., Wang, X., and Zhang, F.: Improving the ability
of the photochemical reflectance index to track canopy light use efficiency
through differentiating sunlit and shaded leaves, Remote Sens. Environ.,
194, 1–15, https://doi.org/10.1016/j.rse.2017.03.012, 2017.
Zhang, Y., Guanter, L., Berry, J. A., Joiner, J., van der Tol, C., Huete,
A., Gitelson, A., Voigt, M., and Köhler, P.: Estimation of vegetation
photosynthetic capacity from space-based measurements of chlorophyll
fluorescence for terrestrial biosphere models, Global Change Biol., 20,
3727–3742, https://doi.org/10.1111/gcb.12664, 2014.
Zhu, X. G., Long, S. P., and Ort, D. R.: What is the maximum efficiency with
which photosynthesis can convert solar energy into biomass?,
Curr. Opin. Biotech., 19, 153–159, https://doi.org/10.1016/j.copbio.2008.02.004, 2008.
Short summary
Solar-induced chlorophyll fluorescence (SIF) has the potential to facilitate the monitoring of photosynthesis from space. This study presents a systematic analysis of the physical and physiological meaning of the relationship between fluorescence and photosynthesis at both leaf and canopy levels. We unravel the individual effects of incoming light, vegetation structure and leaf physiology and highlight their joint effects on the relationship between canopy fluorescence and photosynthesis.
Solar-induced chlorophyll fluorescence (SIF) has the potential to facilitate the monitoring of...
Altmetrics
Final-revised paper
Preprint