Articles | Volume 19, issue 14
https://doi.org/10.5194/bg-19-3491-2022
https://doi.org/10.5194/bg-19-3491-2022
Research article
 | 
27 Jul 2022
Research article |  | 27 Jul 2022

Assessment of the impacts of biological nitrogen fixation structural uncertainty in CMIP6 earth system models

Taraka Davies-Barnard, Sönke Zaehle, and Pierre Friedlingstein

Related authors

JULES-CN: a coupled terrestrial carbon–nitrogen scheme (JULES vn5.1)
Andrew J. Wiltshire, Eleanor J. Burke, Sarah E. Chadburn, Chris D. Jones, Peter M. Cox, Taraka Davies-Barnard, Pierre Friedlingstein, Anna B. Harper, Spencer Liddicoat, Stephen Sitch, and Sönke Zaehle
Geosci. Model Dev., 14, 2161–2186, https://doi.org/10.5194/gmd-14-2161-2021,https://doi.org/10.5194/gmd-14-2161-2021, 2021
Short summary
Nitrogen cycling in CMIP6 land surface models: progress and limitations
Taraka Davies-Barnard, Johannes Meyerholt, Sönke Zaehle, Pierre Friedlingstein, Victor Brovkin, Yuanchao Fan, Rosie A. Fisher, Chris D. Jones, Hanna Lee, Daniele Peano, Benjamin Smith, David Wårlind, and Andy J. Wiltshire
Biogeosciences, 17, 5129–5148, https://doi.org/10.5194/bg-17-5129-2020,https://doi.org/10.5194/bg-17-5129-2020, 2020
Quantifying the influence of the terrestrial biosphere on glacial–interglacial climate dynamics
Taraka Davies-Barnard, Andy Ridgwell, Joy Singarayer, and Paul Valdes
Clim. Past, 13, 1381–1401, https://doi.org/10.5194/cp-13-1381-2017,https://doi.org/10.5194/cp-13-1381-2017, 2017
Short summary
The BRIDGE HadCM3 family of climate models: HadCM3@Bristol v1.0
Paul J. Valdes, Edward Armstrong, Marcus P. S. Badger, Catherine D. Bradshaw, Fran Bragg, Michel Crucifix, Taraka Davies-Barnard, Jonathan J. Day, Alex Farnsworth, Chris Gordon, Peter O. Hopcroft, Alan T. Kennedy, Natalie S. Lord, Dan J. Lunt, Alice Marzocchi, Louise M. Parry, Vicky Pope, William H. G. Roberts, Emma J. Stone, Gregory J. L. Tourte, and Jonny H. T. Williams
Geosci. Model Dev., 10, 3715–3743, https://doi.org/10.5194/gmd-10-3715-2017,https://doi.org/10.5194/gmd-10-3715-2017, 2017
Short summary

Related subject area

Earth System Science/Response to Global Change: Climate Change
Toward more robust net primary production projections in the North Atlantic Ocean
Stéphane Doléac, Marina Lévy, Roy El Hourany, and Laurent Bopp
Biogeosciences, 22, 841–862, https://doi.org/10.5194/bg-22-841-2025,https://doi.org/10.5194/bg-22-841-2025, 2025
Short summary
Assessment framework to predict sensitivity of marine calcifiers to ocean alkalinity enhancement – identification of biological thresholds and importance of precautionary principle
Nina Bednaršek, Hanna van de Mortel, Greg Pelletier, Marisol García-Reyes, Richard A. Feely, and Andrew G. Dickson
Biogeosciences, 22, 473–498, https://doi.org/10.5194/bg-22-473-2025,https://doi.org/10.5194/bg-22-473-2025, 2025
Short summary
Review and syntheses: Ocean alkalinity enhancement and carbon dioxide removal through marine enhanced rock weathering using olivine
Luna J. J. Geerts, Astrid Hylén, and Filip J. R. Meysman
Biogeosciences, 22, 355–384, https://doi.org/10.5194/bg-22-355-2025,https://doi.org/10.5194/bg-22-355-2025, 2025
Short summary
Particle fluxes by subtropical pelagic communities under ocean alkalinity enhancement
Philipp Suessle, Jan Taucher, Silvan Urs Goldenberg, Moritz Baumann, Kristian Spilling, Andrea Noche-Ferreira, Mari Vanharanta, and Ulf Riebesell
Biogeosciences, 22, 71–86, https://doi.org/10.5194/bg-22-71-2025,https://doi.org/10.5194/bg-22-71-2025, 2025
Short summary
Responses of field-grown maize to different soil types, water regimes, and contrasting vapor pressure deficit
Thuy Huu Nguyen, Thomas Gaiser, Jan Vanderborght, Andrea Schnepf, Felix Bauer, Anja Klotzsche, Lena Lärm, Hubert Hüging, and Frank Ewert
Biogeosciences, 21, 5495–5515, https://doi.org/10.5194/bg-21-5495-2024,https://doi.org/10.5194/bg-21-5495-2024, 2024
Short summary

Cited articles

Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H., Ménard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., and Gedney, N.: The Joint UK Land Environment Simulator (JULES), model description–Part 1: energy and water fluxes, Geosci. Model Dev., 4, 677–699, 2011. 
Cherchi, A., Fogli, P. G., Lovato, T., Peano, D., Iovino, D., Gualdi, S., Masina, S., Scoccimarro, E., Materia, S., Bellucci, A., and Navarra, A.: Global Mean Climate and Main Patterns of Variability in the CMCC-CM2 Coupled Model, J. Adv. Model. Earth Sy., 11, 185–209, https://doi.org/10.1029/2018MS001369, 2019. 
Clark, D. B., Mercado, L. M., Sitch, S., Jones, C. D., Gedney, N., Best, M. J., Pryor, M., Rooney, G. G., Essery, R. L. H., Blyth, E., Boucher, O., Harding, R. J., Huntingford, C., and Cox, P. M.: The Joint UK Land Environment Simulator (JULES), model description – Part 2: Carbon fluxes and vegetation dynamics, Geosci. Model Dev., 4, 701–722, https://doi.org/10.5194/gmd-4-701-2011, 2011. 
Cleveland, C. C., Townsend, A. R., Schimel, D. S., Fisher, H., Howarth, R. W., Hedin, L. O., Perakis, S. S., Latty, E. F., Fischer, J. C. V., Elseroad, A., and Wasson, M. F.: Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems, Global Biogeochem. Cy., 13, 623–645, https://doi.org/10.1029/1999GB900014, 1999. 
Download
Short summary
Biological nitrogen fixation is the largest natural input of new nitrogen onto land. Earth system models mainly represent global total terrestrial biological nitrogen fixation within observational uncertainties but overestimate tropical fixation. The model range of increase in biological nitrogen fixation in the SSP3-7.0 scenario is 3 % to 87 %. While biological nitrogen fixation is a key source of new nitrogen, its predictive power for net primary productivity in models is limited.
Share
Altmetrics
Final-revised paper
Preprint