Articles | Volume 18, issue 16
Biogeosciences, 18, 4773–4789, 2021
https://doi.org/10.5194/bg-18-4773-2021
Biogeosciences, 18, 4773–4789, 2021
https://doi.org/10.5194/bg-18-4773-2021
Research article
24 Aug 2021
Research article | 24 Aug 2021

Disturbance triggers non-linear microbe–environment feedbacks

Aditi Sengupta et al.

Related authors

Spatial gradients in the characteristics of soil-carbon fractions are associated with abiotic features but not microbial communities
Aditi Sengupta, Julia Indivero, Cailene Gunn, Malak M. Tfaily, Rosalie K. Chu, Jason Toyoda, Vanessa L. Bailey, Nicholas D. Ward, and James C. Stegen
Biogeosciences, 16, 3911–3928, https://doi.org/10.5194/bg-16-3911-2019,https://doi.org/10.5194/bg-16-3911-2019, 2019
Short summary

Related subject area

Biogeochemistry: Environmental Microbiology
Physiological control on carbon isotope fractionation in marine phytoplankton
Karen M. Brandenburg, Björn Rost, Dedmer B. Van de Waal, Mirja Hoins, and Appy Sluijs
Biogeosciences, 19, 3305–3315, https://doi.org/10.5194/bg-19-3305-2022,https://doi.org/10.5194/bg-19-3305-2022, 2022
Short summary
Nitrophobic ectomycorrhizal fungi are associated with enhanced hydrophobicity of soil organic matter in a Norway spruce forest
Juan Pablo Almeida, Nicholas Rosenstock, Susanne Woche, Georg Guggenberger, and Håkan Wallander
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-83,https://doi.org/10.5194/bg-2022-83, 2022
Revised manuscript accepted for BG
Short summary
Implementation of mycorrhizal mechanisms into soil carbon model improves the prediction of long-term processes of plant litter decomposition
Weilin Huang, Peter M. van Bodegom, Toni Viskari, Jari Liski, and Nadejda A. Soudzilovskaia
Biogeosciences, 19, 1469–1490, https://doi.org/10.5194/bg-19-1469-2022,https://doi.org/10.5194/bg-19-1469-2022, 2022
Short summary
Impact of dust addition on the microbial food web under present and future conditions of pH and temperature
Julie Dinasquet, Estelle Bigeard, Frédéric Gazeau, Farooq Azam, Cécile Guieu, Emilio Marañón, Céline Ridame, France Van Wambeke, Ingrid Obernosterer, and Anne-Claire Baudoux
Biogeosciences, 19, 1303–1319, https://doi.org/10.5194/bg-19-1303-2022,https://doi.org/10.5194/bg-19-1303-2022, 2022
Short summary
Fractionation of stable carbon isotopes during acetate consumption by methanogenic and sulfidogenic microbial communities in rice paddy soils and lake sediments
Ralf Conrad, Pengfei Liu, and Peter Claus
Biogeosciences, 18, 6533–6546, https://doi.org/10.5194/bg-18-6533-2021,https://doi.org/10.5194/bg-18-6533-2021, 2021
Short summary

Cited articles

Arntzen, E.: Effects of fluctuating river flow on groundwater/surface water mixing in the hyporheic zone of a regulated, large cobble bed river – River Research and Applications – Wiley Online Library, https://doi.org/10.1002/rra.947, 2006. 
Arora, B., Briggs, M. A., Zarnetske, J., Stegen, J. C., Gomez-Velez, J., Dwivedi, D., and Steefel, C. I.: Hot Spots and Hot Moments in the Critical Zone: Identification of and Incorporation into Reactive Transport Models, in: Biogeochemistry of the Critical Zone, Wymore, A., Yang, W., Silver, W., McDowell, B., and Chorover, J. (Eds.), Springer-Nature, in press, 2020. 
Baldwin, D. S. and Mitchell, A. M.: The effects of drying and re-flooding on the sediment and soil nutrient dynamics of lowland river–floodplain systems: a synthesis, Regul. River., 16, 457–467, https://doi.org/10.1002/1099-1646(200009/10)16:5<457::AID-RRR597>3.0.CO;2-B, 2000. 
Barnard, R. L., Osborne, C. A., and Firestone, M. K.: Changing precipitation pattern alters soil microbial community response to wet-up under a Mediterranean-type climate, ISME J., 9, 946–957, https://doi.org/10.1038/ismej.2014.192, 2015. 
Bartelme, R. P., Custer, J. M., Dupont, C. L., Espinoza, J. L., Torralba, M., Khalili, B., and Carini, P.: Influence of Substrate Concentration on the Culturability of Heterotrophic Soil Microbes Isolated by High-Throughput Dilution-to-Extinction Cultivation, mSphere, 5, e00024-20, https://doi.org/10.1128/mSphere.00024-20, 2020. 
Download
Short summary
Conceptual models link microbes with the environment but are untested. We test a recent model using riverbed sediments. We exposed sediments to disturbances, going dry and becoming wet again. As the length of dry conditions got longer, there was a sudden shift in the ecology of microbes, chemistry of organic matter, and rates of microbial metabolism. We propose a new model based on feedbacks initiated by disturbance that cascade across biological, chemical, and functional aspects of the system.
Altmetrics
Final-revised paper
Preprint