Articles | Volume 19, issue 13
https://doi.org/10.5194/bg-19-3209-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-3209-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Early winter barium excess in the southern Indian Ocean as an annual remineralisation proxy (GEOTRACES GIPr07 cruise)
Natasha René van Horsten
CORRESPONDING AUTHOR
Univ Brest, CNRS, IRD, Ifremer, LEMAR, 29280 Plouzane, France
SOCCO, CSIR, Lower Hope Road, Cape Town, 7700, South Africa
Department of Earth Sciences, TracEx, Stellenbosch University,
Stellenbosch, 7600, South Africa
Hélène Planquette
Univ Brest, CNRS, IRD, Ifremer, LEMAR, 29280 Plouzane, France
Géraldine Sarthou
Univ Brest, CNRS, IRD, Ifremer, LEMAR, 29280 Plouzane, France
Thomas James Ryan-Keogh
SOCCO, CSIR, Lower Hope Road, Cape Town, 7700, South Africa
Nolwenn Lemaitre
Department of Earth Sciences, Institute of Geochemistry and Petrology,
ETH Zurich, Zurich, Switzerland
Thato Nicholas Mtshali
Department of Forestry, Fisheries and Environment, Oceans and Coasts,
Foretrust Building, Martin Hammerschlag Way, Cape Town, 8001, South Africa
Alakendra Roychoudhury
Department of Earth Sciences, TracEx, Stellenbosch University,
Stellenbosch, 7600, South Africa
Eva Bucciarelli
CORRESPONDING AUTHOR
Univ Brest, CNRS, IRD, Ifremer, LEMAR, 29280 Plouzane, France
Related authors
No articles found.
Sarah-Anne Nicholson, Thomas J. Ryan-Keogh, Sandy J. Thomalla, Nicolette Chang, and Marié E. Smith
Earth Syst. Sci. Data, 17, 1959–1975, https://doi.org/10.5194/essd-17-1959-2025, https://doi.org/10.5194/essd-17-1959-2025, 2025
Short summary
Short summary
The annual widespread growth of phytoplankton blooms across the global ocean has far-reaching impacts on food security, ecosystem health, and climate. This study uses satellite-derived observations to generate long-term, sustained indices of phytoplankton phenology, capturing the timing, variability, and magnitude of blooms across the global ocean. These indices support the effective monitoring and management of marine resources and help assess the impacts of climate change on ocean ecosystems.
Thomas J. Ryan-Keogh, Sandy J. Thomalla, Nicolette Chang, and Tumelo Moalusi
Earth Syst. Sci. Data, 15, 4829–4848, https://doi.org/10.5194/essd-15-4829-2023, https://doi.org/10.5194/essd-15-4829-2023, 2023
Short summary
Short summary
Oceanic productivity has been highlighted as an important environmental indicator of climate change in comparison to other existing metrics. However, the availability of these data to assess trends and trajectories is plagued with issues, such as application to only a single satellite reducing the time period for assessment. We have applied multiple algorithms to the longest ocean colour record to provide a record for assessing climate-change-driven trends.
Asmita Singh, Susanne Fietz, Sandy J. Thomalla, Nicolas Sanchez, Murat V. Ardelan, Sébastien Moreau, Hanna M. Kauko, Agneta Fransson, Melissa Chierici, Saumik Samanta, Thato N. Mtshali, Alakendra N. Roychoudhury, and Thomas J. Ryan-Keogh
Biogeosciences, 20, 3073–3091, https://doi.org/10.5194/bg-20-3073-2023, https://doi.org/10.5194/bg-20-3073-2023, 2023
Short summary
Short summary
Despite the scarcity of iron in the Southern Ocean, seasonal blooms occur due to changes in nutrient and light availability. Surprisingly, during an autumn bloom in the Antarctic sea-ice zone, the results from incubation experiments showed no significant photophysiological response of phytoplankton to iron addition. This suggests that ambient iron concentrations were sufficient, challenging the notion of iron deficiency in the Southern Ocean through extended iron-replete post-bloom conditions.
Hanna M. Kauko, Philipp Assmy, Ilka Peeken, Magdalena Różańska-Pluta, Józef M. Wiktor, Gunnar Bratbak, Asmita Singh, Thomas J. Ryan-Keogh, and Sebastien Moreau
Biogeosciences, 19, 5449–5482, https://doi.org/10.5194/bg-19-5449-2022, https://doi.org/10.5194/bg-19-5449-2022, 2022
Short summary
Short summary
This article studies phytoplankton (microscopic
plantsin the ocean capable of photosynthesis) in Kong Håkon VII Hav in the Southern Ocean. Different species play different roles in the ecosystem, and it is therefore important to assess the species composition. We observed that phytoplankton blooms in this area are formed by large diatoms with strong silica armors, which can lead to high silica (and sometimes carbon) export to depth and be important prey for krill.
Marion Lagarde, Nolwenn Lemaitre, Hélène Planquette, Mélanie Grenier, Moustafa Belhadj, Pascale Lherminier, and Catherine Jeandel
Biogeosciences, 17, 5539–5561, https://doi.org/10.5194/bg-17-5539-2020, https://doi.org/10.5194/bg-17-5539-2020, 2020
Cited articles
Anilkumar, N. and Sabu, P.: Physical process influencing the ecosystem of
the indian sector of southern ocean-An overview, Proc. Indian Natl. Sci.
Acad., 83, 363–376, https://doi.org/10.16943/ptinsa/2017/48960, 2017.
Ansorge, I. J., Jackson, J. M., Reid, K., Durgadoo, J. V, Swart, S., and
Eberenz, S.: Evidence of a southward eddy corridor in the South-West Indian
ocean, Deep-Sea Res. Pt. II, 119, 69–76,
https://doi.org/10.1016/j.dsr2.2014.05.012, 2015.
Armstrong, R. A., Peterson, M. L., Lee, C., and Wakeham, S. G.: Settling
velocity spectra and the ballast ratio hypothesis, Deep-Sea Res. Pt. II, 56, 1470–1478, https://doi.org/10.1016/j.dsr2.2008.11.032, 2009.
Barbur, V. A., Montgomery, D. C., and Peck, E. A.: Introduction to Linear
Regression Analysis, Stat., 43, 339, https://doi.org/10.2307/2348362, 1994.
Behrenfeld, M. J., Boss, E., Siegel, D. A., and Shea, D. M.: Carbon-based
ocean productivity and phytoplankton physiology from space, Global Biogeochem. Cy., 19, 1–14, https://doi.org/10.1029/2004GB002299, 2005.
Bishop, J. K. B.: The barite-opal-organic carbon association in oceanic
particulate matter, Nature, 332, 341–343, https://doi.org/10.1038/332341a0, 1988.
Bishop, J. K. B. and Edmond, J. M.: A new large volume filtration system for
the sampling of oceanic particulate matter, J. Mar. Res., 34, 181–198, 1976.
Bopp, L., Resplandy, L., Orr, J. C., Doney, S. C., Dunne, J. P., Gehlen, M., Halloran, P., Heinze, C., Ilyina, T., Séférian, R., Tjiputra, J., and Vichi, M.: Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models, Biogeosciences, 10, 6225–6245, https://doi.org/10.5194/bg-10-6225-2013, 2013.
Boyd, P. W., Claustre, H., Levy, M., Siegel, D. A. and Weber, T.:
Multi-faceted particle pumps drive carbon sequestration in the ocean,
Nature, 568, 327–335, https://doi.org/10.1038/s41586-019-1098-2, 2019.
Broecker, W. S., Takahashi, T. and Takahashi, T.: Sources and flow patterns
of deep-ocean waters as deduced from potential temperature, salinity, and
initial phosphate concentration, J. Geophys. Res.-Oceans, 90,
6925–6939, https://doi.org/10.1029/JC090iC04p06925, 1985.
Buesseler, K. O.: The decoupling of production and particulate export in
the surface ocean, Global Biogeochem. Cy., 12, 297–310,
https://doi.org/10.1029/97GB03366, 1998.
Buesseler, K. O., Andrews, J. E., Pike, S. M., Charette, M. A., Goldson, L.
E., Brzezinski, M. A., and Lance, V. P.: Particle export during the Southern
Ocean Iron Experiment (SOFeX), Limnol. Oceanogr., 50, 311–327,
https://doi.org/10.4319/lo.2005.50.1.0311, 2005.
Buesseler, K. O. and Boyd, P. W.: Shedding light on processes that control
particle export and flux attenuation in the twilight zone of the open ocean,
Limnol. Oceanogr., 54, 1210–1232, https://doi.org/10.4319/lo.2009.54.4.1210, 2009.
Cardinal, D., Dehairs, F., Cattaldo, T., and André, L.: Geochemistry of
suspended particles in the Subantarctic and Polar Frontal zones south of
Australia: Constraints on export and advection processes, J. Geophys. Res.-Ocean., 106, 31637–31656, https://doi.org/10.1029/2000JC000251, 2001.
Cardinal, D., Savoye, N., Trull, T. W., André, L., Kopczynska, E. E.,
and Dehairs, F.: Variations of carbon remineralisation in the Southern Ocean
illustrated by the Baxs proxy, Deep-Sea Res. Pt. I, 52,
355–370, https://doi.org/10.1016/j.dsr.2004.10.002, 2005.
Cavan, E. L., Le Moigne, F. A. C., Poulton, A. J., Tarling, G. A., Ward, P.,
Daniels, C. J., Fragoso, G. M., and Sanders, R. J.: Attenuation of
particulate organic carbon flux in the Scotia Sea, Southern Ocean, is
controlled by zooplankton fecal pellets, Geophys. Res. Lett., 42,
821–830, https://doi.org/10.1002/2014GL062744, 2015.
Cutter, G., Casciotti, K., Croot, P., Geibert, W., Heimbürger, L.-E.,
Lohan, M., Planquette, H., and van de Flierdt, T.: Sampling and
Sample-handling Protocols for GEOTRACES Cruises, Version 3, 139 pp.,
http://www.geotraces.org/images/stories/documents/intercalibration/Cookbook.pdf (last access: 15 February 2019),
2017.
de Boyer Montégut, C., Madec, G., Fischer, A. S., Lazar, A., and
Iudicone, D.: Mixed layer depth over the global ocean: An examination of
profile data and a profile-based climatology, J. Geophys. Res.-Oceans,
109, 1–20, https://doi.org/10.1029/2004JC002378, 2004.
Dehairs, F., Baeyens, W. and Goeyens, L.: Accumulation of Suspended Barite
at Mesopelagic Depths and Export Production in the Southern Ocean, Science 258, 1332–1335, https://doi.org/10.1126/SCIENCE.258.5086.1332, 1992.
Dehairs, F., Chesselet, R., and Jedwab, J.: Discrete suspended particles of
barite and the barium cycle in the open ocean, Earth Planet. Sc. Lett.,
49, 528–550, https://doi.org/10.1016/0012-821X(80)90094-1, 1980.
Dehairs, F. and Goeyens, L.: Oxidation rate of organic carbon in the
mesopelagic water column as traced by suspended barium-barite, Integr. Mar.
Syst. Anal., 205–217, 1996.
Dehairs, F., Goeyens, L., Stroobants, N., Bernard, P., Goyet, C., Poisson,
A. and Chesselet, R.: On suspended barite and the oxygen minimum in the
Southern Ocean, Global Biogeochem. Cy., 4, 85–102,
https://doi.org/10.1029/GB004I001P00085, 1990.
Dehairs, F., Shopova, D., Ober, S., Veth, C. and Goeyens, L.: Particulate
barium stocks and oxygen consumption in the Southern Ocean mesopelagic water
column during spring and early summer: Relationship with export production,
Deep-Sea Res. Pt. II, 44, 497–516,
https://doi.org/10.1016/S0967-0645(96)00072-0, 1997.
Dehairs, F., Stroobants, N., and Goeyens, L.: Suspended barite as a tracer of
biological activity in the Southern Ocean, Mar. Chem., 35, 399–410,
https://doi.org/10.1016/S0304-4203(09)90032-9, 1991.
de Jong, E., Vichi, M., Mehlmann, C. B., Eayrs, C., De Kock, W.,
Moldenhauer, M., and Audh, R. R.: Sea Ice conditions within the Antarctic
Marginal Ice Zone in winter 2017, onboard the SA Agulhas II, Univ. Cape
Town, PANGAEA, https://doi.org/10.1594/PANGAEA.885211, 2018.
DeVries, T. and Weber, T.: The export and fate of organic matter in the
ocean: New constraints from combining satellite and oceanographic tracer
observations, Global Biogeochem. Cy., 31, 535–555,
https://doi.org/10.1002/2016GB005551, 2017.
Ducklow, H. W., Steinberg, D. K., and Buesseler, K. O.: Upper ocean carbon
export and the biological pump, Oceanography, 14, 50–58,
https://doi.org/10.5670/oceanog.2001.06, 2001.
Dymond, J., Suess, E., and Lyle, M.: Barium in Deep-Sea Sediment: A
Geochemical Proxy for Paleoproductivity, Paleoceanography, 7, 163–181,
https://doi.org/10.1029/92PA00181, 1992.
Ehrhardt, M., Grasshoff, K., Kremling, K., and Almgren,
T. (Eds.): Methods of seawater analysis, edited by: Grasshoff, K., Ehrhardt, M., and Kremling, K.; with contributions by T. Almgren,
Verlag Chemie, Weinheim, 1983.
Eriksen, R., Trull, T. W., Davies, D., Jansen, P., Davidson, A. T.,
Westwood, K., and Van Den Enden, R.: Seasonal succession of phytoplankton
community structure from autonomous sampling at the Australian Southern
Ocean Time Series (SOTS) observatory, Mar. Ecol. Prog. Ser., 589, 13–21,
https://doi.org/10.3354/meps12420, 2018.
Fan, G., Han, Z., Ma, W., Chen, S., Chai, F., Mazloff, M. R., Pan, J., and
Zhang, H.: Southern Ocean carbon export efficiency in relation to
temperature and primary productivity, Sci. Rep., 10, 1–11,
https://doi.org/10.1038/s41598-020-70417-z, 2020.
Ferrari, R. and Nikurashin, M.: Suppression of eddy diffusivity across jets
in the Southern Ocean, J. Phys. Oceanogr., 40, 1501–1519,
https://doi.org/10.1175/2010JPO4278.1, 2010.
Freeman, N. M., Lovenduski, N. S., Munro, D. R., Krumhardt, K. M., Lindsay,
K., Long, M. C., and Maclennan, M.: The Variable and Changing Southern Ocean
Silicate Front: Insights from the CESM Large Ensemble, Global Biogeochem. Cy., 32, 752–768, https://doi.org/10.1029/2017GB005816, 2018.
Gall, M. P., Boyd, P. W., Hall, J., Safi, K. A., and Chang, H.:
Phytoplankton processes, Part 1: Community structure during the Southern
Ocean Iron RElease Experiment (SOIREE), Deep-Sea Res. Pt. II, 48, 2551–2570, https://doi.org/10.1016/S0967-0645(01)00008-X, 2001.
GEOTRACES Intermediate Data Product Group: The GEOTRACES Intermediate Data
Product 2021 (IDP2021), NERC EDS British Oceanographic Data Centre NOC, [data set], https://doi.org/10.5285/cf2d9ba9-d51d-3b7c-e053-8486abc0f5fd, 2021.
Gill, A. E.: Atmosphere-ocean dynamics, NEW YORK, U.S.A., ACADEMIC PRESS
INC., https://doi.org/10.1016/0141-1187(83)90039-1, 1982.
Gregor, L., Lebehot, A. D., Kok, S., and Scheel Monteiro, P. M.: A comparative assessment of the uncertainties of global surface ocean CO2 estimates using a machine-learning ensemble (CSIR-ML6 version 2019a) – have we hit the wall?, Geosci. Model Dev., 12, 5113–5136, https://doi.org/10.5194/gmd-12-5113-2019, 2019.
Gruber, N., Landschützer, P., and Lovenduski, N. S.: The variable
southern ocean carbon sink, Ann. Rev. Mar. Sci., 11, 159–186,
https://doi.org/10.1146/annurev-marine-121916-063407, 2019.
Honjo, S., Eglinton, T. I., Taylor, C. D., Ulmer, K. M., Sievert, S. M.,
Bracher, A., German, C. R., Edgcomb, V., Francois, R.,
Deboraiglesias-Rodriguez, M., Van Mooy, B., and Repeta, D. J.: Understanding
the role of the biological pump in the global carbon cycle: An imperative
for ocean science, Oceanography, 27, 10–16, https://doi.org/10.5670/oceanog.2014.78,
2014.
Ito, T., Follows, M. J., and Boyle, E. A.: Is AOU a good measure of
respiration in the oceans?, Geophys. Res. Lett., 31, 1–4,
https://doi.org/10.1029/2004GL020900, 2004.
Jacquet, S. H. M., Dehairs, F., Cardinal, D., Navez, J., and Delille, B.:
Barium distribution across the Southern Ocean frontal system in the
Crozet-Kerguelen Basin, Mar. Chem., 95, 149–162,
https://doi.org/10.1016/j.marchem.2004.09.002, 2005.
Jacquet, S. H. M., Dehairs, F., Elskens, M., Savoye, N., and Cardinal, D.:
Barium cycling along WOCE SR3 line in the Southern Ocean, Mar. Chem.,
106, 33–45, https://doi.org/10.1016/j.marchem.2006.06.007, 2007.
Jacquet, S. H. M., Dehairs, F., Savoye, N., Obernosterer, I., Christaki, U.,
Monnin, C., and Cardinal, D.: Mesopelagic organic carbon remineralization in
the Kerguelen Plateau region tracked by biogenic particulate Ba, Deep-Sea Res. Pt. II, 55, 868–879,
https://doi.org/10.1016/j.dsr2.2007.12.038, 2008a.
Jacquet, S. H. M., Savoye, N., Dehairs, F., Strass, V. H., and Cardinal, D.:
Mesopelagic carbon remineralization during the European Iron Fertilization
Experiment, Global Biogeochem. Cy., 22, 1–9,
https://doi.org/10.1029/2006GB002902, 2008b.
Jacquet, S. H. M., Dehairs, F., Dumont, I., Becquevort, S., Cavagna, A. J.,
and Cardinal, D.: Twilight zone organic carbon remineralization in the Polar
Front Zone and Subantarctic Zone south of Tasmania, Deep-Sea Res. Pt. II, 58, 2222–2234, https://doi.org/10.1016/j.dsr2.2011.05.029,
2011.
Jacquet, S. H. M., Dehairs, F., Lefèvre, D., Cavagna, A. J., Planchon, F., Christaki, U., Monin, L., André, L., Closset, I., and Cardinal, D.: Early spring mesopelagic carbon remineralization and transfer efficiency in the naturally iron-fertilized Kerguelen area, Biogeosciences, 12, 1713–1731, https://doi.org/10.5194/bg-12-1713-2015, 2015.
Jochum, K. P., Nohl, U., Herwig, K., Lammel, E., Stoll, B., and Hofmann, A.
W.: GeoReM: A new geochemical database for reference materials and isotopic
standards, Geostand. Geoanal. Res., 29, 333–338,
https://doi.org/10.1111/j.1751-908x.2005.tb00904.x, 2005.
Kokoska, S. and Zwillinger, D.: CRC Standard Probability and Statistics
Tables and Formulae, Student Edition, https://doi.org/10.1201/b16923, 2000.
Lam, P. J. and Bishop, J. K. B.: High biomass, low export regimes in the
Southern Ocean, Deep-Sea Res. Pt. II, 54, 601–638,
https://doi.org/10.1016/j.dsr2.2007.01.013, 2007.
Laurenceau-Cornec, E. C., Trull, T. W., Davies, D. M., Bray, S. G., Doran, J., Planchon, F., Carlotti, F., Jouandet, M.-P., Cavagna, A.-J., Waite, A. M., and Blain, S.: The relative importance of phytoplankton aggregates and zooplankton fecal pellets to carbon export: insights from free-drifting sediment trap deployments in naturally iron-fertilised waters near the Kerguelen Plateau, Biogeosciences, 12, 1007–1027, https://doi.org/10.5194/bg-12-1007-2015, 2015.
Le Moigne, F. A. C.: Pathways of Organic Carbon Downward Transport by the
Oceanic Biological Carbon Pump, Front. Mar. Sci., 634, 6,
https://doi.org/10.3389/fmars.2019.00634, 2019.
Legeleux, F. and Reyss, J. L.: 228Ra 226Ra activity ratio in oceanic
settling particles: Implications regarding the use of barium as a proxy for
paleoproductivity reconstruction, Deep-Sea Res. Pt. I,
43, 1857–1863, https://doi.org/10.1016/S0967-0637(96)00086-6, 1996.
Lemaitre, N., Planquette, H., Planchon, F., Sarthou, G., Jacquet, S., García-Ibáñez, M. I., Gourain, A., Cheize, M., Monin, L., André, L., Laha, P., Terryn, H., and Dehairs, F.: Particulate barium tracing of significant mesopelagic carbon remineralisation in the North Atlantic, Biogeosciences, 15, 2289–2307, https://doi.org/10.5194/bg-15-2289-2018, 2018.
Maiti, K., Charette, M. A., Buesseler, K. O., and Kahru, M.: An inverse
relationship between production and export efficiency in the Southern Ocean,
Geophys. Res. Lett., 40, 1557–1561, https://doi.org/10.1002/GRL.50219, 2013.
Marsay, C. M., Sanders, R. J., Henson, S. A., Pabortsava, K., Achterberg,
E. P., and Lampitt, R. S.: Attenuation of sinking particulate organic carbon
flux through the mesopelagic ocean, P. Natl. Acad. Sci. USA, 112,
1089–1094, https://doi.org/10.1073/pnas.1415311112, 2015.
McDonnell, A. M. P. and Buesseler, K. O.: Variability in the average sinking
velocity of marine particles, Limnol. Oceanogr., 55, 2085–2096,
https://doi.org/10.4319/LO.2010.55.5.2085, 2010.
Mendes, C. R. B., Kerr, R., Tavano, V. M., Cavalheiro, F. A., Garcia, C. A.
E., Gauns Dessai, D. R., and Anilkumar, N.: Cross-front phytoplankton
pigments and chemotaxonomic groups in the Indian sector of the Southern
Ocean, Deep-Sea Res. Pt. II, 118, 221–232,
https://doi.org/10.1016/j.dsr2.2015.01.003, 2015.
Morris, P. J., Sanders, R., Turnewitsch, R., and Thomalla, S.: 234Th-derived
particulate organic carbon export from an island-induced phytoplankton bloom
in the Southern Ocean, Deep-Sea Res. Pt. II,
54, 2208–2232, https://doi.org/10.1016/J.DSR2.2007.06.002, 2007.
Nissen, C., Vogt, M., Münnich, M., Gruber, N., and Haumann, F. A.: Factors controlling coccolithophore biogeography in the Southern Ocean, Biogeosciences, 15, 6997–7024, https://doi.org/10.5194/bg-15-6997-2018, 2018.
Orsi, A. H., Whitworth, T., and Nowlin, W. D.: On the meridional extent and
fronts of the Antarctic Circumpolar Current, Deep-Sea Res. Pt. I, 42,
641–673, https://doi.org/10.1016/0967-0637(95)00021-W, 1995.
Passow, U. and Carlson, C. A.: The biological pump in a high CO2 world,
Mar. Ecol. Prog. Ser., 470, 249–271, https://doi.org/10.3354/meps09985, 2012.
Petrou, K., Kranz, S. A., Trimborn, S., Hassler, C. S., Ameijeiras, S. B.,
Sackett, O., Ralph, P. J., and Davidson, A. T.: Southern Ocean phytoplankton
physiology in a changing climate, J. Plant Physiol., 203, 135–150,
https://doi.org/10.1016/j.jplph.2016.05.004, 2016.
Planchon, F., Cavagna, A.-J., Cardinal, D., André, L., and Dehairs, F.: Late summer particulate organic carbon export and twilight zone remineralisation in the Atlantic sector of the Southern Ocean, Biogeosciences, 10, 803–820, https://doi.org/10.5194/bg-10-803-2013, 2013.
Planquette, H. and Sherrell, R. M.: Sampling for particulate trace element
determination using water sampling bottles: Methodology and comparison to in
situ pumps, Limnol. Oceanogr.-Meth., 10, 367–388,
https://doi.org/10.4319/lom.2012.10.367, 2012.
Pollard, R. T., Lucas, M. I., and Read, J. F.: Physical controls on
biogeochemical zonation in the Southern Ocean, Deep-Sea Res. Pt. II, 49, 3289–3305, https://doi.org/10.1016/S0967-0645(02)00084-X, 2002.
Pyle, K. M., Hendry, K. R., Sherrell, R. M., Legge, O., Hind, A. J.,
Bakker, D., Venables, H., and Meredith, M. P.: Oceanic fronts control the
distribution of dissolved barium in the Southern Ocean, Mar. Chem.,
204, 95–106, https://doi.org/10.1016/j.marchem.2018.07.002, 2018.
Rembauville, M., Briggs, N., Ardyna, M., Uitz, J., Catala, P., Penkerc'h,
C., Poteau, A., Claustre, H., and Blain, S.: Plankton Assemblage Estimated
with BGC-Argo Floats in the Southern Ocean: Implications for Seasonal
Successions and Particle Export, J. Geophys. Res.-Oceans, 122,
8278–8292, https://doi.org/10.1002/2017JC013067, 2017.
Riebesell, U.: Particle aggregation during a diatom bloom, II. Biological
aspects, Mar. Ecol. Prog. Ser., 69, 281–291, https://doi.org/10.3354/meps069281,
1991.
Rio, M. H., Guinehut, S., and Larnicol, G.: New CNES-CLS09 global mean
dynamic topography computed from the combination of GRACE data, altimetry,
and in situ measurements, J. Geophys. Res.-Oceans, 116, 1–25,
https://doi.org/10.1029/2010JC006505, 2011.
Robinson, C., Steinberg, D. K., Anderson, T. R., Arístegui, J.,
Carlson, C. A., Frost, J. R., Ghiglione, J. F., Hernández-León, S.,
Jackson, G. A., Koppelmann, R., Quéguiner, B., Ragueneau, O.,
Rassoulzadegan, F., Robison, B. H., Tamburini, C., Tanaka, T., Wishner, K.
F., and Zhang, J.: Mesopelagic zone ecology and biogeochemistry – A
synthesis, Deep-Sea Res. Pt. II, 57, 1504–1518,
https://doi.org/10.1016/j.dsr2.2010.02.018, 2010.
Rosengard, S. Z., Lam, P. J., Balch, W. M., Auro, M. E., Pike, S., Drapeau, D., and Bowler, B.: Carbon export and transfer to depth across the Southern Ocean Great Calcite Belt, Biogeosciences, 12, 3953–3971, https://doi.org/10.5194/bg-12-3953-2015, 2015.
Rutgers van der Loeff, M. M., Cai, P. H., Stimac, I., Bracher, A.,
Middag, R., Klunder, M. B., and van Heuven, S. M. A. C.: 234Th in surface
waters: Distribution of particle export flux across the Antarctic
Circumpolar Current and in the Weddell Sea during the GEOTRACES expedition
ZERO and DRAKE, Deep-Sea Res. Pt. II, 58,
2749–2766, https://doi.org/10.1016/j.dsr2.2011.02.004, 2011.
Ryan-Keogh, T. J., Thomalla, S. J., Mtshali, T. N., van Horsten, N. R., and Little, H. J.: Seasonal development of iron limitation in the sub-Antarctic zone, Biogeosciences, 15, 4647–4660, https://doi.org/10.5194/bg-15-4647-2018, 2018.
Sarmiento, J. and Gruber, N.: Ocean Biogeochemical Dynamics, Princeton
University Press, Princeton, Oxford, https://doi.org/10.2307/j.ctt3fgxqx, 2006.
Sathyendranath, S., Brewin, R. J. W., Brockmann, C., Brotas, V., Calton,
B., Chuprin, A., Cipollini, P., Couto, A. B., Dingle, J., Doerffer, R.,
Donlon, C., Dowell, M., Farman, A., Grant, M., Groom, S., Horseman, A.,
Jackson, T., Krasemann, H., Lavender, S., Martinez-Vicente, V., Mazeran, C.,
Mélin, F., Moore, T. S., Müller, D., Regner, P., Roy, S., Steele, C.
J., Steinmetz, F., Swinton, J., Taberner, M., Thompson, A., Valente, A.,
Zühlke, M., Brando, V. E., Feng, H., Feldman, G., Franz, B. A., Frouin,
R., Gould, R. W., Hooker, S. B., Kahru, M., Kratzer, S., Mitchell, B. G.,
Muller-Karger, F. E., Sosik, H. M., Voss, K. J., Werdell, J., and Platt, T.:
An ocean-colour time series for use in climate studies: The experience of
the ocean-colour climate change initiative (OC-CCI), Sensors,
19, 4285, https://doi.org/10.3390/s19194285, 2019.
Savoye, N., Trull, T. W., Jacquet, S. H. M., Navez, J., and Dehairs, F.:
234Th-based export fluxes during a natural iron fertilization experiment in
the Southern Ocean (KEOPS), Deep-Sea Res. Pt. II,
55, 841–855, https://doi.org/10.1016/J.DSR2.2007.12.036, 2008.
Schlitzer, R.: Carbon export fluxes in the Southern Ocean: Results from
inverse modeling and comparison with satellite-based estimates, Deep-Sea Res. Pt. II, 49, 1623–1644,
https://doi.org/10.1016/S0967-0645(02)00004-8, 2002.
Shopova, D., Dehairs, F., and Baeyens, W.: A simple model of biogeochemical
element distribution in the oceanic water column, J. Mar. Syst., 6,
331–344, https://doi.org/10.1016/0924-7963(94)00032-7, 1995.
Sigman, D. M., Hain, M. P., and Haug, G. H.: The polar ocean and glacial
cycles in atmospheric CO2 concentration, Nature, 466, 47–55,
https://doi.org/10.1038/nature09149, 2010.
Sternberg, E., Jeandel, C., Robin, E., and Souhaut, M.: Seasonal cycle of
suspended barite in the mediterranean sea, Geochim. Cosmochim. Ac., 72,
4020–4034, https://doi.org/10.1016/J.GCA.2008.05.043, 2008.
Sternberg, E., Tang, D., Ho, T. Y., Jeandel, C., and Morel, F. M. M.: Barium
uptake and adsorption in diatoms, Geochim. Cosmochim. Ac., 69,
2745–2752, https://doi.org/10.1016/j.gca.2004.11.026, 2005.
Swart, S., Speich, S., Ansorge, I. J., and Lutjeharms, J. R. E.: An
altimetry-based gravest empirical mode south of Africa: 1. Development and
validation, J. Geophys. Res.-Oceans, 115, 1–19,
https://doi.org/10.1029/2009JC005299, 2010.
Takahashi, T., Sweeney, C., Hales, B., Chipman, D. W., Goddard, J. G.,
Newberger, T., Iannuzzi, R. A., and Sutherland, S. C.: The changing carbon
cycle in the southern ocean, Oceanography, 25, 26–37,
https://doi.org/10.5670/oceanog.2012.71, 2012.
Taylor, S. R. and McLennan, S. M.: The continental crust: Its composition
and evolution, Blackwell Scientific Pub., Palo Alto, CA, United States,
https://www.osti.gov/biblio/6582885 (last access: 6 October 2020), 1985.
Thomalla, S. J., Fauchereau, N., Swart, S., and Monteiro, P. M. S.: Regional scale characteristics of the seasonal cycle of chlorophyll in the Southern Ocean, Biogeosciences, 8, 2849–2866, https://doi.org/10.5194/bg-8-2849-2011, 2011.
Trull, T. W., Passmore, A., Davies, D. M., Smit, T., Berry, K., and Tilbrook, B.: Distribution of planktonic biogenic carbonate organisms in the Southern Ocean south of Australia: a baseline for ocean acidification impact assessment, Biogeosciences, 15, 31–49, https://doi.org/10.5194/bg-15-31-2018, 2018.
Twining, B. S., Nodder, S. D., King, A. L., Hutchins, D. A., LeCleir, G.
R., DeBruyn, J. M., Maas, E. W., Vogt, S., Wilhelm, S. W., and Boyd, P. W.:
Differential remineralization of major and trace elements in sinking
diatoms, Limnol. Oceanogr., 59, 689–704,
https://doi.org/10.4319/lo.2014.59.3.0689, 2014.
van Beek, P., François, R., Conte, M., Reyss, J. L., Souhaut, M., and
Charette, M.: 228Ra 226Ra and 226Ra Ba ratios to track barite formation and
transport in the water column, Geochim. Cosmochim. Ac., 71, 71–86,
https://doi.org/10.1016/j.gca.2006.07.041, 2007.
van Horsten, N. R., Planquette, H., Sarthou, G., Ryan-Keogh, T. J., Lemaitre, N., Mtshali, T. N., Roychoudhury, A., and Bucciarelli, E.: Early winter barium excess in the Southern Indian Ocean as an annual remineralisation proxy (GEOTRACES GIPr07 cruise), Zenodo [data set], https://doi.org/10.5281/zenodo.6583338, 2022.
Viljoen, J. J., Philibert, R., van Horsten, N., Mtshali, T., Roychoudhury,
A. N., Thomalla, S., and Fietz, S.: Phytoplankton response in growth,
photophysiology and community structure to iron and light in the Polar
Frontal Zone and Antarctic waters, Deep-Sea Res. Pt. I,
141, 118–129, https://doi.org/10.1016/j.dsr.2018.09.006, 2018.
Wright, S. W., van den Enden, R. L., Pearce, I., Davidson, A. T., Scott, F.
J., and Westwood, K. J.: Phytoplankton community structure and stocks in the
Southern Ocean (30–80∘ E) determined by CHEMTAX analysis of HPLC
pigment signatures, Deep-Sea Res. Pt. II, 57,
758–778, https://doi.org/10.1016/j.dsr2.2009.06.015, 2010.
Zhuang, J.: xESMF: Universal Regridder for GeospatialData,
https://github.com/JiaweiZhuang/xESMF (last access: 14 August 2020), 2018.
Short summary
The remineralisation proxy, barite, was measured along 30°E in the southern Indian Ocean during early austral winter. To our knowledge this is the first reported Southern Ocean winter study. Concentrations throughout the water column were comparable to observations during spring to autumn. By linking satellite primary production to this proxy a possible annual timescale is proposed. These findings also suggest possible carbon remineralisation from satellite data on a basin scale.
The remineralisation proxy, barite, was measured along 30°E in the southern Indian Ocean during...
Altmetrics
Final-revised paper
Preprint