Articles | Volume 18, issue 23
https://doi.org/10.5194/bg-18-6329-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-6329-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Nitrogen restricts future sub-arctic treeline advance in an individual-based dynamic vegetation model
Adrian Gustafson
CORRESPONDING AUTHOR
Department of Physical Geography and Ecosystem Science, Lund
University, Sölvegatan 12, 223 62 Lund, Sweden
Centre for Environmental and Climate Science, Lund University,
Sölvegatan 37, 223 62 Lund, Sweden
Paul A. Miller
Department of Physical Geography and Ecosystem Science, Lund
University, Sölvegatan 12, 223 62 Lund, Sweden
Centre for Environmental and Climate Science, Lund University,
Sölvegatan 37, 223 62 Lund, Sweden
Robert G. Björk
Department of Earth Sciences, University of Gothenburg, P.O. Box 460,
405 30 Gothenburg, Sweden
Gothenburg Global Biodiversity Centre, P.O. Box 461, 405 30
Gothenburg, Sweden
Stefan Olin
Department of Physical Geography and Ecosystem Science, Lund
University, Sölvegatan 12, 223 62 Lund, Sweden
Benjamin Smith
Department of Physical Geography and Ecosystem Science, Lund
University, Sölvegatan 12, 223 62 Lund, Sweden
Hawkesbury Institute for the Environment, Western Sydney University,
Penrith, NSW 2751, Australia
Related authors
No articles found.
Jianyong Ma, Almut Arneth, Benjamin Smith, Peter Anthoni, Xu-Ri, Peter Eliasson, David Wårlind, Martin Wittenbrink, and Stefan Olin
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-223, https://doi.org/10.5194/gmd-2024-223, 2024
Preprint under review for GMD
Short summary
Short summary
Nitrous oxide (N2O) is a powerful greenhouse gas mainly released from natural and agricultural soils. This study examines how global soil N2O emissions have changed from 1961 to 2020 and identifies key factors driving these changes using an ecological model. The findings highlight croplands as the largest source, with factors like fertilizer use and climate change enhancing emissions. Rising CO2 levels, however, can partially mitigate N2O emissions through increased plant nitrogen uptake.
Jalisha Theanutti Kallingal, Marko Scholze, Paul Anthony Miller, Johan Lindström, Janne Rinne, Mika Aurela, Patrik Vestin, and Per Weslien
EGUsphere, https://doi.org/10.5194/egusphere-2024-3305, https://doi.org/10.5194/egusphere-2024-3305, 2024
Short summary
Short summary
We explored the possibilities of a Bayesian-based data assimilation algorithm to improve the wetland CH4 flux estimates by a dynamic vegetation model. By assimilating CH4 observations from 14 wetland sites we calibrated model parameters and estimated large-scale annual emissions from northern wetlands. Our findings indicate that this approach leads to more reliable estimates of CH4 dynamics, which will improve our understanding of the climate change feedback from wetland CH4 emissions.
Amali A. Amali, Clemens Schwingshackl, Akihiko Ito, Alina Barbu, Christine Delire, Daniele Peano, David M. Lawrence, David Wårlind, Eddy Robertson, Edouard L. Davin, Elena Shevliakova, Ian N. Harman, Nicolas Vuichard, Paul A. Miller, Peter J. Lawrence, Tilo Ziehn, Tomohiro Hajima, Victor Brovkin, Yanwu Zhang, Vivek K. Arora, and Julia Pongratz
EGUsphere, https://doi.org/10.5194/egusphere-2024-2460, https://doi.org/10.5194/egusphere-2024-2460, 2024
Short summary
Short summary
Our study explored the impact of anthropogenic land-use change (LUC) on climate dynamics, focusing on biogeophysical (BGP) and biogeochemical (BGC) effects using data from the CMIP6-LUMIP project. We found that LUC-induced carbon emissions contribute to a BGC warming of 0.20 °C, with BGC effects dominating globally over BGP effects, which show regional variability. Our findings highlight discrepancies in model simulations and emphasise the need for improved representations of LUC processes.
Zhen Zhang, Benjamin Poulter, Joe R. Melton, William J. Riley, George H. Allen, David J. Beerling, Philippe Bousquet, Josep G. Canadell, Etienne Fluet-Chouinard, Philippe Ciais, Nicola Gedney, Peter O. Hopcroft, Akihiko Ito, Robert B. Jackson, Atul K. Jain, Katherine Jensen, Fortunat Joos, Thomas Kleinen, Sara Knox, Tingting Li, Xin Li, Xiangyu Liu, Kyle McDonald, Gavin McNicol, Paul A. Miller, Jurek Müller, Prabir K. Patra, Changhui Peng, Shushi Peng, Zhangcai Qin, Ryan M. Riggs, Marielle Saunois, Qing Sun, Hanqin Tian, Xiaoming Xu, Yuanzhi Yao, Xi Yi, Wenxin Zhang, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1584, https://doi.org/10.5194/egusphere-2024-1584, 2024
Short summary
Short summary
This study assesses global methane emissions from wetlands between 2000 and 2020 using multiple models. We found that wetland emissions increased by 6–7 Tg CH4 per year in the 2010s compared to the 2000s. Rising temperatures primarily drove this increase, while changes in precipitation and CO2 levels also played roles. Our findings highlight the importance of wetlands in the global methane budget and the need for continuous monitoring to understand their impact on climate change.
Chansopheaktra Sovann, Torbern Tagesson, Patrik Vestin, Sakada Sakhoeun, Soben Kim, Sothea Kok, and Stefan Olin
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-98, https://doi.org/10.5194/essd-2024-98, 2024
Revised manuscript not accepted
Short summary
Short summary
We offer pairwise observed datasets that compare the characteristics of tropical ecosystems, specifically pristine forests, regrowth forests, and cashew plantations. Our findings uncover some key differences in their characteristics, emphasizing the influence of human activities on these ecosystems. By sharing our unique datasets, we hope to improve the knowledge of tropical forest ecosystems in Southeast Asia, advancing tropical research, and tackling global environmental challenges.
Jalisha T. Kallingal, Johan Lindström, Paul A. Miller, Janne Rinne, Maarit Raivonen, and Marko Scholze
Geosci. Model Dev., 17, 2299–2324, https://doi.org/10.5194/gmd-17-2299-2024, https://doi.org/10.5194/gmd-17-2299-2024, 2024
Short summary
Short summary
By unlocking the mysteries of CH4 emissions from wetlands, our work improved the accuracy of the LPJ-GUESS vegetation model using Bayesian statistics. Via assimilation of long-term real data from a wetland, we significantly enhanced CH4 emission predictions. This advancement helps us better understand wetland contributions to atmospheric CH4, which are crucial for addressing climate change. Our method offers a promising tool for refining global climate models and guiding conservation efforts
Fredrik Lagergren, Robert G. Björk, Camilla Andersson, Danijel Belušić, Mats P. Björkman, Erik Kjellström, Petter Lind, David Lindstedt, Tinja Olenius, Håkan Pleijel, Gunhild Rosqvist, and Paul A. Miller
Biogeosciences, 21, 1093–1116, https://doi.org/10.5194/bg-21-1093-2024, https://doi.org/10.5194/bg-21-1093-2024, 2024
Short summary
Short summary
The Fennoscandian boreal and mountain regions harbour a wide range of ecosystems sensitive to climate change. A new, highly resolved high-emission climate scenario enabled modelling of the vegetation development in this region at high resolution for the 21st century. The results show dramatic south to north and low- to high-altitude shifts of vegetation zones, especially for the open tundra environments, which will have large implications for nature conservation, reindeer husbandry and forestry.
Jalisha Theanutti Kallingal, Marko Scholze, Paul Anthony Miller, Johan Lindström, Janne Rinne, Mika Aurela, Patrik Vestin, and Per Weslien
EGUsphere, https://doi.org/10.5194/egusphere-2024-373, https://doi.org/10.5194/egusphere-2024-373, 2024
Preprint archived
Short summary
Short summary
Our study employs an Adaptive MCMC algorithm (GRaB-AM) to constrain process parameters in the wetlands emission module of the LPJ-GUESS model, using CH4 EC flux observations from 14 diverse wetlands. We aim to derive a single set of parameters capable of representing the diversity of northern wetlands. By reducing uncertainties in model parameters and improving simulation accuracy, our research contributes to more reliable projections of future wetland CH4 emissions and their climate impact.
Tuula Aalto, Aki Tsuruta, Jarmo Mäkelä, Jurek Mueller, Maria Tenkanen, Eleanor Burke, Sarah Chadburn, Yao Gao, Vilma Mannisenaho, Thomas Kleinen, Hanna Lee, Antti Leppänen, Tiina Markkanen, Stefano Materia, Paul Miller, Daniele Peano, Olli Peltola, Benjamin Poulter, Maarit Raivonen, Marielle Saunois, David Wårlind, and Sönke Zaehle
EGUsphere, https://doi.org/10.5194/egusphere-2023-2873, https://doi.org/10.5194/egusphere-2023-2873, 2024
Short summary
Short summary
Wetland methane responses to temperature and precipitation were studied in a boreal wetland-rich region in Northern Europe using ecosystem models, atmospheric inversions and up-scaled flux observations. The ecosystem models differed in their responses to temperature and precipitation and in their seasonality. However, multi-model means, inversions and up-scaled fluxes had similar seasonality, and they suggested co-limitation by temperature and precipitation.
Cole G. Brachmann, Tage Vowles, Riikka Rinnan, Mats P. Björkman, Anna Ekberg, and Robert G. Björk
Biogeosciences, 20, 4069–4086, https://doi.org/10.5194/bg-20-4069-2023, https://doi.org/10.5194/bg-20-4069-2023, 2023
Short summary
Short summary
Herbivores change plant communities through grazing, altering the amount of CO2 and plant-specific chemicals (termed VOCs) emitted. We tested this effect by excluding herbivores and studying the CO2 and VOC emissions. Herbivores reduced CO2 emissions from a meadow community and altered VOC composition; however, community type had the strongest effect on the amount of CO2 and VOCs released. Herbivores can mediate greenhouse gas emissions, but the effect is marginal and community dependent.
Jennifer A. Holm, David M. Medvigy, Benjamin Smith, Jeffrey S. Dukes, Claus Beier, Mikhail Mishurov, Xiangtao Xu, Jeremy W. Lichstein, Craig D. Allen, Klaus S. Larsen, Yiqi Luo, Cari Ficken, William T. Pockman, William R. L. Anderegg, and Anja Rammig
Biogeosciences, 20, 2117–2142, https://doi.org/10.5194/bg-20-2117-2023, https://doi.org/10.5194/bg-20-2117-2023, 2023
Short summary
Short summary
Unprecedented climate extremes (UCEs) are expected to have dramatic impacts on ecosystems. We present a road map of how dynamic vegetation models can explore extreme drought and climate change and assess ecological processes to measure and reduce model uncertainties. The models predict strong nonlinear responses to UCEs. Due to different model representations, the models differ in magnitude and trajectory of forest loss. Therefore, we explore specific plant responses that reflect knowledge gaps.
Lina Teckentrup, Martin G. De Kauwe, Gab Abramowitz, Andrew J. Pitman, Anna M. Ukkola, Sanaa Hobeichi, Bastien François, and Benjamin Smith
Earth Syst. Dynam., 14, 549–576, https://doi.org/10.5194/esd-14-549-2023, https://doi.org/10.5194/esd-14-549-2023, 2023
Short summary
Short summary
Studies analyzing the impact of the future climate on ecosystems employ climate projections simulated by global circulation models. These climate projections display biases that translate into significant uncertainty in projections of the future carbon cycle. Here, we test different methods to constrain the uncertainty in simulations of the carbon cycle over Australia. We find that all methods reduce the bias in the steady-state carbon variables but that temporal properties do not improve.
Qi Guan, Jing Tang, Lian Feng, Stefan Olin, and Guy Schurgers
Biogeosciences, 20, 1635–1648, https://doi.org/10.5194/bg-20-1635-2023, https://doi.org/10.5194/bg-20-1635-2023, 2023
Short summary
Short summary
Understanding terrestrial sources of nitrogen is vital to examine lake eutrophication changes. Combining process-based ecosystem modeling and satellite observations, we found that land-leached nitrogen in the Yangtze Plain significantly increased from 1979 to 2018, and terrestrial nutrient sources were positively correlated with eutrophication trends observed in most lakes, demonstrating the necessity of sustainable nitrogen management to control eutrophication.
H. E. Markus Meier, Marcus Reckermann, Joakim Langner, Ben Smith, and Ira Didenkulova
Earth Syst. Dynam., 14, 519–531, https://doi.org/10.5194/esd-14-519-2023, https://doi.org/10.5194/esd-14-519-2023, 2023
Short summary
Short summary
The Baltic Earth Assessment Reports summarise the current state of knowledge on Earth system science in the Baltic Sea region. The 10 review articles focus on the regional water, biogeochemical and carbon cycles; extremes and natural hazards; sea-level dynamics and coastal erosion; marine ecosystems; coupled Earth system models; scenario simulations for the regional atmosphere and the Baltic Sea; and climate change and impacts of human use. Some highlights of the results are presented here.
David Martín Belda, Peter Anthoni, David Wårlind, Stefan Olin, Guy Schurgers, Jing Tang, Benjamin Smith, and Almut Arneth
Geosci. Model Dev., 15, 6709–6745, https://doi.org/10.5194/gmd-15-6709-2022, https://doi.org/10.5194/gmd-15-6709-2022, 2022
Short summary
Short summary
We present a number of augmentations to the ecosystem model LPJ-GUESS, which will allow us to use it in studies of the interactions between the land biosphere and the climate. The new module enables calculation of fluxes of energy and water into the atmosphere that are consistent with the modelled vegetation processes. The modelled fluxes are in fair agreement with observations across 21 sites from the FLUXNET network.
Johannes Oberpriller, Christine Herschlein, Peter Anthoni, Almut Arneth, Andreas Krause, Anja Rammig, Mats Lindeskog, Stefan Olin, and Florian Hartig
Geosci. Model Dev., 15, 6495–6519, https://doi.org/10.5194/gmd-15-6495-2022, https://doi.org/10.5194/gmd-15-6495-2022, 2022
Short summary
Short summary
Understanding uncertainties of projected ecosystem dynamics under environmental change is of immense value for research and climate change policy. Here, we analyzed these across European forests. We find that uncertainties are dominantly induced by parameters related to water, mortality, and climate, with an increasing importance of climate from north to south. These results highlight that climate not only contributes uncertainty but also modifies uncertainties in other ecosystem processes.
Jianyong Ma, Sam S. Rabin, Peter Anthoni, Anita D. Bayer, Sylvia S. Nyawira, Stefan Olin, Longlong Xia, and Almut Arneth
Biogeosciences, 19, 2145–2169, https://doi.org/10.5194/bg-19-2145-2022, https://doi.org/10.5194/bg-19-2145-2022, 2022
Short summary
Short summary
Improved agricultural management plays a vital role in protecting soils from degradation in eastern Africa. We simulated the impacts of seven management practices on soil carbon pools, nitrogen loss, and crop yield under different climate scenarios in this region. This study highlights the possibilities of conservation agriculture when targeting long-term environmental sustainability and food security in crop ecosystems, particularly for those with poor soil conditions in tropical climates.
Ralf Döscher, Mario Acosta, Andrea Alessandri, Peter Anthoni, Thomas Arsouze, Tommi Bergman, Raffaele Bernardello, Souhail Boussetta, Louis-Philippe Caron, Glenn Carver, Miguel Castrillo, Franco Catalano, Ivana Cvijanovic, Paolo Davini, Evelien Dekker, Francisco J. Doblas-Reyes, David Docquier, Pablo Echevarria, Uwe Fladrich, Ramon Fuentes-Franco, Matthias Gröger, Jost v. Hardenberg, Jenny Hieronymus, M. Pasha Karami, Jukka-Pekka Keskinen, Torben Koenigk, Risto Makkonen, François Massonnet, Martin Ménégoz, Paul A. Miller, Eduardo Moreno-Chamarro, Lars Nieradzik, Twan van Noije, Paul Nolan, Declan O'Donnell, Pirkka Ollinaho, Gijs van den Oord, Pablo Ortega, Oriol Tintó Prims, Arthur Ramos, Thomas Reerink, Clement Rousset, Yohan Ruprich-Robert, Philippe Le Sager, Torben Schmith, Roland Schrödner, Federico Serva, Valentina Sicardi, Marianne Sloth Madsen, Benjamin Smith, Tian Tian, Etienne Tourigny, Petteri Uotila, Martin Vancoppenolle, Shiyu Wang, David Wårlind, Ulrika Willén, Klaus Wyser, Shuting Yang, Xavier Yepes-Arbós, and Qiong Zhang
Geosci. Model Dev., 15, 2973–3020, https://doi.org/10.5194/gmd-15-2973-2022, https://doi.org/10.5194/gmd-15-2973-2022, 2022
Short summary
Short summary
The Earth system model EC-Earth3 is documented here. Key performance metrics show physical behavior and biases well within the frame known from recent models. With improved physical and dynamic features, new ESM components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond.
H. E. Markus Meier, Madline Kniebusch, Christian Dieterich, Matthias Gröger, Eduardo Zorita, Ragnar Elmgren, Kai Myrberg, Markus P. Ahola, Alena Bartosova, Erik Bonsdorff, Florian Börgel, Rene Capell, Ida Carlén, Thomas Carlund, Jacob Carstensen, Ole B. Christensen, Volker Dierschke, Claudia Frauen, Morten Frederiksen, Elie Gaget, Anders Galatius, Jari J. Haapala, Antti Halkka, Gustaf Hugelius, Birgit Hünicke, Jaak Jaagus, Mart Jüssi, Jukka Käyhkö, Nina Kirchner, Erik Kjellström, Karol Kulinski, Andreas Lehmann, Göran Lindström, Wilhelm May, Paul A. Miller, Volker Mohrholz, Bärbel Müller-Karulis, Diego Pavón-Jordán, Markus Quante, Marcus Reckermann, Anna Rutgersson, Oleg P. Savchuk, Martin Stendel, Laura Tuomi, Markku Viitasalo, Ralf Weisse, and Wenyan Zhang
Earth Syst. Dynam., 13, 457–593, https://doi.org/10.5194/esd-13-457-2022, https://doi.org/10.5194/esd-13-457-2022, 2022
Short summary
Short summary
Based on the Baltic Earth Assessment Reports of this thematic issue in Earth System Dynamics and recent peer-reviewed literature, current knowledge about the effects of global warming on past and future changes in the climate of the Baltic Sea region is summarised and assessed. The study is an update of the Second Assessment of Climate Change (BACC II) published in 2015 and focuses on the atmosphere, land, cryosphere, ocean, sediments, and the terrestrial and marine biosphere.
Jianyong Ma, Stefan Olin, Peter Anthoni, Sam S. Rabin, Anita D. Bayer, Sylvia S. Nyawira, and Almut Arneth
Geosci. Model Dev., 15, 815–839, https://doi.org/10.5194/gmd-15-815-2022, https://doi.org/10.5194/gmd-15-815-2022, 2022
Short summary
Short summary
The implementation of the biological N fixation process in LPJ-GUESS in this study provides an opportunity to quantify N fixation rates between legumes and to better estimate grain legume production on a global scale. It also helps to predict and detect the potential contribution of N-fixing plants as
green manureto reducing or removing the use of N fertilizer in global agricultural systems, considering different climate conditions, management practices, and land-use change scenarios.
Alexandra Pongracz, David Wårlind, Paul A. Miller, and Frans-Jan W. Parmentier
Biogeosciences, 18, 5767–5787, https://doi.org/10.5194/bg-18-5767-2021, https://doi.org/10.5194/bg-18-5767-2021, 2021
Short summary
Short summary
This study shows that the introduction of a multi-layer snow scheme in the LPJ-GUESS DGVM improved simulations of high-latitude soil temperature dynamics and permafrost extent compared to observations. In addition, these improvements led to shifts in carbon fluxes that contrasted within and outside of the permafrost region. Our results show that a realistic snow scheme is essential to accurately simulate snow–soil–vegetation relationships and carbon–climate feedbacks.
Mats Lindeskog, Benjamin Smith, Fredrik Lagergren, Ekaterina Sycheva, Andrej Ficko, Hans Pretzsch, and Anja Rammig
Geosci. Model Dev., 14, 6071–6112, https://doi.org/10.5194/gmd-14-6071-2021, https://doi.org/10.5194/gmd-14-6071-2021, 2021
Short summary
Short summary
Forests play an important role in the global carbon cycle and for carbon storage. In Europe, forests are intensively managed. To understand how management influences carbon storage in European forests, we implement detailed forest management into the dynamic vegetation model LPJ-GUESS. We test the model by comparing model output to typical forestry measures, such as growing stock and harvest data, for different countries in Europe.
Matthias Gröger, Christian Dieterich, Jari Haapala, Ha Thi Minh Ho-Hagemann, Stefan Hagemann, Jaromir Jakacki, Wilhelm May, H. E. Markus Meier, Paul A. Miller, Anna Rutgersson, and Lichuan Wu
Earth Syst. Dynam., 12, 939–973, https://doi.org/10.5194/esd-12-939-2021, https://doi.org/10.5194/esd-12-939-2021, 2021
Short summary
Short summary
Regional climate studies are typically pursued by single Earth system component models (e.g., ocean models and atmosphere models). These models are driven by prescribed data which hamper the simulation of feedbacks between Earth system components. To overcome this, models were developed that interactively couple model components and allow an adequate simulation of Earth system interactions important for climate. This article reviews recent developments of such models for the Baltic Sea region.
Lina Teckentrup, Martin G. De Kauwe, Andrew J. Pitman, and Benjamin Smith
Biogeosciences, 18, 2181–2203, https://doi.org/10.5194/bg-18-2181-2021, https://doi.org/10.5194/bg-18-2181-2021, 2021
Short summary
Short summary
The El Niño–Southern Oscillation (ENSO) describes changes in the sea surface temperature patterns of the Pacific Ocean. This influences the global weather, impacting vegetation on land. There are two types of El Niño: central Pacific (CP) and eastern Pacific (EP). In this study, we explored the long-term impacts on the carbon balance on land linked to the two El Niño types. Using a dynamic vegetation model, we simulated what would happen if only either CP or EP El Niño events had occurred.
Taraka Davies-Barnard, Johannes Meyerholt, Sönke Zaehle, Pierre Friedlingstein, Victor Brovkin, Yuanchao Fan, Rosie A. Fisher, Chris D. Jones, Hanna Lee, Daniele Peano, Benjamin Smith, David Wårlind, and Andy J. Wiltshire
Biogeosciences, 17, 5129–5148, https://doi.org/10.5194/bg-17-5129-2020, https://doi.org/10.5194/bg-17-5129-2020, 2020
James A. Franke, Christoph Müller, Joshua Elliott, Alex C. Ruane, Jonas Jägermeyr, Abigail Snyder, Marie Dury, Pete D. Falloon, Christian Folberth, Louis François, Tobias Hank, R. Cesar Izaurralde, Ingrid Jacquemin, Curtis Jones, Michelle Li, Wenfeng Liu, Stefan Olin, Meridel Phillips, Thomas A. M. Pugh, Ashwan Reddy, Karina Williams, Ziwei Wang, Florian Zabel, and Elisabeth J. Moyer
Geosci. Model Dev., 13, 3995–4018, https://doi.org/10.5194/gmd-13-3995-2020, https://doi.org/10.5194/gmd-13-3995-2020, 2020
Short summary
Short summary
Improving our understanding of the impacts of climate change on crop yields will be critical for global food security in the next century. The models often used to study the how climate change may impact agriculture are complex and costly to run. In this work, we describe a set of global crop model emulators (simplified models) developed under the Agricultural Model Intercomparison Project. Crop model emulators make agricultural simulations more accessible to policy or decision makers.
Thomas A. M. Pugh, Tim Rademacher, Sarah L. Shafer, Jörg Steinkamp, Jonathan Barichivich, Brian Beckage, Vanessa Haverd, Anna Harper, Jens Heinke, Kazuya Nishina, Anja Rammig, Hisashi Sato, Almut Arneth, Stijn Hantson, Thomas Hickler, Markus Kautz, Benjamin Quesada, Benjamin Smith, and Kirsten Thonicke
Biogeosciences, 17, 3961–3989, https://doi.org/10.5194/bg-17-3961-2020, https://doi.org/10.5194/bg-17-3961-2020, 2020
Short summary
Short summary
The length of time that carbon remains in forest biomass is one of the largest uncertainties in the global carbon cycle. Estimates from six contemporary models found this time to range from 12.2 to 23.5 years for the global mean for 1985–2014. Future projections do not give consistent results, but 13 model-based hypotheses are identified, along with recommendations for pragmatic steps to test them using existing and novel observations, which would help to reduce large current uncertainty.
Marielle Saunois, Ann R. Stavert, Ben Poulter, Philippe Bousquet, Josep G. Canadell, Robert B. Jackson, Peter A. Raymond, Edward J. Dlugokencky, Sander Houweling, Prabir K. Patra, Philippe Ciais, Vivek K. Arora, David Bastviken, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Lori Bruhwiler, Kimberly M. Carlson, Mark Carrol, Simona Castaldi, Naveen Chandra, Cyril Crevoisier, Patrick M. Crill, Kristofer Covey, Charles L. Curry, Giuseppe Etiope, Christian Frankenberg, Nicola Gedney, Michaela I. Hegglin, Lena Höglund-Isaksson, Gustaf Hugelius, Misa Ishizawa, Akihiko Ito, Greet Janssens-Maenhout, Katherine M. Jensen, Fortunat Joos, Thomas Kleinen, Paul B. Krummel, Ray L. Langenfelds, Goulven G. Laruelle, Licheng Liu, Toshinobu Machida, Shamil Maksyutov, Kyle C. McDonald, Joe McNorton, Paul A. Miller, Joe R. Melton, Isamu Morino, Jurek Müller, Fabiola Murguia-Flores, Vaishali Naik, Yosuke Niwa, Sergio Noce, Simon O'Doherty, Robert J. Parker, Changhui Peng, Shushi Peng, Glen P. Peters, Catherine Prigent, Ronald Prinn, Michel Ramonet, Pierre Regnier, William J. Riley, Judith A. Rosentreter, Arjo Segers, Isobel J. Simpson, Hao Shi, Steven J. Smith, L. Paul Steele, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Francesco N. Tubiello, Aki Tsuruta, Nicolas Viovy, Apostolos Voulgarakis, Thomas S. Weber, Michiel van Weele, Guido R. van der Werf, Ray F. Weiss, Doug Worthy, Debra Wunch, Yi Yin, Yukio Yoshida, Wenxin Zhang, Zhen Zhang, Yuanhong Zhao, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 12, 1561–1623, https://doi.org/10.5194/essd-12-1561-2020, https://doi.org/10.5194/essd-12-1561-2020, 2020
Short summary
Short summary
Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. We have established a consortium of multidisciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate new research aimed at improving and regularly updating the global methane budget. This is the second version of the review dedicated to the decadal methane budget, integrating results of top-down and bottom-up estimates.
James A. Franke, Christoph Müller, Joshua Elliott, Alex C. Ruane, Jonas Jägermeyr, Juraj Balkovic, Philippe Ciais, Marie Dury, Pete D. Falloon, Christian Folberth, Louis François, Tobias Hank, Munir Hoffmann, R. Cesar Izaurralde, Ingrid Jacquemin, Curtis Jones, Nikolay Khabarov, Marian Koch, Michelle Li, Wenfeng Liu, Stefan Olin, Meridel Phillips, Thomas A. M. Pugh, Ashwan Reddy, Xuhui Wang, Karina Williams, Florian Zabel, and Elisabeth J. Moyer
Geosci. Model Dev., 13, 2315–2336, https://doi.org/10.5194/gmd-13-2315-2020, https://doi.org/10.5194/gmd-13-2315-2020, 2020
Short summary
Short summary
Concerns about food security under climate change motivate efforts to better understand future changes in crop yields. Crop models, which represent plant biology, are necessary tools for this purpose since they allow representing future climate, farmer choices, and new agricultural geographies. The Global Gridded Crop Model Intercomparison (GGCMI) Phase 2 experiment, under the Agricultural Model Intercomparison and Improvement Project (AgMIP), is designed to evaluate and improve crop models.
Vanessa Haverd, Benjamin Smith, Lars Nieradzik, Peter R. Briggs, William Woodgate, Cathy M. Trudinger, Josep G. Canadell, and Matthias Cuntz
Geosci. Model Dev., 11, 2995–3026, https://doi.org/10.5194/gmd-11-2995-2018, https://doi.org/10.5194/gmd-11-2995-2018, 2018
Short summary
Short summary
CABLE is a terrestrial biosphere model that can be applied stand-alone and provides for land surface–atmosphere exchange within a climate model. We extend CABLE for regional and global carbon–climate simulations, accounting for land use and land cover change mediated by tree demography. A novel algorithm to simulate the coordination of rate-limiting photosynthetic processes is also implemented. Simulations satisfy multiple observational constraints on the global land carbon cycle.
Florian Sallaba, Stefan Olin, Kerstin Engström, Abdulhakim M. Abdi, Niklas Boke-Olén, Veiko Lehsten, Jonas Ardö, and Jonathan W. Seaquist
Earth Syst. Dynam., 8, 1191–1221, https://doi.org/10.5194/esd-8-1191-2017, https://doi.org/10.5194/esd-8-1191-2017, 2017
Short summary
Short summary
The UN sustainable development goals for eradicating hunger are at high risk for failure in the Sahel. We show that the demand for food and feed biomass will begin to outstrip its supply in the 2040s if current trends continue. Though supply continues to increase it is outpaced by a greater increase in demand due to a combination of population growth and a shift to diets rich in animal proteins. This underscores the importance of policy interventions that would act to mitigate such developments.
Maarten C. Braakhekke, Karin T. Rebel, Stefan C. Dekker, Benjamin Smith, Arthur H. W. Beusen, and Martin J. Wassen
Earth Syst. Dynam., 8, 1121–1139, https://doi.org/10.5194/esd-8-1121-2017, https://doi.org/10.5194/esd-8-1121-2017, 2017
Short summary
Short summary
Nitrogen input in natural ecosystems usually has a positive effect on plant growth. However, too much N causes N leaching, which contributes to water pollution. Using a global model we estimated that N leaching from natural lands has increased by 73 % during the 20th century, mainly due to rising N deposition from the atmosphere caused by emissions from fossil fuels and agriculture. Climate change and increasing CO2 concentration had positive and negative effects (respectively) on N leaching.
Rhys Whitley, Jason Beringer, Lindsay B. Hutley, Gabriel Abramowitz, Martin G. De Kauwe, Bradley Evans, Vanessa Haverd, Longhui Li, Caitlin Moore, Youngryel Ryu, Simon Scheiter, Stanislaus J. Schymanski, Benjamin Smith, Ying-Ping Wang, Mathew Williams, and Qiang Yu
Biogeosciences, 14, 4711–4732, https://doi.org/10.5194/bg-14-4711-2017, https://doi.org/10.5194/bg-14-4711-2017, 2017
Short summary
Short summary
This paper attempts to review some of the current challenges faced by the modelling community in simulating the behaviour of savanna ecosystems. We provide a particular focus on three dynamic processes (phenology, root-water access, and fire) that are characteristic of savannas, which we believe are not adequately represented in current-generation terrestrial biosphere models. We highlight reasons for these misrepresentations, possible solutions and a future direction for research in this area.
Nitin Chaudhary, Paul A. Miller, and Benjamin Smith
Biogeosciences, 14, 4023–4044, https://doi.org/10.5194/bg-14-4023-2017, https://doi.org/10.5194/bg-14-4023-2017, 2017
Short summary
Short summary
We employed an individual- and patch-based dynamic global ecosystem model to quantify long-term C accumulation rates and to assess the effects of historical and projected climate change on peatland C balances across the pan-Arctic. We found that peatlands in Scandinavia, Europe, Russia and central and eastern Canada will become C sources, while Siberia, far eastern Russia, Alaska and western and northern Canada will increase their sink capacity by the end of the 21st century.
Kerstin Engström, Mats Lindeskog, Stefan Olin, John Hassler, and Benjamin Smith
Earth Syst. Dynam., 8, 773–799, https://doi.org/10.5194/esd-8-773-2017, https://doi.org/10.5194/esd-8-773-2017, 2017
Short summary
Short summary
Applying a global carbon tax on fossil was shown to lead to increased bioenergy production in four out of five scenarios. Increased bioenergy production led to global cropland changes that were up to 50 % larger by 2100 compared to the reference case (without global carbon tax). For scenarios with strong cropland expansion due to high population growth coupled with low technological change or bioenergy production, the biosphere was simulated to switch from a carbon sink into a carbon source.
Nitin Chaudhary, Paul A. Miller, and Benjamin Smith
Biogeosciences, 14, 2571–2596, https://doi.org/10.5194/bg-14-2571-2017, https://doi.org/10.5194/bg-14-2571-2017, 2017
Short summary
Short summary
We incorporated peatland dynamics into
Arcticversion of dynamic vegetation model LPJ-GUESS to understand the long-term evolution of northern peatlands and effects of climate change on peatland carbon balance. We found that the Stordalen mire may be expected to sequester more carbon before 2050 due to milder and wetter climate conditions, a longer growing season and CO2 fertilization effect, turning into a C source after 2050 because of higher decomposition rates in response to warming soils.
Christoph Müller, Joshua Elliott, James Chryssanthacopoulos, Almut Arneth, Juraj Balkovic, Philippe Ciais, Delphine Deryng, Christian Folberth, Michael Glotter, Steven Hoek, Toshichika Iizumi, Roberto C. Izaurralde, Curtis Jones, Nikolay Khabarov, Peter Lawrence, Wenfeng Liu, Stefan Olin, Thomas A. M. Pugh, Deepak K. Ray, Ashwan Reddy, Cynthia Rosenzweig, Alex C. Ruane, Gen Sakurai, Erwin Schmid, Rastislav Skalsky, Carol X. Song, Xuhui Wang, Allard de Wit, and Hong Yang
Geosci. Model Dev., 10, 1403–1422, https://doi.org/10.5194/gmd-10-1403-2017, https://doi.org/10.5194/gmd-10-1403-2017, 2017
Short summary
Short summary
Crop models are increasingly used in climate change impact research and integrated assessments. For the Agricultural Model Intercomparison and Improvement Project (AgMIP), 14 global gridded crop models (GGCMs) have supplied crop yield simulations (1980–2010) for maize, wheat, rice and soybean. We evaluate the performance of these models against observational data at global, national and grid cell level. We propose an open-access benchmark system against which future model versions can be tested.
Christian Folberth, Joshua Elliott, Christoph Müller, Juraj Balkovic, James Chryssanthacopoulos, Roberto C. Izaurralde, Curtis D. Jones, Nikolay Khabarov, Wenfeng Liu, Ashwan Reddy, Erwin Schmid, Rastislav Skalský, Hong Yang, Almut Arneth, Philippe Ciais, Delphine Deryng, Peter J. Lawrence, Stefan Olin, Thomas A. M. Pugh, Alex C. Ruane, and Xuhui Wang
Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-527, https://doi.org/10.5194/bg-2016-527, 2016
Manuscript not accepted for further review
Short summary
Short summary
Global crop models differ in numerous aspects such as algorithms, parameterization, input data, and management assumptions. This study compares five global crop model frameworks, all based on the same field-scale model, to identify differences induced by the latter three. Results indicate that foremost nutrient supply, soil handling, and crop management induce substantial differences in crop yield estimates whereas crop cultivars primarily result in scaling of yield levels.
Kerstin Engström, Stefan Olin, Mark D. A. Rounsevell, Sara Brogaard, Detlef P. van Vuuren, Peter Alexander, Dave Murray-Rust, and Almut Arneth
Earth Syst. Dynam., 7, 893–915, https://doi.org/10.5194/esd-7-893-2016, https://doi.org/10.5194/esd-7-893-2016, 2016
Short summary
Short summary
The development of global cropland in the future depends on how many people there will be, how much meat and milk we will eat, how much food we will waste and how well farms will be managed. Uncertainties in these factors mean that global cropland could decrease from today's 1500 Mha to only 893 Mha in 2100, which would free land for biofuel production. However, if population rises towards 12 billion and global yields remain low, global cropland could also increase up to 2380 Mha in 2100.
Wenli Wang, Annette Rinke, John C. Moore, Duoying Ji, Xuefeng Cui, Shushi Peng, David M. Lawrence, A. David McGuire, Eleanor J. Burke, Xiaodong Chen, Bertrand Decharme, Charles Koven, Andrew MacDougall, Kazuyuki Saito, Wenxin Zhang, Ramdane Alkama, Theodore J. Bohn, Philippe Ciais, Christine Delire, Isabelle Gouttevin, Tomohiro Hajima, Gerhard Krinner, Dennis P. Lettenmaier, Paul A. Miller, Benjamin Smith, Tetsuo Sueyoshi, and Artem B. Sherstiukov
The Cryosphere, 10, 1721–1737, https://doi.org/10.5194/tc-10-1721-2016, https://doi.org/10.5194/tc-10-1721-2016, 2016
Short summary
Short summary
The winter snow insulation is a key process for air–soil temperature coupling and is relevant for permafrost simulations. Differences in simulated air–soil temperature relationships and their modulation by climate conditions are found to be related to the snow model physics. Generally, models with better performance apply multilayer snow schemes.
Minchao Wu, Guy Schurgers, Markku Rummukainen, Benjamin Smith, Patrick Samuelsson, Christer Jansson, Joe Siltberg, and Wilhelm May
Earth Syst. Dynam., 7, 627–647, https://doi.org/10.5194/esd-7-627-2016, https://doi.org/10.5194/esd-7-627-2016, 2016
Short summary
Short summary
On Earth, vegetation does not merely adapt to climate but also imposes significant influences on climate with both local and remote effects. In this study we evaluated the role of vegetation in African climate with a regional Earth system model. By the comparison between the experiments with and without dynamic vegetation changes, we found that vegetation can influence climate remotely, resulting in modulating rainfall patterns over Africa.
Rhys Whitley, Jason Beringer, Lindsay B. Hutley, Gab Abramowitz, Martin G. De Kauwe, Remko Duursma, Bradley Evans, Vanessa Haverd, Longhui Li, Youngryel Ryu, Benjamin Smith, Ying-Ping Wang, Mathew Williams, and Qiang Yu
Biogeosciences, 13, 3245–3265, https://doi.org/10.5194/bg-13-3245-2016, https://doi.org/10.5194/bg-13-3245-2016, 2016
Short summary
Short summary
In this study we assess how well terrestrial biosphere models perform at predicting water and carbon cycling for savanna ecosystems. We apply our models to five savanna sites in Northern Australia and highlight key causes for model failure. Our assessment of model performance uses a novel benchmarking system that scores a model’s predictive ability based on how well it is utilizing its driving information. On average, we found the models as a group display only moderate levels of performance.
Almut Arneth, Risto Makkonen, Stefan Olin, Pauli Paasonen, Thomas Holst, Maija K. Kajos, Markku Kulmala, Trofim Maximov, Paul A. Miller, and Guy Schurgers
Atmos. Chem. Phys., 16, 5243–5262, https://doi.org/10.5194/acp-16-5243-2016, https://doi.org/10.5194/acp-16-5243-2016, 2016
Short summary
Short summary
We study the potentially contrasting effects of enhanced ecosystem CO2 release in response to warmer temperatures vs. emissions of biogenic volatile organic compounds and their formation of secondary organic aerosol through a combination of measurements and modelling at a remote location in Eastern Siberia. The study aims to highlight the number of potentially opposing processes and complex interactions between vegetation physiology, soil processes and trace-gas exchanges in the climate system.
V. Haverd, B. Smith, M. Raupach, P. Briggs, L. Nieradzik, J. Beringer, L. Hutley, C. M. Trudinger, and J. Cleverly
Biogeosciences, 13, 761–779, https://doi.org/10.5194/bg-13-761-2016, https://doi.org/10.5194/bg-13-761-2016, 2016
Short summary
Short summary
We present a new approach for modelling coupled phenology and carbon allocation in savannas, and test it using data from the OzFlux network. Model behaviour emerges from complex feedbacks between the plant physiology and vegetation dynamics, in response to resource availability, and not from imposed hypotheses about the controls on tree-grass co-existence. Results indicate that resource limitation is a stronger determinant of tree cover than disturbance in Australian savannas.
S. Peng, P. Ciais, G. Krinner, T. Wang, I. Gouttevin, A. D. McGuire, D. Lawrence, E. Burke, X. Chen, B. Decharme, C. Koven, A. MacDougall, A. Rinke, K. Saito, W. Zhang, R. Alkama, T. J. Bohn, C. Delire, T. Hajima, D. Ji, D. P. Lettenmaier, P. A. Miller, J. C. Moore, B. Smith, and T. Sueyoshi
The Cryosphere, 10, 179–192, https://doi.org/10.5194/tc-10-179-2016, https://doi.org/10.5194/tc-10-179-2016, 2016
Short summary
Short summary
Soil temperature change is a key indicator of the dynamics of permafrost. Using nine process-based ecosystem models with permafrost processes, a large spread of soil temperature trends across the models. Air temperature and longwave downward radiation are the main drivers of soil temperature trends. Based on an emerging observation constraint method, the total boreal near-surface permafrost area decrease comprised between 39 ± 14 × 103 and 75 ± 14 × 103 km2 yr−1 from 1960 to 2000.
S. Olin, M. Lindeskog, T. A. M. Pugh, G. Schurgers, D. Wårlind, M. Mishurov, S. Zaehle, B. D. Stocker, B. Smith, and A. Arneth
Earth Syst. Dynam., 6, 745–768, https://doi.org/10.5194/esd-6-745-2015, https://doi.org/10.5194/esd-6-745-2015, 2015
Short summary
Short summary
Croplands are vital ecosystems for human well-being. Properly managed they can supply food, store carbon and even sequester carbon from the atmosphere. Conversely, if poorly managed, croplands can be a source of nitrogen to inland and coastal waters, causing algal blooms, and a source of carbon dioxide to the atmosphere, accentuating climate change. Here we studied cropland management types for their potential to store carbon and minimize nitrogen losses while maintaining crop yields.
M. A. Rawlins, A. D. McGuire, J. S. Kimball, P. Dass, D. Lawrence, E. Burke, X. Chen, C. Delire, C. Koven, A. MacDougall, S. Peng, A. Rinke, K. Saito, W. Zhang, R. Alkama, T. J. Bohn, P. Ciais, B. Decharme, I. Gouttevin, T. Hajima, D. Ji, G. Krinner, D. P. Lettenmaier, P. Miller, J. C. Moore, B. Smith, and T. Sueyoshi
Biogeosciences, 12, 4385–4405, https://doi.org/10.5194/bg-12-4385-2015, https://doi.org/10.5194/bg-12-4385-2015, 2015
Short summary
Short summary
We used outputs from nine models to better understand land-atmosphere CO2 exchanges across Northern Eurasia over the period 1960-1990. Model estimates were assessed against independent ground and satellite measurements. We find that the models show a weakening of the CO2 sink over time; the models tend to overestimate respiration, causing an underestimate in NEP; the model range in regional NEP is twice the multimodel mean. Residence time for soil carbon decreased, amid a gain in carbon storage.
A. Ekici, S. Chadburn, N. Chaudhary, L. H. Hajdu, A. Marmy, S. Peng, J. Boike, E. Burke, A. D. Friend, C. Hauck, G. Krinner, M. Langer, P. A. Miller, and C. Beer
The Cryosphere, 9, 1343–1361, https://doi.org/10.5194/tc-9-1343-2015, https://doi.org/10.5194/tc-9-1343-2015, 2015
Short summary
Short summary
This paper compares the performance of different land models in estimating soil thermal regimes at distinct cold region landscape types. Comparing models with different processes reveal the importance of surface insulation (snow/moss layer) and soil internal processes (heat/water transfer). The importance of model processes also depend on site conditions such as high/low snow cover, dry/wet soil types.
J. Tang, P. A. Miller, A. Persson, D. Olefeldt, P. Pilesjö, M. Heliasz, M. Jackowicz-Korczynski, Z. Yang, B. Smith, T. V. Callaghan, and T. R. Christensen
Biogeosciences, 12, 2791–2808, https://doi.org/10.5194/bg-12-2791-2015, https://doi.org/10.5194/bg-12-2791-2015, 2015
S. Olin, G. Schurgers, M. Lindeskog, D. Wårlind, B. Smith, P. Bodin, J. Holmér, and A. Arneth
Biogeosciences, 12, 2489–2515, https://doi.org/10.5194/bg-12-2489-2015, https://doi.org/10.5194/bg-12-2489-2015, 2015
S. Sitch, P. Friedlingstein, N. Gruber, S. D. Jones, G. Murray-Tortarolo, A. Ahlström, S. C. Doney, H. Graven, C. Heinze, C. Huntingford, S. Levis, P. E. Levy, M. Lomas, B. Poulter, N. Viovy, S. Zaehle, N. Zeng, A. Arneth, G. Bonan, L. Bopp, J. G. Canadell, F. Chevallier, P. Ciais, R. Ellis, M. Gloor, P. Peylin, S. L. Piao, C. Le Quéré, B. Smith, Z. Zhu, and R. Myneni
Biogeosciences, 12, 653–679, https://doi.org/10.5194/bg-12-653-2015, https://doi.org/10.5194/bg-12-653-2015, 2015
P. Bodin, S. Olin, T. A. M. Pugh, and A. Arneth
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esdd-5-1571-2014, https://doi.org/10.5194/esdd-5-1571-2014, 2014
Revised manuscript has not been submitted
Short summary
Short summary
Food security is defined as stable access to food of good nutritional quality. In regions where food security is highly dependent on local production it is thus of importance to produce not only enough calories but also to minimize variation in yield. This trade-off is investigated here using simulated crop yield and by selecting relative distributions of crops. The results show a large potential to either increase food production or to decrease its variance by applying optimized crop selection.
D. Wårlind, B. Smith, T. Hickler, and A. Arneth
Biogeosciences, 11, 6131–6146, https://doi.org/10.5194/bg-11-6131-2014, https://doi.org/10.5194/bg-11-6131-2014, 2014
W. Zhang, C. Jansson, P. A. Miller, B. Smith, and P. Samuelsson
Biogeosciences, 11, 5503–5519, https://doi.org/10.5194/bg-11-5503-2014, https://doi.org/10.5194/bg-11-5503-2014, 2014
V. Haverd, B. Smith, L. P. Nieradzik, and P. R. Briggs
Biogeosciences, 11, 4039–4055, https://doi.org/10.5194/bg-11-4039-2014, https://doi.org/10.5194/bg-11-4039-2014, 2014
A. Arneth, S. Olin, R. Makkonen, P. Paasonen, T. Holst, M. Kajos, M. Kulmala, T. Maximov, P. A. Miller, and G. Schurgers
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-19149-2014, https://doi.org/10.5194/acpd-14-19149-2014, 2014
Revised manuscript not accepted
B. Smith, D. Wårlind, A. Arneth, T. Hickler, P. Leadley, J. Siltberg, and S. Zaehle
Biogeosciences, 11, 2027–2054, https://doi.org/10.5194/bg-11-2027-2014, https://doi.org/10.5194/bg-11-2027-2014, 2014
G. Strandberg, E. Kjellström, A. Poska, S. Wagner, M.-J. Gaillard, A.-K. Trondman, A. Mauri, B. A. S. Davis, J. O. Kaplan, H. J. B. Birks, A. E. Bjune, R. Fyfe, T. Giesecke, L. Kalnina, M. Kangur, W. O. van der Knaap, U. Kokfelt, P. Kuneš, M. Lata\l owa, L. Marquer, F. Mazier, A. B. Nielsen, B. Smith, H. Seppä, and S. Sugita
Clim. Past, 10, 661–680, https://doi.org/10.5194/cp-10-661-2014, https://doi.org/10.5194/cp-10-661-2014, 2014
A. Meyer, L. Tarvainen, A. Nousratpour, R. G. Björk, M. Ernfors, A. Grelle, Å Kasimir Klemedtsson, A. Lindroth, M. Räntfors, T. Rütting, G. Wallin, P. Weslien, and L. Klemedtsson
Biogeosciences, 10, 7739–7758, https://doi.org/10.5194/bg-10-7739-2013, https://doi.org/10.5194/bg-10-7739-2013, 2013
M. Lindeskog, A. Arneth, A. Bondeau, K. Waha, J. Seaquist, S. Olin, and B. Smith
Earth Syst. Dynam., 4, 385–407, https://doi.org/10.5194/esd-4-385-2013, https://doi.org/10.5194/esd-4-385-2013, 2013
Related subject area
Biodiversity and Ecosystem Function: Terrestrial
On the predictability of turbulent fluxes from land: PLUMBER2 MIP experimental description and preliminary results
Crowd-sourced trait data can be used to delimit global biomes
Biomass yield potential, feedstock quality, and nutrient removal of perennial buffer strips under continuous zero fertilizer application
Leaf habit drives leaf nutrient resorption globally alongside nutrient availability and climate
Linking geomorphological processes and wildlife microhabitat selection: nesting birds select refuges generated by permafrost degradation in the Arctic
Distinguishing mature and immature trees allows estimating forest carbon uptake from stand structure
Enhancing environmental models with a new downscaling method for global radiation in complex terrain
“Blooming” of litter-mixing effects: the role of flower and leaf litter interactions on decomposition in terrestrial and aquatic ecosystems
Combined effects of topography, soil moisture and snow cover regimes on growth responses of grasslands in a low mountain range (Vosges, France)
From simple labels to semantic image segmentation: leveraging citizen science plant photographs for tree species mapping in drone imagery
Plant functional traits modulate the effects of soil acidification on above- and belowground biomass
Regional effects and local climate jointly shape the global distribution of sexual systems in woody flowering plants
Ideas and perspectives: Sensing energy and matter fluxes in a biota-dominated Patagonian landscape through environmental seismology – introducing the Pumalín Critical Zone Observatory
Comparison of carbon and water fluxes and the drivers of ecosystem water use efficiency in a temperate rainforest and a peatland in southern South America
Kilometre-scale simulations over Fennoscandia reveal a large loss of tundra due to climate warming
Microclimate mapping using novel radiative transfer modelling
Root distributions predict shrub–steppe responses to precipitation intensity
Thermophilisation of Afromontane forest stands demonstrated in an elevation gradient experiment
Soil smoldering in temperate forests: A neglected contributor to fire carbon emissions revealed by atmospheric mixing ratios
Above-treeline ecosystems facing drought: lessons from the 2022 European summer heat wave
Canopy gaps and associated losses of biomass – combining UAV imagery and field data in a central Amazon forest
Ideas and perspectives: Beyond model evaluation – combining experiments and models to advance terrestrial ecosystem science
Primary succession and its driving variables – a sphere-spanning approach applied in proglacial areas in the upper Martell Valley (Eastern Italian Alps)
Contemporary biodiversity pattern is affected by climate change at multiple temporal scales in steppes on the Mongolian Plateau
Quantifying vegetation indices using terrestrial laser scanning: methodological complexities and ecological insights from a Mediterranean forest
Revisiting and attributing the global controls over terrestrial ecosystem functions of climate and plant traits at FLUXNET sites via causal graphical models
Dynamics of short-term ecosystem carbon fluxes induced by precipitation events in a semiarid grassland
Throughfall exclusion and fertilization effects on tropical dry forest tree plantations, a large-scale experiment
Tectonic controls on the ecosystem of the Mara River basin, East Africa, from geomorphological and spectral index analysis
Spruce bark beetles (Ips typographus) cause up to 700 times higher bark BVOC emission rates compared to healthy Norway spruce (Picea abies)
Technical note: Novel estimates of the leaf relative uptake rate of carbonyl sulfide from optimality theory
Observed water and light limitation across global ecosystems
A question of scale: modeling biomass, gain and mortality distributions of a tropical forest
Seed traits and phylogeny explain plants' geographic distribution
Effect of the presence of plateau pikas on the ecosystem services of alpine meadows
Allometric equations and wood density parameters for estimating aboveground and woody debris biomass in Cajander larch (Larix cajanderi) forests of northeast Siberia
Strong influence of trees outside forest in regulating microclimate of intensively modified Afromontane landscapes
Excess radiation exacerbates drought stress impacts on canopy conductance along aridity gradients
Dispersal of bacteria and stimulation of permafrost decomposition by Collembola
Modeling the effects of alternative crop–livestock management scenarios on important ecosystem services for smallholder farming from a landscape perspective
Contrasting strategies of nutrient demand and use between savanna and forest ecosystems in a neotropical transition zone
Monitoring post-fire recovery of various vegetation biomes using multi-wavelength satellite remote sensing
Updated estimation of forest biomass carbon pools in China, 1977–2018
Estimating dry biomass and plant nitrogen concentration in pre-Alpine grasslands with low-cost UAS-borne multispectral data – a comparison of sensors, algorithms, and predictor sets
Fire in lichen-rich subarctic tundra changes carbon and nitrogen cycling between ecosystem compartments but has minor effects on stocks
Mass concentration measurements of autumn bioaerosol using low-cost sensors in a mature temperate woodland free-air carbon dioxide enrichment (FACE) experiment: investigating the role of meteorology and carbon dioxide levels
Phosphorus stress strongly reduced plant physiological activity, but only temporarily, in a mesocosm experiment with Zea mays colonized by arbuscular mycorrhizal fungi
Main drivers of plant diversity patterns of rubber plantations in the Greater Mekong Subregion
Importance of the forest state in estimating biomass losses from tropical forests: combining dynamic forest models and remote sensing
Examining the role of environmental memory in the predictability of carbon and water fluxes across Australian ecosystems
Gab Abramowitz, Anna Ukkola, Sanaa Hobeichi, Jon Cranko Page, Mathew Lipson, Martin G. De Kauwe, Samuel Green, Claire Brenner, Jonathan Frame, Grey Nearing, Martyn Clark, Martin Best, Peter Anthoni, Gabriele Arduini, Souhail Boussetta, Silvia Caldararu, Kyeungwoo Cho, Matthias Cuntz, David Fairbairn, Craig R. Ferguson, Hyungjun Kim, Yeonjoo Kim, Jürgen Knauer, David Lawrence, Xiangzhong Luo, Sergey Malyshev, Tomoko Nitta, Jerome Ogee, Keith Oleson, Catherine Ottlé, Phillipe Peylin, Patricia de Rosnay, Heather Rumbold, Bob Su, Nicolas Vuichard, Anthony P. Walker, Xiaoni Wang-Faivre, Yunfei Wang, and Yijian Zeng
Biogeosciences, 21, 5517–5538, https://doi.org/10.5194/bg-21-5517-2024, https://doi.org/10.5194/bg-21-5517-2024, 2024
Short summary
Short summary
This paper evaluates land models – computer-based models that simulate ecosystem dynamics; land carbon, water, and energy cycles; and the role of land in the climate system. It uses machine learning and AI approaches to show that, despite the complexity of land models, they do not perform nearly as well as they could given the amount of information they are provided with about the prediction problem.
Simon Scheiter, Sophie Wolf, and Teja Kattenborn
Biogeosciences, 21, 4909–4926, https://doi.org/10.5194/bg-21-4909-2024, https://doi.org/10.5194/bg-21-4909-2024, 2024
Short summary
Short summary
Biomes are widely used to map vegetation patterns at large spatial scales and to assess impacts of climate change, yet there is no consensus on a generally valid biome classification scheme. We used crowd-sourced species distribution data and trait data to assess whether trait information is suitable for delimiting biomes. Although the trait data were heterogeneous and had large gaps with respect to the spatial distribution, we found that a global trait-based biome classification was possible.
Cheng-Hsien Lin, Colleen Zumpf, Chunhwa Jang, Thomas Voigt, Guanglong Tian, Olawale Oladeji, Albert Cox, Rehnuma Mehzabin, and DoKyoung Lee
Biogeosciences, 21, 4765–4784, https://doi.org/10.5194/bg-21-4765-2024, https://doi.org/10.5194/bg-21-4765-2024, 2024
Short summary
Short summary
Riparian areas are subject to environmental issues (nutrient leaching) associated with low productivity. Perennial grasses can improve ecosystem services from riparian zones while producing forage/bioenergy feedstock biomass as potential income for farmers. The forage-type buffer can be an ideal short-term candidate due to its great efficiency of nutrient scavenging; the bioenergy-type buffer showed better sustainability than the forage buffer and a continuous yield supply potential.
Gabriela Sophia, Silvia Caldararu, Benjamin David Stocker, and Sönke Zaehle
Biogeosciences, 21, 4169–4193, https://doi.org/10.5194/bg-21-4169-2024, https://doi.org/10.5194/bg-21-4169-2024, 2024
Short summary
Short summary
Through an extensive global dataset of leaf nutrient resorption and a multifactorial analysis, we show that the majority of spatial variation in nutrient resorption may be driven by leaf habit and type, with thicker, longer-lived leaves having lower resorption efficiencies. Climate, soil fertility and soil-related factors emerge as strong drivers with an additional effect on its role. These results are essential for comprehending plant nutrient status, plant productivity and nutrient cycling.
Madeleine-Zoé Corbeil-Robitaille, Éliane Duchesne, Daniel Fortier, Christophe Kinnard, and Joël Bêty
Biogeosciences, 21, 3401–3423, https://doi.org/10.5194/bg-21-3401-2024, https://doi.org/10.5194/bg-21-3401-2024, 2024
Short summary
Short summary
In the Arctic tundra, climate change is transforming the landscape, and this may impact wildlife. We focus on three nesting bird species and the islets they select as refuges from their main predator, the Arctic fox. A geomorphological process, ice-wedge polygon degradation, was found to play a key role in creating these refuges. This process is likely to affect predator–prey dynamics in the Arctic tundra, highlighting the connections between nature's physical and ecological systems.
Samuel M. Fischer, Xugao Wang, and Andreas Huth
Biogeosciences, 21, 3305–3319, https://doi.org/10.5194/bg-21-3305-2024, https://doi.org/10.5194/bg-21-3305-2024, 2024
Short summary
Short summary
Understanding the drivers of forest productivity is key for accurately assessing forests’ role in the global carbon cycle. Yet, despite significant research effort, it is not fully understood how the productivity of a forest can be deduced from its stand structure. We suggest tackling this problem by identifying the share and structure of immature trees within forests and show that this approach could significantly improve estimates of forests’ net productivity and carbon uptake.
Arsène Druel, Julien Ruffault, Hendrik Davi, André Chanzy, Olivier Marloie, Miquel De Cáceres, Florent Mouillot, Christophe François, Kamel Soudani, and Nicolas K. Martin-StPaul
EGUsphere, https://doi.org/10.5194/egusphere-2024-1800, https://doi.org/10.5194/egusphere-2024-1800, 2024
Short summary
Short summary
Accurate radiation data are essential for understanding ecosystem growth. Traditional large-scale data lack the precision needed for complex terrains, e.g. mountainous regions. This study introduces a new model to enhance radiation data resolution using elevation maps, which accounts for sub-daily direct and diffuse radiation effects caused by terrain features. Tested on Mont Ventoux, this method significantly improves radiation estimates, benefiting forest growth and climate risk models.
Mery Ingrid Guimarães de Alencar, Rafael D. Guariento, Bertrand Guenet, Luciana S. Carneiro, Eduardo L. Voigt, and Adriano Caliman
Biogeosciences, 21, 3165–3182, https://doi.org/10.5194/bg-21-3165-2024, https://doi.org/10.5194/bg-21-3165-2024, 2024
Short summary
Short summary
Flowers are ephemeral organs for reproduction, and their litter is functionally different from leaf litter. Flowers can affect decomposition and interact with leaf litter, influencing decomposition non-additively. We show that mixing flower and leaf litter from the Tabebuia aurea tree creates reciprocal synergistic effects on decomposition in both terrestrial and aquatic environments. We highlight that flower litter input can generate biogeochemical hotspots in terrestrial ecosystems.
Pierre-Alexis Herrault, Albin Ullmann, and Damien Ertlen
EGUsphere, https://doi.org/10.5194/egusphere-2024-1935, https://doi.org/10.5194/egusphere-2024-1935, 2024
Short summary
Short summary
Mountain grasslands are impacted by Climate Change and need to adapt. Low mountain grasslands are poorly understood compared to High Mountains massif. Thanks to satellite archives, we found that grasslands occurring in the Vosges Mountains (France) exhibited stable productivity or tended to decrease in specific regions of the massif, a reverse signal observed in High Mountains massif. We also noted a high responsiveness in their growth strategy to soil moisture, snow regimes and topography.
Salim Soltani, Olga Ferlian, Nico Eisenhauer, Hannes Feilhauer, and Teja Kattenborn
Biogeosciences, 21, 2909–2935, https://doi.org/10.5194/bg-21-2909-2024, https://doi.org/10.5194/bg-21-2909-2024, 2024
Short summary
Short summary
In this research, we developed a novel method using citizen science data as alternative training data for computer vision models to map plant species in unoccupied aerial vehicle (UAV) images. We use citizen science plant photographs to train models and apply them to UAV images. We tested our approach on UAV images of a test site with 10 different tree species, yielding accurate results. This research shows the potential of citizen science data to advance our ability to monitor plant species.
Xue Feng, Ruzhen Wang, Tianpeng Li, Jiangping Cai, Heyong Liu, Hui Li, and Yong Jiang
Biogeosciences, 21, 2641–2653, https://doi.org/10.5194/bg-21-2641-2024, https://doi.org/10.5194/bg-21-2641-2024, 2024
Short summary
Short summary
Plant functional traits have been considered as reflecting adaptations to environmental variations, indirectly affecting ecosystem productivity. How soil acidification affects above- and belowground biomass by altering leaf and root traits remains poorly understood. We found divergent trait responses driven by soil environmental conditions in two dominant species, resulting in a decrease in aboveground biomass and an increase in belowground biomass.
Minhua Zhang, Xiaoqing Hu, and Fangliang He
Biogeosciences, 21, 2133–2142, https://doi.org/10.5194/bg-21-2133-2024, https://doi.org/10.5194/bg-21-2133-2024, 2024
Short summary
Short summary
Plant sexual systems are important to understanding the evolution and maintenance of plant diversity. We quantified region effects on their proportions while incorporating local climate factors and evolutionary history. We found regional processes and climate effects both play important roles in shaping the geographic distribution of sexual systems, providing a baseline for predicting future changes in forest communities in the context of global change.
Christian H. Mohr, Michael Dietze, Violeta Tolorza, Erwin Gonzalez, Benjamin Sotomayor, Andres Iroume, Sten Gilfert, and Frieder Tautz
Biogeosciences, 21, 1583–1599, https://doi.org/10.5194/bg-21-1583-2024, https://doi.org/10.5194/bg-21-1583-2024, 2024
Short summary
Short summary
Coastal temperate rainforests, among Earth’s carbon richest biomes, are systematically underrepresented in the global network of critical zone observatories (CZOs). Introducing here a first CZO in the heart of the Patagonian rainforest, Chile, we investigate carbon sink functioning, biota-driven landscape evolution, fluxes of matter and energy, and disturbance regimes. We invite the community to join us in cross-disciplinary collaboration to advance science in this particular environment.
Jorge F. Perez-Quezada, David Trejo, Javier Lopatin, David Aguilera, Bruce Osborne, Mauricio Galleguillos, Luca Zattera, Juan L. Celis-Diez, and Juan J. Armesto
Biogeosciences, 21, 1371–1389, https://doi.org/10.5194/bg-21-1371-2024, https://doi.org/10.5194/bg-21-1371-2024, 2024
Short summary
Short summary
For 8 years we sampled a temperate rainforest and a peatland in Chile to estimate their efficiency to capture carbon per unit of water lost. The efficiency is more related to the water lost than to the carbon captured and is mainly driven by evaporation instead of transpiration. This is the first report from southern South America and highlights that ecosystems might behave differently in this area, likely explained by the high annual precipitation (~ 2100 mm) and light-limited conditions.
Fredrik Lagergren, Robert G. Björk, Camilla Andersson, Danijel Belušić, Mats P. Björkman, Erik Kjellström, Petter Lind, David Lindstedt, Tinja Olenius, Håkan Pleijel, Gunhild Rosqvist, and Paul A. Miller
Biogeosciences, 21, 1093–1116, https://doi.org/10.5194/bg-21-1093-2024, https://doi.org/10.5194/bg-21-1093-2024, 2024
Short summary
Short summary
The Fennoscandian boreal and mountain regions harbour a wide range of ecosystems sensitive to climate change. A new, highly resolved high-emission climate scenario enabled modelling of the vegetation development in this region at high resolution for the 21st century. The results show dramatic south to north and low- to high-altitude shifts of vegetation zones, especially for the open tundra environments, which will have large implications for nature conservation, reindeer husbandry and forestry.
Florian Zellweger, Eric Sulmoni, Johanna T. Malle, Andri Baltensweiler, Tobias Jonas, Niklaus E. Zimmermann, Christian Ginzler, Dirk Nikolaus Karger, Pieter De Frenne, David Frey, and Clare Webster
Biogeosciences, 21, 605–623, https://doi.org/10.5194/bg-21-605-2024, https://doi.org/10.5194/bg-21-605-2024, 2024
Short summary
Short summary
The microclimatic conditions experienced by organisms living close to the ground are not well represented in currently used climate datasets derived from weather stations. Therefore, we measured and mapped ground microclimate temperatures at 10 m spatial resolution across Switzerland using a novel radiation model. Our results reveal a high variability in microclimates across different habitats and will help to better understand climate and land use impacts on biodiversity and ecosystems.
Andrew Kulmatiski, Martin C. Holdrege, Cristina Chirvasă, and Karen H. Beard
Biogeosciences, 21, 131–143, https://doi.org/10.5194/bg-21-131-2024, https://doi.org/10.5194/bg-21-131-2024, 2024
Short summary
Short summary
Warmer air and larger precipitation events are changing the way water moves through the soil and into plants. Here we show that detailed descriptions of root distributions can predict plant growth responses to changing precipitation patterns. Shrubs and forbs increased growth, while grasses showed no response to increased precipitation intensity, and these responses were predicted by plant rooting distributions.
Bonaventure Ntirugulirwa, Etienne Zibera, Nkuba Epaphrodite, Aloysie Manishimwe, Donat Nsabimana, Johan Uddling, and Göran Wallin
Biogeosciences, 20, 5125–5149, https://doi.org/10.5194/bg-20-5125-2023, https://doi.org/10.5194/bg-20-5125-2023, 2023
Short summary
Short summary
Twenty tropical tree species native to Africa were planted along an elevation gradient (1100 m, 5.4 °C difference). We found that early-successional (ES) species, especially from lower elevations, grew faster at warmer sites, while several of the late-successional (LS) species, especially from higher elevations, did not respond or grew slower. Moreover, a warmer climate increased tree mortality in LS species, but not much in ES species.
Lilian Vallet, Charbel Abdallah, Thomas Lauvaux, Lilian Joly, Michel Ramonet, Philippe Ciais, Morgan Lopez, Irène Xueref-Remy, and Florent Mouillot
EGUsphere, https://doi.org/10.5194/egusphere-2023-2421, https://doi.org/10.5194/egusphere-2023-2421, 2023
Short summary
Short summary
2022 fire season had a huge impact on European temperate forest, with several large fires exhibiting prolonged soil combustion reported. We analyzed CO and CO2 concentration recorded at nearby atmospheric towers, revealing intense smoldering combustion. We refined a fire emission model to incorporate this process. We estimated 7.95 MteqCO2 fire emission, twice the global estimate. Fires contributed to 1.97 % of the country's annual carbon footprint, reducing forest carbon sink by 30 % this year.
Philippe Choler
Biogeosciences, 20, 4259–4272, https://doi.org/10.5194/bg-20-4259-2023, https://doi.org/10.5194/bg-20-4259-2023, 2023
Short summary
Short summary
The year 2022 was unique in that the summer heat wave and drought led to a widespread reduction in vegetation growth at high elevation in the European Alps. This impact was unprecedented in the southwestern, warm, and dry part of the Alps. Over the last 2 decades, water has become a co-dominant control of vegetation activity in areas that were, so far, primarily controlled by temperature, and the growth of mountain grasslands has become increasingly sensitive to moisture availability.
Adriana Simonetti, Raquel Fernandes Araujo, Carlos Henrique Souza Celes, Flávia Ranara da Silva e Silva, Joaquim dos Santos, Niro Higuchi, Susan Trumbore, and Daniel Magnabosco Marra
Biogeosciences, 20, 3651–3666, https://doi.org/10.5194/bg-20-3651-2023, https://doi.org/10.5194/bg-20-3651-2023, 2023
Short summary
Short summary
We combined 2 years of monthly drone-acquired RGB (red–green–blue) imagery with field surveys in a central Amazon forest. Our results indicate that small gaps associated with branch fall were the most frequent. Biomass losses were partially controlled by gap area, with branch fall and snapping contributing the least and greatest relative values, respectively. Our study highlights the potential of drone images for monitoring canopy dynamics in dense tropical forests.
Silvia Caldararu, Victor Rolo, Benjamin D. Stocker, Teresa E. Gimeno, and Richard Nair
Biogeosciences, 20, 3637–3649, https://doi.org/10.5194/bg-20-3637-2023, https://doi.org/10.5194/bg-20-3637-2023, 2023
Short summary
Short summary
Ecosystem manipulative experiments are large experiments in real ecosystems. They include processes such as species interactions and weather that would be omitted in more controlled settings. They offer a high level of realism but are underused in combination with vegetation models used to predict the response of ecosystems to global change. We propose a workflow using models and ecosystem experiments together, taking advantage of the benefits of both tools for Earth system understanding.
Katharina Ramskogler, Bettina Knoflach, Bernhard Elsner, Brigitta Erschbamer, Florian Haas, Tobias Heckmann, Florentin Hofmeister, Livia Piermattei, Camillo Ressl, Svenja Trautmann, Michael H. Wimmer, Clemens Geitner, Johann Stötter, and Erich Tasser
Biogeosciences, 20, 2919–2939, https://doi.org/10.5194/bg-20-2919-2023, https://doi.org/10.5194/bg-20-2919-2023, 2023
Short summary
Short summary
Primary succession in proglacial areas depends on complex driving forces. To concretise the complex effects and interaction processes, 39 known explanatory variables assigned to seven spheres were analysed via principal component analysis and generalised additive models. Key results show that in addition to time- and elevation-dependent factors, also disturbances alter vegetation development. The results are useful for debates on vegetation development in a warming climate.
Zijing Li, Zhiyong Li, Xuze Tong, Lei Dong, Ying Zheng, Jinghui Zhang, Bailing Miao, Lixin Wang, Liqing Zhao, Lu Wen, Guodong Han, Frank Yonghong Li, and Cunzhu Liang
Biogeosciences, 20, 2869–2882, https://doi.org/10.5194/bg-20-2869-2023, https://doi.org/10.5194/bg-20-2869-2023, 2023
Short summary
Short summary
We used random forest models and structural equation models to assess the relative importance of the present climate and paleoclimate as determinants of diversity and aboveground biomass. Results showed that paleoclimate changes and modern climate jointly determined contemporary biodiversity patterns, while community biomass was mainly affected by modern climate. These findings suggest that contemporary biodiversity patterns may be affected by processes at divergent temporal scales.
William Rupert Moore Flynn, Harry Jon Foord Owen, Stuart William David Grieve, and Emily Rebecca Lines
Biogeosciences, 20, 2769–2784, https://doi.org/10.5194/bg-20-2769-2023, https://doi.org/10.5194/bg-20-2769-2023, 2023
Short summary
Short summary
Quantifying vegetation indices is crucial for ecosystem monitoring and modelling. Terrestrial laser scanning (TLS) has potential to accurately measure vegetation indices, but multiple methods exist, with little consensus on best practice. We compare three methods and extract wood-to-plant ratio, a metric used to correct for wood in leaf indices. We show corrective metrics vary with tree structure and variation among methods, highlighting the value of TLS data and importance of rigorous testing.
Haiyang Shi, Geping Luo, Olaf Hellwich, Alishir Kurban, Philippe De Maeyer, and Tim Van de Voorde
Biogeosciences, 20, 2727–2741, https://doi.org/10.5194/bg-20-2727-2023, https://doi.org/10.5194/bg-20-2727-2023, 2023
Short summary
Short summary
In studies on the relationship between ecosystem functions and climate and plant traits, previously used data-driven methods such as multiple regression and random forest may be inadequate for representing causality due to limitations such as covariance between variables. Based on FLUXNET site data, we used a causal graphical model to revisit the control of climate and vegetation traits over ecosystem functions.
Josué Delgado-Balbuena, Henry W. Loescher, Carlos A. Aguirre-Gutiérrez, Teresa Alfaro-Reyna, Luis F. Pineda-Martínez, Rodrigo Vargas, and Tulio Arredondo
Biogeosciences, 20, 2369–2385, https://doi.org/10.5194/bg-20-2369-2023, https://doi.org/10.5194/bg-20-2369-2023, 2023
Short summary
Short summary
In the semiarid grassland, an increase in soil moisture at shallow depths instantly enhances carbon release through respiration. In contrast, deeper soil water controls plant carbon uptake but with a delay of several days. Previous soil conditions, biological activity, and the size and timing of precipitation are factors that determine the amount of carbon released into the atmosphere. Thus, future changes in precipitation patterns could convert ecosystems from carbon sinks to carbon sources.
German Vargas Gutiérrez, Daniel Pérez-Aviles, Nanette Raczka, Damaris Pereira-Arias, Julián Tijerín-Triviño, L. David Pereira-Arias, David Medvigy, Bonnie G. Waring, Ember Morrisey, Edward Brzostek, and Jennifer S. Powers
Biogeosciences, 20, 2143–2160, https://doi.org/10.5194/bg-20-2143-2023, https://doi.org/10.5194/bg-20-2143-2023, 2023
Short summary
Short summary
To study whether nutrient availability controls tropical dry forest responses to reductions in soil moisture, we established the first troughfall exclusion experiment in a tropical dry forest plantation system crossed with a fertilization scheme. We found that the effects of fertilization on net primary productivity are larger than the effects of a ~15 % reduction in soil moisture, although in many cases we observed an interaction between drought and nutrient additions, suggesting colimitation.
Alina Lucia Ludat and Simon Kübler
Biogeosciences, 20, 1991–2012, https://doi.org/10.5194/bg-20-1991-2023, https://doi.org/10.5194/bg-20-1991-2023, 2023
Short summary
Short summary
Satellite-based analysis illustrates the impact of geological processes for the stability of the ecosystem in the Mara River basin (Kenya/Tanzania). Newly detected fault activity influences the course of river networks and modifies erosion–deposition patterns. Tectonic surface features and variations in rock chemistry lead to localized enhancement of clay and soil moisture values and seasonally stabilised vegetation growth patterns in this climatically vulnerable region.
Erica Jaakkola, Antje Gärtner, Anna Maria Jönsson, Karl Ljung, Per-Ola Olsson, and Thomas Holst
Biogeosciences, 20, 803–826, https://doi.org/10.5194/bg-20-803-2023, https://doi.org/10.5194/bg-20-803-2023, 2023
Short summary
Short summary
Increased spruce bark beetle outbreaks were recently seen in Sweden. When Norway spruce trees are attacked, they increase their production of VOCs, attempting to kill the beetles. We provide new insights into how the Norway spruce act when infested and found the emitted volatiles to increase up to 700 times and saw a change in compound blend. We estimate that the 2020 bark beetle outbreak in Sweden could have increased the total monoterpene emissions from the forest by more than 10 %.
Georg Wohlfahrt, Albin Hammerle, Felix M. Spielmann, Florian Kitz, and Chuixiang Yi
Biogeosciences, 20, 589–596, https://doi.org/10.5194/bg-20-589-2023, https://doi.org/10.5194/bg-20-589-2023, 2023
Short summary
Short summary
The trace gas carbonyl sulfide (COS), which is taken up by plant leaves in a process very similar to photosynthesis, is thought to be a promising proxy for the gross uptake of carbon dioxide by plants. Here we propose a new framework for estimating a key metric to that end, the so-called leaf relative uptake rate. The values we deduce by applying principles of plant optimality are considerably lower than published values and may help reduce the uncertainty of the global COS budget.
François Jonard, Andrew F. Feldman, Daniel J. Short Gianotti, and Dara Entekhabi
Biogeosciences, 19, 5575–5590, https://doi.org/10.5194/bg-19-5575-2022, https://doi.org/10.5194/bg-19-5575-2022, 2022
Short summary
Short summary
We investigate the spatial and temporal patterns of light and water limitation in plant function at the ecosystem scale. Using satellite observations, we characterize the nonlinear relationships between sun-induced chlorophyll fluorescence (SIF) and water and light availability. This study highlights that soil moisture limitations on SIF are found primarily in drier environments, while light limitations are found in intermediately wet regions.
Nikolai Knapp, Sabine Attinger, and Andreas Huth
Biogeosciences, 19, 4929–4944, https://doi.org/10.5194/bg-19-4929-2022, https://doi.org/10.5194/bg-19-4929-2022, 2022
Short summary
Short summary
The biomass of forests is determined by forest growth and mortality. These quantities can be estimated with different methods such as inventories, remote sensing and modeling. These methods are usually being applied at different spatial scales. The scales influence the obtained frequency distributions of biomass, growth and mortality. This study suggests how to transfer between scales, when using forest models of different complexity for a tropical forest.
Kai Chen, Kevin S. Burgess, Fangliang He, Xiang-Yun Yang, Lian-Ming Gao, and De-Zhu Li
Biogeosciences, 19, 4801–4810, https://doi.org/10.5194/bg-19-4801-2022, https://doi.org/10.5194/bg-19-4801-2022, 2022
Short summary
Short summary
Why does plants' distributional range size vary enormously? This study provides evidence that seed mass, intraspecific seed mass variation, seed dispersal mode and phylogeny contribute to explaining species distribution variation on a geographic scale. Our study clearly shows the importance of including seed life-history traits in modeling and predicting the impact of climate change on species distribution of seed plants.
Ying Ying Chen, Huan Yang, Gen Sheng Bao, Xiao Pan Pang, and Zheng Gang Guo
Biogeosciences, 19, 4521–4532, https://doi.org/10.5194/bg-19-4521-2022, https://doi.org/10.5194/bg-19-4521-2022, 2022
Short summary
Short summary
Investigating the effect of the presence of plateau pikas on ecosystem services of alpine meadows is helpful to understand the role of the presence of small mammalian herbivores in grasslands. The results of this study showed that the presence of plateau pikas led to higher biodiversity conservation, soil nitrogen and phosphorus maintenance, and carbon sequestration of alpine meadows, whereas it led to lower forage available to livestock and water conservation of alpine meadows.
Clement Jean Frédéric Delcourt and Sander Veraverbeke
Biogeosciences, 19, 4499–4520, https://doi.org/10.5194/bg-19-4499-2022, https://doi.org/10.5194/bg-19-4499-2022, 2022
Short summary
Short summary
This study provides new equations that can be used to estimate aboveground tree biomass in larch-dominated forests of northeast Siberia. Applying these equations to 53 forest stands in the Republic of Sakha (Russia) resulted in significantly larger biomass stocks than when using existing equations. The data presented in this work can help refine biomass estimates in Siberian boreal forests. This is essential to assess changes in boreal vegetation and carbon dynamics.
Iris Johanna Aalto, Eduardo Eiji Maeda, Janne Heiskanen, Eljas Kullervo Aalto, and Petri Kauko Emil Pellikka
Biogeosciences, 19, 4227–4247, https://doi.org/10.5194/bg-19-4227-2022, https://doi.org/10.5194/bg-19-4227-2022, 2022
Short summary
Short summary
Tree canopies are strong moderators of understory climatic conditions. In tropical areas, trees cool down the microclimates. Using remote sensing and field measurements we show how even intermediate canopy cover and agroforestry trees contributed to buffering the hottest temperatures in Kenya. The cooling effect was the greatest during hot days and in lowland areas, where the ambient temperatures were high. Adopting agroforestry practices in the area could assist in mitigating climate change.
Jing Wang and Xuefa Wen
Biogeosciences, 19, 4197–4208, https://doi.org/10.5194/bg-19-4197-2022, https://doi.org/10.5194/bg-19-4197-2022, 2022
Short summary
Short summary
Excess radiation and low temperatures exacerbate drought impacts on canopy conductance (Gs) among transects. The primary determinant of drought stress on Gs was soil moisture on the Loess Plateau (LP) and the Mongolian Plateau (MP), whereas it was the vapor pressure deficit on the Tibetan Plateau (TP). Radiation exhibited a negative effect on Gs via drought stress within transects, while temperature had negative effects on stomatal conductance on the TP but no effect on the LP and MP.
Sylvain Monteux, Janine Mariën, and Eveline J. Krab
Biogeosciences, 19, 4089–4105, https://doi.org/10.5194/bg-19-4089-2022, https://doi.org/10.5194/bg-19-4089-2022, 2022
Short summary
Short summary
Quantifying the feedback from the decomposition of thawing permafrost soils is crucial to establish adequate climate warming mitigation scenarios. Past efforts have focused on abiotic and to some extent microbial drivers of decomposition but not biotic drivers such as soil fauna. We added soil fauna (Collembola Folsomia candida) to permafrost, which introduced bacterial taxa without affecting bacterial communities as a whole but increased CO2 production (+12 %), presumably due to priming.
Mirjam Pfeiffer, Munir P. Hoffmann, Simon Scheiter, William Nelson, Johannes Isselstein, Kingsley Ayisi, Jude J. Odhiambo, and Reimund Rötter
Biogeosciences, 19, 3935–3958, https://doi.org/10.5194/bg-19-3935-2022, https://doi.org/10.5194/bg-19-3935-2022, 2022
Short summary
Short summary
Smallholder farmers face challenges due to poor land management and climate change. We linked the APSIM crop model and the aDGVM2 vegetation model to investigate integrated management options that enhance ecosystem functions and services. Sustainable intensification moderately increased yields. Crop residue grazing reduced feed gaps but not for dry-to-wet season transitions. Measures to improve soil water and nutrient status are recommended. Landscape-level ecosystem management is essential.
Marina Corrêa Scalon, Imma Oliveras Menor, Renata Freitag, Karine S. Peixoto, Sami W. Rifai, Beatriz Schwantes Marimon, Ben Hur Marimon Junior, and Yadvinder Malhi
Biogeosciences, 19, 3649–3661, https://doi.org/10.5194/bg-19-3649-2022, https://doi.org/10.5194/bg-19-3649-2022, 2022
Short summary
Short summary
We investigated dynamic nutrient flow and demand in a typical savanna and a transition forest to understand how similar soils and the same climate dominated by savanna vegetation can also support forest-like formations. Savanna relied on nutrient resorption from wood, and nutrient demand was equally partitioned between leaves, wood and fine roots. Transition forest relied on resorption from the canopy biomass and nutrient demand was predominantly driven by leaves.
Emma Bousquet, Arnaud Mialon, Nemesio Rodriguez-Fernandez, Stéphane Mermoz, and Yann Kerr
Biogeosciences, 19, 3317–3336, https://doi.org/10.5194/bg-19-3317-2022, https://doi.org/10.5194/bg-19-3317-2022, 2022
Short summary
Short summary
Pre- and post-fire values of four climate variables and four vegetation variables were analysed at the global scale, in order to observe (i) the general fire likelihood factors and (ii) the vegetation recovery trends over various biomes. The main result of this study is that L-band vegetation optical depth (L-VOD) is the most impacted vegetation variable and takes the longest to recover over dense forests. L-VOD could then be useful for post-fire vegetation recovery studies.
Chen Yang, Yue Shi, Wenjuan Sun, Jiangling Zhu, Chengjun Ji, Yuhao Feng, Suhui Ma, Zhaodi Guo, and Jingyun Fang
Biogeosciences, 19, 2989–2999, https://doi.org/10.5194/bg-19-2989-2022, https://doi.org/10.5194/bg-19-2989-2022, 2022
Short summary
Short summary
Quantifying China's forest biomass C pool is important in understanding C cycling in forests. However, most of studies on forest biomass C pool were limited to the period of 2004–2008. Here, we used a biomass expansion factor method to estimate C pool from 1977 to 2018. The results suggest that afforestation practices, forest growth, and environmental changes were the main drivers of increased C sink. Thus, this study provided an essential basis for achieving China's C neutrality target.
Anne Schucknecht, Bumsuk Seo, Alexander Krämer, Sarah Asam, Clement Atzberger, and Ralf Kiese
Biogeosciences, 19, 2699–2727, https://doi.org/10.5194/bg-19-2699-2022, https://doi.org/10.5194/bg-19-2699-2022, 2022
Short summary
Short summary
Actual maps of grassland traits could improve local farm management and support environmental assessments. We developed, assessed, and applied models to estimate dry biomass and plant nitrogen (N) concentration in pre-Alpine grasslands with drone-based multispectral data and canopy height information. Our results indicate that machine learning algorithms are able to estimate both parameters but reach a better level of performance for biomass.
Ramona J. Heim, Andrey Yurtaev, Anna Bucharova, Wieland Heim, Valeriya Kutskir, Klaus-Holger Knorr, Christian Lampei, Alexandr Pechkin, Dora Schilling, Farid Sulkarnaev, and Norbert Hölzel
Biogeosciences, 19, 2729–2740, https://doi.org/10.5194/bg-19-2729-2022, https://doi.org/10.5194/bg-19-2729-2022, 2022
Short summary
Short summary
Fires will probably increase in Arctic regions due to climate change. Yet, the long-term effects of tundra fires on carbon (C) and nitrogen (N) stocks and cycling are still unclear. We investigated the long-term fire effects on C and N stocks and cycling in soil and aboveground living biomass.
We found that tundra fires did not affect total C and N stocks because a major part of the stocks was located belowground in soils which were largely unaltered by fire.
Aileen B. Baird, Edward J. Bannister, A. Robert MacKenzie, and Francis D. Pope
Biogeosciences, 19, 2653–2669, https://doi.org/10.5194/bg-19-2653-2022, https://doi.org/10.5194/bg-19-2653-2022, 2022
Short summary
Short summary
Forest environments contain a wide variety of airborne biological particles (bioaerosols) important for plant and animal health and biosphere–atmosphere interactions. Using low-cost sensors and a free-air carbon dioxide enrichment (FACE) experiment, we monitor the impact of enhanced CO2 on airborne particles. No effect of the enhanced CO2 treatment on total particle concentrations was observed, but a potential suppression of high concentration bioaerosol events was detected under enhanced CO2.
Melanie S. Verlinden, Hamada AbdElgawad, Arne Ven, Lore T. Verryckt, Sebastian Wieneke, Ivan A. Janssens, and Sara Vicca
Biogeosciences, 19, 2353–2364, https://doi.org/10.5194/bg-19-2353-2022, https://doi.org/10.5194/bg-19-2353-2022, 2022
Short summary
Short summary
Zea mays grows in mesocosms with different soil nutrition levels. At low phosphorus (P) availability, leaf physiological activity initially decreased strongly. P stress decreased over the season. Arbuscular mycorrhizal fungi (AMF) symbiosis increased over the season. AMF symbiosis is most likely responsible for gradual reduction in P stress.
Guoyu Lan, Bangqian Chen, Chuan Yang, Rui Sun, Zhixiang Wu, and Xicai Zhang
Biogeosciences, 19, 1995–2005, https://doi.org/10.5194/bg-19-1995-2022, https://doi.org/10.5194/bg-19-1995-2022, 2022
Short summary
Short summary
Little is known about the impact of rubber plantations on diversity of the Great Mekong Subregion. In this study, we uncovered latitudinal gradients of plant diversity of rubber plantations. Exotic species with high dominance result in loss of plant diversity of rubber plantations. Not all exotic species would reduce plant diversity of rubber plantations. Much more effort should be made to balance agricultural production with conservation goals in this region.
Ulrike Hiltner, Andreas Huth, and Rico Fischer
Biogeosciences, 19, 1891–1911, https://doi.org/10.5194/bg-19-1891-2022, https://doi.org/10.5194/bg-19-1891-2022, 2022
Short summary
Short summary
Quantifying biomass loss rates due to stem mortality is important for estimating the role of tropical forests in the global carbon cycle. We analyse the consequences of long-term elevated stem mortality for tropical forest dynamics and biomass loss. Based on simulations, we developed a statistical model to estimate biomass loss rates of forests in different successional states from forest attributes. Assuming a doubling of tree mortality, biomass loss increased from 3.2 % yr-1 to 4.5 % yr-1.
Jon Cranko Page, Martin G. De Kauwe, Gab Abramowitz, Jamie Cleverly, Nina Hinko-Najera, Mark J. Hovenden, Yao Liu, Andy J. Pitman, and Kiona Ogle
Biogeosciences, 19, 1913–1932, https://doi.org/10.5194/bg-19-1913-2022, https://doi.org/10.5194/bg-19-1913-2022, 2022
Short summary
Short summary
Although vegetation responds to climate at a wide range of timescales, models of the land carbon sink often ignore responses that do not occur instantly. In this study, we explore the timescales at which Australian ecosystems respond to climate. We identified that carbon and water fluxes can be modelled more accurately if we include environmental drivers from up to a year in the past. The importance of antecedent conditions is related to ecosystem aridity but is also influenced by other factors.
Cited articles
Ainsworth, E. A. and Long, S. P.: What have we learned from 15 years of
free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of
photosynthesis, canopy properties and plant production to rising CO2, New
Phytol., 165, 351–371, https://doi.org/10.1111/j.1469-8137.2004.01224.x, 2005.
Barnekow, L.: Holocene tree-line dynamics and inferred climatic changes in
the Abisko area, nothern Sweden, based on macrofossil and pollen records,
The Holocene, 9, 253–265, 1999.
Batjes, N. H.: ISRIC-WISE global data ser of derived soil properties on a
0.5 by 0.5∘ grid (version 3.0), ISRIC – World Soil Information,
Wageningen, available at: http://data.isric.org/geonetwork/srv/eng/catalog.search#/metadata/dc7b283a-8f19-45e1-aaed-e9bd515119bc (last access: 10 December 2021) 2005.
Berglund, B. E., Barnekow, L., Hammarlund, D., Sandgren, P., and Snowball,
I. F.: Holocene forest dynamics and climate changes in the Abisko area,
northern Sweden – the Sonesson model of vegetation history reconsidered and
confirmed, Ecol. Bull., 45, 15–30, 1996.
Bhatt, U. S., Walker, D. A., Raynolds, M. K., Comiso, J. C., Epstein, H. E.,
Jia, G., Gens, R., Pinzon, J. E., Tucker, C. J., Tweedie, C. E., and Webber,
P. J.: Circumpolar Arctic Tundra Vegetation Change Is Linked to Sea Ice
Decline, Earth Interact., 14, 1–20, https://doi.org/10.1175/2010ei315.1, 2010.
Brown, C. D., Dufour-Tremblay, G., Jameson, R. G., Mamet, S. D., Trant, A.
J., Walker, X. J., Boudreau, S., Harper, K. A., Henry, G. H. R., Hermanutz,
L., Hofgaard, A., Isaeva, L., Kershaw, G. P., and Johnstone, J. F.:
Reproduction as a bottleneck to treeline advance across the circumarctic
forest tundra ecotone, Ecography, 42, 137–147, https://doi.org/10.1111/ecog.03733, 2018.
Bruhwiler, L., Parmentier, F.-J. W., Crill, P., Leonard, M., and Palmer, P.
I.: The Arctic Carbon Cycle and Its Response to Changing Climate, Curr.
Clim. Change Rep., 7, 14–34, https://doi.org/10.1007/s40641-020-00169-5, 2021.
Buckeridge, K. M., Zufelt, E., Chu, H., and Grogan, P.: Soil nitrogen
cycling rates in low arctic shrub tundra are enhanced by litter feedbacks,
Plant Soil, 330, 407–421, https://doi.org/10.1007/s11104-009-0214-8, 2009.
Cairns, D. and Moen, J.: Herbivory Influences Tree Lines, J.
Ecol., 92, 1019–1024, 2004.
Callaghan, T. V., Jonasson, C., Thierfelder, T., Yang, Z., Hedenas, H.,
Johansson, M., Molau, U., Van Bogaert, R., Michelsen, A., Olofsson, J.,
Gwynn-Jones, D., Bokhorst, S., Phoenix, G., Bjerke, J. W., Tommervik, H.,
Christensen, T. R., Hanna, E., Koller, E. K., and Sloan, V. L.: Ecosystem
change and stability over multiple decades in the Swedish subarctic: complex
processes and multiple drivers, Philos. T. R. Soc. Lond. B, 368,
20120488, https://doi.org/10.1098/rstb.2012.0488, 2013.
Caswell, T. A., Droettboom, M., Lee, A., Sales de Andrade, E., Hoffmann, T., Hunter, J., Klymak, J., Firing, E., Stansby, D., Varoquaux, N., Nielsen, J. H., Root, B., May, R., Elson, P., Seppänen, J. K., Dale, D., Lee, J.-J., McDougall, D., Straw, A., Hobson, P., hannah, Gohlke, C., Vincent, A. F., Yu, T. S., Ma, E., Silvester, S., Moad, C., Kniazev, N., Ernest, E., and Ivanov, P.: matplotlib/matplotlib: REL: v3.5.0, Zenodo [code], https://doi.org/10.5281/zenodo.592536, 2021.
Chapin, F. S., 3rd, Sturm, M., Serreze, M. C., McFadden, J. P., Key, J. R.,
Lloyd, A. H., McGuire, A. D., Rupp, T. S., Lynch, A. H., Schimel, J. P.,
Beringer, J., Chapman, W. L., Epstein, H. E., Euskirchen, E. S., Hinzman, L.
D., Jia, G., Ping, C. L., Tape, K. D., Thompson, C. D., Walker, D. A., and
Welker, J. M.: Role of land-surface changes in arctic summer warming,
Science, 310, 657–660, https://doi.org/10.1126/science.1117368, 2005.
Chapin, F. S. I.: Direct and Indirect Effects of Temperature on Arctic
Plants, Polar Biol., 2, 47–52, 1983.
Clemmensen, K. E., Durling, M. B., Michelsen, A., Hallin, S., Finlay, R. D.,
and Lindahl, B. D.: A tipping point in carbon storage when forest expands
into tundra is related to mycorrhizal recycling of nitrogen, Ecol. Lett., 24,
1193–1204, https://doi.org/10.1111/ele.13735, 2021.
Cleveland, C. C., Townsend, A. R., Schimel, D. S., Fisher, H., Howarth, R.
W., Hedin, L. O., Perakis, S. S., Latty, E. F., Von Fischer, J. C.,
Elseroad, A., and Wasson, M. F.: Global patterns of terrestrial biological
nitrogen (N2) fixation in natural ecosystems, Global Biogeochem. Cy.,
13, 623–645, https://doi.org/10.1029/1999gb900014, 1999.
Dawes, M. A., Hagedorn, F., Handa, I. T., Streit, K., Ekblad, A., Rixen, C.,
Körner, C., and Hättenschwiler, S.: An alpine treeline in a carbon
dioxide-rich world: synthesis of a nine-year free-air carbon dioxide
enrichment study, Oecologia, 171, 623–637, https://doi.org/10.1007/s00442-012-2576-5, 2013.
Dusenge, M. E., Duarte, A. G., and Way, D. A.: Plant carbon metabolism and
climate change: elevated CO2 and temperature impacts on photosynthesis,
photorespiration and respiration, New Phytol., 221, 32–49, https://doi.org/10.1111/nph.15283,
2019.
Elmendorf, S. C., Henry, G. H. R., Hollister, R. D., Björk, R. G.,
Boulanger-Lapointe, N., Cooper, E. J., Cornelissen, J. H. C., Day, T. A.,
Dorrepaal, E., Elumeeva, T. G., Gill, M., Gould, W. A., Harte, J., Hik, D.
S., Hofgaard, A., Johnson, D. R., Johnstone, J. F., Jónsdóttir, I.
S., Jorgenson, J. C., Klanderud, K., Klein, J. A., Koh, S., Kudo, G., Lara,
M., Lévesque, E., Magnússon, B., May, J. L., Mercado-Díaz, J. A., Michelsen, A., Molau, U., Myers-Smith, I. H.,
Oberbauer, S. F., Onipchenko, V. G., Rixen, C., Martin Schmidt, N., Shaver,
G. R., Spasojevic, M. J., Þórhallsdóttir, Þ. E., Tolvanen,
A., Troxler, T., Tweedie, C. E., Villareal, S., Wahren, C.-H., Walker, X.,
Webber, P. J., Welker, J. M., and Wipf, S.: Plot-scale evidence of tundra
vegetation change and links to recent summer warming, Nat. Clim. Change,
2, 453–457, https://doi.org/10.1038/nclimate1465, 2012.
Elson, P., Sales de Andrade, E., Lucas, G., May, R., Hattersley, R., Campbell, E., Dawson, A., Raynaud, S., scmc72, Little, B., Snow, A. D., Donkers, K., Blay, B., Killick, P., Wilson, N., Peglar, P., lbdreyer, Andrew, Szymaniak, J., Berchet, A., Bosley, C., Davis, L., Filipe, Krasting, J., Bradbury, M., Kirkham, D., stephenworsley, Clément, Caria, G., and Hedley, M.: SciTools/cartopy: v0.20.1, Zenodo [code], https://doi.org/10.5281/zenodo.1182735, 2021.
Emanuelsson, U.: Human Influence on Vegetation in the Torneträsk Area
during the Last Three Centuries, Ecol. Bullet., 38, 95–111, 1987.
Epstein, H. E., Kaplan, J. O., Lischke, H., and Yu, Q.: Simulating Future
Changes in Arctic and Subarctic Vegetation, Comput. Sci.
Eng., 9, 12–23, https://doi.org/10.1109/mcse.2007.84, 2007.
Epstein, H. E., Raynolds, M. K., Walker, D. A., Bhatt, U. S., Tucker, C. J.,
and Pinzon, J. E.: Dynamics of aboveground phytomass of the circumpolar
Arctic tundra during the past three decades, Environ. Res. Lett.,
7, 015506, https://doi.org/10.1088/1748-9326/7/1/015506, 2012.
Fatichi, S., Pappas, C., Zscheischler, J., and Leuzinger, S.: Modelling
carbon sources and sinks in terrestrial vegetation, New Phytol., 221,
652–668, https://doi.org/10.1111/nph.15451, 2019.
Forbes, B. C., Fauria, M. M., and Zetterberg, P.: Russian Arctic warming and
“greening” are closely tracked by tundra shrub willows, Glob. Change
Biol., 16, 1542–1554, https://doi.org/10.1111/j.1365-2486.2009.02047.x, 2010.
Friend, A. D., Eckes-Shephard, A. H., Fonti, P., Rademacher, T. T.,
Rathgeber, C. B. K., Richardson, A. D., and Turton, R. H.: On the need to
consider wood formation processes in global vegetation models and a
suggested approach, Ann. Forest Sci., 76, 49, https://doi.org/10.1007/s13595-019-0819-x,
2019.
Gommers, R., Virtanen, P., Burovski, E., Oliphant, T. E., Weckesser, W., Cournapeau, D., alexbrc, Reddy, T., Peterson, P., Haberland, M., Wilson, J., Nelson, A., endolith, Mayorov, N., van der Walt, S., Polat, I., Laxalde, D., Brett, M., Larson, E., Millman, J., Lars, van Mulbregt, P., eric-jones, Carey, C. J., Moore, E., Kern, R., peterbell10, Leslie, T., Perktold, J., and Striega, K.: ScipPy python package, Zenodo [code], https://doi.org/10.5281/zenodo.595738, 2021.
Grau, O., Ninot, J. M., Blanco-Moreno, J. M., van Logtestijn, R. S. P.,
Cornelissen, J. H. C., and Callaghan, T. V.: Shrub-tree interactions and
environmental changes drive treeline dynamics in the Subarctic, Oikos, 121,
1680–1690, https://doi.org/10.1111/j.1600-0706.2011.20032.x, 2012.
Hallinger, M., Manthey, M., and Wilmking, M.: Establishing a missing link:
warm summers and winter snow cover promote shrub expansion into alpine
tundra in Scandinavia, New Phytol., 186, 890–899, 2010.
Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., Fernández del Río, J., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant, T. E.: Array programming with NumPy, Nature, 585, 357–362, https://doi.org/10.1038/s41586-020-2649-2, 2020.
Harsch, M. A., Hulme, P. E., McGlone, M. S., and Duncan, R. P.: Are
treelines advancing? A global meta-analysis of treeline response to climate
warming, Ecol. Lett., 12, 1040–1049, https://doi.org/10.1111/j.1461-0248.2009.01355.x, 2009.
Haxeltine, A. and Prentice, I. C.: A General Model for the Light-Use
Efficiency of Primary Production, Funct. Ecol., 10, 551–561,
https://doi.org/10.2307/2390165, 1996.
Hedenås, H., Olsson, H., Jonasson, C., Bergstedt, J., Dahlberg, U., and
Callaghan, T. V.: Changes in Tree Growth, Biomass and Vegetation Over a
13-Year Period in the Swedish Sub-Arctic, Ambio, 40, 672–682, https://doi.org/10.1007/s13280-011-0173-1, 2011.
Hengl, T., Mendes de Jesus, J., Heuvelink, G. B., Ruiperez Gonzalez, M.,
Kilibarda, M., Blagotic, A., Shangguan, W., Wright, M. N., Geng, X.,
Bauer-Marschallinger, B., Guevara, M. A., Vargas, R., MacMillan, R. A.,
Batjes, N. H., Leenaars, J. G., Ribeiro, E., Wheeler, I., Mantel, S., and
Kempen, B.: SoilGrids250m: Global gridded soil information based on machine
learning, PLoS One, 12, e0169748, https://doi.org/10.1371/journal.pone.0169748, 2017.
Hickler, T., Smith, B., Prentice, I. C., MjÖFors, K., Miller, P.,
Arneth, A., and Sykes, M. T.: CO2 fertilization in temperate FACE
experiments not representative of boreal and tropical forests, Glob. Change
Biol., 14, 1531–1542, https://doi.org/10.1111/j.1365-2486.2008.01598.x, 2008.
Hicks, L. C., Rousk, K., Rinnan, R., and Rousk, J.: Soil Microbial Responses
to 28 Years of Nutrient Fertilization in a Subarctic Heath, Ecosystems, 23,
1107–1119, https://doi.org/10.1007/s10021-019-00458-7, 2019.
Hoch, G. and Körner, C.: Global patterns of mobile carbon stores in
trees at the high-elevation tree line, Glob. Ecol. Biogeogr., 21,
861–871, https://doi.org/10.1111/j.1466-8238.2011.00731.x, 2012.
Hofgaard, A., Dalen, L., and Hytteborn, H.: Tree reqruitment above the
treeline and potential for climate-driven treeline change, J.
Veg. Sci., 20, 1133–1144, 2009.
Hofgaard, A., Harper, K. A., and Golubeva, E.: The role of the circumarctic
forest–tundra ecotone for Arctic biodiversity, Biodiversity, 13, 174–181, https://doi.org/10.1080/14888386.2012.700560, 2012.
Hofgaard, A., Ols, C., Drobyshev, I., Kirchhefer, A. J., Sandberg, S., and
Söderström, L.: Non-stationary Response of Tree Growth to Climate
Trends Along the Arctic Margin, Ecosystems, 22, 434–451, https://doi.org/10.1007/s10021-018-0279-4, 2019.
Holtmeier, F. K. and Broll, G. E.: Treeline advance – driving processes and
adverse factors, Landscape Online, 1, 1–33, https://doi.org/10.3097/lo.200701, 2007.
Josefsson, M.: The Geoecology of Subalpine Heaths in the Abisko Valley,
Northern Sweden, A study of periglacial conditions, Department of Physical
Geography, Uppsala University, Sweden, 180 pp., 1990.
Karlsson, P. S. and Weih, M.: Relationships between Nitrogen Economy and
Performance in the Mountain Birch Betula pubescens ssp. tortuosa, Ecol.
Bull., 45, 71–78, 1996.
Kollas, C., Vitasse, Y., Randin, C. F., Hoch, G., and Korner, C.:
Unrestricted quality of seeds in European broad-leaved tree species growing
at the cold boundary of their distribution, Ann. Bot., 109, 473–480, https://doi.org/10.1093/aob/mcr299, 2012.
Kullman, L.: A richer, greener and smaller alpine world: review and
projection of warming-induced plant cover change in the Swedish Scandes,
Ambio, 39, 159–169, https://doi.org/10.1007/s13280-010-0021-8, 2010.
Kullman, L. and KjÄLlgren, L.: Holocene pine tree-line evolution in the
Swedish Scandes: Recent tree-line rise and climate change in a long-term
perspective, Boreas, 35, 159–168, https://doi.org/10.1111/j.1502-3885.2006.tb01119.x, 2006.
Körner, C.: Carbon limitation in trees, J. Ecol., 91, 4–17,
2003.
Körner, C.: Paradigm shift in plant growth control, Curr. Opin. Plant
Biol., 25, 107–114, https://doi.org/10.1016/j.pbi.2015.05.003, 2015.
Körner, C. and Paulsen, J.: A World-Wide Study of High Altitude Treeline
Temperatures, J. Biogeogr., 31, 713–732, 2004.
Körner, C., Basler, D., Hoch, G., Kollas, C., Lenz, A., Randin, C. F.,
Vitasse, Y., and Zimmermann, N. E.: Where, why and how? Explaining the
low-temperature range limits of temperate tree species, J. Ecol.,
104, 1079–1088, https://doi.org/10.1111/1365-2745.12574, 2016.
Lamarque, J. F., Dentener, F., McConnell, J., Ro, C. U., Shaw, M., Vet, R.,
Bergmann, D., Cameron-Smith, P., Dalsoren, S., Doherty, R., Faluvegi, G.,
Ghan, S. J., Josse, B., Lee, Y. H., MacKenzie, I. A., Plummer, D., Shindell,
D. T., Skeie, R. B., Stevenson, D. S., Strode, S., Zeng, G., Curran, M.,
Dahl-Jensen, D., Das, S., Fritzsche, D., and Nolan, M.: Multi-model mean
nitrogen and sulfur deposition from the Atmospheric Chemistry and Climate
Model Intercomparison Project (ACCMIP): evaluation of historical and
projected future changes, Atmos. Chem. Phys., 13, 7997–8018, https://doi.org/10.5194/acp-13-7997-2013, 2013.
Leuzinger, S., Manusch, C., Bugmann, H., and Wolf, A.: A sink-limited growth
model improves biomass estimation along boreal and alpine tree lines, Glob.
Ecol. Biogeogr., 22, 924–932, https://doi.org/10.1111/geb.12047, 2013.
LPJ-GUESS developers: LPJ-GUESS home page, available at: https://web.nateko.lu.se/lpj-guess/, last access: 10 December 2021.
McGuire, A. D., Anderson, L. G., Christensen, T. R., Dallimore, S., Guo, L.,
Hayes, D. J., Heimann, M., Lorenson, T. D., Macdonald, R. W., and Roulet,
N.: Sensitivity of the carbon cycle in the Arctic to climate change,
Ecol. Monogr., 79, 523–555, https://doi.org/10.1890/08-2025.1, 2009.
McGuire, A. D., Christensen, T. R., Hayes, D., Heroult, A., Euskirchen, E.,
Kimball, J. S., Koven, C., Lafleur, P., Miller, P. A., Oechel, W., Peylin,
P., Williams, M., and Yi, Y.: An assessment of the carbon balance of Arctic
tundra: comparisons among observations, process models, and atmospheric
inversions, Biogeosciences, 9, 3185–3204, https://doi.org/10.5194/bg-9-3185-2012, 2012.
Miller, P. A. and Smith, B.: Modelling tundra vegetation response to recent
arctic warming, Ambio, 41, 281–291, https://doi.org/10.1007/s13280-012-0306-1, 2012.
Myers-Smith, I. H., Forbes, B. C., Wilmking, M., Hallinger, M., Lantz, T.,
Blok, D., Tape, K. D., Macias-Fauria, M., Sass-Klaassen, U., Lévesque,
E., Boudreau, S., Ropars, P., Hermanutz, L., Trant, A., Collier, L. S.,
Weijers, S., Rozema, J., Rayback, S. A., Schmidt, N. M., Schaepman-Strub,
G., Wipf, S., Rixen, C., Ménard, C. B., Venn, S., Goetz, S.,
Andreu-Hayles, L., Elmendorf, S., Ravolainen, V., Welker, J., Grogan, P.,
Epstein, H. E., and Hik, D. S.: Shrub expansion in tundra ecosystems:
dynamics, impacts and research priorities, Environ. Res. Lett.,
6, 045509, https://doi.org/10.1088/1748-9326/6/4/045509, 2011.
Myers-Smith, I. H., Elmendorf, S. C., Beck, P. S. A., Wilmking, M.,
Hallinger, M., Blok, D., Tape, K. D., Rayback, S. A., Macias-Fauria, M.,
Forbes, B. C., Speed, J. D. M., Boulanger-Lapointe, N., Rixen, C.,
Lévesque, E., Schmidt, N. M., Baittinger, C., Trant, A. J., Hermanutz,
L., Collier, L. S., Dawes, M. A., Lantz, T. C., Weijers, S., Jørgensen,
R. H., Buchwal, A., Buras, A., Naito, A. T., Ravolainen, V.,
Schaepman-Strub, G., Wheeler, J. A., Wipf, S., Guay, K. C., Hik, D. S., and
Vellend, M.: Climate sensitivity of shrub growth across the tundra biome,
Nat. Clim. Change, 5, 887–891, https://doi.org/10.1038/nclimate2697, 2015.
Myers-Smith, I. H., Hik, D. S., and Aerts, R.: Climate warming as a driver
of tundra shrubline advance, J. Ecol., 106, 547–560, https://doi.org/10.1111/1365-2745.12817, 2018.
Olsson, P.-O., Heliasz, M., Jin, H., and Eklundh, L.: Mapping the reduction
in gross primary productivity in subarctic birch forests due to insect
outbreaks, Biogeosciences, 14, 1703–1719, https://doi.org/10.5194/bg-14-1703-2017, 2017.
Ovhed, M. and Holmgren, B.: Modelling and measuring evapotranspiration in a
mountain birch forest, Ecol. Bull., 45, 31–44, 1996.
Parker, T. C., Sanderman, J., Holden, R. D., Blume-Werry, G., Sjogersten,
S., Large, D., Castro-Diaz, M., Street, L. E., Subke, J. A., and Wookey, P.
A.: Exploring drivers of litter decomposition in a greening Arctic: results
from a transplant experiment across a treeline, Ecology, 99, 2284–2294, https://doi.org/10.1002/ecy.2442, 2018.
Paulsen, J. and Körner, C.: A climate-based model to predict potential
treeline position around the globe, Alpine Bot., 124, 1–12, https://doi.org/10.1007/s00035-014-0124-0, 2014.
Piao, S., Sitch, S., Ciais, P., Friedlingstein, P., Peylin, P., Wang, X.,
Ahlstrom, A., Anav, A., Canadell, J. G., Cong, N., Huntingford, C., Jung,
M., Levis, S., Levy, P. E., Li, J., Lin, X., Lomas, M. R., Lu, M., Luo, Y.,
Ma, Y., Myneni, R. B., Poulter, B., Sun, Z., Wang, T., Viovy, N., Zaehle,
S., and Zeng, N.: Evaluation of terrestrial carbon cycle models for their
response to climate variability and to CO2 trends, Glob. Change Biol., 19,
2117–2132, https://doi.org/10.1111/gcb.12187, 2013.
Pugh, T. A. M., Muller, C., Arneth, A., Haverd, V., and Smith, B.: Key
knowledge and data gaps in modelling the influence of CO2 concentration on
the terrestrial carbon sink, J. Plant Physiol., 203, 3–15, https://doi.org/10.1016/j.jplph.2016.05.001, 2016.
Rees, W. G., Hofgaard, A., Boudreau, S., Cairns, D. M., Harper, K., Mamet,
S., Mathisen, I., Swirad, Z., and Tutubalina, O.: Is subarctic forest
advance able to keep pace with climate change?, Glob. Change Biol., 26,
3965–3977, https://doi.org/10.1111/gcb.15113, 2020.
Rundqvist, S., Hedenås, H., Sandström, A., Emanuelsson, U.,
Eriksson, H., Jonasson, C., and Callaghan, T. V.: Tree and Shrub Expansion
Over the Past 34 Years at the Tree-Line Near Abisko, Sweden, Ambio, 40,
683–692, https://doi.org/10.1007/s13280-011-0174-0, 2011.
Scharn, R., Brachmann, C. G., Patchett, A., Reese, H., Bjorkman, A.,
Alatalo, J., Björk, R. G., Jägerbrand, A. K., Molau, U., and
Björkman, M. P.: Vegetation responses to 26 years of warming at
Latnjajaure Field Station, northern Sweden, Arctic Science, 1–20, https://doi.org/10.1139/as-2020-0042, 2021.
Scherrer, D., Vitasse, Y., Guisan, A., Wohlgemuth, T., Lischke, H., and
Gomez Aparicio, L.: Competition and demography rather than dispersal
limitation slow down upward shifts of trees' upper elevation limits in the
Alps, J. Ecol., 108, 2416–2430, https://doi.org/10.1111/1365-2745.13451, 2020.
Serreze, M. C. and Barry, R. G.: Processes and impacts of Arctic
amplification: A research synthesis, Glob. Planet. Change, 77, 85–96, https://doi.org/10.1016/j.gloplacha.2011.03.004, 2011.
Shi, M., Fisher, J. B., Brzostek, E. R., and Phillips, R. P.: Carbon cost of
plant nitrogen acquisition: global carbon cycle impact from an improved
plant nitrogen cycle in the Community Land Model, Glob. Change Biol., 22,
1299–1314, https://doi.org/10.1111/gcb.13131, 2016.
Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W.,
Kaplan, J. O., Levis, S., Lucht, W., Sykes, M. T., Thonicke, K., and
Venevsky, S.: Evaluation of ecosystem dynamics, plant geography and
terrestrial carbon cycling in the LPJ dynamic global vegetation model,
Glob. Change Biol., 9, 161–185, https://doi.org/10.1046/j.1365-2486.2003.00569.x, 2003.
Smith, B., Prentice, I. C., and Sykes, M. T.: Representation of vegetation
dynamics in the modelling of terrestrial ecosystems: comparing two
contrasting approaches within European climate space, Glob. Ecol.
Biogeogr., 10, 621–637, https://doi.org/10.1046/j.1466-822X.2001.t01-1-00256.x, 2001.
Smith, B., Wårlind, D., Arneth, A., Hickler, T., Leadley, P., Siltberg,
J., and Zaehle, S.: Implications of incorporating N cycling and N
limitations on primary production in an individual-based dynamic vegetation
model, Biogeosciences, 11, 2027–2054, https://doi.org/10.5194/bg-11-2027-2014, 2014.
Sturm, M.: Changing snow and shrub conditions affect albedo with global
implications, J. Geophys. Res., 110, G01004, https://doi.org/10.1029/2005jg000013,
2005.
Sturm, M., Holmgren, J., McFadden, J. P., Liston, G. E., Chapin, F. S., and
Racine, C. H.: Snow–Shrub Interactions in Arctic Tundra: A Hypothesis with
Climatic Implications, J. Clim., 14, 336–344, https://doi.org/10.1175/1520-0442(2001)014<0336:Ssiiat>2.0.Co;2, 2001.
Sullivan, P., Ellison, S., McNown, R., Brownlee, A., and Sveinbjörnsson,
B.: Evidence of soil nutrient availability as the proximate constraint on
growth of treeline trees in northwest Alaska, Ecology, 96, 716–727, 2015.
Sundqvist, M. K., Björk, R. G., and Molau, U.: Establishment of boreal
forest species in alpine dwarf-shrub heath in subarctic Sweden, Plant
Ecol. Div., 1, 67–75, https://doi.org/10.1080/17550870802273395, 2008.
Sveinbjörnsson, B., Nordell, O., and Kauhanen, H.: Nutrient relations of
mountain birch growth at and below the elevational tree-line in Swedish
Lapland, Funct. Ecol., 6, 213–220, 1992.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and
the Experiment Design, Bull. Am. Meteorol. Soc., 93,
485–498, https://doi.org/10.1175/bams-d-11-00094.1, 2012.
The pandas development team: pandas-dev/pandas, Zenodo [code], https://doi.org/10.5281/zenodo.4309786, 2020.
Truong, C., Palme, A. E., and Felber, F.: Recent invasion of the mountain
birch Betula pubescens ssp. tortuosa above the treeline due to climate
change: genetic and ecological study in northern Sweden, J. Evol. Biol., 20,
369–380, https://doi.org/10.1111/j.1420-9101.2006.01190.x, 2007.
Van Bogaert, R., Haneca, K., Hoogesteger, J., Jonasson, C., De Dapper, M.,
and Callaghan, T. V.: A century of tree line changes in sub-Arctic Sweden
shows local and regional variability and only a minor influence of 20th
century climate warming, J. Biogeogr., 38, 907–921, https://doi.org/10.1111/j.1365-2699.2010.02453.x, 2011.
Virkkala, A. M., Aalto, J., Rogers, B. M., Tagesson, T., Treat, C. C.,
Natali, S. M., Watts, J. D., Potter, S., Lehtonen, A., Mauritz, M., Schuur,
E. A. G., Kochendorfer, J., Zona, D., Oechel, W., Kobayashi, H., Humphreys,
E., Goeckede, M., Iwata, H., Lafleur, P. M., Euskirchen, E. S., Bokhorst,
S., Marushchak, M., Martikainen, P. J., Elberling, B., Voigt, C., Biasi, C.,
Sonnentag, O., Parmentier, F. W., Ueyama, M., Celis, G., St Loius, V. L.,
Emmerton, C. A., Peichl, M., Chi, J., Jarveoja, J., Nilsson, M. B.,
Oberbauer, S. F., Torn, M. S., Park, S. J., Dolman, H., Mammarella, I.,
Chae, N., Poyatos, R., Lopez-Blanco, E., Rojle Christensen, T., Jung Kwon,
M., Sachs, T., Holl, D., and Luoto, M.: Statistical upscaling of ecosystem
CO2 fluxes across the terrestrial tundra and boreal domain: regional
patterns and uncertainties, Glob. Change Biol., 27, 4040–4059, https://doi.org/10.1111/gcb.15659, 2021.
Vowles, T., Lindwall, F., Ekblad, A., Bahram, M., Furneaux, B. R., Ryberg,
M., and Bjork, R. G.: Complex effects of mammalian grazing on extramatrical
mycelial biomass in the Scandes forest-tundra ecotone, Ecol. Evol., 8,
1019–1030, https://doi.org/10.1002/ece3.3657, 2018.
Wania, R., Ross, I., and Prentice, I. C.: Integrating peatlands and
permafrost into a dynamic global vegetation model: 1. Evaluation and
sensitivity of physical land surface processes, Global Biogeochem.
Cy., 23, GB3014, https://doi.org/10.1029/2008gb003412, 2009.
Wei, Y., Liu, S., Huntzinger, D. N., Michalak, A. M., Viovy, N., Post, W.
M., Schwalm, C. R., Schaefer, K., Jacobson, A. R., Lu, C., Tian, H.,
Ricciuto, D. M., Cook, R. B., Mao, J., and Shi, X.: The North American
Carbon Program Multi-scale Synthesis and Terrestrial Model Intercomparison
Project – Part 2: Environmental driver data, Geosci. Model
Dev., 7, 2875–2893, https://doi.org/10.5194/gmd-7-2875-2014, 2014.
Weih, M. and Karlsson, S.: The nitrogen economy of mountain birch seedlings:
implications for winter survival, J. Ecol., 87, 211–219, 1999.
Wolf, A., Callaghan, T. V., and Larson, K.: Future changes in vegetation and
ecosystem function of the Barents Region, Climatic Change, 87, 51–73, https://doi.org/10.1007/s10584-007-9342-4, 2008.
Yang, Z., Hanna, E., and Callaghan, T. V.: Modelling
surface-air-temperature variation over complex terrain around abisko,
swedish lapland: uncertainties of measurements and models at different
scales, Geogr. Ann. A, 93, 89–112, https://doi.org/10.1111/j.1468-0459.2011.00005.x, 2011.
Yang, Z., Hanna, E., Callaghan, T. V., and Jonasson, C.: How can
meteorological observations and microclimate simulations improve
understanding of 1913–2010 climate change around Abisko, Swedish Lapland?,
Meteorol. Appl., 19, 454–463, https://doi.org/10.1002/met.276, 2012.
Zhang, W., Miller, P. A., Smith, B., Wania, R., Koenigk, T., and
Döscher, R.: Tundra shrubification and tree-line advance amplify arctic
climate warming: results from an individual-based dynamic vegetation model,
Environ. Res. Lett., 8, 034023, https://doi.org/10.1088/1748-9326/8/3/034023, 2013.
Zhang, W., Jansson, C., Miller, P. A., Smith, B., and Samuelsson, P.:
Biogeophysical feedbacks enhance the Arctic terrestrial carbon sink in
regional Earth system dynamics, Biogeosciences, 11, 5503–5519, https://doi.org/10.5194/bg-11-5503-2014, 2014.
Zhang, W., Miller, P. A., Jansson, C., Samuelsson, P., Mao, J., and Smith,
B.: Self-Amplifying Feedbacks Accelerate Greening and Warming of the Arctic,
Geophys. Res. Lett., 45, 7102–7111, https://doi.org/10.1029/2018gl077830, 2018.
Short summary
We performed model simulations of vegetation change for a historic period and a range of climate change scenarios at a high spatial resolution. Projected treeline advance continued at the same or increased rates compared to our historic simulation. Temperature isotherms advanced faster than treelines, revealing a lag in potential vegetation shifts that was modulated by nitrogen availability. At the year 2100 projected treelines had advanced by 45–195 elevational metres depending on the scenario.
We performed model simulations of vegetation change for a historic period and a range of climate...
Altmetrics
Final-revised paper
Preprint