Articles | Volume 19, issue 13
https://doi.org/10.5194/bg-19-3305-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-3305-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Physiological control on carbon isotope fractionation in marine phytoplankton
Karen M. Brandenburg
CORRESPONDING AUTHOR
Department of Earth Sciences, Faculty of Geosciences, Utrecht
University, Princetonlaan 8a, 3584 CB Utrecht, the Netherlands
Björn Rost
Department of Marine Biogeoscience, Alfred Wegener Institute (AWI),
Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570
Bremerhaven, Germany
Faculty of Biology/Chemistry, University of Bremen, Leobener Strasse,
28359 Bremen, Germany
Dedmer B. Van de Waal
Department of Aquatic Ecology, Netherlands Institute of Ecology
(NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, the Netherlands
Mirja Hoins
Department of Earth Sciences, Faculty of Geosciences, Utrecht
University, Princetonlaan 8a, 3584 CB Utrecht, the Netherlands
Department of Marine Biogeoscience, Alfred Wegener Institute (AWI),
Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570
Bremerhaven, Germany
Appy Sluijs
Department of Earth Sciences, Faculty of Geosciences, Utrecht
University, Princetonlaan 8a, 3584 CB Utrecht, the Netherlands
Related authors
No articles found.
Anne L. Kruijt, Robin van Dijk, Olivier Sulpis, Luc Beaufort, Guillaume Lassus, Geert-Jan Brummer, A. Daniëlle van der Burg, Ben A. Cala, Yasmina Ourradi, Katja T. C. A. Peijnenburg, Matthew P. Humphreys, Sonia Chaabane, Appy Sluijs, and Jack J. Middelburg
EGUsphere, https://doi.org/10.5194/egusphere-2025-4234, https://doi.org/10.5194/egusphere-2025-4234, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
We measured the three main types of plankton that produce calcium carbonate in the ocean, at the same time and location. While coccolithophores were the biggest contributors, we found that planktonic gastropods, not foraminifera, were the second largest contributor. This challenges the current view and improves our understanding of how these organisms influence oceans’ carbon cycling.
Yannick F. Bats, Klaas G. J. Nierop, Alice Stuart-Lee, Joost Frieling, Linda van Roij, Gert-Jan Reichart, and Appy Sluijs
EGUsphere, https://doi.org/10.5194/egusphere-2025-1678, https://doi.org/10.5194/egusphere-2025-1678, 2025
Short summary
Short summary
In this study we analyzed the molecular and stable carbon isotopic composition (δ13C) of pollen and spores (sporomorphs) that underwent chemical treatments that simulate diagenesis during fossilization. We show that the successive removal of sugars and lipids results in 13C depletion of the residual sporomorph, leaving it rich aromatic compounds. This residual aromatic-rich structure likely represents diagenetically resistant sporopollenin, implying diagenesis results in 13C depletion of pollen.
Peter K. Bijl, Kasia K. Sliwinska, Bella Duncan, Arnaud Huguet, Sebastian Naeher, Ronnakrit Rattanasriampaipong, Claudia Sosa-Montes de Oca, Alexandra Auderset, Melissa Berke, Bum Soo Kim, Nina Davtian, Tom Dunkley Jones, Desmond Eefting, Felix Elling, Lauren O'Connor, Richard D. Pancost, Francien Peterse, Pierrick Fenies, Addison Rice, Appy Sluijs, Devika Varma, Wenjie Xiao, and Yige Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1467, https://doi.org/10.5194/egusphere-2025-1467, 2025
Short summary
Short summary
Many academic laboratories worldwide process environmental samples for analysis of membrane lipid molecules of archaea, for the reconstruction of past environmental conditions. However, the sample workup scheme involves many steps, each of which has a risk of contamination or bias, affecting the results. This paper reviews steps involved in sampling, extraction and analysis of lipids, interpretation and archiving of the data. This ensures reproducable, reusable, comparable and consistent data.
Appy Sluijs and Henk Brinkhuis
J. Micropalaeontol., 43, 441–474, https://doi.org/10.5194/jm-43-441-2024, https://doi.org/10.5194/jm-43-441-2024, 2024
Short summary
Short summary
We present intrinsic details of dinocyst taxa and assemblages from the sole available central Arctic late Paleocene–early Eocene sedimentary succession recovered at the central Lomonosov Ridge by the Integrated Ocean Drilling Program (IODP) Expedition 302. We develop a pragmatic taxonomic framework, document critical biostratigraphic events, and propose two new genera and seven new species.
Dominique K. L. L. Jenny, Tammo Reichgelt, Charlotte L. O'Brien, Xiaoqing Liu, Peter K. Bijl, Matthew Huber, and Appy Sluijs
Clim. Past, 20, 1627–1657, https://doi.org/10.5194/cp-20-1627-2024, https://doi.org/10.5194/cp-20-1627-2024, 2024
Short summary
Short summary
This study reviews the current state of knowledge regarding the Oligocene
icehouseclimate. We extend an existing marine climate proxy data compilation and present a new compilation and analysis of terrestrial plant assemblages to assess long-term climate trends and variability. Our data–climate model comparison reinforces the notion that models underestimate polar amplification of Oligocene climates, and we identify potential future research directions.
Chris D. Fokkema, Tobias Agterhuis, Danielle Gerritsma, Myrthe de Goeij, Xiaoqing Liu, Pauline de Regt, Addison Rice, Laurens Vennema, Claudia Agnini, Peter K. Bijl, Joost Frieling, Matthew Huber, Francien Peterse, and Appy Sluijs
Clim. Past, 20, 1303–1325, https://doi.org/10.5194/cp-20-1303-2024, https://doi.org/10.5194/cp-20-1303-2024, 2024
Short summary
Short summary
Polar amplification (PA) is a key uncertainty in climate projections. The factors that dominantly control PA are difficult to separate. Here we provide an estimate for the non-ice-related PA by reconstructing tropical ocean temperature variability from the ice-free early Eocene, which we compare to deep-ocean-derived high-latitude temperature variability across short-lived warming periods. We find a PA factor of 1.7–2.3 on 20 kyr timescales, which is somewhat larger than model estimates.
Marci M. Robinson, Kenneth G. Miller, Tali L. Babila, Timothy J. Bralower, James V. Browning, Marlow J. Cramwinckel, Monika Doubrawa, Gavin L. Foster, Megan K. Fung, Sean Kinney, Maria Makarova, Peter P. McLaughlin, Paul N. Pearson, Ursula Röhl, Morgan F. Schaller, Jean M. Self-Trail, Appy Sluijs, Thomas Westerhold, James D. Wright, and James C. Zachos
Sci. Dril., 33, 47–65, https://doi.org/10.5194/sd-33-47-2024, https://doi.org/10.5194/sd-33-47-2024, 2024
Short summary
Short summary
The Paleocene–Eocene Thermal Maximum (PETM) is the closest geological analog to modern anthropogenic CO2 emissions, but its causes and the responses remain enigmatic. Coastal plain sediments can resolve this uncertainty, but their discontinuous nature requires numerous sites to constrain events. Workshop participants identified 10 drill sites that target the PETM and other interesting intervals. Our post-drilling research will provide valuable insights into Earth system responses.
Michiel Baatsen, Peter Bijl, Anna von der Heydt, Appy Sluijs, and Henk Dijkstra
Clim. Past, 20, 77–90, https://doi.org/10.5194/cp-20-77-2024, https://doi.org/10.5194/cp-20-77-2024, 2024
Short summary
Short summary
This work introduces the possibility and consequences of monsoons on Antarctica in the warm Eocene climate. We suggest that such a monsoonal climate can be important to understand conditions in Antarctica prior to large-scale glaciation. We can explain seemingly contradictory indications of ice and vegetation on the continent through regional variability. In addition, we provide a new mechanism through which most of Antarctica remained ice-free through a wide range of global climatic changes.
Joost Frieling, Linda van Roij, Iris Kleij, Gert-Jan Reichart, and Appy Sluijs
Biogeosciences, 20, 4651–4668, https://doi.org/10.5194/bg-20-4651-2023, https://doi.org/10.5194/bg-20-4651-2023, 2023
Short summary
Short summary
We present a first species-specific evaluation of marine core-top dinoflagellate cyst carbon isotope fractionation (εp) to assess natural pCO2 dependency on εp and explore its geological deep-time paleo-pCO2 proxy potential. We find that εp differs between genera and species and that in Operculodinium centrocarpum, εp is controlled by pCO2 and nutrients. Our results highlight the added value of δ13C analyses of individual micrometer-scale sedimentary organic carbon particles.
William Rush, Jean Self-Trail, Yang Zhang, Appy Sluijs, Henk Brinkhuis, James Zachos, James G. Ogg, and Marci Robinson
Clim. Past, 19, 1677–1698, https://doi.org/10.5194/cp-19-1677-2023, https://doi.org/10.5194/cp-19-1677-2023, 2023
Short summary
Short summary
The Eocene contains several brief warming periods referred to as hyperthermals. Studying these events and how they varied between locations can help provide insight into our future warmer world. This study provides a characterization of two of these events in the mid-Atlantic region of the USA. The records of climate that we measured demonstrate significant changes during this time period, but the type and timing of these changes highlight the complexity of climatic changes.
Yord W. Yedema, Francesca Sangiorgi, Appy Sluijs, Jaap S. Sinninghe Damsté, and Francien Peterse
Biogeosciences, 20, 663–686, https://doi.org/10.5194/bg-20-663-2023, https://doi.org/10.5194/bg-20-663-2023, 2023
Short summary
Short summary
Terrestrial organic matter (TerrOM) is transported to the ocean by rivers, where its burial can potentially form a long-term carbon sink. This burial is dependent on the type and characteristics of the TerrOM. We used bulk sediment properties, biomarkers, and palynology to identify the dispersal patterns of plant-derived, soil–microbial, and marine OM in the northern Gulf of Mexico and show that plant-derived OM is transported further into the coastal zone than soil and marine-produced TerrOM.
Carolien M. H. van der Weijst, Koen J. van der Laan, Francien Peterse, Gert-Jan Reichart, Francesca Sangiorgi, Stefan Schouten, Tjerk J. T. Veenstra, and Appy Sluijs
Clim. Past, 18, 1947–1962, https://doi.org/10.5194/cp-18-1947-2022, https://doi.org/10.5194/cp-18-1947-2022, 2022
Short summary
Short summary
The TEX86 proxy is often used by paleoceanographers to reconstruct past sea-surface temperatures. However, the origin of the TEX86 signal in marine sediments has been debated since the proxy was first proposed. In our paper, we show that TEX86 carries a mixed sea-surface and subsurface temperature signal and should be calibrated accordingly. Using our 15-million-year record, we subsequently show how a TEX86 subsurface temperature record can be used to inform us on past sea-surface temperatures.
Carolien M. H. van der Weijst, Josse Winkelhorst, Wesley de Nooijer, Anna von der Heydt, Gert-Jan Reichart, Francesca Sangiorgi, and Appy Sluijs
Clim. Past, 18, 961–973, https://doi.org/10.5194/cp-18-961-2022, https://doi.org/10.5194/cp-18-961-2022, 2022
Short summary
Short summary
A hypothesized link between Pliocene (5.3–2.5 million years ago) global climate and tropical thermocline depth is currently only backed up by data from the Pacific Ocean. In our paper, we present temperature, salinity, and thermocline records from the tropical Atlantic Ocean. Surprisingly, the Pliocene thermocline evolution was remarkably different in the Atlantic and Pacific. We need to reevaluate the mechanisms that drive thermocline depth, and how these are tied to global climate change.
Peter K. Bijl, Joost Frieling, Marlow Julius Cramwinckel, Christine Boschman, Appy Sluijs, and Francien Peterse
Clim. Past, 17, 2393–2425, https://doi.org/10.5194/cp-17-2393-2021, https://doi.org/10.5194/cp-17-2393-2021, 2021
Short summary
Short summary
Here, we use the latest insights for GDGT and dinocyst-based paleotemperature and paleoenvironmental reconstructions in late Cretaceous–early Oligocene sediments from ODP Site 1172 (East Tasman Plateau, Australia). We reconstruct strong river runoff during the Paleocene–early Eocene, a progressive decline thereafter with increased wet/dry seasonality in the northward-drifting hinterland. Our critical review leaves the anomalous warmth of the Eocene SW Pacific Ocean unexplained.
Gerrit Müller, Jack J. Middelburg, and Appy Sluijs
Earth Syst. Sci. Data, 13, 3565–3575, https://doi.org/10.5194/essd-13-3565-2021, https://doi.org/10.5194/essd-13-3565-2021, 2021
Short summary
Short summary
Rivers are major freshwater resources, connectors and transporters on Earth. As the composition of river waters and particles results from processes in their catchment, such as erosion, weathering, environmental pollution, nutrient and carbon cycling, Earth-spanning databases of river composition are needed for studies of these processes on a global scale. While extensive resources on water and nutrient composition exist, we provide a database of river particle composition.
Annique van der Boon, Klaudia F. Kuiper, Robin van der Ploeg, Marlow Julius Cramwinckel, Maryam Honarmand, Appy Sluijs, and Wout Krijgsman
Clim. Past, 17, 229–239, https://doi.org/10.5194/cp-17-229-2021, https://doi.org/10.5194/cp-17-229-2021, 2021
Short summary
Short summary
40.5 million years ago, Earth's climate warmed, but it is unknown why. Enhanced volcanism has been suggested, but this has not yet been tied to a specific region. We explore an increase in volcanism in Iran. We dated igneous rocks and compiled ages from the literature. We estimated the volume of igneous rocks in Iran in order to calculate the amount of CO2 that could have been released due to enhanced volcanism. We conclude that an increase in volcanism in Iran is a plausible cause of warming.
Michiel Baatsen, Anna S. von der Heydt, Matthew Huber, Michael A. Kliphuis, Peter K. Bijl, Appy Sluijs, and Henk A. Dijkstra
Clim. Past, 16, 2573–2597, https://doi.org/10.5194/cp-16-2573-2020, https://doi.org/10.5194/cp-16-2573-2020, 2020
Short summary
Short summary
Warm climates of the deep past have proven to be challenging to reconstruct with the same numerical models used for future predictions. We present results of CESM simulations for the middle to late Eocene (∼ 38 Ma), in which we managed to match the available indications of temperature well. With these results we can now look into regional features and the response to external changes to ultimately better understand the climate when it is in such a warm state.
Appy Sluijs, Joost Frieling, Gordon N. Inglis, Klaas G. J. Nierop, Francien Peterse, Francesca Sangiorgi, and Stefan Schouten
Clim. Past, 16, 2381–2400, https://doi.org/10.5194/cp-16-2381-2020, https://doi.org/10.5194/cp-16-2381-2020, 2020
Short summary
Short summary
We revisit 15-year-old reconstructions of sea surface temperatures in the Arctic Ocean for the late Paleocene and early Eocene epochs (∼ 57–53 million years ago) based on the distribution of fossil membrane lipids of archaea preserved in Arctic Ocean sediments. We find that improvements in the methods over the past 15 years do not lead to different results. However, data quality is now higher and potential biases better characterized. Results confirm remarkable Arctic warmth during this time.
Cited articles
Bach, L. T., MacKinder, L. C. M., Schulz, K. G., Wheeler, G., Schroeder, D.
C., Brownlee, C., and Riebesell, U.: Dissecting the impact of CO2 and
pH on the mechanisms of photosynthesis and calcification in the
coccolithophore Emiliania huxleyi, New Phytol., 199, 121–134, 2013.
Badger, M. P. S.: Alkenone isotopes show evidence of active carbon concentrating mechanisms in coccolithophores as aqueous carbon dioxide concentrations fall below 7 µmol L−1, Biogeosciences, 18, 1149–1160, https://doi.org/10.5194/bg-18-1149-2021, 2021.
Badger, M. P. S., Chalk, T. B., Foster, G. L., Bown, P. R., Gibbs, S. J., Sexton, P. F., Schmidt, D. N., Pälike, H., Mackensen, A., and Pancost, R. D.: Insensitivity of alkenone carbon isotopes to atmospheric CO2 at low to moderate CO2 levels, Clim. Past, 15, 539–554, https://doi.org/10.5194/cp-15-539-2019, 2019.
Badger, M. R., Andrews, T. J., Whitney, S. M., Ludwig, M., Yellowlees, D.
C., Leggat, W., and Price, G. D.: The diversity and coevolution of Rubisco,
plastids, pyrenoids, and chloroplast-based CO2-concentrating mechanisms
in algae, Can. J. Botany, 76, 1052–1071, 1998.
Bates, D., Machler, M., Bolker, B., and Walker, S.: Fitting linear
mixed-effects models using lme4, J. Stat. Softw., 67, 1–48, 2015.
Bice, K. L., Birgel, D., Meyers, P. A., Dahl, K. A., Hinrichs, K. U., and
Norris, R. D.: A multiple proxy and model study of Cretaceous upper ocean
temperatures and atmospheric CO2 concentrations, Paleoceanography, 21,
1–17, 2006.
Bidigare, R., Freeman, H., Hanson, L., Hayes, M., Jasper, P., King, L.,
Millero, J., Popp, N., Steinberg, A., and Wakeham, G.: Consistent
fractionation of 13C in nature and in the laboratory: growth-rate
effects in some haptophyte algae, Global Biogeochem. Cy., 11, 279–292,
1997.
Brandenburg, K. M.: Physiological control on carbon isotope fractionation in marine phytoplankton, Dryad [data set], https://doi.org/10.5061/dryad.hmgqnk9k8, 2022.
Boller, A. J., Thomas, P. J., Cavanaugh, C. M., and Scott, K. M.: Low stable
carbon isotope fractionation by coccolithophore RubisCO, Geochim. Cosmochim.
Ac., 75, 7200–7207, 2011.
Boller, A. J., Thomas, P. J., Cavanaugh, C. M., and Scott, K. M.: Isotopic
discrimination and kinetic parameters of RubisCO from the marine
bloom-forming diatom, Skeletonema costatum, Geobiology, 13, 33–43, 2015.
Bolton, C. T. and Stoll, H. M.: Late Miocene threshold response of marine
algae to carbon dioxide limitation, Nature, 500, 558–562, 2013.
Bolton, C. T., Hernández-Sánchez, M. T., Fuertes, M. Á.,
González-Lemos, S., Abrevaya, L., Mendez-Vicente, A., Flores, J. A.,
Probert, I., Giosan, L., Johnson, J., and Stoll, H. M.: Decrease in
coccolithophore calcification and CO2 since the middle Miocene, Nat.
Commun., 7, 10284, https://doi.org/10.1038/ncomms10284, 2016.
Burkhardt, S., Riebesell, U., and Zondervan, I.: Effects of growth rate,
CO2 concentration, and cell size on the stable carbon isotope
fractionation in marine phytoplankton, Geochim. Cosmochim. Ac., 63,
3729–3741, 1999a.
Burkhardt, S., Riebesell, U., and Zondervan, I.: Stable carbon isotope
fractionation by marine phytoplankton in response to daylength, growth rate,
and CO2 availability, Mar. Ecol.-Prog. Ser., 184, 31–41, 1999b.
Cassar, N., Laws, E. A., and Popp, B. N.: Carbon isotopic fractionation by
the marine diatom Phaeodactylum tricornutum under nutrient- and light-limited growth conditions,
Geochim. Cosmochim. Ac., 70, 5323–5335, 2006.
Clark, I. D. and Lauriol, B.: Kinetic enrichment of stable isotopes in
cryogenic calcites, Chem. Geol., 102, 217–228, 1992.
Dou, Z., Heinhorst, S., Williams, E. B., Murin, C. D., Shively, J. M., and
Cannon, G. C.: CO2 fixation kinetics of Halothiobacillus neapolitanus mutant carboxysomes lacking
carbonic anhydrase suggest the shell acts as a diffusional barrier for CO2,
J. Biol. Chem., 283, 10377–10384, 2008.
Eichner, M., Thoms, S., Kranz, S. A., and Rost, B.: Cellular inorganic
carbon fluxes in Trichodesmium: Aa combined approach using measurements and modelling, J.
Exp. Bot., 66, 749–759, 2015.
Espie, G. S. and Kimber, M. S.: Carboxysomes: cyanobacterial RubisCO comes
in small packages, Photosynth. Res., 109, 7–20, 2011.
Farquhar, G. D., Ehleringer, J. R., and Hubick, K. T.: Carbon isotope
discrimination and photosynthesis, Annu. Rev. Plant Phys., 40, 503–537, 1989.
Finkel, Z. V., Sebbo, J., Feist-Burkhardt, S., Irwin, A. J., Katz, M. E.,
Schofield, O. M. E., Young, J. R., and Falkowski, P. G.: A universal driver
of macroevolutionary change in the size of marine phytoplankton over the
Cenozoic, P. Natl. Acad. Sci. USA, 104, 20416–20420, 2007.
Foster, G. L., Royer, D. L., and Lunt, D. J.: Future climate forcing
potentially without precedent in the last 420 million years, Nat. Commun.,
8, 1–8, 2017.
Freeman, H. and Hayes, J. M.: Fractionation of carbon isotopes by
phytoplankton and estimates of ancient CO2 levels, Global Biogeochem.
Cy., 6, 185–198, 1992.
Giordano, M., Beardall, J., and Raven, J. A.: CO2 concentrating
mechanisms in algae: mechanisms, environmental modulation, and evolution,
Annu. Rev. Plant Biol., 56, 99–131, 2005.
Hayes, J. M., Strauss, H., and Kaufman, A. J.: The abundance of 13C in
marine organic matter and isotopic fractionation in the global
biogeochemical cycle of carbon during the past 800 Ma, Chem. Geol., 161,
103–125, 1999.
Hermoso, M., Chan, I. Z. X., McClelland, H. L. O., Heureux, A. M. C., and Rickaby, R. E. M.: Vanishing coccolith vital effects with alleviated carbon limitation, Biogeosciences, 13, 301–312, https://doi.org/10.5194/bg-13-301-2016, 2016.
Hoins, M., Van de Waal, D. B., Eberlein, T., Reichart, G. J., Rost, B., and
Sluijs, A.: Stable carbon isotope fractionation of organic cyst-forming
dinoflagellates: evaluating the potential for a CO2 proxy, Geochim.
Cosmochim. Ac., 160, 267–276, 2015.
Hoins, M., Eberlein, T., Van de Waal, D. B., Sluijs, A., Reichart, G. J.,
and Rost, B.: CO2-dependent carbon isotope fractionation in
dinoflagellates relates to their inorganic carbon fluxes, J. Exp. Mar. Biol.
Ecol., 481, 9–14, 2016a.
Hoins, M., Eberlein, T., Großmann, C. H., Brandenburg, K., Reichart,
G.-J., Rost, B., Sluijs, A., and Van De Waal, D. B.: Combined effects of
ocean acidification and light or nitrogen availabilities on 13C
fractionation in marine dinoflagellates, PLoS One, 11, e0154370, https://doi.org/10.1371/journal.pone.0154370, 2016b.
Jasper, J. P. and Hayes, J. M.: A carbon isotope record of CO2 levels
during the late Quaternary, Nature, 347, 462–464, 1990.
Keeling, P. J.: The number, speed, and impact of plastid endosymbioses in
eukaryotic evolution, Annu. Rev. Plant Biol., 64, 583–607, 2013.
Kikutani, S., Nakajima, K., Nagasato, C., Tsuji, Y., Miyatake, A., and
Matsuda, Y.: Thylakoid luminal Θ-carbonic anhydrase critical for
growth and photosynthesis in the marine diatom Phaeodactylum tricornutum, P. Natl. Acad. Sci. USA, 113, 9828–9833, 2016.
Krumhardt, K. M., Lovenduski, N. S., Iglesias-Rodriguez, M. D., and Kleypas,
J. A.: Coccolithophore growth and calcification in a changing ocean, Prog.
Oceanogr., 159, 276–295, 2017.
Laws, E. A., Popp, B. N., Bidigare, R. R., Riebesell, U., Burkhardt, S., and
Wakeham, S. G.: Controls on the molecular distribution and carbon isotopic
composition of alkenones in certain haptophyte algae, Geochem. Geophy.
Geosy., 2, 2000GC000057, https://doi.org/10.1029/2000GC000057, 2001.
Liu, Y. W., Eagle, R. A., Aciego, S. M., Gilmore, R. E., and Ries, J. B.: A
coastal coccolithophore maintains pH homeostasis and switches carbon sources
in response to ocean acidification, Nat. Commun., 9, 1–12, 2018.
Maberly, S. C., Raven, J. A., and Johnston, A. M.: Discrimination between
12C and 13C by marine plants, Oecologia, 91, 481–492, 1992.
Macdonald, F. A.: Deep-time paleoclimate proxies, AGU Adv., 1, 1–3, 2020.
Maeda, S. I., Badger, M. R., and Price, G. D.: Novel gene products
associated with NdhD3/D4-containing NDH-1 complexes are involved in
photosynthetic CO2 hydration in the cyanobacterium, Synechococcus sp.
PCC7942, Mol. Microbiol., 43, 425–435, 2002.
Matsuda, Y., Hopkinson, B. M., Nakajima, K., Dupont, C. L., and Tsuji, Y.:
Mechanisms of carbon dioxide acquisition and CO2 sensing in marine
diatoms: a gateway to carbon metabolism, Philos. T. R. Soc. B, 372, 20160403, https://doi.org/10.1098/rstb.2016.0403, 2017.
McClelland, H. L. O., Bruggeman, J., Hermoso, M., and Rickaby, R. E. M.: The
origin of carbon isotope vital effects in coccolith calcite, Nat. Commun.,
8, 14511, https://doi.org/10.1038/ncomms14511, 2017.
McNevin, D. B., Badger, M. R., Whitney, S. M., Von Caemmerer, S., Tcherkez,
G. G. B., and Farquhar, G. D.: Differences in carbon isotope discrimination
of three variants of D-ribulose-1,5-bisphosphate carboxylase/oxygenase
reflect differences in their catalytic mechanisms, J. Biol. Chem., 282,
36068–36076, 2007.
Mitchell, M., Muftakhidinov, B., and Winchen, T.: Engauge Digitizer 4.1,
Zenodo, https://doi.org/10.5281/zenodo.3941227, 2020.
Nakajima, K., Tanaka, A., and Matsuda, Y.: SLC4 family transporters in a
marine diatom directly pump bicarbonate from seawater, P. Natl. Acad.
Sci. USA, 110, 1767–1772, 2013.
O'Leary, M. H.: Measurement of the isotope fractionation associated with
diffusion of carbon dioxide in aqueous solution, J. Phys. Chem., 88,
823–825, 1984.
O'Leary, M. H., Madhavan, S., and Paneth, P.: Physical and chemical basis of
carbon isotope fractionation in plants, Plant. Cell Environ., 15,
1099–1104, 1992.
Pagani, M., Zachos, J. C., Freeman, K. H., Tipple, B., and Bohaty, S.:
Atmospheric science: marked decline in atmospheric carbon dioxide
concentrations during the Paleogene, Science, 309, 600–603, 2005.
Phelps, S. R., Hennon, G. M. M., Dyhrman, S. T., Hernández Limón, M.
D., Williamson, O. M., and Polissar, P. J.: Carbon isotope fractionation in
Noelaerhabdaceae algae in culture and a critical evaluation of the alkenone
paleobarometer, Geochem. Geophy. Geosy., 22, 1–20, 2021.
Popp, B. N., Laws, E. A., Bidigare, R. R., Dore, J. E., Hanson, K. L., and
Wakeham, S. G.: Effect of phytoplankton cell geometry on carbon isotopic
fractionation, Geochim. Cosmochim. Ac., 62, 69–77, 1998.
Price, G. D., Maeda, S. I., Omata, T., and Badger, M. R.: Modes of active
inorganic carbon uptake in the cyanobacterium, Synechococcus sp. PCC7942, Funct. Plant
Biol., 29, 131–149, 2002.
Price, G. D., Badger, M. R., Woodger, F. J., and Long, B. M.: Advances in
understanding the cyanobacterial CO2-concentrating- mechanism (CCM):
Functional components, Ci transporters, diversity, genetic regulation and
prospects for engineering into plants, J. Exp. Bot., 59, 1441–1461, 2008.
Ratti, S., Giordano, M., and Morse, D.: CO2-concentrating mechanisms of
the potentially toxic dinoflagellate Protoceratium reticulatum (Dinophyceae, Gonyaulacales), J.
Phycol., 43, 693–701, 2007.
Rau, G. H., Riebesell, U., and Wolf-Gladrow, D.: A model of photosynthetic
13C fractionation by marine phytoplankton based on diffusive molecular
CO2 uptake, Mar. Ecol.-Prog. Ser., 133, 275–285, 1996.
Raven, J. A. and Johnston, A.: Mechanisms of inorganic-carbon acquisition in
marine phytoplankton and their implications for the use of other resources,
Limnol. Oceanogr., 36, 1701–1714, 1991.
R Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (last access: January 2022), 2020.
Reinfelder, J. R.: Carbon concentrating mechanisms in eukaryotic marine
phytoplankton, Ann. Rev. Mar. Sci., 3, 291–315, 2011.
Riebesell, U., Burkhardt, S., Dauelsberg, A., and Kroon, B.: Carbon isotope
fractionation by a marine diatom: dependence on the growth-rate-limiting
resource, Mar. Ecol.-Prog. Ser., 193, 295–303, 2000a.
Riebesell, U., Revill, A. T., Holdsworth, D. G., and Volkman, J. K.: The
effects of varying CO2 concentration on lipid composition and carbon
isotope fractionation in Emiliania huxleyi, Geochim. Cosmochim. Ac., 64,
4179–4192, 2000b.
Roeske, C. A. and O'Leary, M. H.: Carbon isotope effects on the
enzyme-catalyzed carboxylation of ribulose bisphosphate, Biochemistry, 23,
6275–6284, 1984.
Rohling, E. J., Sluijs, A., Dijkstra, H. A., Köhler, P., Van De Wal, R.
S. W., Von Der Heydt, A. S., Beerling, D. J., Berger, A., Bijl, P. K.,
Crucifix, M., Deconto, R., Drijfhout, S. S., Fedorov, A., Foster, G. L.,
Ganopolski, A., Hansen, J., Hönisch, B., Hooghiemstra, H., Huber, M.,
Huybers, P., Knutti, R., Lea, D. W., Lourens, L. J., Lunt, D.,
Masson-Demotte, V., Medina-Elizalde, M., Otto-Bliesner, B., Pagani, M.,
Pälike, H., Renssen, H., Royer, D. L., Siddall, M., Valdes, P., Zachos,
J. C., and Zeebe, R. E.: Making sense of palaeoclimate sensitivity, Nature,
491, 683–691, 2012.
Rokitta, S. D. and Rost, B.: Effects of CO2 and their modulation by
light in the life-cycle stages of the coccolithophore Emiliania huxleyi, Limnol. Oceanogr.,
57, 607–618, 2012.
Rokitta, S. D., Kranz, S. A., and Rost, B.: Inorganic carbon acquisition by
aquatic primary producers, in: Blue planet, red and green photosynthesis,
edited by: Maberly, S. and Gontero, B., ISTE Ltd, London, ISBN 9-781-78945-082-8, 2022.
Rost, B., Zondervan, I., and Riebesell, U.: Light-dependent carbon isotope
fractionation in the coccolithophorid Emiliania huxleyi, Limnol. Oceanogr., 47, 120–128,
2002.
Rost, B., Riebesell, U., and Sültemeyer, D.: Carbon acquisition of
marine phytoplankton: effect of photoperiod length, Limnol. Oceanogr., 51,
12–20, 2006.
Rost, B., Zondervan, I., and Wolf-Gladrow, D.: Sensitivity of phytoplankton
to future changes in ocean carbonate chemistry: current knowledge,
contradictions and research directions, Mar. Ecol.-Prog. Ser., 373,
227–237, 2008.
Samukawa, M., Shen, C., Hopkinson, B. M., and Matsuda, Y.: Localization of
putative carbonic anhydrases in the marine diatom, Thalassiosira pseudonana, Photosynth. Res., 121,
235–249, 2014.
Schulz, K. G., Rost, B., Burkhardt, S., Riebesell, U., Thoms, S., and
Wolf-Gladrow, D. A.: The effect of iron availability on the regulation of
inorganic carbon acquisition in the coccolithophore Emiliania huxleyi and the significance of
cellular compartmentation for stable carbon isotope fractionation, Geochim.
Cosmochim. Ac., 71, 5301–5312, 2007.
Sharkey, T. D. and Berry, J. A.: Carbon isotope fractionation of algae as
influenced by an inducible CO2 concentrating mechanism, in: Inorganic
Carbon Uptake by Aquatic Photosynthetic Organisms, edited by: Lucas, W. J.
and Berry, J. A., American Society of Plant Physiologists, 389–401, ISBN 10 0943088054, ISBN 13 9780943088051, 1985.
Siegenthaler, U. and Münnich, K. O.: 12C 13C fractionation
during CO2 transfer from air to sea, Carbon Cycle Model., 249–251,
1981.
Sluijs, A., van Roij, L., Frieling, J., Laks, J., and Reichart, G. J.:
Single-species dinoflagellate cyst carbon isotope ecology across the
Paleocene-Eocene Thermal Maximum, Geology, 46, 79–82, 2018.
Stoll, H. M., Guitian, J., Hernandez-Almeida, I., Mejia, L. M., Phelps, S.,
Polissar, P., Rosenthal, Y., Zhang, H., and Ziveri, P.: Upregulation of
phytoplankton carbon concentrating mechanisms during low CO2 glacial
periods and implications for the phytoplankton pCO2 proxy, Quaternary Sci.
Rev., 208, 1–20, 2019.
Tabita, F. R., Satagopan, S., Hanson, T. E., Kreel, N. E., and Scott, S. S.:
Distinct form I, II, III, and IV Rubisco proteins from the three kingdoms of
life provide clues about Rubisco evolution and structure/function
relationships, J. Exp. Bot., 59, 1515–1524, 2008.
Tachibana, M., Allen, A. E., Kikutani, S., Endo, Y., Bowler, C., and
Matsuda, Y.: Localization of putative carbonic anhydrases in two marine
diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana, Photosynth. Res., 109, 205–221, 2011.
Tierney, J. E., Poulsen, C. J., Montañez, I. P., Bhattacharya, T., Feng,
R., Ford, H. L., Hönisch, B., Inglis, G. N., Petersen, S. V., Sagoo, N.,
Tabor, C. R., Thirumalai, K., Zhu, J., Burls, N. J., Foster, G. L.,
Goddéris, Y., Huber, B. T., Ivany, L. C., Turner, S. K., Lunt, D. J.,
McElwain, J. C., Mills, B. J. W., Otto-Bliesner, B. L., Ridgwell, A., and
Zhang, Y. G.: Past climates inform our future, Science, 370, eaay3701, https://doi.org/10.1126/science.aay3701, 2020.
Tortell, P. D.: Evolutionary and ecological perspectives on carbon
acquisition in phytoplankton, Limnol. Oceanogr., 45, 744–750, 2000.
Van De Waal, D. B., Eberlein, T., Bublitz, Y., John, U., and Rost, B.: Shake
it easy: a gently mixed continuous culture system for dinoflagellates, J.
Plankton Res., 36, 889–894, 2014.
Van de Waal, D. B., Brandenburg, K. M., Keuskamp, J., Trimborn, S., Rokitta,
S., Kranz, S., and Rost, B.: Highest plasticity of carbon concentrating
mechanisms in earliest evolved phytoplankton, Limnol. Oceanogr. Lett., 4, 37–43, 2019.
van Roij, L., Sluijs, A., Laks, J. J., and Reichart, G. J.: Stable carbon
isotope analyses of nanogram quantities of particulate organic carbon
(pollen) with laser ablation nano combustion gas chromatography/isotope
ratio mass spectrometry, Rapid Commun. Mass Sp., 31, 47–58, 2017.
Whitney, S. M., Houtz, R. L., and Alonso, H.: Advancing our understanding
and capacity to engineer nature's CO2-sequestering enzyme, Rubisco,
Plant Physiol., 155, 27–35, 2011.
Wilkes, E. B. and Pearson, A.: A general model for carbon isotopes in
red-lineage phytoplankton: interplay between unidirectional processes and
fractionation by RubisCO, Geochim. Cosmochim. Ac., 265, 163–181, 2019.
Wilkes, E. B., Carter, S. J., and Pearson, A.: CO2-dependent carbon
isotope fractionation in the dinoflagellate Alexandrium tamarense, Geochim. Cosmochim. Ac., 212,
48–61, 2017.
Witkowski, C. R., Weijers, J. W. H., Blais, B., Schouten, S., and Sinninghe
Damsté, J. S.: Molecular fossils from phytoplankton reveal secular
P trend over the phanerozoic, Sci. Adv., 4, 1–8, 2018.
Zeebe, R. E.: Kinetic fractionation of carbon and oxygen isotopes during
hydration of carbon dioxide, Geochim. Cosmochim. Ac., 139, 540–552, 2014.
Zeebe, R. E. and Wolf-Gladrow, D. A.: CO2 in Seawater: Equilibrium,
Kinetics, Isotopes, Elsevier Science Publishing Co., Amsterdam, the
Netherlands, ISBN 9780444509468, 2001.
Zeebe, R. E., Wolf-Gladrow, D. A., and Jansen, H.: On the time required to
establish chemical and isotopic equilibrium in the carbon dioxide system in
seawater, Mar. Chem., 65, 135–153, 1999.
Zhang, H., Torres-Romero, I., Anjewierden, P., Jaggi, M., and Stoll, H. M.:
The DIC carbon isotope evolutions during CO2 bubbling: implications for
ocean acidification laboratory culture, Chem. Geol., 2022.
Zhang, Y. G., Pearson, A., Benthien, A., Dong, L., Huybers, P., Liu, X., and
Pagani, M.: Refining the alkenone-pCO2 method I: Lessons from the
Quaternary glacial cycles, Geochim. Cosmochim. Ac., 260, 177–191, 2019.
Zhu, J., Poulsen, C. J., and Otto-Bliesner, B. L.: High climate sensitivity
in CMIP6 model not supported by paleoclimate, Nat. Clim. Chang., 10,
378–379, 2020.
Short summary
Reconstructions of past CO2 concentrations rely on proxy estimates, with one line of proxies relying on the CO2-dependence of stable carbon isotope fractionation in marine phytoplankton. Culturing experiments provide insights into which processes may impact this. We found, however, that the methods with which these culturing experiments are performed also influence 13C fractionation. Caution should therefore be taken when extrapolating results from these experiments to proxy applications.
Reconstructions of past CO2 concentrations rely on proxy estimates, with one line of proxies...
Altmetrics
Final-revised paper
Preprint