Articles | Volume 19, issue 11
https://doi.org/10.5194/bg-19-2805-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-2805-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Technical note: A view from space on global flux towers by MODIS and Landsat: the FluxnetEO data set
Sophia Walther
CORRESPONDING AUTHOR
Department Biogeochemical Integration, Max-Planck-Institute for Biogeochemistry, Hans-Knöll-Straße 10, Jena, Germany
Simon Besnard
Department Biogeochemical Integration, Max-Planck-Institute for Biogeochemistry, Hans-Knöll-Straße 10, Jena, Germany
South Pole, Digital Innovation, Fred. Roeskestraat 115, Amsterdam, the Netherlands
Jacob Allen Nelson
Department Biogeochemical Integration, Max-Planck-Institute for Biogeochemistry, Hans-Knöll-Straße 10, Jena, Germany
Tarek Sebastian El-Madany
Department Biogeochemical Integration, Max-Planck-Institute for Biogeochemistry, Hans-Knöll-Straße 10, Jena, Germany
Mirco Migliavacca
Department Biogeochemical Integration, Max-Planck-Institute for Biogeochemistry, Hans-Knöll-Straße 10, Jena, Germany
European Commission, Joint Research Centre, Via Fermi 2749, Ispra (VA), Italy
Ulrich Weber
Department Biogeochemical Integration, Max-Planck-Institute for Biogeochemistry, Hans-Knöll-Straße 10, Jena, Germany
Nuno Carvalhais
Department Biogeochemical Integration, Max-Planck-Institute for Biogeochemistry, Hans-Knöll-Straße 10, Jena, Germany
Departamento de Ciências e Engenharia do Ambiente, DCEA, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
Sofia Lorena Ermida
Departamento de Ciências e Engenharia do Ambiente (DCEA), Faculdade de Ciências e Tecnologia (FCT), Universidade Nova de Lisboa, Lisbon, Portugal
Instituto Dom Luiz, Faculdade de Ciências da Universidade de Lisboa, Campo Grande Edifício C1, Piso 1, 1749-016 Lisbon, Portugal
Christian Brümmer
Thünen Institute of Climate-Smart Agriculture, Bundesallee 65, Braunschweig, Germany
Frederik Schrader
Thünen Institute of Climate-Smart Agriculture, Bundesallee 65, Braunschweig, Germany
Anatoly Stanislavovich Prokushkin
V.N. Sukachev Institute of Forest of the Siberian Branch of Russian Academy of Sciences – separated department of the KSC SB RAS, Akademgorodok 50/28, Krasnoyarsk, Russia
Alexey Vasilevich Panov
V.N. Sukachev Institute of Forest of the Siberian Branch of Russian Academy of Sciences – separated department of the KSC SB RAS, Akademgorodok 50/28, Krasnoyarsk, Russia
Martin Jung
Department Biogeochemical Integration, Max-Planck-Institute for Biogeochemistry, Hans-Knöll-Straße 10, Jena, Germany
Related authors
Basil Kraft, Jacob A. Nelson, Sophia Walther, Fabian Gans, Ulrich Weber, Gregory Duveiller, Markus Reichstein, Weijie Zhang, Marc Rußwurm, Devis Tuia, Marco Körner, Zayd Hamdi, and Martin Jung
Biogeosciences, 22, 3965–3987, https://doi.org/10.5194/bg-22-3965-2025, https://doi.org/10.5194/bg-22-3965-2025, 2025
Short summary
Short summary
This study evaluates machine learning approaches for upscaling evapotranspiration from the site to the global scale. Sequential models capture temporal dynamics better, especially with precipitation data, but all models show biases in data-scarce regions. Improved upscaling requires richer training data, informed covariate selection, and physical constraints to enhance robustness and reduce extrapolation errors.
Samuel Upton, Markus Reichstein, Wouter Peters, Santiago Botía, Jacob A. Nelson, Sophia Walther, Martin Jung, Fabian Gans, László Haszpra, and Ana Bastos
EGUsphere, https://doi.org/10.5194/egusphere-2025-2097, https://doi.org/10.5194/egusphere-2025-2097, 2025
Short summary
Short summary
We create a hybrid ecosystem-level carbon flux model using both eddy-covariance observations and observations of the atmospheric mole fraction of CO2 at three tall-tower observatories. Our study uses an atmospheric transport model (STILT) to connect the atmospheric signal to the ecosystem-level model. We show that this inclusion of atmospheric information meaningfully improves the model's representation of the interannual variability of the global net flux of CO2.
Jacob A. Nelson, Sophia Walther, Fabian Gans, Basil Kraft, Ulrich Weber, Kimberly Novick, Nina Buchmann, Mirco Migliavacca, Georg Wohlfahrt, Ladislav Šigut, Andreas Ibrom, Dario Papale, Mathias Göckede, Gregory Duveiller, Alexander Knohl, Lukas Hörtnagl, Russell L. Scott, Jiří Dušek, Weijie Zhang, Zayd Mahmoud Hamdi, Markus Reichstein, Sergio Aranda-Barranco, Jonas Ardö, Maarten Op de Beeck, Dave Billesbach, David Bowling, Rosvel Bracho, Christian Brümmer, Gustau Camps-Valls, Shiping Chen, Jamie Rose Cleverly, Ankur Desai, Gang Dong, Tarek S. El-Madany, Eugenie Susanne Euskirchen, Iris Feigenwinter, Marta Galvagno, Giacomo A. Gerosa, Bert Gielen, Ignacio Goded, Sarah Goslee, Christopher Michael Gough, Bernard Heinesch, Kazuhito Ichii, Marcin Antoni Jackowicz-Korczynski, Anne Klosterhalfen, Sara Knox, Hideki Kobayashi, Kukka-Maaria Kohonen, Mika Korkiakoski, Ivan Mammarella, Mana Gharun, Riccardo Marzuoli, Roser Matamala, Stefan Metzger, Leonardo Montagnani, Giacomo Nicolini, Thomas O'Halloran, Jean-Marc Ourcival, Matthias Peichl, Elise Pendall, Borja Ruiz Reverter, Marilyn Roland, Simone Sabbatini, Torsten Sachs, Marius Schmidt, Christopher R. Schwalm, Ankit Shekhar, Richard Silberstein, Maria Lucia Silveira, Donatella Spano, Torbern Tagesson, Gianluca Tramontana, Carlo Trotta, Fabio Turco, Timo Vesala, Caroline Vincke, Domenico Vitale, Enrique R. Vivoni, Yi Wang, William Woodgate, Enrico A. Yepez, Junhui Zhang, Donatella Zona, and Martin Jung
Biogeosciences, 21, 5079–5115, https://doi.org/10.5194/bg-21-5079-2024, https://doi.org/10.5194/bg-21-5079-2024, 2024
Short summary
Short summary
The movement of water, carbon, and energy from the Earth's surface to the atmosphere, or flux, is an important process to understand because it impacts our lives. Here, we outline a method called FLUXCOM-X to estimate global water and CO2 fluxes based on direct measurements from sites around the world. We go on to demonstrate how these new estimates of net CO2 uptake/loss, gross CO2 uptake, total water evaporation, and transpiration from plants compare to previous and independent estimates.
Martin Jung, Jacob Nelson, Mirco Migliavacca, Tarek El-Madany, Dario Papale, Markus Reichstein, Sophia Walther, and Thomas Wutzler
Biogeosciences, 21, 1827–1846, https://doi.org/10.5194/bg-21-1827-2024, https://doi.org/10.5194/bg-21-1827-2024, 2024
Short summary
Short summary
We present a methodology to detect inconsistencies in perhaps the most important data source for measurements of ecosystem–atmosphere carbon, water, and energy fluxes. We expect that the derived consistency flags will be relevant for data users and will help in improving our understanding of and our ability to model ecosystem–climate interactions.
Matthew J. McGrath, Ana Maria Roxana Petrescu, Philippe Peylin, Robbie M. Andrew, Bradley Matthews, Frank Dentener, Juraj Balkovič, Vladislav Bastrikov, Meike Becker, Gregoire Broquet, Philippe Ciais, Audrey Fortems-Cheiney, Raphael Ganzenmüller, Giacomo Grassi, Ian Harris, Matthew Jones, Jürgen Knauer, Matthias Kuhnert, Guillaume Monteil, Saqr Munassar, Paul I. Palmer, Glen P. Peters, Chunjing Qiu, Mart-Jan Schelhaas, Oksana Tarasova, Matteo Vizzarri, Karina Winkler, Gianpaolo Balsamo, Antoine Berchet, Peter Briggs, Patrick Brockmann, Frédéric Chevallier, Giulia Conchedda, Monica Crippa, Stijn N. C. Dellaert, Hugo A. C. Denier van der Gon, Sara Filipek, Pierre Friedlingstein, Richard Fuchs, Michael Gauss, Christoph Gerbig, Diego Guizzardi, Dirk Günther, Richard A. Houghton, Greet Janssens-Maenhout, Ronny Lauerwald, Bas Lerink, Ingrid T. Luijkx, Géraud Moulas, Marilena Muntean, Gert-Jan Nabuurs, Aurélie Paquirissamy, Lucia Perugini, Wouter Peters, Roberto Pilli, Julia Pongratz, Pierre Regnier, Marko Scholze, Yusuf Serengil, Pete Smith, Efisio Solazzo, Rona L. Thompson, Francesco N. Tubiello, Timo Vesala, and Sophia Walther
Earth Syst. Sci. Data, 15, 4295–4370, https://doi.org/10.5194/essd-15-4295-2023, https://doi.org/10.5194/essd-15-4295-2023, 2023
Short summary
Short summary
Accurate estimation of fluxes of carbon dioxide from the land surface is essential for understanding future impacts of greenhouse gas emissions on the climate system. A wide variety of methods currently exist to estimate these sources and sinks. We are continuing work to develop annual comparisons of these diverse methods in order to clarify what they all actually calculate and to resolve apparent disagreement, in addition to highlighting opportunities for increased understanding.
Xin Yu, René Orth, Markus Reichstein, Michael Bahn, Anne Klosterhalfen, Alexander Knohl, Franziska Koebsch, Mirco Migliavacca, Martina Mund, Jacob A. Nelson, Benjamin D. Stocker, Sophia Walther, and Ana Bastos
Biogeosciences, 19, 4315–4329, https://doi.org/10.5194/bg-19-4315-2022, https://doi.org/10.5194/bg-19-4315-2022, 2022
Short summary
Short summary
Identifying drought legacy effects is challenging because they are superimposed on variability driven by climate conditions in the recovery period. We develop a residual-based approach to quantify legacies on gross primary productivity (GPP) from eddy covariance data. The GPP reduction due to legacy effects is comparable to the concurrent effects at two sites in Germany, which reveals the importance of legacy effects. Our novel methodology can be used to quantify drought legacies elsewhere.
Saqr Munassar, Christian Rödenbeck, Frank-Thomas Koch, Kai U. Totsche, Michał Gałkowski, Sophia Walther, and Christoph Gerbig
Atmos. Chem. Phys., 22, 7875–7892, https://doi.org/10.5194/acp-22-7875-2022, https://doi.org/10.5194/acp-22-7875-2022, 2022
Short summary
Short summary
The results obtained from ensembles of inversions over 13 years show the largest spread in the a posteriori fluxes over the station set ensemble. Using different prior fluxes in the inversions led to a smaller impact. Drought occurrences in 2018 and 2019 affected CO2 fluxes as seen in net ecosystem exchange estimates. Our study highlights the importance of expanding the atmospheric site network across Europe to better constrain CO2 fluxes in inverse modelling.
Basil Kraft, Jacob A. Nelson, Sophia Walther, Fabian Gans, Ulrich Weber, Gregory Duveiller, Markus Reichstein, Weijie Zhang, Marc Rußwurm, Devis Tuia, Marco Körner, Zayd Hamdi, and Martin Jung
Biogeosciences, 22, 3965–3987, https://doi.org/10.5194/bg-22-3965-2025, https://doi.org/10.5194/bg-22-3965-2025, 2025
Short summary
Short summary
This study evaluates machine learning approaches for upscaling evapotranspiration from the site to the global scale. Sequential models capture temporal dynamics better, especially with precipitation data, but all models show biases in data-scarce regions. Improved upscaling requires richer training data, informed covariate selection, and physical constraints to enhance robustness and reduce extrapolation errors.
Laura Nadolski, Tarek S. El-Madany, Jacob Nelson, Arnaud Carrara, Gerardo Moreno, Richard Nair, Yunpeng Luo, Anke Hildebrandt, Victor Rolo, Markus Reichstein, and Sung-Ching Lee
Biogeosciences, 22, 2935–2958, https://doi.org/10.5194/bg-22-2935-2025, https://doi.org/10.5194/bg-22-2935-2025, 2025
Short summary
Short summary
Semi-arid ecosystems are crucial for Earth's carbon balance and are sensitive to changes in nitrogen (N) and phosphorus (P) levels. Their carbon dynamics are complex and not fully understood. We studied how long-term nutrient changes affect carbon exchange. In summer, the addition of N+P changed plant composition and productivity. In transitional seasons, carbon exchange was less weather-dependent with N. The addition of N and N+P increases carbon-exchange variability, driven by grass greenness.
Min Feng, Joseph O. Sexton, Panshi Wang, Paul M. Montesano, Leonardo Calle, Nuno Carvalhais, Benjamin Poulter, Matthew J. Macander, Michael A. Wulder, Margaret Wooten, William Wagner, Akiko Elders, Saurabh Channan, and Christopher S. R. Neigh
EGUsphere, https://doi.org/10.5194/egusphere-2025-2268, https://doi.org/10.5194/egusphere-2025-2268, 2025
Short summary
Short summary
The boreal forest, warming fastest among forested biomes, shows a northward shift in tree cover. Using the longest, highest-resolution satellite maps, we found an 0.844 million km² increase in tree cover and a 0.45° northward shift from 1985–2020, especially in northern latitudes. Stable disturbance rates suggest climate-driven growth. Young forests' biomass may help reduce global CO2, despite uncertainties in carbon balance, disturbance, and respiration.
Friedrich J. Bohn, Ana Bastos, Romina Martin, Anja Rammig, Niak Sian Koh, Giles B. Sioen, Bram Buscher, Louise Carver, Fabrice DeClerck, Moritz Drupp, Robert Fletcher, Matthew Forrest, Alexandros Gasparatos, Alex Godoy-Faúndez, Gregor Hagedorn, Martin C. Hänsel, Jessica Hetzer, Thomas Hickler, Cornelia B. Krug, Stasja Koot, Xiuzhen Li, Amy Luers, Shelby Matevich, H. Damon Matthews, Ina C. Meier, Mirco Migliavacca, Awaz Mohamed, Sungmin O, David Obura, Ben Orlove, Rene Orth, Laura Pereira, Markus Reichstein, Lerato Thakholi, Peter H. Verburg, and Yuki Yoshida
Biogeosciences, 22, 2425–2460, https://doi.org/10.5194/bg-22-2425-2025, https://doi.org/10.5194/bg-22-2425-2025, 2025
Short summary
Short summary
An interdisciplinary collaboration of 36 international researchers from 35 institutions highlights recent findings in biosphere research. Within eight themes, they discuss issues arising from climate change and other anthropogenic stressors and highlight the co-benefits of nature-based solutions and ecosystem services. Based on an analysis of these eight topics, we have synthesized four overarching insights.
Samuel Upton, Markus Reichstein, Wouter Peters, Santiago Botía, Jacob A. Nelson, Sophia Walther, Martin Jung, Fabian Gans, László Haszpra, and Ana Bastos
EGUsphere, https://doi.org/10.5194/egusphere-2025-2097, https://doi.org/10.5194/egusphere-2025-2097, 2025
Short summary
Short summary
We create a hybrid ecosystem-level carbon flux model using both eddy-covariance observations and observations of the atmospheric mole fraction of CO2 at three tall-tower observatories. Our study uses an atmospheric transport model (STILT) to connect the atmospheric signal to the ecosystem-level model. We show that this inclusion of atmospheric information meaningfully improves the model's representation of the interannual variability of the global net flux of CO2.
Wolfgang Knorr, Matthew Williams, Tea Thum, Thomas Kaminski, Michael Voßbeck, Marko Scholze, Tristan Quaife, T. Luke Smallman, Susan C. Steele-Dunne, Mariette Vreugdenhil, Tim Green, Sönke Zaehle, Mika Aurela, Alexandre Bouvet, Emanuel Bueechi, Wouter Dorigo, Tarek S. El-Madany, Mirco Migliavacca, Marika Honkanen, Yann H. Kerr, Anna Kontu, Juha Lemmetyinen, Hannakaisa Lindqvist, Arnaud Mialon, Tuuli Miinalainen, Gaétan Pique, Amanda Ojasalo, Shaun Quegan, Peter J. Rayner, Pablo Reyes-Muñoz, Nemesio Rodríguez-Fernández, Mike Schwank, Jochem Verrelst, Songyan Zhu, Dirk Schüttemeyer, and Matthias Drusch
Geosci. Model Dev., 18, 2137–2159, https://doi.org/10.5194/gmd-18-2137-2025, https://doi.org/10.5194/gmd-18-2137-2025, 2025
Short summary
Short summary
When it comes to climate change, the land surface is where the vast majority of impacts happen. The task of monitoring those impacts across the globe is formidable and must necessarily rely on satellites – at a significant cost: the measurements are only indirect and require comprehensive physical understanding. We have created a comprehensive modelling system that we offer to the research community to explore how satellite data can be better exploited to help us capture the changes that happen on our lands.
Mana Gharun, Ankit Shekhar, Lukas Hörtnagl, Luana Krebs, Nicola Arriga, Mirco Migliavacca, Marilyn Roland, Bert Gielen, Leonardo Montagnani, Enrico Tomelleri, Ladislav Šigut, Matthias Peichl, Peng Zhao, Marius Schmidt, Thomas Grünwald, Mika Korkiakoski, Annalea Lohila, and Nina Buchmann
Biogeosciences, 22, 1393–1411, https://doi.org/10.5194/bg-22-1393-2025, https://doi.org/10.5194/bg-22-1393-2025, 2025
Short summary
Short summary
The effect of winter warming on forest CO2 fluxes has rarely been investigated. We tested the effect of the warm winter of 2020 on the forest CO2 fluxes across 14 sites in Europe and found that the net ecosystem productivity (NEP) across most sites declined during the warm winter due to increased respiration fluxes.
Javier Pacheco-Labrador, Ulisse Gomarasca, Daniel E. Pabon-Moreno, Wantong Li, Mirco Migliavacca, Martin Jung, and Gregory Duveiller
EGUsphere, https://doi.org/10.5194/egusphere-2025-318, https://doi.org/10.5194/egusphere-2025-318, 2025
Short summary
Short summary
Measuring biodiversity is necessary to assess its loss, evolution, and role in ecosystem functions. Satellites image the whole terrestrial surface and could cost-efficiently map plant diversity globally. However, developing the necessary methods lacks consistent and sufficient field measurements. Thus, we propose using a simulation tool that generates virtual ecosystems, with species properties and functions varying in response to meteorology and the respective remote sensing imagery.
Marco Girardello, Gonzalo Oton, Matteo Piccardo, Mark Pickering, Agata Elia, Guido Ceccherini, Mariano Garcia, Mirco Migliavacca, and Alessandro Cescatti
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-471, https://doi.org/10.5194/essd-2024-471, 2025
Preprint under review for ESSD
Short summary
Short summary
Our research addresses the significant challenge of assessing forest structural diversity over large spatial scales, which is crucial for understanding the relationship between canopy structure, biodiversity, and ecosystem functioning. The advent of spaceborne LiDAR sensors, such as GEDI, has revolutionised the ability to obtain high-quality information on forest structural parameters. Our contribution provides a novel, spatially-explicit dataset on eight forest structural diversity metrics.
Thibault Xavier, Laurent Orgogozo, Anatoly S. Prokushkin, Esteban Alonso-González, Simon Gascoin, and Oleg S. Pokrovsky
The Cryosphere, 18, 5865–5885, https://doi.org/10.5194/tc-18-5865-2024, https://doi.org/10.5194/tc-18-5865-2024, 2024
Short summary
Short summary
Permafrost (permanently frozen soil at depth) is thawing as a result of climate change. However, estimating its future degradation is particularly challenging due to the complex multi-physical processes involved. In this work, we designed and ran numerical simulations for months on a supercomputer to quantify the impact of climate change in a forested valley of central Siberia. There, climate change could increase the thickness of the seasonally thawed soil layer in summer by up to 65 % by 2100.
Jacob A. Nelson, Sophia Walther, Fabian Gans, Basil Kraft, Ulrich Weber, Kimberly Novick, Nina Buchmann, Mirco Migliavacca, Georg Wohlfahrt, Ladislav Šigut, Andreas Ibrom, Dario Papale, Mathias Göckede, Gregory Duveiller, Alexander Knohl, Lukas Hörtnagl, Russell L. Scott, Jiří Dušek, Weijie Zhang, Zayd Mahmoud Hamdi, Markus Reichstein, Sergio Aranda-Barranco, Jonas Ardö, Maarten Op de Beeck, Dave Billesbach, David Bowling, Rosvel Bracho, Christian Brümmer, Gustau Camps-Valls, Shiping Chen, Jamie Rose Cleverly, Ankur Desai, Gang Dong, Tarek S. El-Madany, Eugenie Susanne Euskirchen, Iris Feigenwinter, Marta Galvagno, Giacomo A. Gerosa, Bert Gielen, Ignacio Goded, Sarah Goslee, Christopher Michael Gough, Bernard Heinesch, Kazuhito Ichii, Marcin Antoni Jackowicz-Korczynski, Anne Klosterhalfen, Sara Knox, Hideki Kobayashi, Kukka-Maaria Kohonen, Mika Korkiakoski, Ivan Mammarella, Mana Gharun, Riccardo Marzuoli, Roser Matamala, Stefan Metzger, Leonardo Montagnani, Giacomo Nicolini, Thomas O'Halloran, Jean-Marc Ourcival, Matthias Peichl, Elise Pendall, Borja Ruiz Reverter, Marilyn Roland, Simone Sabbatini, Torsten Sachs, Marius Schmidt, Christopher R. Schwalm, Ankit Shekhar, Richard Silberstein, Maria Lucia Silveira, Donatella Spano, Torbern Tagesson, Gianluca Tramontana, Carlo Trotta, Fabio Turco, Timo Vesala, Caroline Vincke, Domenico Vitale, Enrique R. Vivoni, Yi Wang, William Woodgate, Enrico A. Yepez, Junhui Zhang, Donatella Zona, and Martin Jung
Biogeosciences, 21, 5079–5115, https://doi.org/10.5194/bg-21-5079-2024, https://doi.org/10.5194/bg-21-5079-2024, 2024
Short summary
Short summary
The movement of water, carbon, and energy from the Earth's surface to the atmosphere, or flux, is an important process to understand because it impacts our lives. Here, we outline a method called FLUXCOM-X to estimate global water and CO2 fluxes based on direct measurements from sites around the world. We go on to demonstrate how these new estimates of net CO2 uptake/loss, gross CO2 uptake, total water evaporation, and transpiration from plants compare to previous and independent estimates.
Luciano Emmert, Susan Trumbore, Joaquim dos Santos, Adriano Lima, Niro Higuchi, Robinson Negrón-Juárez, Cléo Dias-Júnior, Tarek El-Madany, Olaf Kolle, Gabriel Ribeiro, and Daniel Marra
EGUsphere, https://doi.org/10.5194/egusphere-2024-3234, https://doi.org/10.5194/egusphere-2024-3234, 2024
Preprint archived
Short summary
Short summary
For the first time, we documented wind gusts with the potential to damage trees in a forest in the Central Amazon. We used meteorological data collected at crown height over 24 months. We recorded 424 gusts, which occur more frequently and intensely in higher elevated areas and during the transition from the dry to the wet season. More intense rains showed the strongest relationship with extreme winds, highlighting the role of extreme events in tree mortality.
Mélanie Weynants, Chaonan Ji, Nora Linscheid, Ulrich Weber, Miguel D. Mahecha, and Fabian Gans
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-396, https://doi.org/10.5194/essd-2024-396, 2024
Preprint under review for ESSD
Short summary
Short summary
Climate extremes are intensifying. The impacts of heatwaves and droughts can be made worse when they happen at the same time. Dheed is a global database of dry and hot compound extreme events from 1950 to 2022. It can be combined with other data to study the impacts of those events on terrestrial ecosystems, specific species or human societies. Dheed's analysis confirms that extremely dry and hot days have become more common on all continents in recent decades, especially in Europe and Africa.
Guohua Liu, Mirco Migliavacca, Christian Reimers, Basil Kraft, Markus Reichstein, Andrew D. Richardson, Lisa Wingate, Nicolas Delpierre, Hui Yang, and Alexander J. Winkler
Geosci. Model Dev., 17, 6683–6701, https://doi.org/10.5194/gmd-17-6683-2024, https://doi.org/10.5194/gmd-17-6683-2024, 2024
Short summary
Short summary
Our study employs long short-term memory (LSTM) networks to model canopy greenness and phenology, integrating meteorological memory effects. The LSTM model outperforms traditional methods, enhancing accuracy in predicting greenness dynamics and phenological transitions across plant functional types. Highlighting the importance of multi-variate meteorological memory effects, our research pioneers unlock the secrets of vegetation phenology responses to climate change with deep learning techniques.
Sinikka J. Paulus, Rene Orth, Sung-Ching Lee, Anke Hildebrandt, Martin Jung, Jacob A. Nelson, Tarek Sebastian El-Madany, Arnaud Carrara, Gerardo Moreno, Matthias Mauder, Jannis Groh, Alexander Graf, Markus Reichstein, and Mirco Migliavacca
Biogeosciences, 21, 2051–2085, https://doi.org/10.5194/bg-21-2051-2024, https://doi.org/10.5194/bg-21-2051-2024, 2024
Short summary
Short summary
Porous materials are known to reversibly trap water from the air, even at low humidity. However, this behavior is poorly understood for soils. In this analysis, we test whether eddy covariance is able to measure the so-called adsorption of atmospheric water vapor by soils. We find that this flux occurs frequently during dry nights in a Mediterranean ecosystem, while EC detects downwardly directed vapor fluxes. These results can help to map moisture uptake globally.
Martin Jung, Jacob Nelson, Mirco Migliavacca, Tarek El-Madany, Dario Papale, Markus Reichstein, Sophia Walther, and Thomas Wutzler
Biogeosciences, 21, 1827–1846, https://doi.org/10.5194/bg-21-1827-2024, https://doi.org/10.5194/bg-21-1827-2024, 2024
Short summary
Short summary
We present a methodology to detect inconsistencies in perhaps the most important data source for measurements of ecosystem–atmosphere carbon, water, and energy fluxes. We expect that the derived consistency flags will be relevant for data users and will help in improving our understanding of and our ability to model ecosystem–climate interactions.
Dominik Rains, Isabel Trigo, Emanuel Dutra, Sofia Ermida, Darren Ghent, Petra Hulsman, Jose Gómez-Dans, and Diego G. Miralles
Earth Syst. Sci. Data, 16, 567–593, https://doi.org/10.5194/essd-16-567-2024, https://doi.org/10.5194/essd-16-567-2024, 2024
Short summary
Short summary
Land surface temperature and surface net radiation are vital inputs for many land surface and hydrological models. However, current remote sensing datasets of these variables come mostly at coarse resolutions, and the few high-resolution datasets available have large gaps due to cloud cover. Here, we present a continuous daily product for both variables across Europe for 2018–2019 obtained by combining observations from geostationary as well as polar-orbiting satellites.
Hui Yang, Krzysztof Stereńczak, Zbigniew Karaszewski, and Nuno Carvalhais
EGUsphere, https://doi.org/10.5194/egusphere-2023-2691, https://doi.org/10.5194/egusphere-2023-2691, 2023
Short summary
Short summary
Wood density is crucial for ecological and carbon stock assessment, yet its labor-intensive analysis limits studies across species and spaces. Our study, based on 48,000 samples from Central Europe, reveals that, even without species information, 91% of inter-tree variations can be predicted by vegetation indexes, topography, and soil texture. Importantly, we highlight neglected intra-tree variation, showing substantial variations vertically along the height and radially from the center to bark.
Samuel Scherrer, Gabriëlle De Lannoy, Zdenko Heyvaert, Michel Bechtold, Clement Albergel, Tarek S. El-Madany, and Wouter Dorigo
Hydrol. Earth Syst. Sci., 27, 4087–4114, https://doi.org/10.5194/hess-27-4087-2023, https://doi.org/10.5194/hess-27-4087-2023, 2023
Short summary
Short summary
We explored different options for data assimilation (DA) of the remotely sensed leaf area index (LAI). We found strong biases between LAI predicted by Noah-MP and observations. LAI DA that does not take these biases into account can induce unphysical patterns in the resulting LAI and flux estimates and leads to large changes in the climatology of root zone soil moisture. We tested two bias-correction approaches and explored alternative solutions to treating bias in LAI DA.
Richard Nair, Yunpeng Luo, Tarek El-Madany, Victor Rolo, Javier Pacheco-Labrador, Silvia Caldararu, Kendalynn A. Morris, Marion Schrumpf, Arnaud Carrara, Gerardo Moreno, Markus Reichstein, and Mirco Migliavacca
EGUsphere, https://doi.org/10.5194/egusphere-2023-2434, https://doi.org/10.5194/egusphere-2023-2434, 2023
Preprint archived
Short summary
Short summary
We studied a Mediterranean ecosystem to understand carbon uptake efficiency and its controls. These ecosystems face potential nitrogen-phosphorus imbalances due to pollution. Analysing six years of carbon data, we assessed controls at different timeframes. This is crucial for predicting such vulnerable regions. Our findings revealed N limitation on C uptake, not N:P imbalance, and strong influence of water availability. whether drought or wetness promoted net C uptake depended on timescale.
Matthew J. McGrath, Ana Maria Roxana Petrescu, Philippe Peylin, Robbie M. Andrew, Bradley Matthews, Frank Dentener, Juraj Balkovič, Vladislav Bastrikov, Meike Becker, Gregoire Broquet, Philippe Ciais, Audrey Fortems-Cheiney, Raphael Ganzenmüller, Giacomo Grassi, Ian Harris, Matthew Jones, Jürgen Knauer, Matthias Kuhnert, Guillaume Monteil, Saqr Munassar, Paul I. Palmer, Glen P. Peters, Chunjing Qiu, Mart-Jan Schelhaas, Oksana Tarasova, Matteo Vizzarri, Karina Winkler, Gianpaolo Balsamo, Antoine Berchet, Peter Briggs, Patrick Brockmann, Frédéric Chevallier, Giulia Conchedda, Monica Crippa, Stijn N. C. Dellaert, Hugo A. C. Denier van der Gon, Sara Filipek, Pierre Friedlingstein, Richard Fuchs, Michael Gauss, Christoph Gerbig, Diego Guizzardi, Dirk Günther, Richard A. Houghton, Greet Janssens-Maenhout, Ronny Lauerwald, Bas Lerink, Ingrid T. Luijkx, Géraud Moulas, Marilena Muntean, Gert-Jan Nabuurs, Aurélie Paquirissamy, Lucia Perugini, Wouter Peters, Roberto Pilli, Julia Pongratz, Pierre Regnier, Marko Scholze, Yusuf Serengil, Pete Smith, Efisio Solazzo, Rona L. Thompson, Francesco N. Tubiello, Timo Vesala, and Sophia Walther
Earth Syst. Sci. Data, 15, 4295–4370, https://doi.org/10.5194/essd-15-4295-2023, https://doi.org/10.5194/essd-15-4295-2023, 2023
Short summary
Short summary
Accurate estimation of fluxes of carbon dioxide from the land surface is essential for understanding future impacts of greenhouse gas emissions on the climate system. A wide variety of methods currently exist to estimate these sources and sinks. We are continuing work to develop annual comparisons of these diverse methods in order to clarify what they all actually calculate and to resolve apparent disagreement, in addition to highlighting opportunities for increased understanding.
A. Elia, M. Pickering, M. Girardello, G. Oton, G. Ceccherini, S. Capobianco, M. Piccardo, G. Forzieri, M. Migliavacca, and A. Cescatti
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W7-2023, 41–46, https://doi.org/10.5194/isprs-archives-XLVIII-4-W7-2023-41-2023, https://doi.org/10.5194/isprs-archives-XLVIII-4-W7-2023-41-2023, 2023
Hoontaek Lee, Martin Jung, Nuno Carvalhais, Tina Trautmann, Basil Kraft, Markus Reichstein, Matthias Forkel, and Sujan Koirala
Hydrol. Earth Syst. Sci., 27, 1531–1563, https://doi.org/10.5194/hess-27-1531-2023, https://doi.org/10.5194/hess-27-1531-2023, 2023
Short summary
Short summary
We spatially attribute the variance in global terrestrial water storage (TWS) interannual variability (IAV) and its modeling error with two data-driven hydrological models. We find error hotspot regions that show a disproportionately large significance in the global mismatch and the association of the error regions with a smaller-scale lateral convergence of water. Our findings imply that TWS IAV modeling can be efficiently improved by focusing on model representations for the error hotspots.
Sinikka Jasmin Paulus, Tarek Sebastian El-Madany, René Orth, Anke Hildebrandt, Thomas Wutzler, Arnaud Carrara, Gerardo Moreno, Oscar Perez-Priego, Olaf Kolle, Markus Reichstein, and Mirco Migliavacca
Hydrol. Earth Syst. Sci., 26, 6263–6287, https://doi.org/10.5194/hess-26-6263-2022, https://doi.org/10.5194/hess-26-6263-2022, 2022
Short summary
Short summary
In this study, we analyze small inputs of water to ecosystems such as fog, dew, and adsorption of vapor. To measure them, we use a scaling system and later test our attribution of different water fluxes to weight changes. We found that they occur frequently during 1 year in a dry summer ecosystem. In each season, a different flux seems dominant, but they all mainly occur during the night. Therefore, they could be important for the biosphere because rain is unevenly distributed over the year.
Pascal Wintjen, Frederik Schrader, Martijn Schaap, Burkhard Beudert, Richard Kranenburg, and Christian Brümmer
Biogeosciences, 19, 5287–5311, https://doi.org/10.5194/bg-19-5287-2022, https://doi.org/10.5194/bg-19-5287-2022, 2022
Short summary
Short summary
For the first time, we compared four methods for estimating the annual dry deposition of total reactive nitrogen into a low-polluted forest ecosystem. In our analysis, we used 2.5 years of flux measurements, an in situ modeling approach, a large-scale chemical transport model (CTM), and canopy budget models. Annual nitrogen dry deposition budgets ranged between 4.3 and 6.7 kg N ha−1 a−1, depending on the applied method.
Melissa Ruiz-Vásquez, Sungmin O, Alexander Brenning, Randal D. Koster, Gianpaolo Balsamo, Ulrich Weber, Gabriele Arduini, Ana Bastos, Markus Reichstein, and René Orth
Earth Syst. Dynam., 13, 1451–1471, https://doi.org/10.5194/esd-13-1451-2022, https://doi.org/10.5194/esd-13-1451-2022, 2022
Short summary
Short summary
Subseasonal forecasts facilitate early warning of extreme events; however their predictability sources are not fully explored. We find that global temperature forecast errors in many regions are related to climate variables such as solar radiation and precipitation, as well as land surface variables such as soil moisture and evaporative fraction. A better representation of these variables in the forecasting and data assimilation systems can support the accuracy of temperature forecasts.
Xin Yu, René Orth, Markus Reichstein, Michael Bahn, Anne Klosterhalfen, Alexander Knohl, Franziska Koebsch, Mirco Migliavacca, Martina Mund, Jacob A. Nelson, Benjamin D. Stocker, Sophia Walther, and Ana Bastos
Biogeosciences, 19, 4315–4329, https://doi.org/10.5194/bg-19-4315-2022, https://doi.org/10.5194/bg-19-4315-2022, 2022
Short summary
Short summary
Identifying drought legacy effects is challenging because they are superimposed on variability driven by climate conditions in the recovery period. We develop a residual-based approach to quantify legacies on gross primary productivity (GPP) from eddy covariance data. The GPP reduction due to legacy effects is comparable to the concurrent effects at two sites in Germany, which reveals the importance of legacy effects. Our novel methodology can be used to quantify drought legacies elsewhere.
Miguel Nogueira, Alexandra Hurduc, Sofia Ermida, Daniela C. A. Lima, Pedro M. M. Soares, Frederico Johannsen, and Emanuel Dutra
Geosci. Model Dev., 15, 5949–5965, https://doi.org/10.5194/gmd-15-5949-2022, https://doi.org/10.5194/gmd-15-5949-2022, 2022
Short summary
Short summary
We evaluated the quality of the ERA5 reanalysis representation of the urban heat island (UHI) over the city of Paris and performed a set of offline runs using the SURFEX land surface model. They were compared with observations (satellite and in situ). The SURFEX-TEB runs showed the best performance in representing the UHI, reducing its bias significantly. We demonstrate the ability of the SURFEX-TEB framework to simulate urban climate, which is crucial for studying climate change in cities.
Saqr Munassar, Christian Rödenbeck, Frank-Thomas Koch, Kai U. Totsche, Michał Gałkowski, Sophia Walther, and Christoph Gerbig
Atmos. Chem. Phys., 22, 7875–7892, https://doi.org/10.5194/acp-22-7875-2022, https://doi.org/10.5194/acp-22-7875-2022, 2022
Short summary
Short summary
The results obtained from ensembles of inversions over 13 years show the largest spread in the a posteriori fluxes over the station set ensemble. Using different prior fluxes in the inversions led to a smaller impact. Drought occurrences in 2018 and 2019 affected CO2 fluxes as seen in net ecosystem exchange estimates. Our study highlights the importance of expanding the atmospheric site network across Europe to better constrain CO2 fluxes in inverse modelling.
Tina Trautmann, Sujan Koirala, Nuno Carvalhais, Andreas Güntner, and Martin Jung
Hydrol. Earth Syst. Sci., 26, 1089–1109, https://doi.org/10.5194/hess-26-1089-2022, https://doi.org/10.5194/hess-26-1089-2022, 2022
Short summary
Short summary
We assess the effect of how vegetation is defined in a global hydrological model on the composition of total water storage (TWS). We compare two experiments, one with globally uniform and one with vegetation parameters that vary in space and time. While both experiments are constrained against observational data, we found a drastic change in the partitioning of TWS, highlighting the important role of the interaction between groundwater–soil moisture–vegetation in understanding TWS variations.
Christian Brümmer, Jeremy J. Rüffer, Jean-Pierre Delorme, Pascal Wintjen, Frederik Schrader, Burkhard Beudert, Martijn Schaap, and Christof Ammann
Earth Syst. Sci. Data, 14, 743–761, https://doi.org/10.5194/essd-14-743-2022, https://doi.org/10.5194/essd-14-743-2022, 2022
Short summary
Short summary
Field campaigns were carried out to investigate the biosphere–atmosphere exchange of selected reactive nitrogen compounds over different land surfaces using two different analytical devices for ammonia and total reactive nitrogen. The datasets improve our understanding of the temporal variability of surface–atmosphere exchange in different ecosystems, thereby providing validation opportunities for inferential models simulating the exchange of reactive nitrogen.
J. Pacheco-Labrador, U. Weber, X. Ma, M. D. Mahecha, N. Carvalhais, C. Wirth, A. Huth, F. J. Bohn, G. Kraemer, U. Heiden, FunDivEUROPE members, and M. Migliavacca
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVI-1-W1-2021, 49–55, https://doi.org/10.5194/isprs-archives-XLVI-1-W1-2021-49-2022, https://doi.org/10.5194/isprs-archives-XLVI-1-W1-2021-49-2022, 2022
Josephin Kroll, Jasper M. C. Denissen, Mirco Migliavacca, Wantong Li, Anke Hildebrandt, and Rene Orth
Biogeosciences, 19, 477–489, https://doi.org/10.5194/bg-19-477-2022, https://doi.org/10.5194/bg-19-477-2022, 2022
Short summary
Short summary
Plant growth relies on having access to energy (solar radiation) and water (soil moisture). This energy and water availability is impacted by weather extremes, like heat waves and droughts, which will occur more frequently in response to climate change. In this context, we analysed global satellite data to detect in which regions extreme plant growth is controlled by energy or water. We find that extreme plant growth is associated with temperature- or soil-moisture-related extremes.
Pascal Wintjen, Frederik Schrader, Martijn Schaap, Burkhard Beudert, and Christian Brümmer
Biogeosciences, 19, 389–413, https://doi.org/10.5194/bg-19-389-2022, https://doi.org/10.5194/bg-19-389-2022, 2022
Short summary
Short summary
Fluxes of total reactive nitrogen (∑Nr) over a low polluted forest were analyzed with regard to their temporal dynamics. Mostly deposition was observed with median fluxes ranging from −15 to −5 ng N m−2 s−1, corresponding to a range of deposition velocities from 0.2 to 0.5 cm s−1. While seasonally changing contributions of NH3 and NOx to the ∑Nr signal were found, we estimate an annual total N deposition (dry+wet) of 12.2 and 10.9 kg N ha−1 a−1 in the 2 years of observation.
Anna-Maria Virkkala, Susan M. Natali, Brendan M. Rogers, Jennifer D. Watts, Kathleen Savage, Sara June Connon, Marguerite Mauritz, Edward A. G. Schuur, Darcy Peter, Christina Minions, Julia Nojeim, Roisin Commane, Craig A. Emmerton, Mathias Goeckede, Manuel Helbig, David Holl, Hiroki Iwata, Hideki Kobayashi, Pasi Kolari, Efrén López-Blanco, Maija E. Marushchak, Mikhail Mastepanov, Lutz Merbold, Frans-Jan W. Parmentier, Matthias Peichl, Torsten Sachs, Oliver Sonnentag, Masahito Ueyama, Carolina Voigt, Mika Aurela, Julia Boike, Gerardo Celis, Namyi Chae, Torben R. Christensen, M. Syndonia Bret-Harte, Sigrid Dengel, Han Dolman, Colin W. Edgar, Bo Elberling, Eugenie Euskirchen, Achim Grelle, Juha Hatakka, Elyn Humphreys, Järvi Järveoja, Ayumi Kotani, Lars Kutzbach, Tuomas Laurila, Annalea Lohila, Ivan Mammarella, Yojiro Matsuura, Gesa Meyer, Mats B. Nilsson, Steven F. Oberbauer, Sang-Jong Park, Roman Petrov, Anatoly S. Prokushkin, Christopher Schulze, Vincent L. St. Louis, Eeva-Stiina Tuittila, Juha-Pekka Tuovinen, William Quinton, Andrej Varlagin, Donatella Zona, and Viacheslav I. Zyryanov
Earth Syst. Sci. Data, 14, 179–208, https://doi.org/10.5194/essd-14-179-2022, https://doi.org/10.5194/essd-14-179-2022, 2022
Short summary
Short summary
The effects of climate warming on carbon cycling across the Arctic–boreal zone (ABZ) remain poorly understood due to the relatively limited distribution of ABZ flux sites. Fortunately, this flux network is constantly increasing, but new measurements are published in various platforms, making it challenging to understand the ABZ carbon cycle as a whole. Here, we compiled a new database of Arctic–boreal CO2 fluxes to help facilitate large-scale assessments of the ABZ carbon cycle.
Simon Besnard, Sujan Koirala, Maurizio Santoro, Ulrich Weber, Jacob Nelson, Jonas Gütter, Bruno Herault, Justin Kassi, Anny N'Guessan, Christopher Neigh, Benjamin Poulter, Tao Zhang, and Nuno Carvalhais
Earth Syst. Sci. Data, 13, 4881–4896, https://doi.org/10.5194/essd-13-4881-2021, https://doi.org/10.5194/essd-13-4881-2021, 2021
Short summary
Short summary
Forest age can determine the capacity of a forest to uptake carbon from the atmosphere. Yet, a lack of global diagnostics that reflect the forest stage and associated disturbance regimes hampers the quantification of age-related differences in forest carbon dynamics. In this paper, we introduced a new global distribution of forest age inferred from forest inventory, remote sensing and climate data in support of a better understanding of the global dynamics in the forest water and carbon cycles.
Yeonuk Kim, Monica Garcia, Laura Morillas, Ulrich Weber, T. Andrew Black, and Mark S. Johnson
Hydrol. Earth Syst. Sci., 25, 5175–5191, https://doi.org/10.5194/hess-25-5175-2021, https://doi.org/10.5194/hess-25-5175-2021, 2021
Short summary
Short summary
Here, we present a novel physically based evaporation model to demonstrate that vertical relative humidity (RH) gradients from the land surface to the atmosphere tend to evolve towards zero due to land–atmosphere equilibration processes. Collapsing RH gradients on daily to yearly timescales indicate an emergent land–atmosphere equilibrium, making it possible to determine evapotranspiration using only meteorological information, independent of land surface conditions and vegetation controls.
Maurizio Santoro, Oliver Cartus, Nuno Carvalhais, Danaë M. A. Rozendaal, Valerio Avitabile, Arnan Araza, Sytze de Bruin, Martin Herold, Shaun Quegan, Pedro Rodríguez-Veiga, Heiko Balzter, João Carreiras, Dmitry Schepaschenko, Mikhail Korets, Masanobu Shimada, Takuya Itoh, Álvaro Moreno Martínez, Jura Cavlovic, Roberto Cazzolla Gatti, Polyanna da Conceição Bispo, Nasheta Dewnath, Nicolas Labrière, Jingjing Liang, Jeremy Lindsell, Edward T. A. Mitchard, Alexandra Morel, Ana Maria Pacheco Pascagaza, Casey M. Ryan, Ferry Slik, Gaia Vaglio Laurin, Hans Verbeeck, Arief Wijaya, and Simon Willcock
Earth Syst. Sci. Data, 13, 3927–3950, https://doi.org/10.5194/essd-13-3927-2021, https://doi.org/10.5194/essd-13-3927-2021, 2021
Short summary
Short summary
Forests play a crucial role in Earth’s carbon cycle. To understand the carbon cycle better, we generated a global dataset of forest above-ground biomass, i.e. carbon stocks, from satellite data of 2010. This dataset provides a comprehensive and detailed portrait of the distribution of carbon in forests, although for dense forests in the tropics values are somewhat underestimated. This dataset will have a considerable impact on climate, carbon, and socio-economic modelling schemes.
Rafael Poyatos, Víctor Granda, Víctor Flo, Mark A. Adams, Balázs Adorján, David Aguadé, Marcos P. M. Aidar, Scott Allen, M. Susana Alvarado-Barrientos, Kristina J. Anderson-Teixeira, Luiza Maria Aparecido, M. Altaf Arain, Ismael Aranda, Heidi Asbjornsen, Robert Baxter, Eric Beamesderfer, Z. Carter Berry, Daniel Berveiller, Bethany Blakely, Johnny Boggs, Gil Bohrer, Paul V. Bolstad, Damien Bonal, Rosvel Bracho, Patricia Brito, Jason Brodeur, Fernando Casanoves, Jérôme Chave, Hui Chen, Cesar Cisneros, Kenneth Clark, Edoardo Cremonese, Hongzhong Dang, Jorge S. David, Teresa S. David, Nicolas Delpierre, Ankur R. Desai, Frederic C. Do, Michal Dohnal, Jean-Christophe Domec, Sebinasi Dzikiti, Colin Edgar, Rebekka Eichstaedt, Tarek S. El-Madany, Jan Elbers, Cleiton B. Eller, Eugénie S. Euskirchen, Brent Ewers, Patrick Fonti, Alicia Forner, David I. Forrester, Helber C. Freitas, Marta Galvagno, Omar Garcia-Tejera, Chandra Prasad Ghimire, Teresa E. Gimeno, John Grace, André Granier, Anne Griebel, Yan Guangyu, Mark B. Gush, Paul J. Hanson, Niles J. Hasselquist, Ingo Heinrich, Virginia Hernandez-Santana, Valentine Herrmann, Teemu Hölttä, Friso Holwerda, James Irvine, Supat Isarangkool Na Ayutthaya, Paul G. Jarvis, Hubert Jochheim, Carlos A. Joly, Julia Kaplick, Hyun Seok Kim, Leif Klemedtsson, Heather Kropp, Fredrik Lagergren, Patrick Lane, Petra Lang, Andrei Lapenas, Víctor Lechuga, Minsu Lee, Christoph Leuschner, Jean-Marc Limousin, Juan Carlos Linares, Maj-Lena Linderson, Anders Lindroth, Pilar Llorens, Álvaro López-Bernal, Michael M. Loranty, Dietmar Lüttschwager, Cate Macinnis-Ng, Isabelle Maréchaux, Timothy A. Martin, Ashley Matheny, Nate McDowell, Sean McMahon, Patrick Meir, Ilona Mészáros, Mirco Migliavacca, Patrick Mitchell, Meelis Mölder, Leonardo Montagnani, Georgianne W. Moore, Ryogo Nakada, Furong Niu, Rachael H. Nolan, Richard Norby, Kimberly Novick, Walter Oberhuber, Nikolaus Obojes, A. Christopher Oishi, Rafael S. Oliveira, Ram Oren, Jean-Marc Ourcival, Teemu Paljakka, Oscar Perez-Priego, Pablo L. Peri, Richard L. Peters, Sebastian Pfautsch, William T. Pockman, Yakir Preisler, Katherine Rascher, George Robinson, Humberto Rocha, Alain Rocheteau, Alexander Röll, Bruno H. P. Rosado, Lucy Rowland, Alexey V. Rubtsov, Santiago Sabaté, Yann Salmon, Roberto L. Salomón, Elisenda Sánchez-Costa, Karina V. R. Schäfer, Bernhard Schuldt, Alexandr Shashkin, Clément Stahl, Marko Stojanović, Juan Carlos Suárez, Ge Sun, Justyna Szatniewska, Fyodor Tatarinov, Miroslav Tesař, Frank M. Thomas, Pantana Tor-ngern, Josef Urban, Fernando Valladares, Christiaan van der Tol, Ilja van Meerveld, Andrej Varlagin, Holm Voigt, Jeffrey Warren, Christiane Werner, Willy Werner, Gerhard Wieser, Lisa Wingate, Stan Wullschleger, Koong Yi, Roman Zweifel, Kathy Steppe, Maurizio Mencuccini, and Jordi Martínez-Vilalta
Earth Syst. Sci. Data, 13, 2607–2649, https://doi.org/10.5194/essd-13-2607-2021, https://doi.org/10.5194/essd-13-2607-2021, 2021
Short summary
Short summary
Transpiration is a key component of global water balance, but it is poorly constrained from available observations. We present SAPFLUXNET, the first global database of tree-level transpiration from sap flow measurements, containing 202 datasets and covering a wide range of ecological conditions. SAPFLUXNET and its accompanying R software package
sapfluxnetrwill facilitate new data syntheses on the ecological factors driving water use and drought responses of trees and forests.
Christopher Krich, Mirco Migliavacca, Diego G. Miralles, Guido Kraemer, Tarek S. El-Madany, Markus Reichstein, Jakob Runge, and Miguel D. Mahecha
Biogeosciences, 18, 2379–2404, https://doi.org/10.5194/bg-18-2379-2021, https://doi.org/10.5194/bg-18-2379-2021, 2021
Short summary
Short summary
Ecosystems and the atmosphere interact with each other. These interactions determine e.g. the water and carbon fluxes and thus are crucial to understand climate change effects. We analysed the interactions for many ecosystems across the globe, showing that very different ecosystems can have similar interactions with the atmosphere. Meteorological conditions seem to be the strongest interaction-shaping factor. This means that common principles can be identified to describe ecosystem behaviour.
Oksana Rybchak, Justin du Toit, Jean-Pierre Delorme, Jens-Kristian Jüdt, Kanisios Mukwashi, Christian Thau, Gregor Feig, Mari Bieri, and Christian Brümmer
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-420, https://doi.org/10.5194/bg-2020-420, 2020
Revised manuscript not accepted
Short summary
Short summary
We studied the impacts of livestock grazing on carbon budgets in the semi-arid South African Karoo by comparing two sites under different grazing intensities. The previously overgrazed site, characterised by unpalatable grasses and thus poorly suited as pasture, sequestered more carbon over the four-year measurement period, compared to the lenient-grazed site. The studied ecosystems act as either carbon sinks or sources depending on precipitation.
Naixin Fan, Sujan Koirala, Markus Reichstein, Martin Thurner, Valerio Avitabile, Maurizio Santoro, Bernhard Ahrens, Ulrich Weber, and Nuno Carvalhais
Earth Syst. Sci. Data, 12, 2517–2536, https://doi.org/10.5194/essd-12-2517-2020, https://doi.org/10.5194/essd-12-2517-2020, 2020
Short summary
Short summary
The turnover time of terrestrial carbon (τ) controls the global carbon cycle–climate feedback. In this study, we provide a new, updated ensemble of diagnostic terrestrial carbon turnover times and associated uncertainties on a global scale. Despite the large variation in both magnitude and spatial patterns of τ, we identified robust features in the spatial patterns of τ which could contribute to uncertainty reductions in future projections of the carbon cycle–climate feedback.
Cited articles
Badgley, G., Field, C. B., and Berry, J. A.: Canopy near-infrared reflectance and terrestrial photosynthesis, Sc. Adv.,
3, https://doi.org/10.1126/sciadv.1602244, 2017. a
Baldocchi, D.: Breathing of the terrestrial biosphere: lessons learned from a
global network of carbon dioxide flux measurement systems, Austr. J. Bot., 56, 1–26, https://doi.org/10.1071/BT07151, 2008. a, b
Baldocchi, D., Chu, H., and Reichstein, M.: Inter-annual variability of net and
gross ecosystem carbon fluxes: A review, Agr. Forest Meteorol.,
249, 520–533, https://doi.org/10.1016/j.agrformet.2017.05.015, 2018. a
Baldocchi, D. D.: How eddy covariance flux measurements have contributed to our
understanding of Glob. Change Biol., Glob. Change Biol., 26, 242–260,
https://doi.org/10.1111/gcb.14807, 2020. a
Bao, S., Wutzler, T., Koirala, S., Cuntz, M., Ibrom, A., Besnard, S., Walther,
S., Šigut, L., Moreno, A., Weber, U., Wohlfahrt, G., Cleverly, J.,
Migliavacca, M., Woodgate, W., Merbold, L., Veenendaal, E., and Carvalhais,
N.: Environment-sensitivity functions for gross primary productivity in light
use efficiency models, Agr. Forest Meteorol., 312, 108708,
https://doi.org/10.1016/j.agrformet.2021.108708, 2022. a
Beck, P. S. A., Jönsson, P., Høgda, K., Karlsen, S. R., Eklundh, L., and
Skidmore, A. K.: A ground-validated NDVI dataset for monitoring vegetation
dynamics and mapping phenology in Fennoscandia and the Kola peninsula,
Int. J. Remote Sens., 28, 4311–4330,
https://doi.org/10.1080/01431160701241936, 2007. a, b
Besnard, S., Carvalhais, N., Arain, M. A., Black, A., de Bruin, S., Buchmann,
N., Cescatti, A., Chen, J., Clevers, J. G. P. W., Desai, A. R., Gough, C. M.,
Havrankova, K., Herold, M., Hörtnagl, L., Jung, M., Knohl, A., Kruijt, B.,
Krupkova, L., Law, B. E., Lindroth, A., Noormets, A., Roupsard, O.,
Steinbrecher, R., Varlagin, A., Vincke, C., and Reichstein, M.: Quantifying
the effect of forest age in annual net forest carbon balance, Environ.
Res. Lett., 13, 124018, https://doi.org/10.1088/1748-9326/aaeaeb, 2018. a
Bessenbacher, V., Seneviratne, S. I., and Gudmundsson, L.: CLIMFILL: A Framework for Intelligently Gap-filling Earth Observations, Geosci. Model Dev. Discuss. [preprint], https://doi.org/10.5194/gmd-2021-164, in review, 2021. a
Camps-Valls, G., Campos-Taberner, M., Moreno-Martínez, Á., Walther,
S., Duveiller, G., Cescatti, A., Mahecha, M. D., Muñoz-Marí, J.,
García-Haro, F. J., Guanter, L., Jung, M., Gamon, J. A., Reichstein, M.,
and Running, S. W.: A unified vegetation index for quantifying the
terrestrial biosphere, Sc. Adv., 7, https://doi.org/10.1126/sciadv.abc7447,
2021. a
Cescatti, A., Marcolla, B., Santhana Vannan, S. K., Pan, J. Y., Román,
M. O., Yang, X., Ciais, P., Cook, R. B., Law, B. E., Matteucci, G.,
Migliavacca, M., Moors, E., Richardson, A. D., Seufert, G., and Schaaf,
C. B.: Intercomparison of MODIS albedo retrievals and in situ measurements
across the global FLUXNET network, Remote Sens. Environ., 121,
323–334, https://doi.org/10.1016/j.rse.2012.02.019, 2012. a
Chu, H., Luo, X., Ouyang, Z., Chan, W. S., Dengel, S., Biraud, S. C., Torn,
M. S., Metzger, S., Kumar, J., Arain, M. A., Arkebauer, T. J., Baldocchi, D.,
Bernacchi, C., Billesbach, D., Black, T. A., Blanken, P. D., Bohrer, G.,
Bracho, R., Brown, S., Brunsell, N. A., Chen, J., Chen, X., Clark, K., Desai,
A. R., Duman, T., Durden, D., Fares, S., Forbrich, I., Gamon, J. A., Gough,
C. M., Griffis, T., Helbig, M., Hollinger, D., Humphreys, E., Ikawa, H.,
Iwata, H., Ju, Y., Knowles, J. F., Knox, S. H., Kobayashi, H., Kolb, T., Law,
B., Lee, X., Litvak, M., Liu, H., Munger, J. W., Noormets, A., Novick, K.,
Oberbauer, S. F., Oechel, W., Oikawa, P., Papuga, S. A., Pendall, E.,
Prajapati, P., Prueger, J., Quinton, W. L., Richardson, A. D., Russell,
E. S., Scott, R. L., Starr, G., Staebler, R., Stoy, P. C., Stuart-Haëntjens,
E., Sonnentag, O., Sullivan, R. C., Suyker, A., Ueyama, M., Vargas, R., Wood,
J. D., and Zona, D.: Representativeness of Eddy-Covariance flux footprints
for areas surrounding AmeriFlux sites, Agr. Forest Meteorol.,
301/302, 108350, https://doi.org/10.1016/j.agrformet.2021.108350,
2021. a, b, c
Crosson, W. L., Al-Hamdan, M. Z., Hemmings, S. N., and Wade, G. M.: A daily
merged MODIS Aqua–Terra land surface temperature data set for the
conterminous United States, Remote Sens. Environ., 119, 315–324,
https://doi.org/10.1016/j.rse.2011.12.019, 2012. a, b
Dumitrescu, A., Brabec, M., and Cheval, S.: Statistical Gap-Filling of SEVIRI
Land Surface Temperature, Remote Sens., 12, 1423, https://doi.org/10.3390/rs12091423, 2020. a, b
Duveiller, G., Camps-Valls, G., Ceccherini, G., and Cescatti, A.: Spatial
homogeneity from temporal stability: Exploiting the combined hyper-frequent
revisit of Terra and Aqua to guide Earth System Science, Remote Sens.
Environ., 261, 112496, https://doi.org/10.1016/j.rse.2021.112496,
2021. a
El-Madany, T. S., Reichstein, M., Perez-Priego, O., Carrara, A., Moreno, G.,
Pilar MartÃn, M., Pacheco-Labrador, J., Wohlfahrt, G., Nieto, H., Weber,
U., Kolle, O., Luo, Y.-P., Carvalhais, N., and Migliavacca, M.: Drivers of
spatio-temporal variability of carbon dioxide and energy fluxes in a
Mediterranean savanna ecosystem, Agr. Forest Meteorol., 262,
258–278, https://doi.org/10.1016/j.agrformet.2018.07.010, 2018. a
Ermida, S. L., Trigo, I. F., DaCamara, C. C., Gättsche, F. M., Olesen, F. S.,
and Hulley, G.: Validation of remotely sensed surface temperature over an oak
woodland landscape – The problem of viewing and illumination geometries,
Remote Sens. Environ., 148, 16–27,
https://doi.org/10.1016/j.rse.2014.03.016, 2014. a
Ermida, S. L., Trigo, I. F., DaCamara, C. C., and Pires, A. C.: A Methodology
to Simulate LST Directional Effects Based on Parametric Models and Landscape
Properties, Remote Sens., 10, 114, https://doi.org/10.3390/rs10071114, 2018. a, b, c, d
Ermida, S. L., Trigo, I. F., DaCamara, C. C., Jiménez, C., and Prigent, C.:
Quantifying the Clear-Sky Bias of Satellite Land Surface Temperature Using
Microwave-Based Estimates, J. Geophys. Res.-Atmos., 124,
844–857, https://doi.org/10.1029/2018JD029354, 2019. a
Falge, E., Baldocchi, D., Olson, R., Anthoni, P., Aubinet, M., Bernhofer, C.,
Burba, G., Ceulemans, R., Clement, R., Dolman, H., Granier, A., Gross, P.,
Grünwald, T., Hollinger, D., Jensen, N.-O., Katul, G., Keronen, P.,
Kowalski, A., Ta Lai, C., Law, B. E., Meyers, T., Moncrieff, J., Moors, E.,
William Munger, J., Pilegaard, K.,Üllar Rannik, Rebmann, C., Suyker, A.,
Tenhunen, J., Tu, K., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: Gap
filling strategies for long term energy flux data sets, Agr. Forest Meteorol., 107, 71–77,
https://doi.org/10.1016/S0168-1923(00)00235-5, 2001. a
Foga, S., Scaramuzza, P. L., Guo, S., Zhu, Z., Dilley, R. D., Beckmann, T.,
Schmidt, G. L., Dwyer, J. L., Hughes, M. J., and Laue, B.: Cloud detection
algorithm comparison and validation for operational Landsat data products,
Remote Sens. Environ., 194, 379–390,
https://doi.org/10.1016/j.rse.2017.03.026, 2017. a
Gamon, J. A.: Reviews and Syntheses: optical sampling of the flux tower
footprint, Biogeosciences, 12, 4509–4523, https://doi.org/10.5194/bg-12-4509-2015,
2015. a
Gao, B.-C.: NDWI – A normalized difference water index for remote sensing of
vegetation liquid water from space, Remote Sens. Environ., 58,
257–266, https://doi.org/10.1016/S0034-4257(96)00067-3, 1996. a, b, c
Ghafarian Malamiri, H. R., Rousta, I., Olafsson, H., Zare, H., and Zhang, H.:
Gap-Filling of MODIS Time Series Land Surface Temperature (LST) Products
Using Singular Spectrum Analysis (SSA), Atmosphere, 9, 334,
https://doi.org/10.3390/atmos9090334, 2018. a, b
Gitelson, A. A.: Wide Dynamic Range Vegetation Index for Remote Quantification
of Biophysical Characteristics of Vegetation, J. Plant Physiol.,
161, 165–173, https://doi.org/10.1078/0176-1617-01176, 2004. a
Gonsamo, A., Chen, J. M., and D'Odorico, P.: Deriving land surface phenology
indicators from CO2 eddy covariance measurements, Ecol. Indic., 29,
203–207, https://doi.org/10.1016/j.ecolind.2012.12.026, 2013. a
Guillevic, P. C., Bork-Unkelbach, A., Göttsche, F. M., Hulley, G.,
Gastellu-Etchegorry, J.-P., Olesen, F. S., and Privette, J. L.: Directional
Viewing Effects on Satellite Land Surface Temperature Products Over Sparse
Vegetation Canopies – A Multisensor Analysis, IEEE Geosci. Remote
Sens. Lett., 10, 1464–1468, https://doi.org/10.1109/LGRS.2013.2260319, 2013. a
Huete, A., Didan, K., Miura, T., Rodriguez, E., Gao, X., and Ferreira, L.:
Overview of the radiometric and biophysical performance of the MODIS
vegetation indices, Remote Sens. Environ., 83, 195–213, 2002. a
ICOS Ecosystem Thematic Centre and Gebesee: Drought-2018 ecosystem eddy
covariance flux product from Gebesee, ICOS Ecosystem Thematic Centre and Gebesee [data set], https://doi.org/10.18160/ZK18-3YW3, 2019. a
Joiner, J., Yoshida, Y., Zhang, Y., Duveiller, G., Jung, M., Lyapustin, A.,
Wang, Y., and Tucker, C. J.: Estimation of Terrestrial Global Gross Primary
Production (GPP) with Satellite Data-Driven Models and Eddy Covariance Flux
Data, Remote Sens., 10, 1346, https://doi.org/10.3390/rs10091346, 2018. a
Jonsson, P. and Eklundh, L.: Seasonality extraction by function fitting to
time-series of satellite sensor data, IEEE Trans. Geosci.
Remote Sens., 40, 1824–1832, https://doi.org/10.1109/TGRS.2002.802519, 2002. a
Jung, M., Koirala, S., Weber, U., Ichii, K., Gans, F., Camps-Valls, G., Papale,
D., Schwalm, C., Tramontana, G., and Reichstein, M.: The FLUXCOM ensemble of
global land-atmosphere energy fluxes, Sci. Data, 6, 74,
https://doi.org/10.1038/s41597-019-0076-8, 2019. a
Jung, M., Schwalm, C., Migliavacca, M., Walther, S., Camps-Valls, G., Koirala,
S., Anthoni, P., Besnard, S., Bodesheim, P., Carvalhais, N., Chevallier, F.,
Gans, F., Goll, D. S., Haverd, V., Köhler, P., Ichii, K., Jain, A. K., Liu,
J., Lombardozzi, D., Nabel, J. E. M. S., Nelson, J. A., O'Sullivan, M.,
Pallandt, M., Papale, D., Peters, W., Pongratz, J., Rödenbeck, C., Sitch,
S., Tramontana, G., Walker, A., Weber, U., and Reichstein, M.: Scaling carbon
fluxes from eddy covariance sites to globe: synthesis and evaluation of the
FLUXCOM approach, Biogeosciences, 17, 1343–1365,
https://doi.org/10.5194/bg-17-1343-2020, 2020. a
Kandasamy, S., Baret, F., Verger, A., Neveux, P., and Weiss, M.: A comparison
of methods for smoothing and gap filling time series of remote sensing
observations – application to MODIS LAI products, Biogeosciences, 10,
4055–4071, https://doi.org/10.5194/bg-10-4055-2013, 2013. a, b
Kljun, N., Calanca, P., Rotach, M. W., and Schmid, H. P.: A simple
two-dimensional parameterisation for Flux Footprint Prediction (FFP),
Geosci. Model Dev., 8, 3695–3713,
https://doi.org/10.5194/gmd-8-3695-2015, 2015. a
Knauer, J., El-Madany, T. S., Zaehle, S., and Migliavacca, M.: Bigleaf – An R
package for the calculation of physical and physiological ecosystem
properties from eddy covariance data, PLOS ONE, 13, e0214011,
https://doi.org/10.1371/journal.pone.0201114, 2018. a
Li, X., Zhou, Y., Asrar, G. R., and Zhu, Z.: Creating a seamless 1 km resolution
daily land surface temperature dataset for urban and surrounding areas in the
conterminous United States, Remote Sens. Environ., 206, 84–97,
https://doi.org/10.1016/j.rse.2017.12.010, 2018. a, b, c, d
Luo, Y., El-Madany, T. S., Filippa, G., Ma, X., Ahrens, B., Carrara, A.,
Gonzalez-Cascon, R., Cremonese, E., Galvagno, M., Hammer, T. W.,
Pacheco-Labrador, J., MartÃn, M. P., Moreno, G., Perez-Priego, O.,
Reichstein, M., Richardson, A. D., Römermann, C., and Migliavacca, M.: Using
Near-Infrared-Enabled Digital Repeat Photography to Track Structural and
Physiological Phenology in Mediterranean Tree – Grass Ecosystems, Remote
Sens., 10, 1293, https://doi.org/10.3390/rs10081293, 2018. a
Migliavacca, M., Reichstein, M., Richardson, A. D., Mahecha, M. D., Cremonese,
E., Delpierre, N., Galvagno, M., Law, B. E., Wohlfahrt, G., Andrew Black, T.,
Carvalhais, N., Ceccherini, G., Chen, J., Gobron, N., Koffi, E.,
William Munger, J., Perez-Priego, O., Robustelli, M., Tomelleri, E., and
Cescatti, A.: Influence of physiological phenology on the seasonal pattern of
ecosystem respiration in deciduous forests, Glob. Change Biol., 21,
363–376, https://doi.org/10.1111/gcb.12671, 2015. a
Migliavacca, M., El-Madany, T. S., Carrara, A., Reichstein, M., and ICOS
Ecosystem Thematic Centre: Drought – 2018 ecosystem eddy covariance flux
product from Majadas del Tietar North, [data set], https://doi.org/10.18160/FDSD-GVRS, 2020. a
Migliavacca, M., Musavi, T., Mahecha, M. D., Nelson, J. A., Knauer, J.,
Baldocchi, D. D., Perez-Priego, O., Christiansen, R., Peters, J., Anderson,
K., Bahn, M., Black, T. A., Blanken, P. D., Bonal, D., Buchmann, N.,
Caldararu, S., Carrara, A., Carvalhais, N., Cescatti, A., Chen, J., Cleverly,
J., Cremonese, E., Desai, A. R., El-Madany, T., Farella, M. M.,
Fernández-Martínez, M., Filippa, G., Forkel, M., Galvagno, M., Gomarasca,
U., Gough, C., Göckede, M., Ibrom, A., Ikawa, H., Janssens, I., Jung, M.,
Kattge, J., Keenan, T., Knohl, A., Kobayashi, H., Kraemer, G., Law, B. E.,
Liddell, M., Ma, X., Mammarella, I., Martini, D., Macfarlane, C., Matteucci,
G., Montagnani, L., Pabon-Moreno, D., Panigada, C., Papale, D., Pendall, E.,
Penuelas, J., Phillips, R. P., Reich, P. B., Rossini, M., Rotenberg, E.,
Scott, R., Stahl, C., Weber, U., Wohlfahrt, G., Wolf, S., Wright, I., Yakir,
D., Zaehle, S., and Reichstein, M.: The three major axes of terrestrial
ecosystem function, Nature, 598, 468–472, https://doi.org/10.1038/s41586-021-03939-9, 2021. a
Moffat, A. M., Papale, D., Reichstein, M., Hollinger, D., Richardson, A. D.,
Barr, A. G., Beckstein, C., Braswell, B. H., Churkina, G., Desai, A. R.,
Falge, E., Gove, J. H., Heimann, M., Hui, D., Jarvis, A. J., Kattge, J.,
Noormets, A., and Stauch, V. J.: Comprehensive comparison of gap-filling
techniques for eddy covariance net carbon fluxes, Agr. Forest Meteorol., 147, 209–232,
https://doi.org/10.1016/j.agrformet.2007.08.011, 2007. a
Moreno, A., García-Haro, F. J., Martíez, B., and Gilabert, M. A.: Noise
Reduction and Gap Filling of fAPAR Time Series Using an Adapted Local
Regression Filter, Remote Sens., 6, 8238–8260, https://doi.org/10.3390/rs6098238,
2014. a
Moreno-Martínez, A., Izquierdo-Verdiguier, E., Maneta, M. P., Camps-Valls, G.,
Robinson, N., Muñoz-Marí, J., Sedano, F., Clinton, N., and Running, S. W.:
Multispectral high resolution sensor fusion for smoothing and gap-filling in
the cloud, Remote Sens. Environ., 247, 111901,
https://doi.org/10.1016/j.rse.2020.111901, 2020. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p
Nash, J. and Sutcliffe, J.: River flow forecasting through conceptual models
part I – A discussion of principles, Journal of Hydrology, 10, 282–290,
https://doi.org/10.1016/0022-1694(70)90255-6, 1970. a, b, c
Nelson, J. A., Pérez-Priego, O., Zhou, S., Poyatos, R., Zhang, Y., Blanken,
P. D., Gimeno, T. E., Wohlfahrt, G., Desai, A. R., Gioli, B., Limousin,
J.-M., Bonal, D., Paul-Limoges, E., Scott, R. L., Varlagin, A., Fuchs, K.,
Montagnani, L., Wolf, S., Delpierre, N., Berveiller, D., Gharun, M.,
Belelli Marchesini, L., Gianelle, D., Šgut, L., Mammarella, I., Siebicke,
L., Andrew Black, T., Knohl, A., Hörtnagl, L., Magliulo, V., Besnard, S.,
Weber, U., Carvalhais, N., Migliavacca, M., Reichstein, M., and Jung, M.:
Ecosystem transpiration and evaporation: Insights from three water flux
partitioning methods across FLUXNET sites, Glob. Change Biol., 26,
6916–6930, https://doi.org/10.1111/gcb.15314, 2020. a
ORNL DAAC: MODIS and VIIRS Land Products Global Subsetting and Visualization
Tool, ORNL DAAC [data set], https://doi.org/10.3334/ORNLDAAC/1379, 2018. a, b, c, d
Pacheco-Labrador, J., El-Madany, T. S., Martín, M. P., Migliavacca, M.,
Rossini, M., Carrara, A., and Zarco-Tejada, P. J.: Spatio-Temporal
Relationships between Optical Information and Carbon Fluxes in a
Mediterranean Tree-Grass Ecosystem, Remote Sens., 9, 608,
https://doi.org/10.3390/rs9060608, 2017. a
Papale, D.: Ideas and perspectives: enhancing the impact of the FLUXNET network
of eddy covariance sites, Biogeosciences, 17, 5587–5598,
https://doi.org/10.5194/bg-17-5587-2020, 2020. a
Papale, D., Reichstein, M., Aubinet, M., Canfora, E., Bernhofer, C., Kutsch,
W., Longdoz, B., Rambal, S., Valentini, R., Vesala, T., and Yakir, D.:
Towards a standardized processing of Net Ecosystem Exchange measured with
eddy covariance technique: algorithms and uncertainty estimation,
Biogeosciences, 3, 571–583, https://doi.org/10.5194/bg-3-571-2006, 2006. a, b, c, d, e, f
Pastorello, G., Trotta, C., Canfora, E., Chu, H., Christianson, D., Cheah,
Y.-W., Poindexter, C., Chen, J., Elbashandy, A., Humphrey, M., Isaac, P.,
Polidori, D., Reichstein, M., Ribeca, A., van Ingen, C., Vuichard, N., Zhang,
L., Amiro, B., Ammann, C., Arain, M. A., Ardö, J., Arkebauer, T., Arndt,
S. K., Arriga, N., Aubinet, M., Aurela, M., Baldocchi, D., Barr, A.,
Beamesderfer, E., Marchesini, L. B., Bergeron, O., Beringer, J., Bernhofer,
C., Berveiller, D., Billesbach, D., Black, T. A., Blanken, P. D., Bohrer, G.,
Boike, J., Bolstad, P. V., Bonal, D., Bonnefond, J.-M., Bowling, D. R.,
Bracho, R., Brodeur, J., Brümmer, C., Buchmann, N., Burban, B., Burns,
S. P., Buysse, P., Cale, P., Cavagna, M., Cellier, P., Chen, S., Chini, I.,
Christensen, T. R., Cleverly, J., Collalti, A., Consalvo, C., Cook, B. D.,
Cook, D., Coursolle, C., Cremonese, E., Curtis, P. S., D'Andrea, E.,
da Rocha, H., Dai, X., Davis, K. J., Cinti, B. D., Grandcourt, A. d., Ligne,
A. D., De Oliveira, R. C., Delpierre, N., Desai, A. R., Di Bella, C. M.,
Tommasi, P. d., Dolman, H., Domingo, F., Dong, G., Dore, S., Duce, P.,
Dufrêe, E., Dunn, A., Dus̆ek, J., Eamus, D., Eichelmann, U., ElKhidir, H.
A. M., Eugster, W., Ewenz, C. M., Ewers, B., Famulari, D., Fares, S.,
Feigenwinter, I., Feitz, A., Fensholt, R., Filippa, G., Fischer, M., Frank,
J., Galvagno, M., Gharun, M., Gianelle, D., Gielen, B., Gioli, B., Gitelson,
A., Goded, I., Goeckede, M., Goldstein, A. H., Gough, C. M., Goulden, M. L.,
Graf, A., Griebel, A., Gruening, C., Grünwald, T., Hammerle, A., Han, S.,
Han, X., Hansen, B. U., Hanson, C., Hatakka, J., He, Y., Hehn, M., Heinesch,
B., Hinko-Najera, N., Hörtnagl, L., Hutley, L., Ibrom, A., Ikawa, H.,
Jackowicz-Korczynski, M., Janous̆, D., Jans, W., Jassal, R., Jiang, S., Kato,
T., Khomik, M., Klatt, J., Knohl, A., Knox, S., Kobayashi, H., Koerber, G.,
Kolle, O., Kosugi, Y., Kotani, A., Kowalski, A., Kruijt, B., Kurbatova, J.,
Kutsch, W. L., Kwon, H., Launiainen, S., Laurila, T., Law, B., Leuning, R.,
Li, Y., Liddell, M., Limousin, J.-M., Lion, M., Liska, A. J., Lohila, A.,
López-Ballesteros, A., López-Blanco, E., Loubet, B., Loustau, D.,
Lucas-Moffat, A., Lüers, J., Ma, S., Macfarlane, C., Magliulo, V., Maier,
R., Mammarella, I., Manca, G., Marcolla, B., Margolis, H. A., Marras, S.,
Massman, W., Mastepanov, M., Matamala, R., Matthes, J. H., Mazzenga, F.,
McCaughey, H., McHugh, I., McMillan, A. M. S., Merbold, L., Meyer, W.,
Meyers, T., Miller, S. D., Minerbi, S., Moderow, U., Monson, R. K.,
Montagnani, L., Moore, C. E., Moors, E., Moreaux, V., Moureaux, C., Munger,
J. W., Nakai, T., Neirynck, J., Nesic, Z., Nicolini, G., Noormets, A.,
Northwood, M., Nosetto, M., Nouvellon, Y., Novick, K., Oechel, W., Olesen,
J. E., Ourcival, J.-M., Papuga, S. A., Parmentier, F.-J., Paul-Limoges, E.,
Pavelka, M., Peichl, M., Pendall, E., Phillips, R. P., Pilegaard, K., Pirk,
N., Posse, G., Powell, T., Prasse, H., Prober, S. M., Rambal, S., Rannik, Ã.,
Raz-Yaseef, N., Rebmann, C., Reed, D., Dios, V. R. d., Restrepo-Coupe, N.,
Reverter, B. R., Roland, M., Sabbatini, S., Sachs, T., Saleska, S. R.,
Sánchez-Cañete, E. P., Sanchez-Mejia, Z. M., Schmid, H. P., Schmidt, M.,
Schneider, K., Schrader, F., Schroder, I., Scott, R. L., Sedlák, P.,
Serrano-Ortíz, P., Shao, C., Shi, P., Shironya, I., Siebicke, L., Šigut,
L., Silberstein, R., Sirca, C., Spano, D., Steinbrecher, R., Stevens, R. M.,
Sturtevant, C., Suyker, A., Tagesson, T., Takanashi, S., Tang, Y., Tapper,
N., Thom, J., Tomassucci, M., Tuovinen, J.-P., Urbanski, S., Valentini, R.,
van der Molen, M., van Gorsel, E., van Huissteden, K., Varlagin, A.,
Verfaillie, J., Vesala, T., Vincke, C., Vitale, D., Vygodskaya, N., Walker,
J. P., Walter-Shea, E., Wang, H., Weber, R., Westermann, S., Wille, C.,
Wofsy, S., Wohlfahrt, G., Wolf, S., Woodgate, W., Li, Y., Zampedri, R.,
Zhang, J., Zhou, G., Zona, D., Agarwal, D., Biraud, S., Torn, M., and Papale,
D.: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy
covariance data, Sci. Data, 7, 1–27, https://doi.org/10.1038/s41597-020-0534-3, 2020. a, b
Rasmussen, M. O., Gottsche, F.-M., Olesen, F.-S., and Sandholt, I.: Directional
Effects on Land Surface Temperature Estimation From Meteosat Second
Generation for Savanna Landscapes, IEEE Trans. Geosci. Remote
Sens., 49, 4458–4468, https://doi.org/10.1109/TGRS.2011.2144604, 2011. a
Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier,
P., Bernhofer, C., Buchmann, N., Gilmanov, T., Granier, A., Grünwald, T.,
Havránková, K., Ilvesniemi, H., Janous, D., Knohl, A., Laurila, T., Lohila,
A., Loustau, D., Matteucci, G., Meyers, T., Miglietta, F., Ourcival, J.-M.,
Pumpanen, J., Rambal, S., Rotenberg, E., Sanz, M., Tenhunen, J., Seufert, G.,
Vaccari, F., Vesala, T., Yakir, D., and Valentini, R.: On the separation of
net ecosystem exchange into assimilation and ecosystem respiration: review
and improved algorithm, Glob. Change Biol., 11, 1424–1439,
https://doi.org/10.1111/j.1365-2486.2005.001002.x, 2005. a
Reitz, O., Graf, A., Schmidt, M., Ketzler, G., and Leuchner, M.: Upscaling Net
Ecosystem Exchange Over Heterogeneous Landscapes With Machine Learning,
J. Geophys. Res.-Biogeo., 126, e2020JG005814,
https://doi.org/10.1029/2020JG005814, 2021. a
Robinson, N. P., Allred, B. W., Jones, M. O., Moreno, A., Kimball, J. S.,
Naugle, D. E., Erickson, T. A., and Richardson, A. D.: A Dynamic Landsat
Derived Normalized Difference Vegetation Index (NDVI) Product for the
Conterminous United States, Remote Sens., 9, 863, https://doi.org/10.3390/rs9080863, 2017. a, b, c, d, e, f
Román, M. O., Schaaf, C. B., Woodcock, C. E., Strahler, A. H., Yang, X.,
Braswell, R. H., Curtis, P. S., Davis, K. J., Dragoni, D., Goulden, M. L.,
Gu, L., Hollinger, D. Y., Kolb, T. E., Meyers, T. P., Munger, J. W.,
Privette, J. L., Richardson, A. D., Wilson, T. B., and Wofsy, S. C.: The
MODIS (Collection V005) BRDF/albedo product: Assessment of spatial
representativeness over forested landscapes, Remote Sens. Environ.,
113, 2476–2498, https://doi.org/10.1016/j.rse.2009.07.009, 2009. a, b
Roy, D., Kovalskyy, V., Zhang, H., Vermote, E., Yan, L., Kumar, S., and Egorov,
A.: Characterization of Landsat-7 to Landsat-8 reflective wavelength and
normalized difference vegetation index continuity, Remote Sens.
Environ., 185, 57–70, https://doi.org/10.1016/j.rse.2015.12.024,
2016. a
Schaaf, C. and Wang, Z.: MCD43A2 MODIS/Terra+Aqua BRDF/Albedo Quality Daily L3
Global – 500 m V006, [data set], https://doi.org/10.5067/MODIS/MCD43A2.006,
2015a. a
Schaaf, C. and Wang, Z.: MCD43A4 MODIS/Terra+Aqua BRDF/Albedo Nadir BRDF
Adjusted Ref Daily L3 Global – 500 m V006, [data set],
https://doi.org/10.5067/MODIS/MCD43A4.006, 2015b. a, b
Schmid, H.: Experimental design for flux measurements: matching scales of
observations and fluxes, Agr. Forest Meteorol., 87, 179–200,
https://doi.org/10.1016/S0168-1923(97)00011-7, 1997. a, b
Schmidt, G., Jenkerson, C. B., Masek, J., Vermote, E., and Gao, F.: Landsat
ecosystem disturbance adaptive processing system (LEDAPS) algorithm
description, USGS Publications Warehouse, https://doi.org/10.3133/ofr20131057, 2013. a
Stekhoven, D. J. and Bühlmann, P.: MissForest – non-parametric missing value
imputation for mixed-type data, Bioinformatics, 28, 112–118,
https://doi.org/10.1093/bioinformatics/btr597, 2011. a
Stoy, P. C., Mauder, M., Foken, T., Marcolla, B., Boegh, E., Ibrom, A., Arain,
M. A., Arneth, A., Aurela, M., Bernhofer, C., Cescatti, A., Dellwik, E.,
Duce, P., Gianelle, D., van Gorsel, E., Kiely, G., Knohl, A., Margolis, H.,
McCaughey, H., Merbold, L., Montagnani, L., Papale, D., Reichstein, M.,
Saunders, M., Serrano-Ortiz, P., Sottocornola, M., Spano, D., Vaccari, F.,
and Varlagin, A.: A data-driven analysis of energy balance closure across
FLUXNET research sites: The role of landscape scale heterogeneity,
Agr. Forest Meteorol., 171/172, 137–152,
https://doi.org/10.1016/j.agrformet.2012.11.004, 2013. a
Sun, Q., Wang, Z., Li, Z., Erb, A., and Schaaf, C. B.: Evaluation of the global
MODIS 30 arc-second spatially and temporally complete snow-free land surface
albedo and reflectance anisotropy dataset, Int. J. Appl.
Earth Observ. Geoin., 58, 36–49,
https://doi.org/10.1016/j.jag.2017.01.011, 2017. a, b, c, d, e, f
Tramontana, G., Jung, M., Schwalm, C. R., Ichii, K., Camps-Valls, G., Ráduly,
B., Reichstein, M., Arain, M. A., Cescatti, A., Kiely, G., Merbold, L.,
Serrano-Ortiz, P., Sickert, S., Wolf, S., and Papale, D.: Predicting carbon
dioxide and energy fluxes across global FLUXNET sites with regression
algorithms, Biogeosciences, 13, 4291–4313, https://doi.org/10.5194/bg-13-4291-2016,
2016. a
Tucker, C. J.: Red and photographic infrared linear combinations for monitoring
vegetation, Remote Sens. Environ., 8, 127–150, 1979. a
Ueyama, M., Ichii, K., Iwata, H., Euskirchen, E., Zona, D., Rocha, A.,
Harazono, Y., Iwama, C., Nakai, T., and Oechel, W.: Upscaling terrestrial
carbon dioxide fluxes in Alaska with satellite remote sensing and support
vector regression, J. Geophys. Res.-Biogeo., 118,
1266–1281, https://doi.org/10.1002/jgrg.20095, 2013. a
van Buttlar, J., Zscheischler, J., and Mahecha, M. D.: An extended approach for spatiotemporal gapfilling: dealing with large and systematic gaps in geoscientific datasets, Nonlin. Processes Geophys., 21, 203–215, https://doi.org/10.5194/npg-21-203-2014, 2014. a, b, c
Verger, A., Baret, F., and Weiss, M.: A multisensor fusion approach to improve
LAI time series, Remote Sens. Environ., 115, 2460–2470,
https://doi.org/10.1016/j.rse.2011.05.006, 2011. a, b, c
Verger, A., Baret, F., Weiss, M., Kandasamy, S., and Vermote, E.: The CACAO
Method for Smoothing, Gap Filling, and Characterizing Seasonal Anomalies in
Satellite Time Series, IEEE Trans. Geosci. Remote Sens.,
51, 1963–1972, https://doi.org/10.1109/TGRS.2012.2228653, 2013. a, b, c, d
Vesala, T., Kljun, N., Rannik, Ã., Rinne, J., Sogachev, A., Markkanen, T.,
Sabelfeld, K., Foken, T., and Leclerc, M.: Flux and concentration footprint
modelling: State of the art, Environ. Pollut., 152, 653–666,
https://doi.org/10.1016/j.envpol.2007.06.070, 2008. a
Vinnikov, K. Y., Yu, Y., Rama Varma Raja, M. K., Tarpley, D., and Goldberg,
M. D.: Diurnal-seasonal and weather-related variations of land surface
temperature observed from geostationary satellites, Geophys. Res.
Lett., 35, https://doi.org/10.1029/2008GL035759, 2008. a
Virkkala, A.-M., Aalto, J., Rogers, B. M., Tagesson, T., Treat, C. C., Natali,
S. M., Watts, J. D., Potter, S., Lehtonen, A., Mauritz, M., Schuur, E. A. G.,
Kochendorfer, J., Zona, D., Oechel, W., Kobayashi, H., Humphreys, E.,
Goeckede, M., Iwata, H., Lafleur, P. M., Euskirchen, E. S., Bokhorst, S.,
Marushchak, M., Martikainen, P. J., Elberling, B., Voigt, C., Biasi, C.,
Sonnentag, O., Parmentier, F.-J. W., Ueyama, M., Celis, G., St.Louis, V. L.,
Emmerton, C. A., Peichl, M., Chi, J., Järveoja, J., Nilsson, M. B.,
Oberbauer, S. F., Torn, M. S., Park, S.-J., Dolman, H., Mammarella, I., Chae,
N., Poyatos, R., López-Blanco, E., Christensen, T. R., Kwon, M. J., Sachs,
T., Holl, D., and Luoto, M.: Statistical upscaling of ecosystem CO2 fluxes
across the terrestrial tundra and boreal domain: Regional patterns and
uncertainties, Glob. Change Biol., 27, 4040–4059,
https://doi.org/10.1111/gcb.15659, 2021. a
Virkkala, A.-M., Natali, S. M., Rogers, B. M., Watts, J. D., Savage, K., Connon, S. J., Mauritz, M., Schuur, E. A. G., Peter, D., Minions, C., Nojeim, J., Commane, R., Emmerton, C. A., Goeckede, M., Helbig, M., Holl, D., Iwata, H., Kobayashi, H., Kolari, P., López-Blanco, E., Marushchak, M. E., Mastepanov, M., Merbold, L., Parmentier, F.-J. W., Peichl, M., Sachs, T., Sonnentag, O., Ueyama, M., Voigt, C., Aurela, M., Boike, J., Celis, G., Chae, N., Christensen, T. R., Bret-Harte, M. S., Dengel, S., Dolman, H., Edgar, C. W., Elberling, B., Euskirchen, E., Grelle, A., Hatakka, J., Humphreys, E., Järveoja, J., Kotani, A., Kutzbach, L., Laurila, T., Lohila, A., Mammarella, I., Matsuura, Y., Meyer, G., Nilsson, M. B., Oberbauer, S. F., Park, S.-J., Petrov, R., Prokushkin, A. S., Schulze, C., St. Louis, V. L., Tuittila, E.-S., Tuovinen, J.-P., Quinton, W., Varlagin, A., Zona, D., and Zyryanov, V. I.: The ABCflux database: Arctic–boreal CO2 flux observations and ancillary information aggregated to monthly time steps across terrestrial ecosystems, Earth Syst. Sci. Data, 14, 179–208, https://doi.org/10.5194/essd-14-179-2022, 2022. a
Wagle, P., Gowda, P. H., Neel, J. P., Northup, B. K., and Zhou, Y.: Integrating
eddy fluxes and remote sensing products in a rotational grazing native
tallgrass prairie pasture, Sci. Total Environ., 712, 136407,
https://doi.org/10.1016/j.scitotenv.2019.136407, 2020. a
Walther, S., Besnard, S., Nelson, J. A., El-Madany, T. S., Migliavacca, M.,
Weber, U., Ermida, S. L., Brümmer, C., Schrader, F., Prokushkin, A. S.,
Panov, A. V., and Jung, M.: Technical note: A view from space on global flux
towers by MODIS and Landsat: The FluxnetEO dataset (Landsat), [data set],
2021a. a, b, c
Walther, S., Besnard, S., Nelson, J. A., El-Madany, T. S., Migliavacca, M.,
Weber, U., Ermida, S. L., Brümmer, C., Schrader, F., Prokushkin, A. S.,
Panov, A. V., and Jung, M.: Technical note: A view from space on global flux
towers by MODIS and Landsat: The FluxnetEO dataset (MODIS), [data set],
2021b. a, b, c
Wan, Z., Hook, S., and Hulley, G.: MOD11A1 MODIS/Terra Land Surface
Temperature/Emissivity Daily L3 Global 1 km SIN Grid V006, [data set],
https://doi.org/10.5067/MODIS/MOD11A1.006, 2015a. a
Wan, Z., Hook, S., and Hulley, G.: MYD11A1 MODIS/Aqua Land Surface
Temperature/Emissivity Daily L3 Global 1 km SIN Grid V006, [data set],
https://doi.org/10.5067/MODIS/MYD11A1.006, 2015b. a
Wang, G., Garcia, D., Liu, Y., de Jeu, R., and Johannes Dolman, A.: A
three-dimensional gap filling method for large geophysical datasets:
Application to global satellite soil moisture observations, Environ.
Model. Softw., 30, 139–142,
https://doi.org/10.1016/j.envsoft.2011.10.015, 2012. a, b, c
Weiss, D. J., Atkinson, P. M., Bhatt, S., Mappin, B., Hay, S. I., and Gething,
P. W.: An effective approach for gap-filling continental scale remotely
sensed time-series, ISPRS J. Photogramm. Remote Sens., 98,
106–118, https://doi.org/10.1016/j.isprsjprs.2014.10.001, 2014. a, b
Williams, M., Richardson, A. D., Reichstein, M., Stoy, P. C., Peylin, P.,
Verbeeck, H., Carvalhais, N., Jung, M., Hollinger, D. Y., Kattge, J.,
Leuning, R., Luo, Y., Tomelleri, E., Trudinger, C. M., and Wang, Y.-P.:
Improving land surface models with FLUXNET data, Biogeosciences, 6,
1341–1359, https://doi.org/10.5194/bg-6-1341-2009, 2009. a
Wingate, L., Ogée, J., Cremonese, E., Filippa, G., Mizunuma, T., Migliavacca,
M., Moisy, C., Wilkinson, M., Moureaux, C., Wohlfahrt, G., Hammerle, A.,
Hörtnagl, L., Gimeno, C., Porcar-Castell, A., Galvagno, M., Nakaji, T.,
Morison, J., Kolle, O., Knohl, A., Kutsch, W., Kolari, P., Nikinmaa, E.,
Ibrom, A., Gielen, B., Eugster, W., Balzarolo, M., Papale, D., Klumpp, K.,
Köstner, B., Grünwald, T., Joffre, R., Ourcival, J.-M., Hellstrom, M.,
Lindroth, A., George, C., Longdoz, B., Genty, B., Levula, J., Heinesch, B.,
Sprintsin, M., Yakir, D., Manise, T., Guyon, D., Ahrends, H., Plaza-Aguilar,
A., Guan, J. H., and Grace, J.: Interpreting canopy development and
physiology using a European phenology camera network at flux sites,
Biogeosciences, 12, 5995–6015, https://doi.org/10.5194/bg-12-5995-2015, 2015.
a
Wohlfahrt, G., Hammerle, A., Haslwanter, A., Bahn, M., Tappeiner, U., and Cernusca, A.: Seasonal and inter-annual variability of the net ecosystem CO2 exchange of a temperate mountain grassland: Effects of weather and management, J. Geophys. Res.-Atmos., 113, D08110, https://doi.org/10.1029/2007JD009286, 2008. a
Wulder, M. A., Loveland, T. R., Roy, D. P., Crawford, C. J., Masek, J. G.,
Woodcock, C. E., Allen, R. G., Anderson, M. C., Belward, A. S., Cohen, W. B.,
Dwyer, J., Erb, A., Gao, F., Griffiths, P., Helder, D., Hermosilla, T.,
Hipple, J. D., Hostert, P., Hughes, M. J., Huntington, J., Johnson, D. M.,
Kennedy, R., Kilic, A., Li, Z., Lymburner, L., McCorkel, J., Pahlevan, N.,
Scambos, T. A., Schaaf, C., Schott, J. R., Sheng, Y., Storey, J., Vermote,
E., Vogelmann, J., White, J. C., Wynne, R. H., and Zhu, Z.: Current status of
Landsat program, science, and applications, Remote Sens. Environ.,
225, 127–147, https://doi.org/10.1016/j.rse.2019.02.015, 2019. a
Yan, L. and Roy, D. P.: Large-Area Gap Filling of Landsat Reflectance Time
Series by Spectral-Angle-Mapper Based Spatio-Temporal Similarity (SAMSTS),
Remote Sens., 10, 609, https://doi.org/10.3390/rs10040609, 2018. a, b
Zeng, J., Matsunaga, T., Tan, Z.-H., Saigusa, N., Shirai, T., Tang, Y., Peng,
S., and Fukuda, Y.: Global terrestrial carbon fluxes of 1999–2019 estimated
by upscaling eddy covariance data with a random forest, Sci. Data, 7, 1–11,
https://doi.org/10.1038/s41597-020-00653-5, 2020. a
Zhang, J., Shang, R., Rittenhouse, C., Witharana, C., and Zhu, Z.: Evaluating
the impacts of models, data density and irregularity on reconstructing and
forecasting dense Landsat time series, Sci. Remote Sens., 4,
100023, https://doi.org/10.1016/j.srs.2021.100023, 2021. a, b
Zhu, Z. and Woodcock, C. E.: Object-based cloud and cloud shadow detection in
Landsat imagery, Remote Sens. Environ., 118, 83–94,
https://doi.org/10.1016/j.rse.2011.10.028, 2012. a
Zhu, Z., Wang, S., and Woodcock, C. E.: Improvement and expansion of the Fmask
algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and
Sentinel 2 images, Remote Sens. Environ., 159, 269–277,
https://doi.org/10.1016/j.rse.2014.12.014, 2015. a
Short summary
Satellite observations help interpret station measurements of local carbon, water, and energy exchange between the land surface and the atmosphere and are indispensable for simulations of the same in land surface models and their evaluation. We propose generalisable and efficient approaches to systematically ensure high quality and to estimate values in data gaps. We apply them to satellite data of surface reflectance and temperature with different resolutions at the stations.
Satellite observations help interpret station measurements of local carbon, water, and energy...
Altmetrics
Final-revised paper
Preprint