Articles | Volume 18, issue 19
https://doi.org/10.5194/bg-18-5397-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-5397-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Hydrothermal trace metal release and microbial metabolism in the northeastern Lau Basin of the South Pacific Ocean
Natalie R. Cohen
CORRESPONDING AUTHOR
Marine Chemistry & Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
Department of Marine Sciences, Skidaway Institute of Oceanography, University of Georgia, Savannah, GA
31411, USA
Abigail E. Noble
Marine Chemistry & Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
Dawn M. Moran
Marine Chemistry & Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
Matthew R. McIlvin
Marine Chemistry & Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
Tyler J. Goepfert
Marine Chemistry & Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
School of Earth & Space Exploration, Arizona State University, Tempe, AZ 85281, USA
Nicholas J. Hawco
Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
Christopher R. German
Marine Chemistry & Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
Tristan J. Horner
Marine Chemistry & Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
Carl H. Lamborg
Ocean Sciences Department, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
John P. McCrow
J. Craig Venter Institute, La Jolla, CA 92037, USA
Andrew E. Allen
J. Craig Venter Institute, La Jolla, CA 92037, USA
Marine Chemistry & Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
Related authors
No articles found.
Riss M. Kell, Adam V. Subhas, Nicole L. Schanke, Lauren E. Lees, Rebecca J. Chmiel, Deepa Rao, Margaret M. Brisbin, Dawn M. Moran, Matthew R. McIlvin, Francesco Bolinesi, Olga Mangoni, Raffaella Casotti, Cecilia Balestra, Tristan Horner, Robert B. Dunbar, Andrew E. Allen, Giacomo R. DiTullio, and Mak A. Saito
EGUsphere, https://doi.org/10.1101/2023.11.05.565706, https://doi.org/10.1101/2023.11.05.565706, 2025
Short summary
Short summary
Photosynthetic productivity is strongly influenced by water column nutrient availability. Despite the importance of zinc, definitive evidence for oceanic zinc limitation of photosynthesis has been scarce. We applied multiple biogeochemical measurements to a field site in Terra Nova Bay, Antarctica, to demonstrate that the phytoplankton community was experiencing zinc limitation. This field evidence paves the way for future experimental studies to consider Zn as a limiting oceanic micronutrient.
Noelle A. Held, Korrina Kunde, Clare E. Davis, Neil J. Wyatt, Elizabeth L. Mann, E. Malcolm S. Woodward, Matthew McIlvin, Alessandro Tagliabue, Benjamin S. Twining, Claire Mahaffey, Mak A. Saito, and Maeve C. Lohan
EGUsphere, https://doi.org/10.5194/egusphere-2024-3996, https://doi.org/10.5194/egusphere-2024-3996, 2025
Short summary
Short summary
Microbial enzymes are critical to marine biogeochemical cycles, but which microbes are producing those enzymes? We used a targeted proteomics method to quantify how much Prochlorococcus and Synechococcus contribute to surface ocean alkaline phosphatase activity. We find that alkaline phosphatase abundance is limited by the availability of iron, zinc and cobalt (which may substitute for zinc).
Claire Mahaffey, Noelle Held, Korinne Kunde, Clare Davis, Neil Wyatt, Matthew McIlvin, Malcolm Woodward, Lewis Wrightson, Alessandro Tagliabue, Maeve Lohan, and Mak Saito
EGUsphere, https://doi.org/10.5194/egusphere-2024-3987, https://doi.org/10.5194/egusphere-2024-3987, 2025
Short summary
Short summary
Picocyanobacteria fix over 50 % of carbon in the subtropical ocean, but which nutrients control their growth and activity? Using a states, rates and metaproteomic approach alongside targeted proteomics in experiments, we reveal picocyanobacteria are phosphorus stressed in the west Atlantic and nitrogen stressed in east Atlantic. We find evidence for trace metal and organic phosphorus control on alkaline phosphatase activity.
Riss M. Kell, Rebecca J. Chmiel, Deepa Rao, Dawn M. Moran, Matthew R. McIlvin, Tristan J. Horner, Nicole L. Schanke, Ichiko Sugiyama, Robert B. Dunbar, Giacomo R. DiTullio, and Mak A. Saito
Biogeosciences, 21, 5685–5706, https://doi.org/10.5194/bg-21-5685-2024, https://doi.org/10.5194/bg-21-5685-2024, 2024
Short summary
Short summary
Despite interest in modeling the biogeochemical uptake and cycling of the trace metal zinc (Zn), measurements of Zn uptake in natural marine phytoplankton communities have not been conducted previously. To fill this gap, we employed a stable isotope uptake rate measurement method to quantify Zn uptake into natural phytoplankton assemblages within the Southern Ocean. Zn demand was high and rapid enough to depress the inventory of Zn available to phytoplankton on seasonal timescales.
Mak A. Saito, Jaclyn K. Saunders, Matthew R. McIlvin, Erin M. Bertrand, John A. Breier, Margaret Mars Brisbin, Sophie M. Colston, Jaimee R. Compton, Tim J. Griffin, W. Judson Hervey, Robert L. Hettich, Pratik D. Jagtap, Michael Janech, Rod Johnson, Rick Keil, Hugo Kleikamp, Dagmar Leary, Lennart Martens, J. Scott P. McCain, Eli Moore, Subina Mehta, Dawn M. Moran, Jaqui Neibauer, Benjamin A. Neely, Michael V. Jakuba, Jim Johnson, Megan Duffy, Gerhard J. Herndl, Richard Giannone, Ryan Mueller, Brook L. Nunn, Martin Pabst, Samantha Peters, Andrew Rajczewski, Elden Rowland, Brian Searle, Tim Van Den Bossche, Gary J. Vora, Jacob R. Waldbauer, Haiyan Zheng, and Zihao Zhao
Biogeosciences, 21, 4889–4908, https://doi.org/10.5194/bg-21-4889-2024, https://doi.org/10.5194/bg-21-4889-2024, 2024
Short summary
Short summary
The ability to assess the functional capabilities of microbes in the environment is of increasing interest. Metaproteomics, the ability to measure proteins across microbial populations, has been increasing in capability and popularity in recent years. Here, an international team of scientists conducted an intercomparison study using samples collected from the North Atlantic Ocean and observed consistency in the peptides and proteins identified, their functions, and their taxonomic origins.
Rebecca J. Chmiel, Riss M. Kell, Deepa Rao, Dawn M. Moran, Giacomo R. DiTullio, and Mak A. Saito
Biogeosciences, 20, 3997–4027, https://doi.org/10.5194/bg-20-3997-2023, https://doi.org/10.5194/bg-20-3997-2023, 2023
Short summary
Short summary
Cobalt is an important micronutrient for plankton, yet it is often scarce throughout the oceans. A 2017/2018 expedition to coastal Antarctica, including regions of the Amundsen Sea and the Ross Sea, discovered lower concentrations of cobalt compared to two past expeditions in 2005 and 2006, particularly for the type of cobalt preferred as a nutrient by phytoplankton. This loss may be due to changing inputs of other nutrients, causing higher uptake of cobalt by plankton over the last decade.
Öykü Z. Mete, Adam V. Subhas, Heather H. Kim, Ann G. Dunlea, Laura M. Whitmore, Alan M. Shiller, Melissa Gilbert, William D. Leavitt, and Tristan J. Horner
Earth Syst. Sci. Data, 15, 4023–4045, https://doi.org/10.5194/essd-15-4023-2023, https://doi.org/10.5194/essd-15-4023-2023, 2023
Short summary
Short summary
We present results from a machine learning model that accurately predicts dissolved barium concentrations for the global ocean. Our results reveal that the whole-ocean barium inventory is significantly lower than previously thought and that the deep ocean below 1000 m is at equilibrium with respect to barite. The model output can be used for a number of applications, including intercomparison, interpolation, and identification of regions warranting additional investigation.
Rebecca Chmiel, Nathan Lanning, Allison Laubach, Jong-Mi Lee, Jessica Fitzsimmons, Mariko Hatta, William Jenkins, Phoebe Lam, Matthew McIlvin, Alessandro Tagliabue, and Mak Saito
Biogeosciences, 19, 2365–2395, https://doi.org/10.5194/bg-19-2365-2022, https://doi.org/10.5194/bg-19-2365-2022, 2022
Short summary
Short summary
Dissolved cobalt is present in trace amounts in seawater and is a necessary nutrient for marine microbes. On a transect from the Alaskan coast to Tahiti, we measured seawater concentrations of dissolved cobalt. Here, we describe several interesting features of the Pacific cobalt cycle including cobalt sources along the Alaskan coast and Hawaiian vents, deep-ocean particle formation, cobalt activity in low-oxygen regions, and how our samples compare to a global biogeochemical model’s predictions.
Thomas S. Bianchi, Madhur Anand, Chris T. Bauch, Donald E. Canfield, Luc De Meester, Katja Fennel, Peter M. Groffman, Michael L. Pace, Mak Saito, and Myrna J. Simpson
Biogeosciences, 18, 3005–3013, https://doi.org/10.5194/bg-18-3005-2021, https://doi.org/10.5194/bg-18-3005-2021, 2021
Short summary
Short summary
Better development of interdisciplinary ties between biology, geology, and chemistry advances biogeochemistry through (1) better integration of contemporary (or rapid) evolutionary adaptation to predict changing biogeochemical cycles and (2) universal integration of data from long-term monitoring sites in terrestrial, aquatic, and human systems that span broad geographical regions for use in modeling.
Randelle M. Bundy, Alessandro Tagliabue, Nicholas J. Hawco, Peter L. Morton, Benjamin S. Twining, Mariko Hatta, Abigail E. Noble, Mattias R. Cape, Seth G. John, Jay T. Cullen, and Mak A. Saito
Biogeosciences, 17, 4745–4767, https://doi.org/10.5194/bg-17-4745-2020, https://doi.org/10.5194/bg-17-4745-2020, 2020
Short summary
Short summary
Cobalt (Co) is an essential nutrient for ocean microbes and is scarce in most areas of the ocean. This study measured Co concentrations in the Arctic Ocean for the first time and found that Co levels are extremely high in the surface waters of the Canadian Arctic. Although the Co primarily originates from the shelf, the high concentrations persist throughout the central Arctic. Co in the Arctic appears to be increasing over time and might be a source of Co to the North Atlantic.
Cited articles
Agusti, S., Gonzalez-Gordillo, J., Vaque, D., Estrada, M., Cerezo, M. I.,
Salazar, G., Gasol, J. M., and Duarte, C. M.: Ubiquitous healthy diatoms in
the deep sea confirm deep carbon injection by the biological pump, Nat.
Commun., 6, 1–8, https://doi.org/10.1038/ncomms8608, 2015.
Anantharaman, K., Breier, J. A., and Dick, G. J.: Metagenomic resolution of
microbial functions in deep-sea hydrothermal plumes across the Eastern Lau
Spreading Center, ISME J., 10, 225–239, https://doi.org/10.1038/ismej.2015.81, 2016.
Baars, O., Abouchami, W., Galer, S. J. G., Boye, M., and Croot, P. L.:
Dissolved cadmium in the Southern Ocean: Distribution, speciation, and
relation to phosphate, Limnol. Oceanogr., 59, 385–399,
https://doi.org/10.4319/lo.2014.59.2.0385, 2014.
Baker, B. J., Lesniewski, R. A., and Dick, G. J.: Genome-enabled
transcriptomics reveals archaeal populations that drive nitrification in a
deep-sea hydrothermal plume, ISME J., 6, 2269–2279,
https://doi.org/10.1038/ismej.2012.64, 2012.
Baker, E. T., Walker, S. L., Massoth, G. J., and Resing, J. A.: The NE Lau
Basin: Widespread and Abundant Hydrothermal Venting in the Back-Arc Region
Behind a Superfast Subduction Zone, Front. Mar. Sci., 6, 382,
https://doi.org/10.3389/fmars.2019.00382, 2019.
Beatty, J. T., Overmann, J., Lince, M. T., Manske, A. K., Lang, A. S.,
Blankenship, R. E., Van Dover, C. L., Martinson, T. A., and Plumley, F. G.:
An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal
vent, P. Natl. Acad. Sci. USA, 102, 9306–9310,
https://doi.org/10.1073/pnas.0503674102, 2005.
Beaulieu, S. E., Baker, E. T., German, C. R., and Maffei, A.: An
authoritative global database for active submarine hydrothermal vent fields,
Geochem. Geophy. Geosy., 14, 4892–4905,
https://doi.org/10.1002/2013GC004998, 2013.
Behrenfeld, M. J., Worthington, K., Sherrell, R. M., Chavez, F. P., Strutton, P., McPhaden, M., and Shea, D. M.: Controls on tropical Pacific Ocean productivity revealed through nutrient stress diagnostics, Nature, 442, 1025–1028, 2006.
Bennett, S. A., Achterberg, E. P., Connelly, D. P., Statham, P. J., Fones,
G. R., and German, C. R.: The distribution and stabilisation of dissolved Fe
in deep-sea hydrothermal plumes, Earth Planet. Sc. Lett., 270,
157–167, https://doi.org/10.1016/j.epsl.2008.01.048, 2008.
Bennett, S. A., Coleman, M., Huber, J. A., Reddington, E., Kinsey, J. C.,
McIntyre, C., Seewald, J. S., and German, C. R.: Trophic regions of a
hydrothermal plume dispersing away from an ultramafic-hosted vent-system:
Von Damm vent-site, Mid-Cayman Rise, Geochem. Geophy. Geosy.,
14, 317–327, https://doi.org/10.1002/ggge.20063, 2013.
Bergauer, K., Fernandez-Guerra, A., Garcia, J. A. L., Sprenger, R. R.,
Stepanauskas, R., Pachiadaki, M. G., Jensen, O. N., and Herndl, G. J.:
Organic matter processing by microbial communities throughout the Atlantic
water column as revealed by metaproteomics, P. Natl. Acad. Sci. USA,
115, E400–E408, https://doi.org/10.1073/pnas.1708779115, 2018.
Bertrand, E. M., McCrow, J. P., Moustafa, A., Zheng, H., McQuaid, J. B.,
Delmont, T. O., Post, A. F., Sipler, R. E., Spackeen, J. L., Xu, K., Bronk,
D. A., Hutchins, D. A., and Allen, A. E.: Phytoplankton-bacterial interactions
mediate micronutrient colimitation at the coastal Antarctic sea ice edge,
P. Natl. Acad. Sci. USA, 112, 9938–43,
https://doi.org/10.1073/pnas.1501615112, 2015.
Biller, D. V. and Bruland, K. W.: Analysis of Mn, Fe, Co, Ni, Cu, Zn, Cd,
and Pb in seawater using the Nobias-chelate PA1 resin and magnetic sector
inductively coupled plasma mass spectrometry (ICP-MS), Mar. Chem., 130/131,
12–20, https://doi.org/10.1016/j.marchem.2011.12.001, 2012.
Bostock, H. C., Opdyke, B. N., and Williams, M. J. M.: Characterising the
intermediate depth waters of the Pacific Ocean using δ13C and other
geochemical tracers, Deep-Sea Res. Pt. I, 57, 847–859,
https://doi.org/10.1016/j.dsr.2010.04.005, 2010.
Bown, J., Laan, P., Ossebaar, S., Bakker, K., Rozema, P., and de Baar, H. J.
W.: Bioactive trace metal time series during Austral summer in Ryder Bay,
Western Antarctic Peninsula, Deep-Sea Res. Pt. II, 139,
103–119, https://doi.org/10.1016/j.dsr2.2016.07.004, 2017.
Boyle, E. A., Bergquist, B. A., Kayser, R. A., and Mahowald, N.: Iron,
manganese, and lead at Hawaii Ocean Time-series station ALOHA: Temporal
variability and an intermediate water hydrothermal plume, Geochim.
Cosmochim. Ac., 69, 933–952, https://doi.org/10.1016/j.gca.2004.07.034, 2005.
Brooks, J. P., Edwards, D. J., Harwich Jr., M. D., Rivera, M. D., Fettweis, J. M., Serrano, M. G., Reris, R. A., Sheth, N. U., Huang, B., Girerd, P., Vaginal Microbiome Consortium, Strauss III, J. F., Jefferson, K. K., and Buck, G. A.: The truth about metagenomics: quantifying and counteracting bias in 16S rRNA studies, BMC Microbiol., 15, 66, https://doi.org/10.1186/s12866-015-0351-6, 2015.
Bruland, K. W. and Lohan, M. C.: Controls of Trace Metals in Seawater, in:
Treatise on Geochemistry, Vol. 6, 23–47, 2003.
Chang, C., Xu, K., Guo, C., Wang, J., Yan, Q., Zhang, J., He, F., and Zhu,
Y.: PANDA-view: An easy-to-use tool for statistical analysis and
visualization of quantitative proteomics data, Bioinformatics, 34,
3594–3596, https://doi.org/10.1093/bioinformatics/bty408, 2018.
Chen, Y., Wei, D., Wang, Y., and Zhang, X.: The role of interactions between
bacterial chaperone, aspartate aminotransferase, and viral protein during
virus infection in high temperature environment: The interactions between
bacterium and virus proteins, BMC Microbiol., 13, 48,
https://doi.org/10.1186/1471-2180-13-48, 2013.
Cohen, N. R., Moran, D. M., McIlvin, M. R., McCrow, J. P., Allen, A. E., and Saito, M. A.: Metzyme metaproteomic data set on PRIDE (3–51 µm filter fraction), Proteome Xchange [data set], https://doi.org/10.6019/PXD014230, 2020.
Cohen, N. R., McIlvin, M. R., Moran, D. M., Held, N. A., Saunders, J. K.,
Hawco, N. J., Brosnahan, M., DiTullio, G. R., Lamborg, C., McCrow, J. P.,
Dupont, C. L., Allen, A. E., and Saito, M. A.: Dinoflagellates alter their
carbon and nutrient metabolic strategies across environmental gradients in
the central Pacific Ocean, Nat. Microbiol., 6, 173–186, https://doi.org/10.1038/s41564-020-00814-7,
2021a.
Cohen, N. R., Moran, D. M., McIlvin, M. R., Hawco, N. J., Lamborg, C. H., and Saito, M. A.: Biological and Chemical Oceanography Data Repository – Metzyme dissolved trace metals and metadata, BCO-DMO [data set], available at: https://www.bco-dmo.org/dataset/836347, last access: 25 September 2021b.
Cowen, J. P. and Bruland, K. W.: Metal deposits associated with bacteria:
implications for Fe and Mn marine biogeochemistry, Deep-Sea Res. Pt. A, 32, 253–272, https://doi.org/10.1016/0198-0149(85)90078-0,
1985.
Cowen, J. P., Massoth, G. J., and Feely, R. A.: Scavenging rates of dissolved
manganese in a hydrothermal vent plume, Deep-Sea Res. Pt. A, 37, 1619–1637, https://doi.org/10.1016/0198-0149(90)90065-4, 1990.
Cullen, J. T.: On the nonlinear relationship between dissolved cadmium and
phosphate in the modern global ocean: Could chronic iron limitation of
phytoplankton growth cause the kink?, Limnol. Oceanogr., 51, 1369–1380,
https://doi.org/10.4319/lo.2006.51.3.1369, 2006.
Dick, G. J.: The microbiomes of deep-sea hydrothermal vents: distributed
globally, shaped locally, Nat. Rev. Microbiol., 17, 271–283,
https://doi.org/10.1038/s41579-019-0160-2, 2019.
Dick, G. J., Lee, Y. E., and Tebo, B. M.: Manganese(II)-oxidizing Bacillus
spores in Guaymas basin hydrothermal sediments and plumes, Appl. Environ.
Microbiol., 72, 3184–3190, https://doi.org/10.1128/AEM.72.5.3184-3190.2006, 2006.
Dick, G. J., Anantharaman, K., Baker, B. J., Li, M., Reed, D. C., and Sheik,
C. S.: The microbiology of deep-sea hydrothermal vent plumes: Ecological and
biogeographic linkages to seafloor and water column habitats, Front.
Microbiol., 4, 124, https://doi.org/10.3389/fmicb.2013.00124, 2013.
Diemer, J., Quétel, C. R., and Taylor, P. D. P.: Comparison of the
performance of different ICP-MS instruments on the measurement of Cu in a
water sample by ICP-IDMS, J. Anal. Atom. Spectr.,
17, 1137–1142, 2002.
Djurhuus, A., Mikalsen, S. O., Giebel, H. A., and Rogers, A. D.: Cutting
through the smoke: The diversity of microorganisms in deep-sea hydrothermal
plumes, R. Soc. Open Sci., 4, 160829, https://doi.org/10.1098/rsos.160829, 2017.
Edgcomb, V. P., Molyneaux, S. J., Saito, M. A., Lloyd, K., Böer, S.,
Wirsen, C. O., Atkins, M. S., and Teske, A.: Sulfide Ameliorates Metal
Toxicity for Deep-Sea Hydrothermal Vent Archaea, Appl. Environ. Microbiol.,
70, 2551–2555, https://doi.org/10.1128/AEM.70.4.2551-2555.2004, 2004.
Fitzsimmons, J. N., Boyle, E. A., and Jenkins, W. J.: Distal transport of
dissolved hydrothermal iron in the deep South Pacific Ocean, P. Natl.
Acad. Sci. USA, 111, 16654, https://doi.org/10.1073/pnas.1418778111, 2014.
Fitzsimmons, J. N., John, S. G., Marsay, C. M., Hoffman, C. L., Nicholas, S.
L., Toner, B. M., German, C. R., and Sherrell, R. M.: Iron persistence in a
distal hydrothermal plume supported by dissolved-particulate exchange, Nat.
Geosci., 10, 195–201, https://doi.org/10.1038/ngeo2900, 2017.
Frew, R. D. and Hunter, K. A.: Cadmium-phosphorus cycling at the subtropical
convergence south of New Zealand, Mar. Chem., 51, 223–237,
https://doi.org/10.1016/0304-4203(95)00057-7, 1995.
Fuchida, S., Mizuno, Y., Masuda, H., Toki, T., and Makita, H.: Concentrations
and distributions of amino acids in black and white smoker fluids at
temperatures over 200 ∘C, Org. Geochem., 66, 98–106,
https://doi.org/10.1016/j.orggeochem.2013.11.008, 2014.
Garber, A. I., Nealson, K. H., Okamoto, A., McAllister, S. M., Chan, C. S.,
Barco, R. A., and Merino, N.: FeGenie: A Comprehensive Tool for the
Identification of Iron Genes and Iron Gene Neighborhoods in Genome and
Metagenome Assemblies, Front. Microbiol., 11, 37, https://doi.org/10.3389/fmicb.2020.00037,
2020.
Gartman, A. and Findlay, A. J.: Impacts of hydrothermal plume processes on
oceanic metal cycles and transport, Nat. Geosci., 13, 396–402,
https://doi.org/10.1038/s41561-020-0579-0, 2020.
German, C. R. and Seyfried, W. E.: Hydrothermal Processes, in: Treatise on
Geochemistry, 2nd Edn., Vol. 8, 191–233., 2013.
German, C. R., Baker, E. T., Connelly, D. P., Lupton, J. E., Resing, J.,
Prien, R. D., Walker, S. L., Edmonds, H. N., and Langmuir, C. H.:
Hydrothermal exploration of the Fonualei Rift and Spreading Center and the
Northeast Lau Spreading Center, Geochem. Geophy. Geosy., 7, Q11022,
https://doi.org/10.1029/2006GC001324, 2006.
Glover, D. M., Jenkins, W. J., Doney, S. C., Glover, D. M., Jenkins, W. J., and Doney, S. C.: Least squares and regression techniques, goodness of fit
and tests, and nonlinear least squares techniques, in: Modeling Methods for Marine Science, 49–74, Cambridge University Press, Cambridge, https://doi.org/10.1017/CBO9780511975721.004, 2012.
Goepfert, T. J.: Urea and nickel utilization in marine cyanobacteria as
evaluated by incubation, proteomic, and uptake techniques, available at: https://dspace.mit.edu/handle/1721.1/82303 (last access: 26 September 2021), 2013.
Guillou, L., Bachar, D., Audic, S., Bass, D., Berney, C., Bittner, L.,
Boutte, C., Burgaud, G., De Vargas, C., Decelle, J., Del Campo, J., Dolan,
J. R., Dunthorn, M., Edvardsen, B., Holzmann, M., Kooistra, W. H. C. F.,
Lara, E., Le Bescot, N., Logares, R., Mahé, F., Massana, R., Montresor,
M., Morard, R., Not, F., Pawlowski, J., Probert, I., Sauvadet, A. L., Siano,
R., Stoeck, T., Vaulot, D., Zimmermann, P., and Christen, R.: The Protist
Ribosomal Reference database (PR2): A catalog of unicellular eukaryote Small
Sub-Unit rRNA sequences with curated taxonomy, Nucleic Acids Res., 41, D597–D604,
https://doi.org/10.1093/nar/gks1160, 2013.
Haalboom, S., M. Price, D., Mienis, F., D. L. Van Bleijswijk, J., C. De
Stigter, H., J. Witte, H., Reichart, G. J., and C. A. Duineveld, G.: Patterns
of (trace) metals and microorganisms in the Rainbow hydrothermal vent plume
at the Mid-Atlantic Ridge, Biogeosciences, 17, 2499–2519,
https://doi.org/10.5194/bg-17-2499-2020, 2020.
Hawco, N. J., McIlvin, M. M., Bundy, R. M., Tagliabue, A., Goepfert, T. J.,
Moran, D. M., Valentin-Alvarado, L., DiTullio, G. R., and Saito, M. A.:
Minimal cobalt metabolism in the marine cyanobacterium
Prochlorococcus, P. Natl. Acad. Sci. USA,
117, 15740, https://doi.org/10.1073/pnas.2001393117, 2020.
Hawkes, J. A., Connelly, D. P., Gledhill, M., and Achterberg, E. P.: The
stabilisation and transportation of dissolved iron from high temperature
hydrothermal vent systems, Earth Planet. Sc. Lett., 375, 280–290,
https://doi.org/10.1016/j.epsl.2013.05.047, 2013.
Hawkins, J.: “Black smoker” vent chimneys, Eos, Trans. Am. Geophys. Union,
67, 430, https://doi.org/10.1029/eo067i017p00430-01, 1986.
Herzig, P. M., Hannington, M. D., Fouquet, Y., Von Stackelberg, U., and
Petersen, S.: Gold-rich polymetallic sulfides from the lau back arc and
implications for the geochemistry of gold in sea-floor hydrothermal systems
of the Southwest Pacific, Econ. Geol., 88, 2182–2209,
https://doi.org/10.2113/gsecongeo.88.8.2182, 1993.
Horner, T. J., Williams, H. M., Hein, J. R., Saito, M. A., Burton, K. W.,
Halliday, A. N., and Nielsen, S. G.: Persistence of deeply sourced iron in
the Pacific Ocean, P. Natl. Acad. Sci. USA, 112, 1292–1297,
https://doi.org/10.1073/pnas.1420188112, 2015.
Hsu-Kim, H., Mullaugh, K. M., Tsang, J. J., Yucel, M., and Luther, G. W.:
Formation of Zn- and Fe-sulfides near hydrothermal vents at the Eastern Lau
Spreading Center: Implications for sulfide bioavailability to
chemoautotrophs, Geochem. Trans., 9, 6, https://doi.org/10.1186/1467-4866-9-6, 2008.
Hu, S. K., Herrera, E. L., Smith, A. R., Pachiadaki, M. G., Edgcomb, V. P.,
Sylva, S. P., Chan, E. W., Seewald, J. S., German, C. R., and Huber, J. A.:
Protistan grazing impacts microbial communities and carbon cycling at
deep-sea hydrothermal vents, P. Natl. Acad. Sci. USA, 118, e2102674118,
https://doi.org/10.1073/pnas.2102674118, 2021.
Huber, J. A., Mark Welch, D. B., Morrison, H. G., Huse, S. M., Neal, P. R.,
Butterfield, D. A., and Sogin, M. L.: Microbial population structures in the
deep marine biosphere, Science, 318, 97–100,
https://doi.org/10.1126/science.1146689, 2007.
Jackson, S. L., Spence, J., Janssen, D. J., Ross, A. R. S., and Cullen, J.
T.: Determination of Mn, Fe, Ni, Cu, Zn, Cd and Pb in seawater using offline
extraction and triple quadrupole ICP-MS/MS, J. Anal. At. Spectrom., 33,
304–313, https://doi.org/10.1039/C7JA00237H, 2018.
Jeanthon, C.: Molecular ecology of hydrothermal vent microbial communities,
Antonie van Leeuwenhoek, Int. J. Gen. Mol. Microbiol., 77, 117–133,
https://doi.org/10.1023/A:1002463825025, 2000.
Jenkins, W. J., Doney, S. C., Fendrock, M., Fine, R., Gamo, T.,
Jean-Baptiste, P., Key, R., Klein, B., Lupton, J. E., Newton, R., Rhein, M.,
Roether, W., Sano, Y., Schlitzer, R., Schlosser, P., and Swift, J.: A
comprehensive global oceanic dataset of helium isotope and tritium
measurements, Earth Syst. Sci. Data, 11, 441–454,
https://doi.org/10.5194/essd-11-441-2019, 2019a.
Jenkins, W. J., Lott, D. E., and Cahill, K. L.: A determination of
atmospheric helium, neon, argon, krypton, and xenon solubility
concentrations in water and seawater, Mar. Chem., 211, 94–107,
https://doi.org/10.1016/j.marchem.2019.03.007, 2019b.
Jenkins, W. J., Hatta, M., Fitzsimmons, J. N., Schlitzer, R., Lanning, N.
T., Shiller, A., Buckley, N. R., German, C. R., Lott, D. E., Weiss, G.,
Whitmore, L., Casciotti, K., Lam, P. J., Cutter, G. A., and Cahill, K. L.: An
intermediate-depth source of hydrothermal 3He and dissolved iron in the
North Pacific, Earth Planet. Sc. Lett., 539, 116223,
https://doi.org/10.1016/j.epsl.2020.116223, 2020.
Jickells, T. D., An, Z. S., Andersen, K. K., Baker, A. R., Bergametti, C.,
Brooks, N., Cao, J. J., Boyd, P. W., Duce, R. A., Hunter, K. A., Kawahata,
H., Kubilay, N., LaRoche, J., Liss, P. S., Mahowald, N., Prospero, J. M.,
Ridgwell, A. J., Tegen, I., and Torres, R.: Global iron connections between
desert dust, ocean biogeochemistry, and climate, Science,
308, 67–71, https://doi.org/10.1126/science.1105959, 2005.
John, S. G., Helgoe, J., and Townsend, E.: Biogeochemical cycling of Zn and
Cd and their stable isotopes in the Eastern Tropical South Pacific, Mar.
Chem., 201, 256–262, https://doi.org/10.1016/j.marchem.2017.06.001, 2018.
Kim, J., Son, S. K., Son, J. W., Kim, K. H., Shim, W. J., Kim, C. H., and
Lee, K. Y.: Venting sites along the Fonualei and Northeast Lau Spreading
Centers and evidence of hydrothermal activity at an off-axis caldera in the
northeastern Lau Basin, Geochem. J., 43, 1–13,
https://doi.org/10.2343/geochemj.0.0164, 2009.
Kirchman, D. L.: Microbial proteins for organic material degradation in the
deep ocean, P. Natl. Acad. Sci. USA, 115, 445–447,
https://doi.org/10.1073/pnas.1720765115, 2018.
Kogut, M. B. and Voelker, B. M.: Kinetically inert Cu in coastal waters,
Environ. Sci. Technol., 37, 509–518, https://doi.org/10.1021/es020723d, 2003.
Lane, E. S., Jang, K., Cullen, J. T., and Maldonado, M. T.: The interaction
between inorganic iron and cadmium uptake in the marine diatom Thalassiosira
oceanica, Limnol. Oceanogr., 53, 1784–1789,
https://doi.org/10.4319/lo.2008.53.5.1784, 2008.
Li, J., Yang, J., Sun, M., Su, L., Wang, H., Gao, J., and Bai, S.:
Distribution and Succession of Microbial Communities Along the Dispersal
Pathway of Hydrothermal Plumes on the Southwest Indian Ridge, Front. Mar.
Sci., 7, 940, https://doi.org/10.3389/fmars.2020.581381, 2020.
Li, M., Toner, B. M., Baker, B. J., Breier, J. A., Sheik, C. S., and Dick, G.
J.: Microbial iron uptake as a mechanism for dispersing iron from deep-sea
hydrothermal vents, Nat. Commun., 5, 3192, https://doi.org/10.1038/ncomms4192, 2014.
Little, S. H., Archer, C., Milne, A., Schlosser, C., Achterberg, E. P.,
Lohan, M. C., and Vance, D.: Paired dissolved and particulate phase Cu
isotope distributions in the South Atlantic, Chem. Geol., 502, 29–43,
https://doi.org/10.1016/j.chemgeo.2018.07.022, 2018.
Lupton, J. E., Pyle, D. G., Jenkins, W. J., Greene, R., and Evans, L.:
Evidence for an extensive hydrothermal plume in the Tonga-Fiji region of the
South Pacific, Geochem. Geophy. Geosy., 5, Q01003,
https://doi.org/10.1029/2003GC000607, 2004.
Lupton, J. E., Arculus, R. J., Evans, L. J., and Graham, D. W.: Mantle
hotspot neon in basalts from the Northwest Lau Back-arc Basin, Geophys. Res.
Lett., 39, L08308, https://doi.org/10.1029/2012GL051201, 2012.
Lusty, P. A. J. and Murton, B. J.: Deep-ocean mineral deposits: Metal
resources and windows into earth processes, Elements, 14, 301–306,
https://doi.org/10.2138/gselements.14.5.301, 2018.
Marchitto, T. M., Curry, W. B., and Oppo, D. W.: Zinc concentrations in
benthic foraminifera reflect seawater chemistry, Paleoceanography, 15,
299–306, https://doi.org/10.1029/1999PA000420, 2000.
Mars Brisbin, M., Conover, A. E., and Mitarai, S.: Influence of Regional
Oceanography and Hydrothermal Activity on Protist Diversity and Community
Structure in the Okinawa Trough, Microb. Ecol., 80, 746–761,
https://doi.org/10.1007/s00248-020-01583-w, 2020.
Martinez, F., Taylor, B., Baker, E. T., Resing, J. A., and Walker, S. L.:
Opposing trends in crustal thickness and spreading rate along the back-arc
Eastern Lau Spreading Center: Implications for controls on ridge morphology,
faulting, and hydrothermal activity, Earth Planet. Sc. Lett., 245,
655–672, https://doi.org/10.1016/j.epsl.2006.03.049, 2006.
McIlvin, M. R. and Saito, M. A.: Online Nanoflow Two-Dimension Comprehensive
Active Modulation Reversed Phase–Reversed Phase Liquid Chromatography
High-Resolution Mass Spectrometry for Metaproteomics of Environmental and
Microbiome Samples, J. Proteome Res., 20, 4589–4597, https://doi.org/10.1021/acs.jproteome.1c00588,
2021.
McMurdie, P. J. and Holmes, S.: Phyloseq: An R Package for Reproducible
Interactive Analysis and Graphics of Microbiome Census Data, PLoS One, 8, e61217,
https://doi.org/10.1371/journal.pone.0061217, 2013.
Merino, N., Aronson, H. S., Bojanova, D. P., Feyhl-Buska, J., Wong, M. L.,
Zhang, S., and Giovannelli, D.: Living at the extremes: Extremophiles and the
limits of life in a planetary context, Front. Microbiol., 10, 780,
https://doi.org/10.3389/fmicb.2019.00780, 2019.
Middag, R., van Heuven, S. M. A. C., Bruland, K. W., and de Baar, H. J. W.:
The relationship between cadmium and phosphate in the Atlantic Ocean
unravelled, Earth Planet. Sc. Lett., 492, 79–88,
https://doi.org/10.1016/j.epsl.2018.03.046, 2018.
Middag, R., de Baar, H. J. W., and Bruland, K. W.: The Relationships Between
Dissolved Zinc and Major Nutrients Phosphate and Silicate Along the
GEOTRACES GA02 Transect in the West Atlantic Ocean, Global Biogeochem.
Cy., 33, 63–84, https://doi.org/10.1029/2018GB006034, 2019.
Milne, A., Landing, W., Bizimis, M., and Morton, P.: Determination of Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb in seawater using high resolution magnetic sector inductively coupled mass spectrometry (HR-ICP-MS), Anal. Chim. Acta, 665, 200–207, 2010.
Mino, S., Maikita, H., Toki, T., Miyazaki, J., Kato, S., Watanabe, H.,
Imachi, H., Watsuji, T., Nunoura, T., Kojima, S., Sawabe, T., Takai, K., and
Nakagawa, S.: Biogeography of Persephonella in deep-sea hydrothermal vents
of the Western Pacific, Front. Microbiol., 4, 107,
https://doi.org/10.3389/fmicb.2013.00107, 2013.
Mino, S., Nakagawa, S., Makita, H., Toki, T., Miyazaki, J., Sievert, S. M.,
Polz, M. F., Inagaki, F., Godfroy, A., Kato, S., Watanabe, H., Nunoura, T.,
Nakamura, K., Imachi, H., Watsuji, T., Kojima, S., Takai, K., and Sawabe, T.:
Endemicity of the cosmopolitan mesophilic chemolithoautotropH Sulfurimonas
at deep-sea hydrothermal vents, ISME J., 11, 909–919,
https://doi.org/10.1038/ismej.2016.178, 2017.
Moffett, J. W. and Ho, J.: Oxidation of cobalt and manganese in seawater via
a common microbially catalyzed pathway, Geochim. Cosmochim. Ac., 60,
3415–3424, https://doi.org/10.1016/0016-7037(96)00176-7, 1996.
Moore, C. M., Mills, M. M., Arrigo, K. R., Berman-Frank, I., Bopp, L., Boyd,
P. W., Galbraith, E. D., Geider, R. J., Guieu, C., Jaccard, S. L., Jickells,
T. D., La Roche, J., Lenton, T. M., Mahowald, N. M., Marañón, E.,
Marinov, I., Moore, J. K., Nakatsuka, T., Oschlies, A., Saito, M. A.,
Thingstad, T. F., Tsuda, A., and Ulloa, O.: Processes and patterns of oceanic
nutrient limitation, Nat. Geosci., 6, 701–710, https://doi.org/10.1038/ngeo1765,
2013.
Moore, J. K., Doney, S. C., Glover, D. M., and Fung, I. Y.: Iron cycling and
nutrient-limitation patterns in surface waters of the World Ocean, Deep-Sea
Res. Pt. II, 49, 463–507, 2001.
Munson, K. M., Lamborg, C. H., Swarr, G. J., and Saito, M. A.: Mercury
species concentrations and fluxes in the Central Tropical Pacific Ocean,
Global Biogeochem. Cy., 29, 656–676, https://doi.org/10.1002/2015GB005120, 2015.
Murdock, S. A. and Juniper, S. K.: Hydrothermal vent protistan distribution
along the Mariana arc suggests vent endemics may be rare and novel, Environ.
Microbiol., 21, 3796–3815, https://doi.org/10.1111/1462-2920.14729, 2019.
Muthusamy, S., Baltar, F., González, J. M., and Pinhassi, J.: Dynamics of
metabolic activities and gene expression in the Roseobacter clade bacterium
Phaeobacter sp. strain MED193 during growth with thiosulfate, Appl. Environ.
Microbiol., 80, 6933–6942, https://doi.org/10.1128/AEM.02038-14, 2014.
Ndung'u, K., Franks, R. P., Bruland, K. W., and Flegal, A. R.: Organic complexation and total dissolved trace metal analysis in estuarine waters: Comparison of solvent-extraction graphite furnace atomic absorption spectrometric and chelating resin flow injection inductively coupled plasma-mass spectrometric analysis, Anal. Chim. Acta, 481, 127–138, 2003.
Noinaj, N., Guillier, M., Barnard, T. J., and Buchanan, S. K.: TonB-Dependent
Transporters: Regulation, Structure, and Function, Annu. Rev. Microbiol.,
64, 43–60, https://doi.org/10.1146/annurev.micro.112408.134247, 2010.
Olsen, B. R., Troedsson, C., Hadziavdic, K., Pedersen, R.-B., and Rapp, H.
T.: The influence of vent systems on pelagic eukaryotic micro-organism
composition in the Nordic Seas, Polar Biol., 38, 547–558,
https://doi.org/10.1007/s00300-014-1621-8, 2015.
Orellana, L. H., Hatt, J. K., Iyer, R., Chourey, K., Hettich, R. L., Spain,
J. C., Yang, W. H., Chee-Sanford, J. C., Sanford, R. A., Löffler, F. E., and Konstantinidis, K. T.: Comparing DNA, RNA and protein levels for
measuring microbial dynamics in soil microcosms amended with nitrogen
fertilizer, Sci. Rep., 9, 17630, https://doi.org/10.1038/s41598-019-53679-0, 2019.
Pachiadaki, M. G., Sintes, E., Bergauer, K., Brown, J. M., Record, N. R.,
Swan, B. K., Mathyer, M. E., Hallam, S. J., Lopez-Garcia, P., Takaki, Y.,
Nunoura, T., Woyke, T., Herndl, G. J., and Stepanauskas, R.: Major role of
nitrite-oxidizing bacteria in dark ocean carbon fixation, Science,
358, 1046–1051, https://doi.org/10.1126/science.aan8260, 2017.
Podell, S. and Gaasterland, T.: DarkHorse: A method for genome-wide
prediction of horizontal gene transfer, Genome Biol., 8, R16,
https://doi.org/10.1186/gb-2007-8-2-r16, 2007.
Posacka, A. M., Semeniuk, D. M., Whitby, H., van den Berg, C. M. G., Cullen,
J. T., Orians, K., and Maldonado, M. T.: Dissolved copper (dCu)
biogeochemical cycling in the subarctic Northeast Pacific and a call for
improving methodologies, Mar. Chem., 196, 47–61,
https://doi.org/10.1016/j.marchem.2017.05.007, 2017.
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P.,
Peplies, J., and Glöckner, F. O.: The SILVA ribosomal RNA gene database
project: Improved data processing and web-based tools, Nucleic Acids Res.,
41, D590–D596, https://doi.org/10.1093/nar/gks1219, 2013.
Quéroué, F., Townsend, A., Van Der Merwe, P., Lannuzel, D., Sarthou,
G., Bucciarelli, E., and Bowie, A.: Advances in the offline trace metal
extraction of Mn, Co, Ni, Cu, Cd, and Pb from open ocean seawater samples
with determination by sector field ICP-MS analysis, Anal. Methods, 6,
2837–2847, https://doi.org/10.1039/c3ay41312h, 2014.
Rapp, I., Schlosser, C., Rusiecka, D., Gledhill, M., and Achterberg, E. P.:
Automated preconcentration of Fe, Zn, Cu, Ni, Cd, Pb, Co, and Mn in seawater
with analysis using high-resolution sector field inductively-coupled plasma
mass spectrometry, Anal. Chim. Acta, 976, 1–13,
https://doi.org/10.1016/j.aca.2017.05.008, 2017.
Reed, D. C., Breier, J. A., Jiang, H., Anantharaman, K., Klausmeier, C. A.,
Toner, B. M., Hancock, C., Speer, K., Thurnherr, A. M., and Dick, G. J.:
Predicting the response of the deep-ocean microbiome to geochemical
perturbations by hydrothermal vents, ISME J., 9, 1857–1869,
https://doi.org/10.1038/ismej.2015.4, 2015.
Reid, J. L.: On the total geostrophic circulation of the Pacific Ocean: Flow
patterns, tracers, and transports, Prog. Oceanogr., 39, 263–352,
https://doi.org/10.1016/S0079-6611(97)00012-8, 1997.
Resing, J. A., Sedwick, P. N., German, C. R., Jenkins, W. J., Moffett, J.
W., Sohst, B. M., and Tagliabue, A.: Basin-scale transport of hydrothermal
dissolved metals across the South Pacific Ocean, Nature, 523,
200–203, https://doi.org/10.1038/nature14577, 2015.
Reveillaud, J., Reddington, E., McDermott, J., Algar, C., Meyer, J. L.,
Sylva, S., Seewald, J., German, C. R., and Huber, J. A.: Subseafloor
microbial communities in hydrogen-rich vent fluids from hydrothermal systems
along the Mid-Cayman Rise, Environ. Microbiol., 18, 1970–1987,
https://doi.org/10.1111/1462-2920.13173, 2016.
Rodionov, D. A., Hebbeln, P., Gelfand, M. S., and Eitinger, T.: Comparative
and functional genomic analysis of prokaryotic nickel and cobalt uptake
transporters: Evidence for a novel group of ATP-binding cassette
transporters, J. Bacteriol., 188, 317–327,
https://doi.org/10.1128/JB.188.1.317-327.2006, 2006.
Roshan, S., Wu, J., and Jenkins, W. J.: Long-range transport of hydrothermal
dissolved Zn in the tropical South Pacific, Mar. Chem., 183, 25–32,
https://doi.org/10.1016/j.marchem.2016.05.005, 2016.
Roshan, S., Wu, J., and DeVries, T.: Controls on the Cadmium-Phosphate
Relationship in the Tropical South Pacific, Global Biogeochem. Cy.,
31, 1516–1527, https://doi.org/10.1002/2016GB005556, 2017.
Rudnicki, M. D. and German, C. R.: Temporal variability of the hydrothermal
plume above the Kairei vent field, 25∘ S, Central Indian Ridge,
Geochem. Geophy. Geosy., 3, 2, https://doi.org/10.1029/2001gc000240, 2002.
Saito, M. A. and Moffett, J. W.: Complexation of cobalt by natural organic ligands in the Sargasso sea as determined by a new high-sensitivity electrochemical cobalt speciation method suitable for open ocean work, Mar. Chem., 75, 49–68, 2001.
Saito, M. and Lamborg, C.: Connecting Trace Elements and Metalloenzymes Across Marine Biogeochemical Gradients, BCO-DMO [data set], available at: https://www.bco-dmo.org/project/2236, last access: 25 September 2021.
Saito, M. A., Goepfert, T. J., Noble, A. E., Bertrand, E. M., Sedwick, P. N., and Ditullio, G. R.: A seasonal study of dissolved cobalt in the Ross Sea,
Antarctica: Micronutrient behavior, absence of scavenging, and relationships
with Zn, Cd, and P, Biogeosciences, 7, 4059–4082,
https://doi.org/10.5194/bg-7-4059-2010, 2010.
Saito, M. A., Noble, A. E., Tagliabue, A., Goepfert, T. J., Lamborg, C. H., and Jenkins, W. J.: Slow-spreading submarine ridges in the South Atlantic as
a significant oceanic iron source, Nat. Geosci., 6, 775–779,
https://doi.org/10.1038/ngeo1893, 2013.
Saito, M. A., McIlvin, M. R., Moran, D. M., Goepfert, T. J., DiTullio, G.
R., Post, A. F., and Lamborg, C. H.: Multiple nutrient stresses at
intersecting Pacific Ocean biomes detected by protein biomarkers, Science, 345, 1173–1177, https://doi.org/10.1126/science.1256450, 2014.
Saito, M. A., Dorsk, A., Anton, F., Mcilvin, M. R., Rapp, M. S., Ditullio,
G. R., and Moran, D. M.: Needles in the blue sea: Sub-species specificity in
targeted protein biomarker analyses within the vast oceanic microbial
metaproteome, Proteomics, 15, 3521–3531, https://doi.org/10.1002/pmic.201400630, 2015.
Saito, M. A., Noble, A. E., Hawco, N., Twining, B. S., Ohnemus, D. C., John,
S. G., Lam, P., Conway, T. M., Johnson, R., Moran, D., and McIlvin, M.: The
acceleration of dissolved cobalt's ecological stoichiometry due to
biological uptake, remineralization, and scavenging in the Atlantic Ocean,
Biogeosciences, 14, 4637–4662, https://doi.org/10.5194/bg-14-4637-2017, 2017.
Saito, M. A., McIlvin, M. R., Moran, D. M., Santoro, A. E., Dupont, C. L.,
Rafter, P. A., Saunders, J. K., Kaul, D., Lamborg, C. H., Westley, M.,
Valois, F., and Waterbury, J. B.: Abundant nitrite-oxidizing metalloenzymes
in the mesopelagic zone of the tropical Pacific Ocean, Nat. Geosci., 13,
355–362, https://doi.org/10.1038/s41561-020-0565-6, 2020.
Santoro, A. E., Saito, M. A., Goepfert, T. J., Lamborg, C. H., Dupont, C. L., and DiTullio, G. R.: Thaumarchaeal ecotype distributions across the
equatorial Pacific Ocean and their potential roles in nitrification and
sinking flux attenuation, Limnol. Oceanogr., 62, 1984–2003,
https://doi.org/10.1002/lno.10547, 2017.
Sheik, C. S., Anantharaman, K., Breier, J. A., Sylvan, J. B., Edwards, K. J., and Dick, G. J.: Spatially resolved sampling reveals dynamic microbial
communities in rising hydrothermal plumes across a back-arc basin, ISME J.,
9, 1434–1445, https://doi.org/10.1038/ismej.2014.228, 2015.
Sieber, M., Conway, T. M., de Souza, G. F., Obata, H., Takano, S., Sohrin,
Y., and Vance, D.: Physical and biogeochemical controls on the distribution
of dissolved cadmium and its isotopes in the Southwest Pacific Ocean, Chem.
Geol., 511, 494–509, https://doi.org/10.1016/j.chemgeo.2018.07.021, 2019.
Sohrin, Y., Urushihara, S., Nakatsuka, S., Kono, T., Higo, E., Minami, T.,
Norisuye, K., and Umetani, S.: Multielemental determination of GEOTRACES key
trace metals in seawater by ICPMS after preconcentration using an
ethylenediaminetriacetic acid chelating resin, Anal. Chem., 80,
6267–6273, https://doi.org/10.1021/ac800500f, 2008.
Speer, K. and Thurnherr, A. M.: The lau basin float experiment (LAUB-FLEX),
Oceanography, 25, 284–285, https://doi.org/10.5670/oceanog.2012.27, 2012.
Staudigel, H., Hart, S. R., Koppers, A. A. P., Constable, C., Workman, R.,
Kurz, M., and Baker, E. T.: Hydrothermal venting at Vailulu'u Seamount: The
smoking end of the Samoan chain, Geochem., Geophy. Geosy., 5, Q02003,
https://doi.org/10.1029/2003GC000626, 2004.
Staudigel, H., Hart, S. R., Pile, A., Bailey, B. E., Baker, E. T., Brooke,
S., Connelly, D. P., Haucke, L., German, C. R., Hudson, I., Jones, D.,
Koppers, A. A. P., Konter, J., Lee, R., Pietsch, T. W., Tebo, B. M.,
Templeton, A. S., Zierenberg, R., and Young, C. M.: Vailulu'u seamount,
Samoa: Life and death on an active submarine volcano, P. Natl. Acad. Sci.
USA, 103, 6448–6453, https://doi.org/10.1073/pnas.0600830103, 2006.
Sunda, W. G.: Feedback interactions between trace metal nutrients and phytoplankton in the ocean, Front. Microbiol., 3, 204, https://doi.org/10.3389/fmicb.2012.00204, 2012.
Sunda, W. G. and Huntsman, S. A.: Effect of Zn, Mn, and Fe on Cd
accumulation in phytoplankton: Implications for oceanic Cd cycling, Limnol.
Oceanogr., 45, 1501–1516, https://doi.org/10.4319/lo.2000.45.7.1501, 2000.
Sunda, W. G., Huntsman, S. A., and Harvey, G. R.: Photoreduction of manganese
oxides in seawater and its geochemical and biological implications, Nature,
301, 234–236, https://doi.org/10.1038/301234a0, 1983.
Sylvan, J. B., Toner, B. M., and Edwards, K. J.: Life and death of deep-sea
vents: Bacterial diversity and ecosystem succession on inactive hydrothermal
sulfides, mBio, 3, 1–10, https://doi.org/10.1128/mBio.00279-11, 2012.
Tagliabue, A., Bopp, L., Dutay, J. C., Bowie, A. R., Chever, F.,
Jean-Baptiste, P., Bucciarelli, E., Lannuzel, D., Remenyi, T., Sarthou, G.,
Aumont, O., Gehlen, M., and Jeandel, C.: Hydrothermal contribution to the
oceanic dissolved iron inventory, Nat. Geosci., 3, 252–256,
https://doi.org/10.1038/ngeo818, 2010.
Takai, K., Nunoura, T., Ishibashi, J. I., Lupton, J., Suzuki, R., Hamasaki,
H., Ueno, Y., Kawagucci, S., Gamo, T., Suzuki, Y., Hirayama, H., and
Horikoshi, K.: Variability in the microbial communities and hydrothermal
fluid chemistry at the newly discovered Mariner hydrothermal field, southern
Lau Basin, J. Geophys. Res.-Biogeo., 113, G02031,
https://doi.org/10.1029/2007JG000636, 2008.
Takano, S., Tanimizu, M., Hirata, T., Shin, K. C., Fukami, Y., Suzuki, K., and Sohrin, Y.: A simple and rapid method for isotopic analysis of nickel,
copper, and zinc in seawater using chelating extraction and anion exchange,
Anal. Chim. Acta, 967, 1–11, https://doi.org/10.1016/j.aca.2017.03.010, 2017.
Tebo, B. M., Johnson, H. A., McCarthy, J. K., and Templeton, A. S.:
Geomicrobiology of manganese(II) oxidation, Trends Microbiol., 13,
421–428, https://doi.org/10.1016/j.tim.2005.07.009, 2005.
Templeton, A. S., Staudigel, H., and Tebo, B. M.: Diverse Mn(II)-oxidizing
bacteria isolated from submarine basalts at Loihi seamount, Geomicrobiol.
J., 22, 127–139, https://doi.org/10.1080/01490450590945951, 2005.
Tivey, M. K.: Generation of seafloor hydrothermal vent fluids and associated
mineral deposits, Oceanography, 20, 50–65,
https://doi.org/10.5670/oceanog.2007.80, 2007.
Toner, B. M., Fakra, S. C., Manganini, S. J., Santelli, C. M., Marcus, M.
A., Moffett, J. W., Rouxel, O., German, C. R., and Edwards, K. J.:
Preservation of iron(II) by carbon-rich matrices in a hydrothermal plume,
Nat. Geosci., 2, 197–201, https://doi.org/10.1038/ngeo433, 2009.
Toner, B. M., German, C. R., Dick, G. J., and Breier, J. A.: Deciphering the
Complex Chemistry of Deep-Ocean Particles Using Complementary Synchrotron
X-ray Microscope and Microprobe Instruments, Acc. Chem. Res., 49,
128–137, https://doi.org/10.1021/acs.accounts.5b00282, 2016.
van Hulten, M., Middag, R., Dutay, J.-C., de Baar, H., Roy-Barman, M., Gehlen, M., Tagliabue, A., and Sterl, A.: Manganese in the west Atlantic Ocean in the context of the first global ocean circulation model of manganese, Biogeosciences, 14, 1123–1152, https://doi.org/10.5194/bg-14-1123-2017, 2017.
VerBerkmoes, N. C., Denef, V. J., Hettich, R. L., and Banfield, J. F.:
Systems Biology: Functional analysis of natural microbial consortia using
community proteomics, Nat. Rev. Microbiol., 7, 196–205,
https://doi.org/10.1038/nrmicro2080, 2009.
Vizcaíno, J. A., Côté, R. G., Csordas, A., Dianes, J. A., Fabregat, A., Foster, J. M., Griss, J., Alpi, E., Birim, M., Contell, J., O'Kelly, G., Schoenegger, A., Ovelleiro, D., Pérez-Riverol, Y., Reisinger, F., Ríos, D., Wang, R., and Hermjakob, H.: The Proteomics Identifications (PRIDE) database and associated tools: Status in 2013, Nucleic Acids Res., 41, D1063–D1069, https://doi.org/10.1093/nar/gks1262, 2013.
Ward, D. E., Shockley, K. R., Chang, L. S., Levy, R. D., Michel, J. K.,
Conners, S. B., and Kelly, R. M.: Proteolysis in hyperthermophilic
microorganisms, Archaea, 1, 63–74, https://doi.org/10.1155/2002/503191, 2002.
Wei, D. and Zhang, X.: Proteomic Analysis of Interactions between a Deep-Sea
Thermophilic Bacteriophage and Its Host at High Temperature, J. Virol.,
84, 2365–2373, https://doi.org/10.1128/jvi.02182-09, 2010.
White, S. N., Chave, A. D., Reynolds, G. T., and Van Dover, C. L.: Ambient
light emission from hydrothermal vents on the Mid-Atlantic Ridge, Geophys.
Res. Lett., 29, 34-1–34-4, https://doi.org/10.1029/2002GL014977, 2002.
Wilson, S. T., Hawco, N. J., Armbrust, E. V., Barone, B., Björkman, K.
M., Boysen, A. K., Burgos, M., Burrell, T. J., Casey, J. R., DeLong, E. F.,
Dugenne, M., Dutkiewicz, S., Dyhrman, S. T., Ferrón, S., Follows, M. J.,
Foreman, R. K., Funkey, C. P., Harke, M. J., Henke, B. A., Hill, C. N.,
Hynes, A. M., Ingalls, A. E., Jahn, O., Kelly, R. L., Knapp, A. N.,
Letelier, R. M., Ribalet, F., Shimabukuro, E. M., Tabata, R. K. S.,
Turk-Kubo, K. A., White, A. E., Zehr, J. P., John, S., and Karl, D. M.:
Kīlauea lava fuels phytoplankton bloom in the North Pacific Ocean,
Science, 365, 1040–1044, https://doi.org/10.1126/science.aax4767, 2019.
Wu, J., Wells, M. L., and Rember, R.: Dissolved iron anomaly in the deep
tropical-subtropical Pacific: Evidence for long-range transport of
hydrothermal iron, Geochim. Cosmochim. Ac., 75, 460–468,
https://doi.org/10.1016/j.gca.2010.10.024, 2011.
Wuttig, K., Townsend, A. T., van der Merwe, P., Gault-Ringold, M., Holmes,
T., Schallenberg, C., Latour, P., Tonnard, M., Rijkenberg, M. J. A.,
Lannuzel, D., and Bowie, A. R.: Critical evaluation of a seaFAST system for
the analysis of trace metals in marine samples, Talanta, 197, 653–668,
https://doi.org/10.1016/j.talanta.2019.01.047, 2019.
Xie, R. C., Galer, S. J. G., Abouchami, W., Rijkenberg, M. J. A., De Jong,
J., De Baar, H. J. W., and Andreae, M. O.: The cadmium-phosphate relationship
in the western South Atlantic – The importance of mode and intermediate
waters on the global systematics, Mar. Chem., 177, 110–123,
https://doi.org/10.1016/j.marchem.2015.06.011, 2015.
Yu, H. and Leadbetter, J. R.: Bacterial chemolithoautotrophy via manganese
oxidation, Nature, 583, 453–458, https://doi.org/10.1038/s41586-020-2468-5, 2020.
Short summary
A previous study documented an intense hydrothermal plume in the South Pacific Ocean; however, the iron release associated with this plume and the impact on microbiology were unclear. We describe metal concentrations associated with multiple hydrothermal plumes in this region and protein signatures of plume-influenced microbes. Our findings demonstrate that resources released from these systems can be transported away from their source and may alter the physiology of surrounding microbes.
A previous study documented an intense hydrothermal plume in the South Pacific Ocean; however,...
Altmetrics
Final-revised paper
Preprint