Articles | Volume 19, issue 13
https://doi.org/10.5194/bg-19-3263-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-3263-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The European forest carbon budget under future climate conditions and current management practices
Roberto Pilli
independent researcher: Padua, Italy
Ramdane Alkama
Joint Research Centre (JRC), European Commission, Via E. Fermi 2749, 21027 Ispra (VA), Italy
Alessandro Cescatti
Joint Research Centre (JRC), European Commission, Via E. Fermi 2749, 21027 Ispra (VA), Italy
Werner A. Kurz
Canadian Forest Service, Natural Resources Canada, Victoria, BC, V8Z 1M5, Canada
Giacomo Grassi
CORRESPONDING AUTHOR
Joint Research Centre (JRC), European Commission, Via E. Fermi 2749, 21027 Ispra (VA), Italy
Related authors
Ana Maria Roxana Petrescu, Matthew J. McGrath, Robbie M. Andrew, Philippe Peylin, Glen P. Peters, Philippe Ciais, Gregoire Broquet, Francesco N. Tubiello, Christoph Gerbig, Julia Pongratz, Greet Janssens-Maenhout, Giacomo Grassi, Gert-Jan Nabuurs, Pierre Regnier, Ronny Lauerwald, Matthias Kuhnert, Juraj Balkovič, Mart-Jan Schelhaas, Hugo A. C. Denier van der
Gon, Efisio Solazzo, Chunjing Qiu, Roberto Pilli, Igor B. Konovalov, Richard A. Houghton, Dirk Günther, Lucia Perugini, Monica Crippa, Raphael Ganzenmüller, Ingrid T. Luijkx, Pete Smith, Saqr Munassar, Rona L. Thompson, Giulia Conchedda, Guillaume Monteil, Marko Scholze, Ute Karstens, Patrick Brockmann, and Albertus Johannes Dolman
Earth Syst. Sci. Data, 13, 2363–2406, https://doi.org/10.5194/essd-13-2363-2021, https://doi.org/10.5194/essd-13-2363-2021, 2021
Short summary
Short summary
This study is topical and provides a state-of-the-art scientific overview of data availability from bottom-up and top-down CO2 fossil emissions and CO2 land fluxes in the EU27+UK. The data integrate recent emission inventories with ecosystem data, land carbon models and regional/global inversions for the European domain, aiming at reconciling CO2 estimates with official country-level UNFCCC national GHG inventories in support to policy and facilitating real-time verification procedures.
William Lamb, Robbie Andrew, Matthew Jones, Zebedee Nicholls, Glen Peters, Chris Smith, Marielle Saunois, Giacomo Grassi, Julia Pongratz, Steven Smith, Francesco Tubiello, Monica Crippa, Matthew Gidden, Pierre Friedlingstein, Jan Minx, and Piers Forster
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-188, https://doi.org/10.5194/essd-2025-188, 2025
Preprint under review for ESSD
Short summary
Short summary
This study explores why global greenhouse gas (GHG) emissions estimates vary. Key reasons include different coverage of gases and sectors, varying definitions of anthropogenic land use change emissions, and the Paris Agreement not covering all emission sources. The study highlights three main ways emissions data is reported, each with different objectives and resulting in varying global emission totals. It emphasizes the need for transparency in choosing datasets and setting assessment scopes.
David A. Gibbs, Melissa Rose, Giacomo Grassi, Joana Melo, Simone Rossi, Viola Heinrich, and Nancy L. Harris
Earth Syst. Sci. Data, 17, 1217–1243, https://doi.org/10.5194/essd-17-1217-2025, https://doi.org/10.5194/essd-17-1217-2025, 2025
Short summary
Short summary
Updated global maps of greenhouse gas (GHG) emissions and sequestration by forests from 2001 onwards using satellite-derived data show that forests are strong net carbon sinks, capturing about as much CO2 each year on average as the USA emitted from fossil fuels in 2019. After reclassifying fluxes to countries’ reporting categories for national GHG inventories, we found that roughly two-thirds of the net CO2 flux from forests is anthropogenic and one-third is non-anthropogenic.
Zhu Deng, Philippe Ciais, Liting Hu, Adrien Martinez, Marielle Saunois, Rona L. Thompson, Kushal Tibrewal, Wouter Peters, Brendan Byrne, Giacomo Grassi, Paul I. Palmer, Ingrid T. Luijkx, Zhu Liu, Junjie Liu, Xuekun Fang, Tengjiao Wang, Hanqin Tian, Katsumasa Tanaka, Ana Bastos, Stephen Sitch, Benjamin Poulter, Clément Albergel, Aki Tsuruta, Shamil Maksyutov, Rajesh Janardanan, Yosuke Niwa, Bo Zheng, Joël Thanwerdas, Dmitry Belikov, Arjo Segers, and Frédéric Chevallier
Earth Syst. Sci. Data, 17, 1121–1152, https://doi.org/10.5194/essd-17-1121-2025, https://doi.org/10.5194/essd-17-1121-2025, 2025
Short summary
Short summary
This study reconciles national greenhouse gas (GHG) inventories with updated atmospheric inversion results to evaluate discrepancies for three principal GHG fluxes at the national level. Compared to our previous study, new satellite-based CO2 inversions were included and an updated mask of managed lands was used, improving agreement for Brazil and Canada. The proposed methodology can be regularly applied as a check to assess the gap between top-down inversions and bottom-up inventories.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Hongmei Li, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Carla F. Berghoff, Henry C. Bittig, Laurent Bopp, Patricia Cadule, Katie Campbell, Matthew A. Chamberlain, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Thomas Colligan, Jeanne Decayeux, Laique M. Djeutchouang, Xinyu Dou, Carolina Duran Rojas, Kazutaka Enyo, Wiley Evans, Amanda R. Fay, Richard A. Feely, Daniel J. Ford, Adrianna Foster, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul K. Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Etsushi Kato, Ralph F. Keeling, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Xin Lan, Siv K. Lauvset, Nathalie Lefèvre, Zhu Liu, Junjie Liu, Lei Ma, Shamil Maksyutov, Gregg Marland, Nicolas Mayot, Patrick C. McGuire, Nicolas Metzl, Natalie M. Monacci, Eric J. Morgan, Shin-Ichiro Nakaoka, Craig Neill, Yosuke Niwa, Tobias Nützel, Lea Olivier, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Zhangcai Qin, Laure Resplandy, Alizée Roobaert, Thais M. Rosan, Christian Rödenbeck, Jörg Schwinger, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Roland Séférian, Shintaro Takao, Hiroaki Tatebe, Hanqin Tian, Bronte Tilbrook, Olivier Torres, Etienne Tourigny, Hiroyuki Tsujino, Francesco Tubiello, Guido van der Werf, Rik Wanninkhof, Xuhui Wang, Dongxu Yang, Xiaojuan Yang, Zhen Yu, Wenping Yuan, Xu Yue, Sönke Zaehle, Ning Zeng, and Jiye Zeng
Earth Syst. Sci. Data, 17, 965–1039, https://doi.org/10.5194/essd-17-965-2025, https://doi.org/10.5194/essd-17-965-2025, 2025
Short summary
Short summary
The Global Carbon Budget 2024 describes the methodology, main results, and datasets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2024). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Marco Girardello, Gonzalo Oton, Matteo Piccardo, Mark Pickering, Agata Elia, Guido Ceccherini, Mariano Garcia, Mirco Migliavacca, and Alessandro Cescatti
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-471, https://doi.org/10.5194/essd-2024-471, 2025
Preprint under review for ESSD
Short summary
Short summary
Our research addresses the significant challenge of assessing forest structural diversity over large spatial scales, which is crucial for understanding the relationship between canopy structure, biodiversity, and ecosystem functioning. The advent of spaceborne LiDAR sensors, such as GEDI, has revolutionised the ability to obtain high-quality information on forest structural parameters. Our contribution provides a novel, spatially-explicit dataset on eight forest structural diversity metrics.
Wolfgang Alexander Obermeier, Clemens Schwingshackl, Ana Bastos, Giulia Conchedda, Thomas Gasser, Giacomo Grassi, Richard A. Houghton, Francesco Nicola Tubiello, Stephen Sitch, and Julia Pongratz
Earth Syst. Sci. Data, 16, 605–645, https://doi.org/10.5194/essd-16-605-2024, https://doi.org/10.5194/essd-16-605-2024, 2024
Short summary
Short summary
We provide and compare country-level estimates of land-use CO2 fluxes from a variety and large number of models, bottom-up estimates, and country reports for the period 1950–2021. Although net fluxes are small in many countries, they are often composed of large compensating emissions and removals. In many countries, the estimates agree well once their individual characteristics are accounted for, but in other countries, including some of the largest emitters, substantial uncertainties exist.
Ruben Urraca, Greet Janssens-Maenhout, Nicolás Álamos, Lucas Berna-Peña, Monica Crippa, Sabine Darras, Stijn Dellaert, Hugo Denier van der Gon, Mark Dowell, Nadine Gobron, Claire Granier, Giacomo Grassi, Marc Guevara, Diego Guizzardi, Kevin Gurney, Nicolás Huneeus, Sekou Keita, Jeroen Kuenen, Ana Lopez-Noreña, Enrique Puliafito, Geoffrey Roest, Simone Rossi, Antonin Soulie, and Antoon Visschedijk
Earth Syst. Sci. Data, 16, 501–523, https://doi.org/10.5194/essd-16-501-2024, https://doi.org/10.5194/essd-16-501-2024, 2024
Short summary
Short summary
CoCO2-MOSAIC 1.0 is a global mosaic of regional bottom-up inventories providing gridded (0.1×0.1) monthly emissions of anthropogenic CO2. Regional inventories include country-specific information and finer spatial resolution than global inventories. CoCO2-MOSAIC provides harmonized access to these datasets and can be considered as a regionally accepted reference to assess the quality of global inventories, as done in the current paper.
Gregory Duveiller, Mark Pickering, Joaquin Muñoz-Sabater, Luca Caporaso, Souhail Boussetta, Gianpaolo Balsamo, and Alessandro Cescatti
Geosci. Model Dev., 16, 7357–7373, https://doi.org/10.5194/gmd-16-7357-2023, https://doi.org/10.5194/gmd-16-7357-2023, 2023
Short summary
Short summary
Some of our best tools to describe the state of the land system, including the intensity of heat waves, have a problem. The model currently assumes that the number of leaves in ecosystems always follows the same cycle. By using satellite observations of when leaves are present, we show that capturing the yearly changes in this cycle is important to avoid errors in estimating surface temperature. We show that this has strong implications for our capacity to describe heat waves across Europe.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Ingrid T. Luijkx, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Peter Anthoni, Leticia Barbero, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Bertrand Decharme, Laurent Bopp, Ida Bagus Mandhara Brasika, Patricia Cadule, Matthew A. Chamberlain, Naveen Chandra, Thi-Tuyet-Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Xinyu Dou, Kazutaka Enyo, Wiley Evans, Stefanie Falk, Richard A. Feely, Liang Feng, Daniel J. Ford, Thomas Gasser, Josefine Ghattas, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Fortunat Joos, Etsushi Kato, Ralph F. Keeling, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Xin Lan, Nathalie Lefèvre, Hongmei Li, Junjie Liu, Zhiqiang Liu, Lei Ma, Greg Marland, Nicolas Mayot, Patrick C. McGuire, Galen A. McKinley, Gesa Meyer, Eric J. Morgan, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin M. O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Melf Paulsen, Denis Pierrot, Katie Pocock, Benjamin Poulter, Carter M. Powis, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Roland Séférian, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Erik van Ooijen, Rik Wanninkhof, Michio Watanabe, Cathy Wimart-Rousseau, Dongxu Yang, Xiaojuan Yang, Wenping Yuan, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, https://doi.org/10.5194/essd-15-5301-2023, 2023
Short summary
Short summary
The Global Carbon Budget 2023 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2023). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Matthew J. McGrath, Ana Maria Roxana Petrescu, Philippe Peylin, Robbie M. Andrew, Bradley Matthews, Frank Dentener, Juraj Balkovič, Vladislav Bastrikov, Meike Becker, Gregoire Broquet, Philippe Ciais, Audrey Fortems-Cheiney, Raphael Ganzenmüller, Giacomo Grassi, Ian Harris, Matthew Jones, Jürgen Knauer, Matthias Kuhnert, Guillaume Monteil, Saqr Munassar, Paul I. Palmer, Glen P. Peters, Chunjing Qiu, Mart-Jan Schelhaas, Oksana Tarasova, Matteo Vizzarri, Karina Winkler, Gianpaolo Balsamo, Antoine Berchet, Peter Briggs, Patrick Brockmann, Frédéric Chevallier, Giulia Conchedda, Monica Crippa, Stijn N. C. Dellaert, Hugo A. C. Denier van der Gon, Sara Filipek, Pierre Friedlingstein, Richard Fuchs, Michael Gauss, Christoph Gerbig, Diego Guizzardi, Dirk Günther, Richard A. Houghton, Greet Janssens-Maenhout, Ronny Lauerwald, Bas Lerink, Ingrid T. Luijkx, Géraud Moulas, Marilena Muntean, Gert-Jan Nabuurs, Aurélie Paquirissamy, Lucia Perugini, Wouter Peters, Roberto Pilli, Julia Pongratz, Pierre Regnier, Marko Scholze, Yusuf Serengil, Pete Smith, Efisio Solazzo, Rona L. Thompson, Francesco N. Tubiello, Timo Vesala, and Sophia Walther
Earth Syst. Sci. Data, 15, 4295–4370, https://doi.org/10.5194/essd-15-4295-2023, https://doi.org/10.5194/essd-15-4295-2023, 2023
Short summary
Short summary
Accurate estimation of fluxes of carbon dioxide from the land surface is essential for understanding future impacts of greenhouse gas emissions on the climate system. A wide variety of methods currently exist to estimate these sources and sinks. We are continuing work to develop annual comparisons of these diverse methods in order to clarify what they all actually calculate and to resolve apparent disagreement, in addition to highlighting opportunities for increased understanding.
A. Elia, M. Pickering, M. Girardello, G. Oton, G. Ceccherini, S. Capobianco, M. Piccardo, G. Forzieri, M. Migliavacca, and A. Cescatti
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W7-2023, 41–46, https://doi.org/10.5194/isprs-archives-XLVIII-4-W7-2023-41-2023, https://doi.org/10.5194/isprs-archives-XLVIII-4-W7-2023-41-2023, 2023
Giacomo Grassi, Clemens Schwingshackl, Thomas Gasser, Richard A. Houghton, Stephen Sitch, Josep G. Canadell, Alessandro Cescatti, Philippe Ciais, Sandro Federici, Pierre Friedlingstein, Werner A. Kurz, Maria J. Sanz Sanchez, Raúl Abad Viñas, Ramdane Alkama, Selma Bultan, Guido Ceccherini, Stefanie Falk, Etsushi Kato, Daniel Kennedy, Jürgen Knauer, Anu Korosuo, Joana Melo, Matthew J. McGrath, Julia E. M. S. Nabel, Benjamin Poulter, Anna A. Romanovskaya, Simone Rossi, Hanqin Tian, Anthony P. Walker, Wenping Yuan, Xu Yue, and Julia Pongratz
Earth Syst. Sci. Data, 15, 1093–1114, https://doi.org/10.5194/essd-15-1093-2023, https://doi.org/10.5194/essd-15-1093-2023, 2023
Short summary
Short summary
Striking differences exist in estimates of land-use CO2 fluxes between the national greenhouse gas inventories and the IPCC assessment reports. These differences hamper an accurate assessment of the collective progress under the Paris Agreement. By implementing an approach that conceptually reconciles land-use CO2 flux from national inventories and the global models used by the IPCC, our study is an important step forward for increasing confidence in land-use CO2 flux estimates.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Luke Gregor, Judith Hauck, Corinne Le Quéré, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Ramdane Alkama, Almut Arneth, Vivek K. Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Henry C. Bittig, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Wiley Evans, Stefanie Falk, Richard A. Feely, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Lucas Gloege, Giacomo Grassi, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Atul K. Jain, Annika Jersild, Koji Kadono, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Keith Lindsay, Junjie Liu, Zhu Liu, Gregg Marland, Nicolas Mayot, Matthew J. McGrath, Nicolas Metzl, Natalie M. Monacci, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Naiqing Pan, Denis Pierrot, Katie Pocock, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Carmen Rodriguez, Thais M. Rosan, Jörg Schwinger, Roland Séférian, Jamie D. Shutler, Ingunn Skjelvan, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Toste Tanhua, Pieter P. Tans, Xiangjun Tian, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Anthony P. Walker, Rik Wanninkhof, Chris Whitehead, Anna Willstrand Wranne, Rebecca Wright, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 14, 4811–4900, https://doi.org/10.5194/essd-14-4811-2022, https://doi.org/10.5194/essd-14-4811-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2022 describes the datasets and methodology used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, the land ecosystems, and the ocean. These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Giacomo Grassi, Giulia Conchedda, Sandro Federici, Raul Abad Viñas, Anu Korosuo, Joana Melo, Simone Rossi, Marieke Sandker, Zoltan Somogyi, Matteo Vizzarri, and Francesco N. Tubiello
Earth Syst. Sci. Data, 14, 4643–4666, https://doi.org/10.5194/essd-14-4643-2022, https://doi.org/10.5194/essd-14-4643-2022, 2022
Short summary
Short summary
Despite increasing attention on the role of land use CO2 fluxes in climate change mitigation, there are large differences in available databases. Here we present the most updated and complete compilation of land use CO2 data based on country submissions to United Nations Framework Convention on Climate Change and explain differences with other datasets. Our dataset brings clarity of land use CO2 fluxes and helps track country progress under the Paris Agreement.
Mark Pickering, Alessandro Cescatti, and Gregory Duveiller
Biogeosciences, 19, 4833–4864, https://doi.org/10.5194/bg-19-4833-2022, https://doi.org/10.5194/bg-19-4833-2022, 2022
Short summary
Short summary
This study explores two of the most recent products in carbon productivity estimation, FLUXCOM gross primary productivity (GPP), calculated by upscaling local measurements of CO2 exchange, and remotely sensed sun-induced chlorophyll a fluorescence (SIF). High-resolution SIF data are valuable in demonstrating similarity in the SIF–GPP relationship between vegetation covers, provide an independent probe of the FLUXCOM GPP model and demonstrate the response of SIF to meteorological fluctuations.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Corinne Le Quéré, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Rob B. Jackson, Simone R. Alin, Peter Anthoni, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Laurent Bopp, Thi Tuyet Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Kim I. Currie, Bertrand Decharme, Laique M. Djeutchouang, Xinyu Dou, Wiley Evans, Richard A. Feely, Liang Feng, Thomas Gasser, Dennis Gilfillan, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Ingrid T. Luijkx, Atul Jain, Steve D. Jones, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Sebastian Lienert, Junjie Liu, Gregg Marland, Patrick C. McGuire, Joe R. Melton, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Clemens Schwingshackl, Roland Séférian, Adrienne J. Sutton, Colm Sweeney, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco Tubiello, Guido R. van der Werf, Nicolas Vuichard, Chisato Wada, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, and Jiye Zeng
Earth Syst. Sci. Data, 14, 1917–2005, https://doi.org/10.5194/essd-14-1917-2022, https://doi.org/10.5194/essd-14-1917-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2021 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Zhu Deng, Philippe Ciais, Zitely A. Tzompa-Sosa, Marielle Saunois, Chunjing Qiu, Chang Tan, Taochun Sun, Piyu Ke, Yanan Cui, Katsumasa Tanaka, Xin Lin, Rona L. Thompson, Hanqin Tian, Yuanzhi Yao, Yuanyuan Huang, Ronny Lauerwald, Atul K. Jain, Xiaoming Xu, Ana Bastos, Stephen Sitch, Paul I. Palmer, Thomas Lauvaux, Alexandre d'Aspremont, Clément Giron, Antoine Benoit, Benjamin Poulter, Jinfeng Chang, Ana Maria Roxana Petrescu, Steven J. Davis, Zhu Liu, Giacomo Grassi, Clément Albergel, Francesco N. Tubiello, Lucia Perugini, Wouter Peters, and Frédéric Chevallier
Earth Syst. Sci. Data, 14, 1639–1675, https://doi.org/10.5194/essd-14-1639-2022, https://doi.org/10.5194/essd-14-1639-2022, 2022
Short summary
Short summary
In support of the global stocktake of the Paris Agreement on climate change, we proposed a method for reconciling the results of global atmospheric inversions with data from UNFCCC national greenhouse gas inventories (NGHGIs). Here, based on a new global harmonized database that we compiled from the UNFCCC NGHGIs and a comprehensive framework presented in this study to process the results of inversions, we compared their results of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O).
Ana Maria Roxana Petrescu, Matthew J. McGrath, Robbie M. Andrew, Philippe Peylin, Glen P. Peters, Philippe Ciais, Gregoire Broquet, Francesco N. Tubiello, Christoph Gerbig, Julia Pongratz, Greet Janssens-Maenhout, Giacomo Grassi, Gert-Jan Nabuurs, Pierre Regnier, Ronny Lauerwald, Matthias Kuhnert, Juraj Balkovič, Mart-Jan Schelhaas, Hugo A. C. Denier van der
Gon, Efisio Solazzo, Chunjing Qiu, Roberto Pilli, Igor B. Konovalov, Richard A. Houghton, Dirk Günther, Lucia Perugini, Monica Crippa, Raphael Ganzenmüller, Ingrid T. Luijkx, Pete Smith, Saqr Munassar, Rona L. Thompson, Giulia Conchedda, Guillaume Monteil, Marko Scholze, Ute Karstens, Patrick Brockmann, and Albertus Johannes Dolman
Earth Syst. Sci. Data, 13, 2363–2406, https://doi.org/10.5194/essd-13-2363-2021, https://doi.org/10.5194/essd-13-2363-2021, 2021
Short summary
Short summary
This study is topical and provides a state-of-the-art scientific overview of data availability from bottom-up and top-down CO2 fossil emissions and CO2 land fluxes in the EU27+UK. The data integrate recent emission inventories with ecosystem data, land carbon models and regional/global inversions for the European domain, aiming at reconciling CO2 estimates with official country-level UNFCCC national GHG inventories in support to policy and facilitating real-time verification procedures.
Francesco N. Tubiello, Giulia Conchedda, Nathan Wanner, Sandro Federici, Simone Rossi, and Giacomo Grassi
Earth Syst. Sci. Data, 13, 1681–1691, https://doi.org/10.5194/essd-13-1681-2021, https://doi.org/10.5194/essd-13-1681-2021, 2021
Short summary
Short summary
This paper presents the first estimates of forest carbon fluxes (1990–2020) based on the new Global Forest Resources Assessment (FRA) 2020. We document for the first time in the literature forest carbon fluxes for the last decade 2011–2020. Results show that carbon losses from net forest conversion (3.1 billion tonnes of CO2) were counterbalanced by carbon gains on forest land (−3.3 billion tonnes of CO2), resulting in the world's forests acting overall as a small carbon sink in the past decade.
Quentin Lejeune, Edouard L. Davin, Grégory Duveiller, Bas Crezee, Ronny Meier, Alessandro Cescatti, and Sonia I. Seneviratne
Earth Syst. Dynam., 11, 1209–1232, https://doi.org/10.5194/esd-11-1209-2020, https://doi.org/10.5194/esd-11-1209-2020, 2020
Short summary
Short summary
Trees are darker than crops or grasses; hence, they absorb more solar radiation. Therefore, land cover changes modify the fraction of solar radiation reflected by the land surface (its albedo), with consequences for the climate. We apply a new statistical method to simulations conducted with 15 recent climate models and find that albedo variations due to land cover changes since 1860 have led to a decrease in the net amount of energy entering the atmosphere by −0.09 W m2 on average.
Yuan Zhang, Ana Bastos, Fabienne Maignan, Daniel Goll, Olivier Boucher, Laurent Li, Alessandro Cescatti, Nicolas Vuichard, Xiuzhi Chen, Christof Ammann, M. Altaf Arain, T. Andrew Black, Bogdan Chojnicki, Tomomichi Kato, Ivan Mammarella, Leonardo Montagnani, Olivier Roupsard, Maria J. Sanz, Lukas Siebicke, Marek Urbaniak, Francesco Primo Vaccari, Georg Wohlfahrt, Will Woodgate, and Philippe Ciais
Geosci. Model Dev., 13, 5401–5423, https://doi.org/10.5194/gmd-13-5401-2020, https://doi.org/10.5194/gmd-13-5401-2020, 2020
Short summary
Short summary
We improved the ORCHIDEE LSM by distinguishing diffuse and direct light in canopy and evaluated the new model with observations from 159 sites. Compared with the old model, the new model has better sunny GPP and reproduced the diffuse light fertilization effect observed at flux sites. Our simulations also indicate different mechanisms causing the observed GPP enhancement under cloudy conditions at different times. The new model has the potential to study large-scale impacts of aerosol changes.
Senna Bouabdelli, Ayoub Zeroual, Mohamed Meddi, Fateh Djelloul, and Ramdane Alkama
Proc. IAHS, 383, 315–318, https://doi.org/10.5194/piahs-383-315-2020, https://doi.org/10.5194/piahs-383-315-2020, 2020
Short summary
Short summary
The temporal evolution of drought events characteristics is discussed.
Data from observations and simulations of the regional climate model RCA4 MPI-ESM-LR under two Representative Concentration Pathways (RCPs) scenarios for the period (1941–2100) are used. An amplification of drought frequencies is projected in the future under the RCP8.5 scenario. The maximum duration is expected to hardly change under the RCP8.5 scenario or even to decline.
Cited articles
Avitabile, V., Pilli, R., and Camia, A.: The biomass of European forests, EUR 30462
EN, Publications Office of the European Union, Luxembourg, 52 pp., https://doi.org/10.2760/758855, 2020.
Blujdea, V. N., Sikkema, R., Dutca, I., and Nabuurs, G. J.: Two large-scale
forest scenario modelling approaches for reporting CO2 removal: a comparison
for the Romanian forests, Carbon Balance and Management, 16, 1–17,
https://doi.org/10.1186/s13021-021-00188-1, 2021a.
Blujdea, V. N., Viskari, T., Kulmala, L., Gârbacea, G., Dutcǎ, I., Miclǎuş, M., Marin, G., and Liski, J.: Silvicultural interventions drive the
changes in soil organic carbon in Romanian forests according to two model
simulations, Forests, 12, 795, https://doi.org/10.3390/f12060795,
2021b.
Bosela, M., Tumajer, J., Cienciala, E., Dobor, L., Kulla, L., Marčiš, P., Popa, I., Sedmák, R., Sedmáková, D., Sitko, R., S̆eben̆, V., Štěpánek, P., and Büntgen, U. : Climate warming induced
synchronous growth decline in Norway spruce populations across
biogeographical gradients since 2000, Sci. Total Environ., 752,
141794, https://doi.org/10.1016/j.scitotenv.2020.141794, 2021.
Böttcher, H. and Frelih-Larsen, A.: Options for Strengthening Natural
Carbon Sinks and Reducing Land Use Emissions in the EU, Öko-Institut
e.V., Working paper, 66 pp., https://www.oeko.de/en/publications/p-details/options-for-strengthening-natural-carbon-sinks-and-reducing-land-use-emissions-in-the-eu
(last access: 27 June 2022), 2021.
Böttcher, H., Kurz, W. A., and Freibauer, A.: Accounting of forest carbon
sink and sources under a future climate protocol-factoring out past
disturbance and management effects on age-class structure, For. Ecol.
Manage, 11, 669–686, https://doi.org/10.1016/j.envsci.2008.08.005, 2008.
Camia, A., Giuntoli, J., Jonsson, K., Robert, N., Cazzaniga, N.,
Jasinevičius, G., Avitabile, V., Grassi, G., Barredo Cano, J. I., and
Mubareka, S.: The use of woody biomass for energy production in the EU, EUR
30548 EN, Publications Office of the European Union, Luxembourg, 182 pp., https://doi.org/10.2760/831621, 2020.
Chapin, F. S., Woodwell, G. M., Randerson, J. T., Rastetter, E. B., Lovett, G. M., Baldocchi, D. D., Clark, D. A., Harmon, M. E., Schimel, D. S., Valentini, R., Wirth, C., Aber, J. D., Cole, J. J., Goulden, M. L., Harden, J. W., Heimann, M., Howarth, R. W., Matson, P. A., McGuire, A. D., Melillo, J. M., Mooney, H. A., Neff, J. C., Houghton, R. A., Pace, M. L., Ryan, M. G., Running, S. W., Sala, O. E., Schlesinger, W. H., and Schulze, E. D.: Reconciling carbon-cycle
concepts, terminology, and methods, Ecosystems, 9, 1041–1050, https://doi.org/10.1007/s10021-005-0105-7, 2006.
Collins, W. J., Bellouin, N., Doutriaux-Boucher, M., Gedney, N., Halloran, P., Hinton, T., Hughes, J., Jones, C. D., Joshi, M., Liddicoat, S., Martin, G., O'Connor, F., Rae, J., Senior, C., Sitch, S., Totterdell, I., Wiltshire, A., and Woodward, S.: Development and evaluation of an Earth-System model – HadGEM2, Geosci. Model Dev., 4, 1051–1075, https://doi.org/10.5194/gmd-4-1051-2011, 2011.
Cuddington, K., Fortin, M. J., Gerber, L. R., Hastings, A., Liebhold, A.,
O'connor, M., and Ray, C.: Process-based models are required to manage
ecological systems in a changing world, Ecosphere, 4, 1–12, https://doi.org/10.1890/ES12-00178.1, 2013.
Dufresne, J.-L., Foujols, M.-A., Denvil, S., Caubel, A., Marti, O., Aumont, O., Balkanski, Y., Bekki, S., Bellenger, H., Benshila, R., Bony, S., Bopp, L., Braconnot, P., Brockmann, P., Cadule, P., Cheruy, F., Codron, F., Cozic, A., Cugnet, D., de Noblet, N., Duvel, J.-P., Ethé, C., Fairhead, L., Fichefet, T., Flavoni, S., Friedlingstein, P., Grandpeix, J.-Y., Guez, L., Guilyardi, E., Hauglustaine, D., Hourdin, F., Idelkadi, A., Ghattas, J., Joussaume, S., Kageyama, M., Krinner, G., Labetoulle, S., Lahellec, A., Lefebvre, M.-P., Lefevre, F., Levy, C., Li, Z.X., Lloyd, J., Lott, F., Madec, G., Mancip, M., Marchand, M., Masson, S., Meurdesoif, Y., Mignot, J., Musat, I., Parouty, S., Polcher, J., Rio, C., Schulz, M., Swingedouw, D., Szopa, S., Talandier, C., Terray, P., Viovy, N., and Vuichard, N.: Climate change projections using the IPSL-CM5
Earth System Model: from CMIP3 to CMIP5, Clim. Dynam., 40, 2123–2165,
https://doi.org/10.1007/s00382-012-1636-1, 2013.
Dugan, A. J., Lichstein, J. W., Steele, A., Metsaranta, J. M., Bick, S., and Hollinger, D. Y.: Opportunities for forest sector emissions reductions: a
state-level analysis, Ecol. Appl., 31, e02327, https://doi.org/10.1002/eap.2327, 2021.
EC: Communication from the Commission to the European Parliament, the
Council, the European Economic and Social Committee and the Committee of the
Regions – Stepping up Europe's 2030 climate ambition. Investing in a
climate-neutral future for the benefit of our people, COM(2020)562 final,
https://ec.europa.eu/transparency/regdoc/rep/10102/2020/EN/SWD-2020-176-F1-EN-MAIN-PART-1.PDF
(last access: 27 June 2022), 2020a.
EC: EU Biodiversity Strategy for 2030, Bringing nature back into our lives,
Communication from the Commission to the European Parliament, the Council,
the European Economic and Social Committee and the Committee of the Regions,
COM(2020) 380 final, Brussels, European Commission, https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0380 (last access: 27 June 2022), 2020b.
EC: New EU Forest Strategy for 2030, Communication from the Commission to
the European Parliament, the Council, the European Economic and Social
Committee and the Committee of the Regions, COM(2021) 572 final, Brussels,
European Commission, https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:52021DC0572 (last access: 27 June 2022), 2021a.
EC: Proposal for a Regulation of the European Parliament and of the Council
amending Regulations (EU) 2018/841 as regards the scope, simplifying the
compliance rules, setting out the targets of the Member States for 2030 and
committing to the collective achievement of climate neutrality by 2035 in
the land use, forestry and agriculture sector, and (EU) 2018/1999 as regards
improvement in monitoring, reporting, tracking of progress and review,
COM(2021) 554 final, Brussels, European Commission, https://ec.europa.eu/info/sites/default/files/revision-regulation-ghg-land-use-forestry_with-annex_en.pdf (last access: 27 June 2022), 2021b.
FAOSTAT: https://www.fao.org/faostat/en/#data/FO (last access: 27 June 2022), 2020.
Forest Europe: State of Europe's Forests 2020, https://foresteurope.org/state-europes-forests-2020/ (last access: 27 June 2022), 2020.
Forzieri, G., Girardello, M., Ceccherini, G., Spinoni, J., Feyen, L.,Hartmann, H., Beck, P. S. A., Campus-Valls, G., Chirici, G., Mauri, A., and Cescatti, A.: Emergent vulnerability to
climate-driven disturbances in European forests, Nat. Commun., 12, 1081,
https://doi.org/10.1038/s41467-021-21399-7, 2021.
Gao, S., Zhou, T., Zhao, X., Wu, D., Li, Z., Wu, H., Du, L., and Luo, H.: Age
and climate contribution to observed forest carbon sinks in East Asia,
Environ. Res. Lett., 11, 034021, https://doi.org/10.1088/1748-9326/11/3/034021, 2016.
Gautam, S., Mishra, U., Scown, C. D., Wills, S. A., Adhikari, K., and Drewniak, B. A.: Continental United States may lose 1.8 petagrams of soil
organic carbon under climate change by 2100, Global Ecol. Biogeogr., 31, 1147–1160, https://doi.org/10.1111/geb.13489, 2022.
Grassi, G., Pilli, R., House, J., Federici, S., and Kurz, W. A.: Science-based
approach for credible accounting of mitigation in managed forests, Carbon
Balance and Management, 13, 8,
https://doi.org/10.1186/s13021-018-0096-2, 2018.
Grassi, G., Fiorese, G., Pilli, R., Jonsson, K., Blujdea, V., Korosuo, A.,
and Vizzarri, M.: Brief on the role of the forest-based bioeconomy in
mitigating climate change through carbon storage and material substitution,
edited by: Sánchez López, J., Jasinevičius, G., and Avraamides, M.,
European Commission, 16 pp., https://publications.jrc.ec.europa.eu/repository/handle/JRC124374 (last access: 27 June 2022), 2021.
Gundersen, P., Thybring, E. E., Nord-Larsen, T., Vesterdal, L., Nadelhoffer,
K. J., and Johannsen, V. K.: Old-growth forest carbon sinks overestimated,
Nature, 591, 21–23, https://doi.org/10.1038/nature07276, 2021.
Hararuk, O., Shaw, C., and Kurz, W. A.: Constraining the organic matter
decay parameters in the CBM-CFS3 using Canadian National Forest Inventory
data and a Bayesian inversion technique, Ecol. Model., 364, 1–12,
https://doi.org/10.1016/j.ecolmodel.2017.09.008, 2017.
Hasenauer, H., Neumann, M., Moreno, A., and Running, S.: Assessing the
resources and mitigation potential of European forests, Energy Proced., 125, 372–378,
https://doi.org/10.1016/j.egypro.2017.08.052, 2017.
IPCC, Climate change and land: An IPCC special report on climate change,
desertification, land degradation, sustainable land management, food
security, and greenhouse gas fluxes in terrestrial ecosystems,
Intergovernmental Panel on Climate Change, https://www.ipcc.ch/srccl/ (last access: 27 June 2022), 2019.
Jandl, R., Ledermann, T., Kindermann, G., Freudenschuss, A., Gschwantner,
T., and Weiss, P.: Strategies for climate-smart forest management in
Austria, Forests, 9, 592, https://doi.org/10.3390/f9100592, 2018.
Jevšenak, J., Klopčič, M., and Mali, B.: The effect of
harvesting on national forest carbon sinks up to 2050 simulated by the
CBM-CFS3 model: a case study from Slovenia, Forests, 11, 1090, https://doi.org/10.3390/f11101090, 2020.
Jonsson, R., Rinaldi, F., Pilli, R., Fiorese, G., Hurmekosksi, E.,
Cazzaniga, N. E., Robert, N., and Camia, A.: Boosting the EU forest-based
bioeconomy: market, climate change mitigation, and employment impacts,
Technol. Forecast. Soc., 163, 120478, https://doi.org/10.1016/j.techfore.2020.120478, 2021.
Kawamiya, M., Hajima, T., Tachiiri, K., Watanabe, S., and Yokohata, T.: Two
decades of Earth system modeling with an emphasis on Model for
Interdisciplinary Research on Climate (MIROC), Progress in Earth and
Planetary Science, 7, 1–13, https://doi.org/10.1186/s40645-020-00369-5,
2020.
Kirschbaum, M. U. F., Eamus, D., Gifford, R. M., Roxburgh, S. H., and Sands,
P. J.: Definitions of some ecological terms commonly used in carbon
accounting, Cooperative Research Centre for Carbon Accounting, Canberra,
2–5, http://hdl.handle.net/102.100.100/202607?index=_1 (last access: 27 June
2022), 2001.
Köhler, L., Hölscher, D., and Leuschner, C.: High litterfall in
old-growth and secondary upper montane forest of Costa Rica, Plant Ecol., 199, 163–173,
https://doi.org/10.1007/s11258-008-9421-2, 2008.
Köhl, M., Linser, S., Prins, K., and Talarczyk, A.: The EU climate
package “Fit for 55”-a double-edged sword for Europeans and their forests
and timber industry, Forest Policy Econ., 132, 102596,
https://doi.org/10.1016/j.forpol.2021.102596, 2021.
Korosuo, A., Vizzarri, M., Pilli, R., Fiorese, G., Colditz, R., Abad
Viñas, R., Rossi, S., and Grassi, G.: Forest reference levels under
Regulation (EU) 2018/841 for the period 2021–2025, EUR 30403 EN,
Publications Office of the European Union, Luxembourg, 278 pp., https://doi.org/10.2760/0521, 2021.
Kurz, W. A., Dymond, C. C., White, T. M., Stinson, G., Shaw, C. H., Rampley,
G. J., and Apps, M. J.: CBM-CFS3: a model of carbon-dynamics in forestry
and land-use change implementing IPCC standards, Ecol. Model.,
220, 480–504, https://doi.org/10.1016/j.ecolmodel.2008.10.018, 2009.
Lanz, A. and Marchetti, M.: Criterion 3: Maintenance and Encouragement of
Productive Functions of Forests (Wood and Non-Wood), In FOREST EUROPE, 2020:
State of Europe's Forests 2020, https://foresteurope.org/state-europes-forests-2020/ (last access: 27 June 2022), 2020.
Leturcq, P.: GHG displacement factors of harvested wood products: the myth
of substitution, Sci. Rep., 10, 1–9, https://doi.org/10.1038/s41598-020-77527-8, 2020.
Liu, C., Westman, C. J., Berg, B., Kutsch, W., Wang, G. Z., Man, R., and
Ilvesniemi, H.: Variation in litterfall-climate relationships between
coniferous and broadleaf forests in Eurasia, Glob. Ecol. Biogeogr., 13,
105–114, https://doi.org/10.1111/j.1466-882X.2004.00072.x,
2004.
Luyssaert, S., Ciais, P., Piao, S. L., Schulze, E.-D., Jung, M., Zaehle, S., Schelhaas, M. J., Reichstein, M., Churkina, G., Papale, D., Abril, G., Beer, C., Grace, J., Loustau, D., Matteucci, G., Magnani, F., Nabuurs, G. J., Verbeeck, H., Sulkava, M., Van der werf, G. R., Janssens, I. A., and members of the CARBOEUROPE-IP SYNTHESIS TEAM: The European carbon balance, Part 3:
forests, Global Change Biol., 16, 1429–1450, https://doi.org/10.1111/j.1365-2486.2009.02056.x,
2010.
Luyssaert, S., Schulze, E., Knohl, A., Law, B. E., Ciais, P., and Grace,
J.: Reply to: Old-growth forest carbon sinks overestimated, Nature, 591,
24–25, https://doi.org/10.1038/s41586-021-03266-z, 2021.
McGrath, M. J., Luyssaert, S., Meyfroidt, P., Kaplan, J. O., Bürgi, M., Chen, Y., Erb, K., Gimmi, U., McInerney, D., Naudts, K., Otto, J., Pasztor, F., Ryder, J., Schelhaas, M.-J., and Valade, A.: Reconstructing European forest management from 1600 to 2010, Biogeosciences, 12, 4291–4316, https://doi.org/10.5194/bg-12-4291-2015, 2015.
Morin, X., Fahse, L., Jactel, H., Scherer-Lorenzen, M., García-Valdés, R., and Bugmann, H.: Long-term response of forest productivity
to climate change is mostly driven by change in tree species composition,
Sci. Rep., 8, 5627, https://doi.org/10.1038/s41598-018-23763-y, 2018.
Mubareka, S., Barredo, J. I., Giuntoli, J., Grassi, G., Migliavacca, M.,
Robert, N., and Vizzarri, M.: The role of scientists in EU forest-related
policy in the Green Deal era, One Earth, 5, 10–13, https://doi.org/10.1016/j.oneear.2021.12.013,
2022.
Müllerová, J., Hédl, R., and Szabó, P.: Coppice abandonment
and its implications for species diversity in forest vegetation, Forest Ecol. Manag., 343, 88–100, https://doi.org/10.1016/j.foreco.2015.02.003, 2015.
Nabuurs, G. J., Schelhaas, M. J., and Pussinen, A.: Validation of the European
Forest Information Scenario Model (EFISCEN) and a projection of Finnish
forests, Silva Fenn., 34, 167–179, https://doi.org/10.14214/sf.638, 2000.
Nabuurs, G. J., Delacote, P., Ellison, D., Hanewinkel, M., Hetemäki, L., and
Lindner, M.: By 2050 the Mitigation Effects of EU Forests Could Nearly
Double through Climate Smart Forestry, Forests, 8, 484, https://doi.org/10.3390/f8120484, 2017.
Neumann, M., Moreno, A., Thurnher, C., Mues, V., Härkönen, S., Mura,
M., and Hasenauer, H.: Creating a regional MODIS satellite-driven net
primary production dataset for European forests, Remote Sens., 8, 554,
https://doi.org/10.3390/rs8070554, 2016.
Pilli, R., Fiorese, G., and Grassi G.: EU mitigation potential of harvested wood
products, Carbon Balance and Management, 10, 1–16, https://doi.org/10.1186/s13021-015-0016-7, 2015.
Pilli, R., Grassi, G., Kurz, W. A., Moris, J. V., and Viñas, R. A.:
Modelling forest carbon stock changes as affected by harvest and natural
disturbances. II. EU-level analysis, Carbon Balance and Management, 11, 1–19, https://doi.org/10.1186/s13021-016-0059-4,
2016.
Pilli, R., Grassi, G., Kurz, W. A., Fiorese, G., and Cescatti, A.: The European forest sector: past and future carbon budget and fluxes under different management scenarios, Biogeosciences, 14, 2387–2405, https://doi.org/10.5194/bg-14-2387-2017, 2017a.
Pilli, R., Kull, S., Blujdea, V., and Grassi, G.: The EU Archive Index Database customised for the Carbon Budget Model (CBM-CFS3), European Commission, Joint Research Centre (JRC) [data set], https://data.jrc.ec.europa.eu/dataset/jrc-cbm-eu-aidb (last access: 1 June 2020), 2017b.
Pilli, R., Kull, S. J., Blujdea, V. N., and Grassi, G.: The carbon Budget
model of the Canadian forest sector (CBM-CFS3): customization of the archive
index database for European Union countries, Ann. Forest Sci.,
75, 1–7, https://doi.org/10.1007/s13595-018-0743-5, 2018.
Pretzsch, H., Grote, R., Reineking, B., Rötzer, T. H., and Seifert, S. T.: Models for
Forest Ecosystem Management: A European Perspective, Ann. Bot-London, 101, 1065–1087, https://doi.org/10.1093/aob/mcm246, 2008.
Pukkala, T.: Calculating the additional carbon sequestration of Finnish
forestry, J. Sustain. Forest., 0, 1–18, https://doi.org/10.1080/10549811.2020.1792935, 2020.
Reyer, C., Lasch-Born, P., Suckow, F., Gutsch, M., Murawski, A., and Pilz,
T.: Projections of regional changes in forest net primary productivity for
different tree species in Europe driven by climate change and carbon
dioxide, Ann. For. Sci., 71, 211–225, https://doi.org/10.1007/s13595-013-0306-8, 2013.
Running, S. W., Nemani, R. R., Heinsch, F. A., Zhao, M., Reeves, M., and Hashimoto, H.: Continuous Satellite-Derived Measure of Global Terrestrial Primary
Production, BioScience, 54, 547–560,
https://doi.org/10.1641/0006-3568(2004)054[0547:ACSMOG]2.0.CO;2, 2004.
Rüter, S., Werner, F., Forsell, N., Prins, C., Vial, E., and Levet, A. L.:
ClimWood2030 – Climate benefits of material substitution by forest biomass
and harvested wood products: Perspective 2030, Final report, Thünen
Report 42, Thünen Institute, Braunschweig, Germany, 148 pp.,
https://doi.org/10.3220/REP1468328990000, 2016.
Schelhaas, M.-J., Eggers, J., Lindner, M., Nabuurs, G.-J., Pussinen, A., Päivinen, R., Schuck, A., Verkerk, P. J., van der Werf, D. C., and Zudin, S.: Model
documentation for the European Forest Information Scenario model (EFISCEN
3.1.3), Alterra report 1559 and EFI technical report 26, Alterra and
European Forest Institute, Wageningen and Joensuu, 118 pp., https://efi.int/publications-bank/model-documentation-european-forest-information-scenario-model-efiscen-313
(last access: 27 June 2022), 2007.
Senf, C. and Seidl, R.: Persistent impacts of the 2018 drought on forest disturbance regimes in Europe, Biogeosciences, 18, 5223–5230, https://doi.org/10.5194/bg-18-5223-2021, 2021.
Shifley, S. R., He, H. S., Lischke, H., Wang, W. J., Jin, W., Gustafson, E. J., Thompson, J. R., Thompson III, F. R., Dijak, W. D., and Yang, J.: The past and future of modeling forest dynamics: from
growth and yield curves to forest landscape models, Landscape Ecol., 32, 1307–1325,
https://doi.org/10.1007/s10980-017-0540-9, 2017.
Skytt, T., Englund, G., and Jonsson, B. G.: Climate mitigation
forestry – temporal trade-offs, Environ. Res. Lett., 16, 114037, https://doi.org/10.1088/1748-9326/ac30fa, 2021.
Smith, B., Wårlind, D., Arneth, A., Hickler, T., Leadley, P., Siltberg, J., and Zaehle, S.: Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model, Biogeosciences, 11, 2027–2054, https://doi.org/10.5194/bg-11-2027-2014, 2014.
Smyth, C. E., Trofymow, J. A., Kurz, W. A., and CIDET Working Group:
Decreasing uncertainty in CBM-CFS3 estimates of forest soil C sources and
sinks through use of long-term data from the Canadian Intersite
Decomposition Experiment, https://publications.gc.ca/site/eng/9.619535/publication.html (last access: 27 June
2022), 2009.
Sperlich, D., Nadal-Sala, D., Gracia, C., Kreuzwieser, J., Hanewinkel, M.,
and Yousefpour, R.: Gains or Losses in Forest Productivity under Climate
Change? The Uncertainty of CO2 Fertilization and Climate Effects, Climate, 8, 141, https://doi.org/10.3390/cli8120141, 2020.
Sun, G. and Mu, M.: The analyses of the net primary production due to
regional and seasonal temperature differences in eastern China using the LPJ
model, Ecol. Model., 289, 66–76, https://doi.org/10.1016/j.ecolmodel.2014.06.021, 2014.
Tang, J., Luyssaert, S., Richardson, A. D., Kutsch, W., and Janssens, I.
A.: Steeper declines in forest photosynthesis than respiration explain
age-driven decreases in forest growth, P. Natl. Acad. Sci. USA, 111, 8856–8860, https://doi.org/10.1073/pnas.1320761111, 2014.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and the
experiment design, B. Am. Meteorol. Soc., 93, 485–498, https://doi.org/10.1175/BAMS-D-11-00094.1,
2012.
Tomter, S. M., Kuliešis, A., and Gschwantner, T: Annual volume
increment of the European forests – description and evaluation of the
national methods used, Annals Forest Sci., 73, 849–856, https://doi.org/10.1007/s13595-016-0557-2, 2016.
Ťupek, B., Zanchi, G., Verkerk, P. J., Churkina, G., Viovy, N., Hughes,
J. K., and Lindner, M.: A comparison of alternative modelling approaches to
evaluate the European forest carbon fluxes, Forest Ecol. Manag., 260, 241–251, https://doi.org/10.1016/j.foreco.2010.01.045, 2010.
UNFCCC CRF Tables: UNFCCC Common reporting format tables, https://unfccc.int/ghg-inventories-annex-i-parties/2021 (last access: 27 June 2022), 2021.
Valade, A., Bellassen, V., Magand, C., and Luyssaert, S.: Sustaining the
sequestration efficiency of the European forest sector, Forest Ecol.
Manag., 405, 44–55, https://doi.org/10.1016/j.foreco.2017.09.009, 2017.
Valkonen, S., Aulus Giacosa, L., and Heikkinen, J.: Tree mortality in the
dynamics and management of uneven-aged Norway spruce stands in southern
Finland, Eur. J. Forest. Res., 139, 989–998, https://doi.org/10.1007/s10342-020-01301-8, 2020.
Verkerk, P. J., Costanza, R., Hetemäki, L., Kubiszewski, I., Leskinen, P., Nabuurs, G. J., Potočnik, J. and Palahí, M.: Climate-Smart Forestry: the
missing link, Forest Policy Econ., 115, 102164, https://doi.org/10.1016/j.forpol.2020.102164, 2020.
Vizzarri, M., Pilli, R., Korosuo, A., Blujdea, V. N., Rossi, S., Fiorese, G., Abad-Viñas, R., Coldiz, R. R., and Grassi, G.: Setting the forest reference levels in the European
Union: overview and challenges, Carbon Balance and Management, 16, 1–16,
https://doi.org/10.1186/s13021-021-00185-4, 2021.
Wang, J. A., Baccini, A., Farina, M., Randerson, J. T., and Friedl, M.A.:
Disturbance suppresses the aboveground carbon sink in North American boreal
forests, Nat. Clim. Change, 11, 435–441, https://doi.org/10.1038/s41558-021-01027-4, 2021.
Warszawski, L., Frieler, K., Huber, V., Piontek, F., Serdeczny, O., and
Schewe, J.: The inter-sectoral impact model intercomparison project
(ISI–MIP): project framework, P. Natl. Acad. Sci. USA, 111, 3228–3232, https://doi.org/10.1073/pnas.1312330110, 2013.
Welle, T., Leinen, L., Bohr, Y. E. M. B., and Vorländer, A. K.: Waldvision
für die Europäische Union, edited by: Naturwaldakademie on behalf of Greenpeace, https://greenwire.greenpeace.de/system/files/2020-12/eu_waldvision_english.pdf (last access: 27 June 2022), 2020.
Yousefpour, R., Temperli, C., Jacobsen, J. B., Thorsen, B. J., Meilby, H.,
Lexer, M. J., Lindner, M., Bugmann, H., Borges, J. G., Palma, J. H. N., Ray, D.,
Zimmermann, N. E., Delzon, S., Kremer, A., Kramer, K., Reyer, C. P. O., Lasch-Born, P.,
Garcia-Gonzalo, J., and Hanewinkel, M.: A framework for modeling adaptive
forest management and decision making under climate change, Ecol. Soc., 22, 40, https://doi.org/10.5751/ES-09614-220440, 2017.
Zaehle, S., Sitch, S., Prentice, I. C., Liski, J., Cramer, W., Erhard, M., Hickler, T., and Smith, B.: The importance of age-related decline in forest NPP for
modeling regional carbon balances, Ecol. Appl., 16, 1555–1574, https://doi.org/10.1890/1051-0761(2006)016[1555:TIOADI]2.0.CO;2,
2006.
Zhao, M., Golaz, J.-C., Held, I. M., Guo, H., Balaji, V., Benson, R., Chen, J.-H., Chen, X., Donner, L. J., Dunne, J. P., Dunne, K., Durachta, J., Fan, S.-M., Freidenreich, S. M., Garner, S. T., Ginoux, P., Harris, L. M., Horowitz, L. W., Krasting, J. P., Langenhorst, A. R., Liang, Z., Lin, P., Lin, S.-J., Malyshev, S. L., Mason, E., Milly, P. C. D., Ming, Y., Naik, V., Paulot, F., Paynter, D., Phillipps, P., Radhakrishnan, A., Ramaswamy, V., Robinson, T., Schwarzkopf, D., Seman, C. J., Shevliakova, E., Shen, Z., Shin, H., Silvers, L. G., Wilson, J. R., Winton, M., Wittenberg, A. T., Wyman, B., and Xiang, B.: The GFDL global atmosphere and land model AM4.0/LM4.0: 2.
Model description, sensitivity studies, and tuning strategies, J.
Adv. Model. Earth Sy., 10, 735–769,
https://doi.org/10.1002/2017MS001209, 2018.
Short summary
To become carbon neutral by 2050, the European Union (EU27) forest C sink should increase to −450 Mt CO2 yr-1. Our study highlights that under current management practices (i.e. excluding any policy scenario) the forest C sink of the EU27 member states and the UK may decrease to about −250 Mt CO2eq yr-1 in 2050. The expected impacts of future climate change, however, add a considerable uncertainty, potentially nearly doubling or halving the sink associated with forest management.
To become carbon neutral by 2050, the European Union (EU27) forest C sink should increase to...
Altmetrics
Final-revised paper
Preprint