Articles | Volume 18, issue 16
https://doi.org/10.5194/bg-18-4733-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-4733-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Host-influenced geochemical signature in the parasitic foraminifera Hyrrokkin sarcophaga
Nicolai Schleinkofer
CORRESPONDING AUTHOR
Institut für Geowissenschaften, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
Frankfurt Isotope and Element Research Center (FIERCE), Goethe-Universität Frankfurt, Frankfurt am Main, Germany
David Evans
Institut für Geowissenschaften, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
Frankfurt Isotope and Element Research Center (FIERCE), Goethe-Universität Frankfurt, Frankfurt am Main, Germany
Max Wisshak
Marine Research Department, Senckenberg am Meer, Wilhelmshaven,
Germany
Janina Vanessa Büscher
Department of Earth and Ocean Sciences, National University of Ireland Galway, Galway, Ireland
Department of Biological Oceanography, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Jens Fiebig
Institut für Geowissenschaften, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
Frankfurt Isotope and Element Research Center (FIERCE), Goethe-Universität Frankfurt, Frankfurt am Main, Germany
André Freiwald
Marine Research Department, Senckenberg am Meer, Wilhelmshaven,
Germany
Sven Härter
Institut für Geowissenschaften, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
Horst R. Marschall
Institut für Geowissenschaften, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
Frankfurt Isotope and Element Research Center (FIERCE), Goethe-Universität Frankfurt, Frankfurt am Main, Germany
Silke Voigt
Institut für Geowissenschaften, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
Frankfurt Isotope and Element Research Center (FIERCE), Goethe-Universität Frankfurt, Frankfurt am Main, Germany
Jacek Raddatz
Institut für Geowissenschaften, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
Frankfurt Isotope and Element Research Center (FIERCE), Goethe-Universität Frankfurt, Frankfurt am Main, Germany
Related authors
No articles found.
Jesse B. Walters, Joshua M. Garber, Aratz Beranoaguirre, Leo J. Millonig, Axel Gerdes, Tobias Grützner, and Horst R. Marschall
Geochronology, 7, 309–333, https://doi.org/10.5194/gchron-7-309-2025, https://doi.org/10.5194/gchron-7-309-2025, 2025
Short summary
Short summary
Garnet U–Pb dating is useful for dating geologic events. However, contamination by U-rich minerals included in garnet is a risk. Inclusions are often spotted by high-U spikes or large errors in the age. We dated garnets in metamorphic rocks and calculated ages 10–15 Myr older than expected, reflecting contamination by the mineral zircon. We provide recommendations for identifying contamination and suggest that the bulk dating of zircon inclusions in garnet may also provide valuable information.
Iris Arndt, Jonathan Erez, David Evans, Tobias Erhardt, Adam Levi, and Wolfgang Müller
EGUsphere, https://doi.org/10.5194/egusphere-2025-3479, https://doi.org/10.5194/egusphere-2025-3479, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
This study explores daily geochemical variations in giant clam (Tridacna) shells from controlled, isotopically-labelled day-night growth experiments. Results show five times higher daytime calcification rates. Light availability and metabolic activity significantly influence elemental incorporation mechanisms. The findings enhance our understanding of clam geochemistry and growth dynamics, offering valuable insights for studies on past environmental changes.
Armelle Ballian, Maud J. M. Meijers, Isabelle Cojan, Damien Huyghe, Miguel Bernecker, Katharina Methner, Mattia Tagliavento, Jens Fiebig, and Andreas Mulch
Clim. Past, 21, 841–856, https://doi.org/10.5194/cp-21-841-2025, https://doi.org/10.5194/cp-21-841-2025, 2025
Short summary
Short summary
During the Middle Miocene, the Earth transitioned from a warm to a colder period, significantly impacting ecosystems and climate. We present a 23–13 Ma climate record of soil carbonates from a northern Mediterranean basin. We propose that rapid temperature shifts in our data result from changes in atmospheric circulation patterns. Our climate record aligns well with contemporaneous terrestrial European and global marine records, enhancing our understanding of Miocene climate dynamics.
Flavia Boscolo-Galazzo, David Evans, Elaine M. Mawbey, William R. Gray, Paul N. Pearson, and Bridget S. Wade
Biogeosciences, 22, 1095–1113, https://doi.org/10.5194/bg-22-1095-2025, https://doi.org/10.5194/bg-22-1095-2025, 2025
Short summary
Short summary
Here we compare the Mg / Ca and oxygen isotope signatures for 57 recent to fossil species of planktonic foraminifera for the last 15 Myr. We find the occurrence of lineage-specific offsets in Mg / Ca conservative between ancestor-descendent species. Taking into account species kinship significantly improves temperature reconstructions, and we suggest that the occurrence of Mg / Ca offsets in modern species results from their evolution when ocean properties were different from today's.
Sune G. Nielsen, Frieder Klein, Horst R. Marschall, Philip A. E. Pogge von Strandmann, and Maureen Auro
Solid Earth, 15, 1143–1154, https://doi.org/10.5194/se-15-1143-2024, https://doi.org/10.5194/se-15-1143-2024, 2024
Short summary
Short summary
Magnesium isotope ratios of arc lavas have been proposed as a proxy for serpentinite subduction, but uncertainties remain regarding their utility. Here we show that bulk serpentinite Mg isotope ratios are identical to the mantle, whereas the serpentinite mineral brucite is enriched in heavy Mg isotopes. Thus, Mg isotope ratios may only be used as serpentinite subduction proxies if brucite is preferentially mobilized from the slab at pressures and temperatures within the arc magma source region.
Madeleine L. Vickers, Morgan T. Jones, Jack Longman, David Evans, Clemens V. Ullmann, Ella Wulfsberg Stokke, Martin Vickers, Joost Frieling, Dustin T. Harper, Vincent J. Clementi, and IODP Expedition 396 Scientists
Clim. Past, 20, 1–23, https://doi.org/10.5194/cp-20-1-2024, https://doi.org/10.5194/cp-20-1-2024, 2024
Short summary
Short summary
The discovery of cold-water glendonite pseudomorphs in sediments deposited during the hottest part of the Cenozoic poses an apparent climate paradox. This study examines their occurrence, association with volcanic sediments, and speculates on the timing and extent of cooling, fitting this with current understanding of global climate during this period. We propose that volcanic activity was key to both physical and chemical conditions that enabled the formation of glendonites in these sediments.
Emilija Krsnik, Katharina Methner, Marion Campani, Svetlana Botsyun, Sebastian G. Mutz, Todd A. Ehlers, Oliver Kempf, Jens Fiebig, Fritz Schlunegger, and Andreas Mulch
Solid Earth, 12, 2615–2631, https://doi.org/10.5194/se-12-2615-2021, https://doi.org/10.5194/se-12-2615-2021, 2021
Short summary
Short summary
Here we present new surface elevation constraints for the middle Miocene Central Alps based on stable and clumped isotope geochemical analyses. Our reconstructed paleoelevation estimate is supported by isotope-enabled paleoclimate simulations and indicates that the Miocene Central Alps were characterized by a heterogeneous and spatially transient topography with high elevations locally exceeding 4000 m.
André Bahr, Monika Doubrawa, Jürgen Titschack, Gregor Austermann, Andreas Koutsodendris, Dirk Nürnberg, Ana Luiza Albuquerque, Oliver Friedrich, and Jacek Raddatz
Biogeosciences, 17, 5883–5908, https://doi.org/10.5194/bg-17-5883-2020, https://doi.org/10.5194/bg-17-5883-2020, 2020
Short summary
Short summary
We explore the sensitivity of cold-water corals (CWCs) to environmental changes utilizing a multiproxy approach on a coral-bearing sediment core from off southeastern Brazil. Our results reveal that over the past 160 kyr, CWCs flourished during glacial high-northern-latitude cold events (Heinrich stadials). These periods were associated with anomalous wet phases on the continent enhancing terrigenous nutrient and organic-matter supply to the continental margin, boosting food supply to the CWCs.
Gordon N. Inglis, Fran Bragg, Natalie J. Burls, Marlow Julius Cramwinckel, David Evans, Gavin L. Foster, Matthew Huber, Daniel J. Lunt, Nicholas Siler, Sebastian Steinig, Jessica E. Tierney, Richard Wilkinson, Eleni Anagnostou, Agatha M. de Boer, Tom Dunkley Jones, Kirsty M. Edgar, Christopher J. Hollis, David K. Hutchinson, and Richard D. Pancost
Clim. Past, 16, 1953–1968, https://doi.org/10.5194/cp-16-1953-2020, https://doi.org/10.5194/cp-16-1953-2020, 2020
Short summary
Short summary
This paper presents estimates of global mean surface temperatures and climate sensitivity during the early Paleogene (∼57–48 Ma). We employ a multi-method experimental approach and show that i) global mean surface temperatures range between 27 and 32°C and that ii) estimates of
bulkequilibrium climate sensitivity (∼3 to 4.5°C) fall within the range predicted by the IPCC AR5 Report. This work improves our understanding of two key climate metrics during the early Paleogene.
Cited articles
Addadi, L., Raz, S., and Weiner, S.: Taking Advantage of Disorder: Amorphous
Calcium Carbonate and Its Roles in Biomineralization, Adv. Mater.,
15, 959–970, https://doi.org/10.1002/adma.200300381, 2003.
Addadi, L., Joester, D., Nudelman, F., and Weiner, S.: Mollusk Shell
Formation: A Source of New Concepts for Understanding Biomineralization
Processes, Chemistry, 12, 980–987,
https://doi.org/10.1002/chem.200500980, 2006.
Addamo, A. M., Vertino, A., Stolarski, J., García-Jiménez, R.,
Taviani, M., and Machordom, A.: Merging scleractinian genera: The
overwhelming genetic similarity between solitary Desmophyllum and colonial
Lophelia, BMC Evol. Biol., 16, 108,
https://doi.org/10.1186/s12862-016-0654-8, 2016.
Adkins, J. F., Boyle, E. A., Curry, W. B., and Lutringer, A.: Stable
isotopes in deep-sea corals and a new mechanism for “vital effects”,
Geochim. Cosmochim. Ac., 67, 1129–1143,
https://doi.org/10.1016/S0016-7037(02)01203-6, 2003.
Alexander, S. P. and Delaca, T. E.: Feeding adaptations of the foraminiferan
Cibicides refulgens living epizoically and parasitically on the Antarctic
scallop Adamussium colbecki, Biol. Bull., 173, 136–159,
https://doi.org/10.2307/1541868, 1987.
Allen, J. A.: Manganese deposition on the shells of living molluscs, Nature,
185, 336–337, https://doi.org/10.1038/185336b0, 1960.
Bajnai, D., Fiebig, J., Tomašových, A., Milner Garcia, S.,
Rollion-Bard, C., Raddatz, J., Löffler, N., Primo-Ramos, C., and Brand,
U.: Assessing kinetic fractionation in brachiopod calcite using clumped
isotopes, Sci. Rep., 8, 533,
https://doi.org/10.1038/s41598-017-17353-7, 2018.
Baranwal, S., Sauer, S., Knies, J., Chand, S., Jensen, H., and Klug, M.:
Benthic foraminifera as tools in interpretation of subsurface hydrocarbon
fluid flow at Veslemøy High and Hola-Vesterålen areas of the Barents
Sea, EGU General Assembly 2014, 27 April–2 May, 2014, Vienna, Austria, Geophysical Research Abstracts, id.1843, 2014.
Bentov, S. and Erez, J.: Impact of biomineralization processes on the Mg
content of foraminiferal shells: A biological perspective,
Geochem. Geophy. Geosy., 7, Q01P08, https://doi.org/10.1029/2005GC001015, 2006.
Beuck, L., López Correa, M., and Freiwald, A.: Biogeographical
distribution of Hyrrokkin (Rosalinidae, Foraminifera) and its host-specific
morphological and textural trace variability, in: Current Developments in
Bioerosion, edited by: Wisshak, M. and Tapanila, L., Springer, Berlin, Heidelberg, Germany, 329–360, https://doi.org/10.1007/978-3-540-77598-0_17, 2008.
Büscher, J.: Cold-water coral habitat characterisation and in situ
physiological state analyses of four spatially distinct reefs in North- and
mid-Norway-Cruise Report RV POSEIDON 525 [POS525], GEOMAR, Kiel, Germany,
https://doi.org/10.3289/CR_POS525, 2018.
Calvert, S. E. and Pedersen, T. F.: Geochemistry of Recent oxic and anoxic
marine sediments: Implications for the geological record, Mar. Geol.,
https://doi.org/10.1016/0025-3227(93)90150-T, 1993.
Calvert, S. E. and Pedersen, T. F.: Sedimentary geochemistry of manganese:
Implications for the environment of formation of manganiferous black shales,
Econ. Geol., 91, 36–47, https://doi.org/10.2113/gsecongeo.91.1.36, 1996.
Carré, M., Bentaleb, I., Bruguier, O., Ordinola, E., Barrett, N. T., and
Fontugne, M.: Calcification rate influence on trace element concentrations
in aragonitic bivalve shells: Evidences and mechanisms, Geochim. Cosmochim. Ac., 70, 4906–4920,
https://doi.org/10.1016/j.gca.2006.07.019, 2006.
Cedhagen, T.: Taxonomy and biology of hyrrokkin sarcophaga gen. Et Sp. N., a
parasitic foraminiferan (rosalinidae), Sarsia, 79, 65–82,
https://doi.org/10.1080/00364827.1994.10413549, 1994.
Checa, A. G., Rodríguez-Navarro, A. B., and Esteban-Delgado, F. J.: The
nature and formation of calcitic columnar prismatic shell layers in
pteriomorphian bivalves, Biomaterials, 26, 6404–6414,
https://doi.org/10.1016/j.biomaterials.2005.04.016, 2005.
Chen, S., Gagnon, A. C., and Adkins, J. F.: Carbonic anhydrase, coral
calcification and a new model of stable isotope vital effects, Geochim. Cosmochim. Ac., 236, 179–197, https://doi.org/10.1016/j.gca.2018.02.032,
2018.
Cheng, Y. R. and Dai, C. F.: A bioeroding foraminifer, Hyrrokkin sarcophaga,
on deepwater corals from the South China Sea, Coral Reefs, 35, 901,
https://doi.org/10.1007/s00338-016-1447-7, 2016.
Cohen, A. L.: Geochemical Perspectives on Coral Mineralization,
Rev. Mineral. Geochem., 54, 151–187, https://doi.org/10.2113/0540151,
2003.
Crenshaw, M. A.: The inorganic composition of molluscan extrapallial fluid,
Biol. Bull., 143, 506–512, https://doi.org/10.2307/1540180,
1972.
Culver, S. J.: Early Cambrian foraminifera from West Africa, Science, 254,
689–691, https://doi.org/10.1126/science.254.5032.689, 1991.
de Nooijer, L. J., Toyofuku, T., and Kitazato, H.: Foraminifera promote
calcification by elevating their intracellular pH, P. Natl. Acad. Sci. USA, 106, 15374–15378, https://doi.org/10.1073/pnas.0904306106, 2009.
de Nooijer, L. J., Spero, H. J., Erez, J., Bijma, J., and Reichart, G. J.:
Biomineralization in perforate foraminifera, Earth-Sci. Rev., 135,
48–58, https://doi.org/10.1016/j.earscirev.2014.03.013, 2014.
de Villiers, S., Nelson, B. K., and Chivas, A.: Biological Control on Coral
Sr Ca and δ18O Reconstructions of Sea Surface Temperatures, Science, 269, 1247–1249, 1995.
Dupuy, C., Rossignol, L., Geslin, E., and Pascal, P. Y.: Predation of
mudflat meio-macrofaunal metazoans by a calcareous foraminifer, Ammonia
tepida (Cushman, 1926), J. Foramin. Res., 40, 305–312,
https://doi.org/10.2113/gsjfr.40.4.305, 2010.
Elderfield, H.: A biomineralization model for the incorporation of trace
elements into foraminiferal calcium carbonate,
Earth Planet. Sc. Lett., 142, 409–423, https://doi.org/10.1016/0012-821X(96)00105-7, 1996.
Erez, J.: The Source of Ions for Biomineralization in Foraminifera and Their
Implications for Paleoceanographic Proxies, Rev. Mineral. Geochem., 54, 115–149, https://doi.org/10.2113/0540115, 2003.
Evans, D., Erez, J., Oron, S., and Müller, W.: Mg Ca-temperature and seawater-test chemistry relationships in the shallow-dwelling large benthic foraminifera Operculina ammonoides, Geochim. Cosmochim. Ac., 148,
325–342, https://doi.org/10.1016/j.gca.2014.09.039, 2015.
Evans, D., Müller, W., and Erez, J.: Assessing foraminifera
biomineralisation models through trace element data of cultures under
variable seawater chemistry, Geochim. Cosmochim. Ac., 236, 198–217,
https://doi.org/10.1016/j.gca.2018.02.048, 2018.
Falini, G., Albeck, S., Weiner, S., and Addadi, L.: Control of Aragonite or
Calcite Polymorphism by Mollusk Shell Macromolecules, Science, 271, 67–69,
https://doi.org/10.1126/science.271.5245.67, 1996.
Ferrier-Pagès, C., Boisson, F., Allemand, D., and Tambutté, E.:
Kinetics of strontium uptake in the scleractinian coral Stylophora
pistillata, Mar. Ecol. Prog. Ser., 245, 93–100,
https://doi.org/10.3354/meps245093, 2002.
Form, A. U., Büscher, J. v., Hissmann, K., Flögel, S., Wisshak, M.,
Rüggeberg, A., Bannister, R., Kutti, T., Stapp, L., Bennecke, S.,
Küter, M., Nachtigall, K., Schauer, J., and Fenske, M.: RV POSEIDON
Cruise Report POS473 LORELEI II: LOphelia REef Lander Expedition and
Investigation II, Tromsø – Bergen – Esbjerg, 15–31 August–4 September 2014, 25 pp., https://doi.org/10.3289/CR_POS_473, 2015.
Freiwald, A. and Schönfeld, J.: Substrate pitting and boring pattern of
Hyrrokkin sarcophaga Cedhagen, 1994 (Foraminifera) in a modern deep-water
coral reef mound, Mar. Micropaleontol., 28, 199–207, 1996.
Füger, A., Konrad, F., Leis, A., Dietzel, M., and Mavromatis, V.: Effect
of growth rate and pH on lithium incorporation in calcite, Geochim. Cosmochim. Ac., 248, 14–24, https://doi.org/10.1016/j.gca.2018.12.040,
2019.
Füllenbach, C. S., Schöne, B. R., Shirai, K., Takahata, N., Ishida,
A., and Sano, Y.: Minute co-variations of Sr Ca ratios and microstructures in the aragonitic shell of Cerastoderma edule (Bivalvia) – Are geochemical variations at the ultra-scale masking potential environmental signals?, Geochim. Cosmochim. Ac., 205, 256–271,
https://doi.org/10.1016/j.gca.2017.02.019, 2017.
Gabitov, R. I., Cohen, A. L., Gaetani, G. A., Holcomb, M., and Watson, E.
B.: The impact of crystal growth rate on element ratios in aragonite: An
experimental approach to understanding vital effects, Geochim. Cosmochim. Ac., 70, A187, https://doi.org/10.1016/j.gca.2006.06.377,
2006.
Gabitov, R. I., Sadekov, A., and Leinweber, A.: Crystal growth rate effect
on Mg Ca and Sr Ca partitioning between calcite and fluid: An in situ approach, Chem. Geol., 367, 70–82,
https://doi.org/10.1016/j.chemgeo.2013.12.019, 2014.
García-Gallardo, Á., Grunert, P., Voelker, A. H. L., Mendes, I.,
and Piller, W. E.: Re-evaluation of the “elevated epifauna” as indicator
of Mediterranean Outflow Water in the Gulf of Cadiz using stable isotopes
(δ13C, δ18O), Global Planet. Change, 155, 78–97,
https://doi.org/10.1016/j.gloplacha.2017.06.005, 2017.
Geerken, E., de Nooijer, L. J., van Dijk, I., and Reichart, G.-J.: Impact of salinity on element incorporation in two benthic foraminiferal species with contrasting magnesium contents, Biogeosciences, 15, 2205–2218, https://doi.org/10.5194/bg-15-2205-2018, 2018.
GEOMAR Helmholtz-Zentrum für Ozeanforschung: Research Vessel POSEIDON,
Journal of large-scale research facilities JLSRF, 1, 60–63,
https://doi.org/10.17815/jlsrf-1-62, 2015.
GEOMAR Helmholtz-Zentrum für Ozeanforschung: Manned submersible
“JAGO”, Journal of large-scale research facilities JLSRF, 3,
1–12, https://doi.org/10.17815/jlsrf-3-157, 2017.
Goldstein, J. I., Newbury, D. E., Michael, J. R., Ritchie, N. W. M., Scott,
J. H. J., and Joy, D. C.: Scanning Electron Microscopy and X-Ray
Microanalysis, Springer New York, New York, NY, USA,
https://doi.org/10.1007/978-1-4939-6676-9, 2018.
Goldstein, S. T.: Foraminifera: A biological overview, in: Modern
Foraminifera, Springer Netherlands, 37–55, https://doi.org/10.1007/0-306-48104-9_3, 1999.
Gray, W. R. and Evans, D.: Nonthermal Influences on Mg Ca in Planktonic
Foraminifera: A Review of Culture Studies and Application to the Last
Glacial Maximum, Paleoceanography and Paleoclimatology, 34, 306–315,
https://doi.org/10.1029/2018PA003517, 2019.
Greaves, M., Barker, S., Daunt, C., and Elderfield, H.: Accuracy,
standardization, and interlaboratory calibration standards for foraminiferal
Mg Ca thermometry, Geochem. Geophy. Geosy., 6, 2–13,
https://doi.org/10.1029/2004GC000790, 2005.
Greaves, M., Caillon, N., Rebaubier, H., Bartoli, G., Bohaty, S., Cacho, I.,
Clarke, L., Cooper, M., Daunt, C., Delaney, M., DeMenocal, P., Dutton, A.,
Eggins, S., Elderfield, H., Garbe-Schoenberg, D., Goddard, E., Green, D.,
Groeneveld, J., Hastings, D., Hathorne, E., Kimoto, K., Klinkhammer, G.,
Labeyrie, L., Lea, D. W., Marchitto, T., Martínez-Botí, M. A.,
Mortyn, P. G., Ni, Y., Nuernberg, D., Paradis, G., Quinn, T., Rosenthal, Y.,
Russel, A., Sagawa, T., Sosdian, S., Stott, L., Tachikawa, K., Tappa, E.,
Thunell, R., and Wilson, P. A.: Interlaboratory comparison study of
calibration standards for foraminiferal Mg Ca thermometry, Geochem. Geophy. Geosy., 9, 1–27, https://doi.org/10.1029/2008GC001974,
2008.
Groeneveld, J. and Filipsson, H. L.: Mg/Ca and Mn/Ca ratios in benthic foraminifera: the potential to reconstruct past variations in temperature and hypoxia in shelf regions, Biogeosciences, 10, 5125–5138, https://doi.org/10.5194/bg-10-5125-2013, 2013.
Gussone, N., Filipsson, H. L., and Kuhnert, H.: Mg Ca, Sr Ca and Ca isotope
ratios in benthonic foraminifers related to test structure, mineralogy and
environmental controls, Geochim. Cosmochim. Ac., 173, 142–159,
https://doi.org/10.1016/j.gca.2015.10.018, 2016.
Halloran, B. A. and Donachy, J. E.: Characterization of organic matrix
macromolecules from the shells of the antarctic scallop, Adamussium
colbecki, Comp. Biochem. Phys. B:, 111, 221–231, https://doi.org/10.1016/0305-0491(94)00245-P, 1995.
Hancock, L. G., Walker, S. E., Pérez-Huerta, A., and Bowser, S. S.:
Population Dynamics and Parasite Load of a Foraminifer on Its Antarctic
Scallop Host with Their Carbonate Biomass Contributions, PLOS ONE, 10,
e0132534, https://doi.org/10.1371/journal.pone.0132534, 2015.
Holland, K., Eggins, S. M., Hönisch, B., Haynes, L. L., and Branson, O.:
Calcification rate and shell chemistry response of the planktic foraminifer
Orbulina universa to changes in microenvironment seawater carbonate
chemistry, Earth Planet. Sc. Lett., 464, 124–134,
https://doi.org/10.1016/j.epsl.2017.02.018, 2017.
Hönisch, B., Allen, K. A., Russell, A. D., Eggins, S. M., Bijma, J.,
Spero, H. J., Lea, D. W., and Yu, J.: Planktic foraminifers as recorders of
seawater Ba Ca, Mar. Micropaleontol., 79, 52–57,
https://doi.org/10.1016/j.marmicro.2011.01.003, 2011.
Immenhauser, A., Schöne, B. R., Hoffmann, R., and Niedermayr, A.:
Mollusc and brachiopod skeletal hard parts: Intricate archives of their
marine environment, Sedimentology, 63, 1–59,
https://doi.org/10.1111/sed.12231, 2016.
Jacob, D. E., Wirth, R., Soldati, A. L., Wehrmeister, U., and Schreiber, A.:
Amorphous calcium carbonate in the shells of adult Unionoida, J.
Struct. Biol., 173, 241–249,
https://doi.org/10.1016/j.jsb.2010.09.011, 2011.
Jacob, D. E., Wirth, R., Agbaje, O. B. A., Branson, O., and Eggins, S. M.:
Planktic foraminifera form their shells via metastable carbonate phases,
Nat. Commun., 8, 1–8, https://doi.org/10.1038/s41467-017-00955-0,
2017.
Jacobson, P.: Physical Oceanography of the Trondheimsfjord, Geophys.
Astro. Fluid, 26, 3–26,
https://doi.org/10.1080/03091928308221761, 1983.
Jochum, K. P., Nohl, U., Herwig, K., Lammel, E., Stoll, B., and Hofmann, A.
W.: GeoReM: A New Geochemical Database for Reference Materials and Isotopic
Standards, Geostand. Geoanal. Res., 29, 333–338,
https://doi.org/10.1111/j.1751-908X.2005.tb00904.x, 2005.
Kato, K., Wada, H., and Fujioka, K.: The application of chemical staining to
separate calcite and aragonite minerals for micro-scale isotopic analyses,
Geochem. J., 37, 291–297, https://doi.org/10.2343/geochemj.37.291,
2003.
Klein, R. T., Lohmann, K. C., and Thayer, C. W.: Sr Ca and 13C/12C ratios in
skeletal calcite of Mytilus trossulus: Covariation with metabolic rate,
salinity, and carbon isotopic composition of seawater, Geochim. Cosmochim. Ac., 60, 4207–4221, https://doi.org/10.1016/S0016-7037(96)00232-3, 1996.
Koho, K. A., de Nooijer, L. J., and Reichart, G. J.: Combining benthic
foraminiferal ecology and shell Mn Ca to deconvolve past bottom water
oxygenation and paleoproductivity, Geochim. Cosmochim. Ac., 165,
294–306, https://doi.org/10.1016/j.gca.2015.06.003, 2015.
Lantz, B.: The impact of sample non-normality on ANOVA and alternative
methods, Brit. J. Math. Stat. Psy., 66,
224–244, https://doi.org/10.1111/j.2044-8317.2012.02047.x, 2013.
Lear, C. H. and Rosenthal, Y.: Benthic foraminiferal Li Ca: Insights into Cenozoic seawater carbonate saturation state, Geology, 34, 985,
https://doi.org/10.1130/G22792A.1, 2006.
Lear, C. H., Rosenthal, Y., and Slowey, N.: Benthic foraminiferal
Mg Ca-paleothermometry: A revised core-top calibration, Geochim. Cosmochim. Ac., 66, 3375–3387,
https://doi.org/10.1016/S0016-7037(02)00941-9, 2002.
Lorens, R. B.: Sr, Cd, Mn and Co distribution coefficients in calcite as a
function of calcite precipitation rate, Geochim. Cosmochim. Ac., 45,
553–561, https://doi.org/10.1016/0016-7037(81)90188-5, 1981.
Lorens, R. B. and Bender, M. L.: The impact of solution chemistry on
Mytilus edulis calcite and aragonite, Geochim. Cosmochim. Ac., 44, 1265–1278,
https://doi.org/10.1016/0016-7037(80)90087-3, 1980.
Lorrain, A., Gillikin, D. P., Paulet, Y. M., Chauvaud, L., le Mercier, A.,
Navez, J., and André, L.: Strong kinetic effects on Sr Ca ratios in the calcitic bivalve Pecten maximus, Geology, 33, 965–968,
https://doi.org/10.1130/G22048.1, 2005.
Mackensen, A. and Nam, S.: Taxon-specific epibenthic foraminiferal
δ18O in the Arctic Ocean: Relationship to water masses, deep
circulation, and brine release, Mar. Micropaleontol., 113, 34–43,
https://doi.org/10.1016/j.marmicro.2014.09.002, 2014.
Marchitto, T. M., Curry, W. B., Lynch-Stieglitz, J., Bryan, S. P., Cobb, K.
M., and Lund, D. C.: Improved oxygen isotope temperature calibrations for
cosmopolitan benthic foraminifera, Geochim. Cosmochim. Ac., 130,
1–11, https://doi.org/10.1016/j.gca.2013.12.034, 2014.
Marin, F., Luquet, G., Marie, B., and Medakovic, D.: Molluscan Shell
Proteins: Primary Structure, Origin, and Evolution, Curr. Top.
Dev. Biol., 80, 209–276,
https://doi.org/10.1016/S0070-2153(07)80006-8, 2007.
McConnaughey, T. A.: Sub-equilibrium oxygen-18 and carbon-13 levels in
biological carbonates: Carbonate and kinetic models, Coral Reefs, 22,
316–327, https://doi.org/10.1007/s00338-003-0325-2, 2003.
McCorkle, D. C., Corliss, B. H., and Farnham, C. A.: Vertical distributions
and stable isotopic compositions of live (stained) benthic foraminifera from
the North Carolina and California continental margins, Deep-Sea Res. Pt. I, 44, 983–1024, https://doi.org/10.1016/S0967-0637(97)00004-6, 1997.
McCulloch, M., Falter, J., Trotter, J., and Montagna, P.: Coral resilience
to ocean acidification and global warming through pH up-regulation, Nat.
Clim. Change, 2, 623–627, https://doi.org/10.1038/nclimate1473, 2012.
Mienis, F., de Stigter, H. C., White, M., Duineveld, G., de Haas, H., and
van Weering, T. C. E.: Hydrodynamic controls on cold-water coral growth and
carbonate-mound development at the SW and SE Rockall Trough Margin, NE
Atlantic Ocean, Deep-Sea Res. Pt. I, 54,
1655–1674, https://doi.org/10.1016/j.dsr.2007.05.013, 2007.
Milzer, G., Giraudeau, J., Faust, J., Knies, J., Eynaud, F., and Rühlemann, C.: Spatial distribution of benthic foraminiferal stable isotopes and dinocyst assemblages in surface sediments of the Trondheimsfjord, central Norway, Biogeosciences, 10, 4433–4448, https://doi.org/10.5194/bg-10-4433-2013, 2013.
Moradian-Oldak, J., Addadi, L., Weiner, S., and Berman, A.: Tuning of
Crystal Nucleation and Growth by Proteins: Molecular Interactions at
Solid-Liquid Interfaces in Biomineralization, Croat. Chem. Acta, 63,
539–544, 1990.
Mucci, A.: Manganese uptake during calcite precipitation from seawater:
Conditions leading to the formation of a pseudokutnahorite, Geochim. Cosmochim. Ac., 52, 1859–1868,
https://doi.org/10.1016/0016-7037(88)90009-9, 1988.
Mucci, A. and Morse, J. W.: The incorporation of Mg2+ and Sr2+ into
calcite overgrowths: influences of growth rate and solution composition,
Geochim. Cosmochim. Ac., 47, 217–233, 1983.
Nakahara, H.: Nacre Formation in Bivalve and Gastropod Molluscs, in:
Mechanisms and Phylogeny of Mineralization in Biological Systems, Springer
Japan, Tokyo, 343–350, https://doi.org/10.1007/978-4-431-68132-8_55, 1991.
Nehrke, G., Keul, N., Langer, G., de Nooijer, L. J., Bijma, J., and Meibom, A.: A new model for biomineralization and trace-element signatures of Foraminifera tests, Biogeosciences, 10, 6759–6767, https://doi.org/10.5194/bg-10-6759-2013, 2013.
Oomori, T., Kaneshima, H., Maezato, Y., and Kitano, Y.: Distribution
Coefficient of Mg2+ ions between calcite and solution at 10–50 ∘C, Mar. Chem., 20, 327–336,
https://doi.org/10.1016/B978-044452228-3/50006-6, 1987.
Petersen, J., Barras, C., Bézos, A., La, C., de Nooijer, L. J., Meysman, F. J. R., Mouret, A., Slomp, C. P., and Jorissen, F. J.: Mn∕Ca intra- and inter-test variability in the benthic foraminifer Ammonia tepida, Biogeosciences, 15, 331–348, https://doi.org/10.5194/bg-15-331-2018, 2018.
Piez, K. A.: Amino Acid Composition of Some Calcified Proteins, Science,
134, 841–842, https://doi.org/10.1126/science.134.3482.841, 1961.
Pytkowicz, R. M.: Rates of Inorganic Calcium Carbonate Nucleation,
J. Geol., 73, 196–199, https://doi.org/10.1086/627056, 1965.
Raddatz, J., Rüggeberg, A., Margreth, S., and Dullo, W. C.:
Paleoenvironmental reconstruction of Challenger Mound initiation in the
Porcupine Seabight, NE Atlantic, Mar. Geol., 282, 79–90,
https://doi.org/10.1016/j.margeo.2010.10.019, 2011.
Raddatz, J., Liebetrau, V., Rüggeberg, A., Hathorne, E.,
Krabbenhöft, A., Eisenhauer, A., Böhm, F., Vollstaedt, H., Fietzke,
J., López Correa, M., Freiwald, A., and Dullo, W. C.: Stable Sr-isotope,
Sr Ca, Mg Ca, Li Ca and Mg/Li ratios in the scleractinian cold-water coral Lophelia pertusa, Chem. Geol., 352, 143–152,
https://doi.org/10.1016/j.chemgeo.2013.06.013, 2013.
Raddatz, J., Rüggeberg, A., Flögel, S., Hathorne, E. C., Liebetrau, V., Eisenhauer, A., and Dullo, W.-Chr.: The influence of seawater pH on U Ca ratios in the scleractinian cold-water coral Lophelia pertusa, Biogeosciences, 11, 1863–1871, https://doi.org/10.5194/bg-11-1863-2014, 2014.
Raddatz, J., Nürnberg, D., Tiedemann, R., and Rippert, N.: Southeastern
marginal West Pacific Warm Pool sea-surface and thermocline dynamics during
the Pleistocene (2.5–0.5 Ma), Palaeogeogr. Palaeocl., 471, 144–156, https://doi.org/10.1016/j.palaeo.2017.01.024,
2017.
Raitzsch, M., Dueñas-Bohórquez, A., Reichart, G.-J., de Nooijer, L. J., and Bickert, T.: Incorporation of Mg and Sr in calcite of cultured benthic foraminifera: impact of calcium concentration and associated calcite saturation state, Biogeosciences, 7, 869–881, https://doi.org/10.5194/bg-7-869-2010, 2010.
Raja, R., Saraswati, P. K., Rogers, K., and Iwao, K.: Magnesium and
strontium compositions of recent symbiont-bearing benthic foraminifera,
Mar. Micropaleontol., 58, 31–44,
https://doi.org/10.1016/j.marmicro.2005.08.001, 2005.
Rathburn, A. E. and de Deckker, P.: Magnesium and strontium compositions of
Recent benthic foraminifera from the Coral Sea, Australia and Prydz Bay,
Antarctica, Mar. Micropaleontol., 32, 231–248,
https://doi.org/10.1016/S0377-8398(97)00028-5, 1997.
Schleinkofer, N., Raddatz, J., Freiwald, A., Evans, D., Beuck, L., Rüggeberg, A., and Liebetrau, V.: Environmental and biological controls on Na Ca ratios in scleractinian cold-water corals, Biogeosciences, 16, 3565–3582, https://doi.org/10.5194/bg-16-3565-2019, 2019.
Schleinkofer, N., Raddatz, J., Evans, D., Gerdes, A., Flögel, S., Voigt,
S., Büscher, J. V., and Wisshak, M.: Compositional variability of Mg Ca, Sr Ca, and Na Ca in the deep-sea bivalve Acesta excavata (Fabricius, 1779), PLOS ONE, 16, e0245605, https://doi.org/10.1371/journal.pone.0245605, 2021.
Schöne, B. R., Zhang, Z., Jacob, D., Gillikin, D. P., Tütken, T.,
Garbe-Schönberg, D., McConnaughey, T., and Soldati, A.: Effect of
organic matrices on the determination of the trace element chemistry (Mg,
Sr, Mg Ca, Sr Ca) of aragonitic bivalve shells (Arctica islandica) – Comparison of ICP-OES and LA-ICP-MS data, Geochem. J., 44, 23–37, https://doi.org/10.2343/geochemj.1.0045, 2010.
Schweizer, M., Bowser, S. S., Korsun, S., and Pawlowski, J.: Emendation of
Cibicides antarcticus (Saidova, 1975) based on molecular, morphological, and
ecological data, J. Foramin. Res., 42, 340–344, https://doi.org/10.2113/gsjfr.42.4.340, 2012.
Secor, C. L., Mills, E. L., Harshbarger, J., Kuntz, H. T., Gutenmann, W. H.,
and Lisk, D. J.: Bioaccumulation of toxicants, element and nutrient
composition, and soft tissue histology of zebra mussels (Dreissena
polymorpha) from New York State waters, Chemosphere, 26, 1559–1575,
https://doi.org/10.1016/0045-6535(93)90224-S, 1993.
Segev, E. and Erez, J.: Effect of Mg Ca ratio in seawater on shell
composition in shallow benthic foraminifera, Geochem. Geophy. Geosy., 7, 1–8, https://doi.org/10.1029/2005GC000969, 2006.
Smith, P. B. and Emiliani, C.: Oxygen-isotope analysis of recent tropical
pacific benthonic foraminifera, Science, 160, 1335–1336,
https://doi.org/10.1126/science.160.3834.1335, 1968.
Spero, H. J.: Ultrastructural examination of chamber morphogenesis and
biomineralization in the planktonic foraminifer Orbulina universa, Mar.
Biol., 99, 9–20, https://doi.org/10.1007/BF00644972, 1988.
Spötl, C. and Vennemann, T. W.: Continuous-flow isotope ratio mass
spectrometric analysis of carbonate minerals, Rapid Commun. Mass
Sp., 17, 1004–1006, https://doi.org/10.1002/rcm.1010, 2003.
Stephenson, A. E., Deyoreo, J. J., Wu, L., Wu, K. J., Hoyer, J., and Dove,
P. M.: Peptides enhance magnesium signature in calcite: Insights into
origins of vital effects, Science, 322, 724–727,
https://doi.org/10.1126/science.1159417, 2008.
Sunda, W. G. and Huntsman, S. A.: Regulation of cellular manganese and
manganese transport rates in the unicellular alga Chlamydomonas,
Limnol. Oceanogr., 30, 71–80, https://doi.org/10.4319/lo.1985.30.1.0071,
1985.
Swinehart, J. H. and Smith, K. W.: Iron And Manganese Deposition In The
Periostraca Of Several Bivalve Molluscs, Biol. Bull., 156,
369–381, https://doi.org/10.2307/1540924, 1979.
Takesue, R. K., Bacon, C. R., and Thompson, J. K.: Influences of organic
matter and calcification rate on trace elements in aragonitic estuarine
bivalve shells, Geochim. Cosmochim. Ac., 72, 5431–5445,
https://doi.org/10.1016/j.gca.2008.09.003, 2008.
Tambutté, E., Allemand, D., Zoccola, D., Meibom, A., Lotto, S.,
Caminiti, N., and Tambutté, S.: Observations of the tissue-skeleton
interface in the scleractinian coral Stylophora pistillata, Coral Reefs, 26,
517–529, https://doi.org/10.1007/s00338-007-0263-5, 2007.
Todd, R.: A new Rosalina (foraminifera) parasitic on a bivalve, Deep-Sea
Research and Oceanographic Abstracts, 12, 831–837,
https://doi.org/10.1016/0011-7471(65)90806-5, 1965.
Toyofuku, T., Kitazato, H., Kawahata, H., Tsuchiya, M., and Nohara, M.:
Evaluation of Mg Ca thermometry in foraminifera: Comparison of experimental results and measurements in nature, Paleoceanography, 15, 456–464, https://doi.org/10.1029/1999PA000460, 2000.
Toyofuku, T., Matsuo, M. Y., de Nooijer, L. J., Nagai, Y., Kawada, S.,
Fujita, K., Reichart, G. J., Nomaki, H., Tsuchiya, M., Sakaguchi, H., and
Kitazato, H.: Proton pumping accompanies calcification in foraminifera,
Nat. Commun., 8, 1–6, https://doi.org/10.1038/ncomms14145, 2017.
Tribovillard, N., Algeo, T. J., Lyons, T., and Riboulleau, A.: Trace metals
as paleoredox and paleoproductivity proxies: An update, Chem. Geol.,
232, 12–32, https://doi.org/10.1016/j.chemgeo.2006.02.012, 2006.
van Dijk, I., Mouret, A., Cotte, M., le Houedec, S., Oron, S., Reichart, G.
J., Reyes-Herrera, J., Filipsson, H. L., and Barras, C.: Chemical
Heterogeneity of Mg, Mn, Na, S, and Sr in Benthic Foraminiferal Calcite,
Front. Earth Sci., 7, 281,
https://doi.org/10.3389/feart.2019.00281, 2019.
van Dijk, I., de Nooijer, L. J., Barras, C., and Reichart, G. J.: Mn
Incorporation in Large Benthic Foraminifera: Differences Between Species and
the Impact of pCO2, Front. Earth Sci., 8,
https://doi.org/10.3389/feart.2020.567701, 2020.
Vénec-Peyré, M. T.: Bioeroding foraminifera: A review, Mar. Micropaleontol., 28, 19–30, https://doi.org/10.1016/0377-8398(95)00037-2,
1996.
Wada, K. and Fujinuki, T.: Biomineralization in bivalve molluscs with
emphasis on the chemical composition of the extrapallial fluid, in: Mechanisms of Mineralization in the Invertebrates and Plants, edited by: Watabe, N. and Wilbur, K. M., University of South Carolina Press, Columbia, SC, USA, 175–190, 1976.
Walker, S. E., Hancock, L. G., and Bowser, S. S.: Diversity, biogeography,
body size and fossil record of parasitic and suspected parasitic
foraminifera: A review, J. Foramin. Res., 47, 34–55,
https://doi.org/10.2113/gsjfr.47.1.34, 2017.
Webb, A. E., Pomponi, S. A., van Duyl, F. C., Reichart, G. J., and de
Nooijer, L. J.: pH Regulation and Tissue Coordination Pathways Promote
Calcium Carbonate Bioerosion by Excavating Sponges, Sci. Rep., 9,
1–10, https://doi.org/10.1038/s41598-018-36702-8, 2019.
Wheeler, A. P.: Mechanisms of Molluscan Shell Formation, in: Calcification in Biological Systems, CRC Press, 179–216, https://doi.org/10.1201/9781003068396-10, 2020.
Whitney, N. M., Johnson, B. J., Dostie, P. T., Luzier, K., and Wanamaker, A.
D.: Paired bulk organic and individual amino acid δ15N analyses of
bivalve shell periostracum: A paleoceanographic proxy for water source
variability and nitrogen cycling processes, Geochim. Cosmochim. Ac.,
254, 67–85, https://doi.org/10.1016/j.gca.2019.03.019, 2019.
Wilbur, K. M. and Saleuddin, A. S. M.: Shell Formation, in: The Mollusca,
Elsevier, 235–287, https://doi.org/10.1016/B978-0-12-751404-8.50014-1,
1983.
Yin, Y., Huang, J., Paine, M. L., Reinhold, V. N., and Chasteen, N. D.:
Structural Characterization of the Major Extrapallial Fluid Protein of the
Mollusc Mytilus edulis: Implications for Function, Biochemistry, 44,
10720–10731, https://doi.org/10.1021/bi0505565, 2005.
Yu, X. and Inesi, G.: Variable stoichiometric efficiency of Ca2+ and
Sr2+ transport by the sarcoplasmic reticulum ATPase, J. Biol.
Chem., 270, 4361–4367, https://doi.org/10.1074/jbc.270.9.4361, 1995.
Zhang, C. and Zhang, R.: Matrix proteins in the outer shells of molluscs,
Mar. Biotechnol., 8, 572–586,
https://doi.org/10.1007/s10126-005-6029-6, 2006.
Short summary
We have measured the chemical composition of the carbonate shells of the parasitic foraminifera Hyrrokkin sarcophaga in order to test if it is influenced by the host organism (bivalve or coral). We find that both the chemical and isotopic composition is influenced by the host organism. For example strontium is enriched in foraminifera that grew on corals, whose skeleton is built from aragonite, which is naturally enriched in strontium compared to the bivalves' calcite shell.
We have measured the chemical composition of the carbonate shells of the parasitic foraminifera...
Altmetrics
Final-revised paper
Preprint