Articles | Volume 19, issue 18
https://doi.org/10.5194/bg-19-4571-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-4571-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Dissolved organic matter concentration and composition discontinuity at the peat–pool interface in a boreal peatland
Centre de Recherche sur la Dynamique du Système Terre
(GÉOTOP), Université du Québec à Montréal, Montréal, Canada
Groupe de Recherche Inter-universitaire en Limnologie (GRIL),
Université du Québec à Montréal, Montréal, Canada
Institut des Sciences de l'Environnement (ISE), Université du
Québec à Montréal, Montréal, Canada
Laure Gandois
CORRESPONDING AUTHOR
Laboratoire Géosciences Rennes, Université de Rennes, CNRS, UMR 6118, 35000 Rennes,
France
Laurent Jeanneau
Laboratoire Géosciences Rennes, UMR 6118, CNRS-Université
de Rennes, Rennes, France
Pierre Taillardat
Centre de Recherche sur la Dynamique du Système Terre
(GÉOTOP), Université du Québec à Montréal, Montréal, Canada
Integrated Tropical Peatlands Research Program (INTPREP), National
University of Singapore, Singapore
Michelle Garneau
Centre de Recherche sur la Dynamique du Système Terre
(GÉOTOP), Université du Québec à Montréal, Montréal, Canada
Groupe de Recherche Inter-universitaire en Limnologie (GRIL),
Université du Québec à Montréal, Montréal, Canada
Institut des Sciences de l'Environnement (ISE), Université du
Québec à Montréal, Montréal, Canada
Département de Géographie, Université du Québec
à Montréal, Montréal, Canada
Related authors
Antonin Prijac, Laure Gandois, Pierre Taillardat, Marc-André Bourgault, Khawla Riahi, Alex Ponçot, Alain Tremblay, and Michelle Garneau
Hydrol. Earth Syst. Sci., 27, 3935–3955, https://doi.org/10.5194/hess-27-3935-2023, https://doi.org/10.5194/hess-27-3935-2023, 2023
Short summary
Short summary
The peatland dissolved organic carbon (DOC) lost through aquatic exports can offset a significant proportion of the ecosystem carbon balance. Hence, we propose a new approach to better estimate the DOC exports based on the specific contribution of a boreal peatland (Canada) during periods of high flow. In addition, we studied the relations between DOC concentrations and stream discharge in order to better understand the DOC export mechanisms under contrasted hydrometeorological conditions.
Anna-Maria Virkkala, Isabel Wargowsky, Judith Vogt, McKenzie A. Kuhn, Simran Madaan, Richard O'Keefe, Tiffany Windholz, Kyle A. Arndt, Brendan M. Rogers, Jennifer D. Watts, Kelcy Kent, Mathias Göckede, David Olefeldt, Gerard Rocher-Ros, Edward A. G. Schuur, David Bastviken, Kristoffer Aalstad, Kelly Aho, Joonatan Ala-Könni, Haley Alcock, Inge Althuizen, Christopher D. Arp, Jun Asanuma, Katrin Attermeyer, Mika Aurela, Sivakiruthika Balathandayuthabani, Alan Barr, Maialen Barret, Ochirbat Batkhishig, Christina Biasi, Mats P. Björkman, Andrew Black, Elena Blanc-Betes, Pascal Bodmer, Julia Boike, Abdullah Bolek, Frédéric Bouchard, Ingeborg Bussmann, Lea Cabrol, Eleonora Canfora, Sean Carey, Karel Castro-Morales, Namyi Chae, Andres Christen, Torben R. Christensen, Casper T. Christiansen, Housen Chu, Graham Clark, Francois Clayer, Patrick Crill, Christopher Cunada, Scott J. Davidson, Joshua F. Dean, Sigrid Dengel, Matteo Detto, Catherine Dieleman, Florent Domine, Egor Dyukarev, Colin Edgar, Bo Elberling, Craig A. Emmerton, Eugenie Euskirchen, Grant Falvo, Thomas Friborg, Michelle Garneau, Mariasilvia Giamberini, Mikhail V. Glagolev, Miquel A. Gonzalez-Meler, Gustaf Granath, Jón Guðmundsson, Konsta Happonen, Yoshinobu Harazono, Lorna Harris, Josh Hashemi, Nicholas Hasson, Janna Heerah, Liam Heffernan, Manuel Helbig, Warren Helgason, Michal Heliasz, Greg Henry, Geert Hensgens, Tetsuya Hiyama, Macall Hock, David Holl, Beth Holmes, Jutta Holst, Thomas Holst, Gabriel Hould-Gosselin, Elyn Humphreys, Jacqueline Hung, Jussi Huotari, Hiroki Ikawa, Danil V. Ilyasov, Mamoru Ishikawa, Go Iwahana, Hiroki Iwata, Marcin Antoni Jackowicz-Korczynski, Joachim Jansen, Järvi Järveoja, Vincent E. J. Jassey, Rasmus Jensen, Katharina Jentzsch, Robert G. Jespersen, Carl-Fredrik Johannesson, Chersity P. Jones, Anders Jonsson, Ji Young Jung, Sari Juutinen, Evan Kane, Jan Karlsson, Sergey Karsanaev, Kuno Kasak, Julia Kelly, Kasha Kempton, Marcus Klaus, George W. Kling, Natacha Kljun, Jacqueline Knutson, Hideki Kobayashi, John Kochendorfer, Kukka-Maaria Kohonen, Pasi Kolari, Mika Korkiakoski, Aino Korrensalo, Pirkko Kortelainen, Egle Koster, Kajar Koster, Ayumi Kotani, Praveena Krishnan, Juliya Kurbatova, Lars Kutzbach, Min Jung Kwon, Ethan D. Kyzivat, Jessica Lagroix, Theodore Langhorst, Elena Lapshina, Tuula Larmola, Klaus S. Larsen, Isabelle Laurion, Justin Ledman, Hanna Lee, A. Joshua Leffler, Lance Lesack, Anders Lindroth, David Lipson, Annalea Lohila, Efrén López-Blanco, Vincent L. St. Louis, Erik Lundin, Misha Luoto, Takashi Machimura, Marta Magnani, Avni Malhotra, Marja Maljanen, Ivan Mammarella, Elisa Männistö, Luca Belelli Marchesini, Phil Marsh, Pertti J. Martkainen, Maija E. Marushchak, Mikhail Mastepanov, Alex Mavrovic, Trofim Maximov, Christina Minions, Marco Montemayor, Tomoaki Morishita, Patrick Murphy, Daniel F. Nadeau, Erin Nicholls, Mats B. Nilsson, Anastasia Niyazova, Jenni Nordén, Koffi Dodji Noumonvi, Hannu Nykanen, Walter Oechel, Anne Ojala, Tomohiro Okadera, Sujan Pal, Alexey V. Panov, Tim Papakyriakou, Dario Papale, Sang-Jong Park, Frans-Jan W. Parmentier, Gilberto Pastorello, Mike Peacock, Matthias Peichl, Roman Petrov, Kyra St. Pierre, Norbert Pirk, Jessica Plein, Vilmantas Preskienis, Anatoly Prokushkin, Jukka Pumpanen, Hilary A. Rains, Niklas Rakos, Aleski Räsänen, Helena Rautakoski, Riika Rinnan, Janne Rinne, Adrian Rocha, Nigel Roulet, Alexandre Roy, Anna Rutgersson, Aleksandr F. Sabrekov, Torsten Sachs, Erik Sahlée, Alejandro Salazar, Henrique Oliveira Sawakuchi, Christopher Schulze, Roger Seco, Armando Sepulveda-Jauregui, Svetlana Serikova, Abbey Serrone, Hanna M. Silvennoinen, Sofie Sjogersten, June Skeeter, Jo Snöälv, Sebastian Sobek, Oliver Sonnentag, Emily H. Stanley, Maria Strack, Lena Strom, Patrick Sullivan, Ryan Sullivan, Anna Sytiuk, Torbern Tagesson, Pierre Taillardat, Julie Talbot, Suzanne E. Tank, Mario Tenuta, Irina Terenteva, Frederic Thalasso, Antoine Thiboult, Halldor Thorgeirsson, Fenix Garcia Tigreros, Margaret Torn, Amy Townsend-Small, Claire Treat, Alain Tremblay, Carlo Trotta, Eeva-Stiina Tuittila, Merritt Turetsky, Masahito Ueyama, Muhammad Umair, Aki Vähä, Lona van Delden, Maarten van Hardenbroek, Andrej Varlagin, Ruth K. Varner, Elena Veretennikova, Timo Vesala, Tarmo Virtanen, Carolina Voigt, Jorien E. Vonk, Robert Wagner, Katey Walter Anthony, Qinxue Wang, Masataka Watanabe, Hailey Webb, Jeffrey M. Welker, Andreas Westergaard-Nielsen, Sebastian Westermann, Jeffrey R. White, Christian Wille, Scott N. Williamson, Scott Zolkos, Donatella Zona, and Susan M. Natali
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-585, https://doi.org/10.5194/essd-2025-585, 2025
Preprint under review for ESSD
Short summary
Short summary
This dataset includes monthly measurements of carbon dioxide and methane exchange between land, water, and the atmosphere from over 1,000 sites in Arctic and boreal regions. It combines measurements from a variety of ecosystems, including wetlands, forests, tundra, lakes, and rivers, gathered by over 260 researchers from 1984–2024. This dataset can be used to improve and reduce uncertainty in carbon budgets in order to strengthen our understanding of climate feedbacks in a warming world.
Jade Skye, Joe R. Melton, Colin Goldblatt, Louis Saumier, Angela Gallego-Sala, Michelle Garneau, R. Scott Winton, Erick B. Bahati, Juan C. Benavides, Lee Fedorchuk, Gérard Imani, Carol Kagaba, Frank Kansiime, Mariusz Lamentowicz, Michel Mbasi, Daria Wochal, Sambor Czerwiński, Jacek Landowski, Joanna Landowska, Vincent Maire, Minna M. Väliranta, Matthew Warren, Lydia E. S. Cole, Marissa A. Davies, Erik A. Lilleskov, Jingjing Sun, and Yuwan Wang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-432, https://doi.org/10.5194/essd-2025-432, 2025
Preprint under review for ESSD
Short summary
Short summary
Peatlands are large stores of carbon but are vulnerable to human activities and climate change. Comprehensive peatland data are vital to understand these ecosystems, but existing datasets are fragmented and contain errors. To address this, we created Peat-DBase — a standardized global database of peat depth measurements with > 200,000 measurements worldwide, showing average depths of 144 cm. Peat-DBase avoids overlapping data compilation efforts while identifying critical observational gaps.
Antonin Prijac, Laure Gandois, Pierre Taillardat, Marc-André Bourgault, Khawla Riahi, Alex Ponçot, Alain Tremblay, and Michelle Garneau
Hydrol. Earth Syst. Sci., 27, 3935–3955, https://doi.org/10.5194/hess-27-3935-2023, https://doi.org/10.5194/hess-27-3935-2023, 2023
Short summary
Short summary
The peatland dissolved organic carbon (DOC) lost through aquatic exports can offset a significant proportion of the ecosystem carbon balance. Hence, we propose a new approach to better estimate the DOC exports based on the specific contribution of a boreal peatland (Canada) during periods of high flow. In addition, we studied the relations between DOC concentrations and stream discharge in order to better understand the DOC export mechanisms under contrasted hydrometeorological conditions.
Marie Dumont, Simon Gascoin, Marion Réveillet, Didier Voisin, François Tuzet, Laurent Arnaud, Mylène Bonnefoy, Montse Bacardit Peñarroya, Carlo Carmagnola, Alexandre Deguine, Aurélie Diacre, Lukas Dürr, Olivier Evrard, Firmin Fontaine, Amaury Frankl, Mathieu Fructus, Laure Gandois, Isabelle Gouttevin, Abdelfateh Gherab, Pascal Hagenmuller, Sophia Hansson, Hervé Herbin, Béatrice Josse, Bruno Jourdain, Irene Lefevre, Gaël Le Roux, Quentin Libois, Lucie Liger, Samuel Morin, Denis Petitprez, Alvaro Robledano, Martin Schneebeli, Pascal Salze, Delphine Six, Emmanuel Thibert, Jürg Trachsel, Matthieu Vernay, Léo Viallon-Galinier, and Céline Voiron
Earth Syst. Sci. Data, 15, 3075–3094, https://doi.org/10.5194/essd-15-3075-2023, https://doi.org/10.5194/essd-15-3075-2023, 2023
Short summary
Short summary
Saharan dust outbreaks have profound effects on ecosystems, climate, health, and the cryosphere, but the spatial deposition pattern of Saharan dust is poorly known. Following the extreme dust deposition event of February 2021 across Europe, a citizen science campaign was launched to sample dust on snow over the Pyrenees and the European Alps. This campaign triggered wide interest and over 100 samples. The samples revealed the high variability of the dust properties within a single event.
Sandy P. Harrison, Roberto Villegas-Diaz, Esmeralda Cruz-Silva, Daniel Gallagher, David Kesner, Paul Lincoln, Yicheng Shen, Luke Sweeney, Daniele Colombaroli, Adam Ali, Chéïma Barhoumi, Yves Bergeron, Tatiana Blyakharchuk, Přemysl Bobek, Richard Bradshaw, Jennifer L. Clear, Sambor Czerwiński, Anne-Laure Daniau, John Dodson, Kevin J. Edwards, Mary E. Edwards, Angelica Feurdean, David Foster, Konrad Gajewski, Mariusz Gałka, Michelle Garneau, Thomas Giesecke, Graciela Gil Romera, Martin P. Girardin, Dana Hoefer, Kangyou Huang, Jun Inoue, Eva Jamrichová, Nauris Jasiunas, Wenying Jiang, Gonzalo Jiménez-Moreno, Monika Karpińska-Kołaczek, Piotr Kołaczek, Niina Kuosmanen, Mariusz Lamentowicz, Martin Lavoie, Fang Li, Jianyong Li, Olga Lisitsyna, José Antonio López-Sáez, Reyes Luelmo-Lautenschlaeger, Gabriel Magnan, Eniko Katalin Magyari, Alekss Maksims, Katarzyna Marcisz, Elena Marinova, Jenn Marlon, Scott Mensing, Joanna Miroslaw-Grabowska, Wyatt Oswald, Sebastián Pérez-Díaz, Ramón Pérez-Obiol, Sanna Piilo, Anneli Poska, Xiaoguang Qin, Cécile C. Remy, Pierre J. H. Richard, Sakari Salonen, Naoko Sasaki, Hieke Schneider, William Shotyk, Migle Stancikaite, Dace Šteinberga, Normunds Stivrins, Hikaru Takahara, Zhihai Tan, Liva Trasune, Charles E. Umbanhowar, Minna Väliranta, Jüri Vassiljev, Xiayun Xiao, Qinghai Xu, Xin Xu, Edyta Zawisza, Yan Zhao, Zheng Zhou, and Jordan Paillard
Earth Syst. Sci. Data, 14, 1109–1124, https://doi.org/10.5194/essd-14-1109-2022, https://doi.org/10.5194/essd-14-1109-2022, 2022
Short summary
Short summary
We provide a new global data set of charcoal preserved in sediments that can be used to examine how fire regimes have changed during past millennia and to investigate what caused these changes. The individual records have been standardised, and new age models have been constructed to allow better comparison across sites. The data set contains 1681 records from 1477 sites worldwide.
Justine Louis, Anniet M. Laverman, Emilie Jardé, Alexandrine Pannard, Marine Liotaud, Françoise Andrieux-Loyer, Gérard Gruau, Florian Caradec, Emilie Rabiller, Nathalie Lebris, and Laurent Jeanneau
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-318, https://doi.org/10.5194/bg-2021-318, 2021
Preprint withdrawn
Short summary
Short summary
This work has described the variability in sedimentary organic matter composition through a broad sampling campaign of marine mudflats at the regional scale (Brittany Region), and made the link with sediment potential biodegradability and nutrient release. In these coastal ecosystems affected by the eutrophication, the potential impact of human activities on the nutrient dynamics at the sediment-water interface was highlighted.
Volker Lohrmann, Qi Zhang, Peter Michalik, Jeremy Blaschke, Patrick Müller, Laurent Jeanneau, and Vincent Perrichot
Foss. Rec., 23, 215–236, https://doi.org/10.5194/fr-23-215-2020, https://doi.org/10.5194/fr-23-215-2020, 2020
Short summary
Short summary
A new mid-Cretaceous rhopalosomatid wasp, Cretolixon alatum Lohrmann gen. et sp. nov., is described from Burmese (Kachin) amber. The new genus has a unique mixture of characters, some of which are only known from the recent brachypterous genus Olixon and others of which are known only from the recent macropterous genera. Thus, Cretolixon not only provides further evidence for the monophyly of the family but also contributes evidence for the monophyly of the Rhopalosomatinae.
Cited articles
Arsenault, J., Talbot, J., and Moore, T. R.: Environmental controls of C, N
and P biogeochemistry in peatland pools, Sci. Total Environ., 631–632,
714–722, https://doi.org/10.1016/j.scitotenv.2018.03.064, 2018.
Arsenault, J., Talbot, J., Moore, T. R., Beauvais, M., Franssen, J., and
Roulet, N. T.: The Spatial Heterogeneity of Vegetation, Hydrology and Water
Chemistry in a Peatland with Open-Water Pools, Ecosystems, 22, 1352–1367,
https://doi.org/10.1007/s10021-019-00342-4, 2019.
Austnes, K., Evans, C. D., Eliot-Laize, C., Naden, P. S., and Old, G. H.:
Effects of storm events on mobilisation and in-stream processing of
dissolved organic matter (DOM) in a Welsh peatland catchment,
Biogeochemistry, 99, 157–173, https://doi.org/10.1007/s10533-009-9399-4,
2010.
Autio, I., Soinne, H., Helin, J., Asmala, E., and Hoikkala, L.: Effect of
catchment land use and soil type on the concentration, quality, and
bacterial degradation of riverine dissolved organic matter, Ambio, 45,
331–349, https://doi.org/10.1007/s13280-015-0724-y, 2016.
Banaœ, K.: The hydrochemistry of peatland lakes as a result of the
morphological characteristics of their basins, Oceanol. Hydrobiol. Stud.,
42, 28–39, https://doi.org/10.2478/s13545-013-0057-z, 2013.
Billett, M. F., Palmer, S. M., Hope, D., Deacon, C., Storeton-West, R.,
Hargreaves, K. J., Flechard, C., and Fowler, D.: Linking
land-atmosphere-stream carbon fluxes in a lowland peatland system, Global Biogeochem. Cy., 18, GB1024,
https://doi.org/10.1029/2003GB002058, 2004.
Billett, M. F., Deacon, C. M., Palmer, S. M., Dawson, J. J. C., and Hope,
D.: Connecting organic carbon in stream water and soils in a peatland
catchment, J. Geophys. Res. Biogeo., 111, G02010, https://doi.org/10.1029/2005JG000065, 2006.
Billett, M. F., Dinsmore, K. J., Smart, R. P., Garnett, M. H., Holden, J.,
Chapman, P., Baird, A. J., Grayson, R., and Stott, A. W.: Variable source
and age of different forms of carbon released from natural peatland pipes, J. Geophys. Res. Biogeo.,
117, G02003, https://doi.org/10.1029/2011JG001807, 2012.
Birkel, C., Broder, T., and Biester, H.: Nonlinear and threshold-dominated
runoff generation controls DOC export in a small peat catchment, J. Geophys. Res. Biogeo., 122,
498–513, https://doi.org/10.1002/2016JG003621, 2017.
Blodau, C., Roulet, N. T., Heitmann, T., Stewart, H., Beer, J., Lafleur, P.,
and Moore, T. R.: Belowground carbon turnover in a temperate ombrotrophic
bog: BELOWGROUND C TURNOVER, Global Biogeochem. Cy., 21, GB1021, https://doi.org/10.1029/2005GB002659, 2007.
Burd, K., Estop-Aragonés, C., Tank, S. E., and Olefeldt, D.: Lability of
dissolved organic carbon from boreal peatlands: interactions between
permafrost thaw, wildfire, and season, Can. J. Soil Sci., 100, 503–515,
https://doi.org/10.1139/cjss-2019-0154, 2020.
Buzek, F., Novak, M., Cejkova, B., Jackova, I., Curik, J., Veselovsky, F.,
Stepanova, M., Prechova, E., and Bohdalkova, L.: Assessing DOC export from a
Sphagnum-dominated peatland using δ13C and δ18 O–H2O
stable isotopes, Hydrol. Process., 33, 2792–2803,
https://doi.org/10.1002/hyp.13528, 2019.
Campeau, A., Bishop, K. H., Billett, M. F., Garnett, M. H., Laudon, H.,
Leach, J. A., Nilsson, M. B., Öquist, M. G., and Wallin, M. B.: Aquatic
export of young dissolved and gaseous carbon from a pristine boreal fen:
Implications for peat carbon stock stability, Glob. Change Biol., 23,
5523–5536, https://doi.org/10.1111/gcb.13815, 2017.
Catalán, N., Marcé, R., Kothawala, D. N., and Tranvik, Lars. J.:
Organic carbon decomposition rates controlled by water retention time across
inland waters, Nat. Geosci., 9, 501–504, https://doi.org/10.1038/ngeo2720,
2016.
Charman, D.: Peatlands and Environment Change, 1st edn., Willey, 320 pp., ISBN:978-0-470-84410-6, 2002.
Chaudhary, N., Miller, P. A., and Smith, B.: Biotic and Abiotic Drivers of
Peatland Growth and Microtopography: A Model Demonstration, Ecosystems, 21,
1196–1214, https://doi.org/10.1007/s10021-017-0213-1, 2018.
Cory, R. M., Miller, M. P., McKnight, D. M., Guerard, J. J., and Miller, P.
L.: Effect of instrument-specific response on the analysis of fulvic acid
fluorescence spectra: Evaluating instrument-specific response, Limnol.
Oceanogr. Methods, 8, 67–78, https://doi.org/10.4319/lom.2010.8.67, 2010.
Dean, J. F., Garnett, M. H., Spyrakos, E., and Billett, M. F.: The Potential
Hidden Age of Dissolved Organic Carbon Exported by Peatland Streams, J.
Geophys. Res., 124, 328–341, https://doi.org/10.1029/2018JG004650, 2019.
Deshpande, B. N., Crevecoeur, S., Matveev, A., and Vincent, W. F.: Bacterial production in subarctic peatland lakes enriched by thawing permafrost, Biogeosciences, 13, 4411–4427, https://doi.org/10.5194/bg-13-4411-2016, 2016.
Dilling, J. and Kaiser, K.: Estimation of the hydrophobic fraction of
dissolved organic matter in water samples using UV photometry, Water Res.,
36, 5037–5044, https://doi.org/10.1016/S0043-1354(02)00365-2, 2002.
Dubois, J. M. M.: Environments quaternaires et évolution postglaciaire
d'une zone côtière en émersion en bordure sud du bouclier
canadien: la moyennne Côte Nord du Saint-Laurent, Québec, University
of Ottawa, Ottawa, https://doi.org/10.20381/ruor-15610, 1980.
Elder, J. F., Rybicki, N. B., Carter, V., and Weintraub, V.: Sources and
yields of dissolved carbon in northern Wisconsin stream catchments with
differing amounts of peatland, Wetlands, 20, 113–125,
https://doi.org/10.1672/0277-5212(2000)020[0113:SAYODC]2.0.CO;2, 2000.
Folhas, D., Duarte, A. C., Pilote, M., Vincent, W. F., Freitas, P., Vieira,
G., Silva, A. M. S., Duarte, R. M. B. O., and Canário, J.: Structural
Characterization of Dissolved Organic Matter in Permafrost Peatland Lakes,
Water, 12, 3059, https://doi.org/10.3390/w12113059, 2020.
Frey, K. E., Sobczak, W. V., Mann, P. J., and Holmes, R. M.: Optical properties and bioavailability of dissolved organic matter along a flow-path continuum from soil pore waters to the Kolyma River mainstem, East Siberia, Biogeosciences, 13, 2279–2290, https://doi.org/10.5194/bg-13-2279-2016, 2016.
Gandois, L., Hoyt, A. M., Hatté, C., Jeanneau, L., Teisserenc, R.,
Liotaud, M., and Tananaev, N.: Contribution of Peatland Permafrost to
Dissolved Organic Matter along a Thaw Gradient in North Siberia, Environ.
Sci. Technol., 53, 14165–14174, https://doi.org/10.1021/acs.est.9b03735,
2019.
Goñi, M. A. and Hedges, J. I.: Lignin dimers: Structures, distribution,
and potential geochemical applications, Geochim. Cosmochim. Ac., 56,
4025–4043, https://doi.org/10.1016/0016-7037(92)90014-A, 1992.
Graham, J. D., Glenn, N. F., Spaete, L. P., and Hanson, P. J.:
Characterizing Peatland Microtopography Using Gradient and Microform-Based
Approaches, Ecosystems, 23, 1464–1480,
https://doi.org/10.1007/s10021-020-00481-z, 2020.
Haan, H. D. and Boer, T. D.: Applicability of light absorbance and
fluorescence as measures of concentration and molecular size of dissolved
organic carbon in humic Lake Tjeukemeer, Water Res., 21, 731–734,
https://doi.org/10.1016/0043-1354(87)90086-8, 1987.
Heinz, M. and Zak, D.: Storage effects on quantity and composition of
dissolved organic carbon and nitrogen of lake water, leaf leachate and peat
soil water, Water Res., 130, 98–104,
https://doi.org/10.1016/j.watres.2017.11.053, 2018.
Helms, J. R., Stubbins, A., Ritchie, J. D., Minor, E. C., Kieber, D. J., and
Mopper, K.: Absorption spectral slopes and slope ratios as indicators of
molecular weight, source, and photobleaching of chromophoric dissolved
organic matter, Limnol. Oceanogr., 53, 955–969,
https://doi.org/10.4319/lo.2008.53.3.0955, 2008.
Holden, J., Moody, C. S., Edward Turner, T., McKenzie, R., Baird, A. J.,
Billett, M. F., Chapman, P. J., Dinsmore, K. J., Grayson, R. P., Andersen,
R., Gee, C., and Dooling, G.: Water-level dynamics in natural and artificial
pools in blanket peatlands, Hydrol. Process., 32, 550–561,
https://doi.org/10.1002/hyp.11438, 2018.
Hulatt, C. J., Kaartokallio, H., Asmala, E., Autio, R., Stedmon, C. A.,
Sonninen, E., Oinonen, M., and Thomas, D. N.: Bioavailability and
radiocarbon age of fluvial dissolved organic matter (DOM) from a northern
peatland-dominated catchment: effect of land-use change, Aquat. Sci., 76,
393–404, https://doi.org/10.1007/s00027-014-0342-y, 2014.
Jaffé, R., Yamashita, Y., Maie, N., Cooper, W. T., Dittmar, T., Dodds,
W. K., Jones, J. B., Myoshi, T., Ortiz-Zayas, J. R., Podgorski, D. C., and
Watanabe, A.: Dissolved Organic Matter in Headwater Streams: Compositional
Variability across Climatic Regions of North America, Geochim. Cosmochim.
Ac., 94, 95–108, https://doi.org/10.1016/j.gca.2012.06.031, 2012.
Jeanneau, L., Jaffrezic, A., Pierson-Wickmann, A.-C., Gruau, G., Lambert,
T., and Petitjean, P.: Constraints on the Sources and Production Mechanisms
of Dissolved Organic Matter in Soils from Molecular Biomarkers, Vadose Zone
J., 13, vzj2014.02.0015, https://doi.org/10.2136/vzj2014.02.0015, 2014.
Jeanneau, L., Denis, M., Pierson-Wickmann, A.-C., Gruau, G., Lambert, T., and Petitjean, P.: Sources of dissolved organic matter during storm and inter-storm conditions in a lowland headwater catchment: constraints from high-frequency molecular data, Biogeosciences, 12, 4333–4343, https://doi.org/10.5194/bg-12-4333-2015, 2015.
Jones, T. G., Evans, C. D., Jones, D. L., Hill, P. W., and Freeman, C.:
Transformations in DOC along a source to sea continuum; impacts of
photo-degradation, biological processes and mixing, Aquat. Sci., 78,
433–446, https://doi.org/10.1007/s00027-015-0461-0, 2016.
Kaal, J., Cortizas, A. M., and Biester, H.: Downstream changes in molecular
composition of DOM along a headwater stream in the Harz mountains (Central
Germany) as determined by FTIR, Pyrolysis-GC–MS and THM-GC–MS, J. Anal.
Appl. Pyrolysis, 126, 50–61, https://doi.org/10.1016/j.jaap.2017.06.025,
2017.
Kaal, J., Plaza, C., Nierop, K. G. J., Pérez-Rodríguez, M., and
Biester, H.: Origin of dissolved organic matter in the Harz Mountains
(Germany): A thermally assisted hydrolysis and methylation (THM-GC–MS)
study, Geoderma, 378, 114635,
https://doi.org/10.1016/j.geoderma.2020.114635, 2020.
Kalbitz, K., Solinger, S., Park, J.-H., Michalzik, B., and Matzner, E.:
Controls On The Dynamics Of Dissolved Organic Matter In Soils: A Review,
Soil Sci., 165, 277–304, https://doi.org/10.1097/00010694-200004000-00001,
2000.
Kane, E. S., Mazzoleni, L. R., Kratz, C. J., Hribljan, J. A., Johnson, C.
P., Pypker, T. G., and Chimner, R.: Peat porewater dissolved organic carbon
concentration and lability increase with warming: a field temperature
manipulation experiment in a poor-fen, Biogeochemistry, 119, 161–178,
https://doi.org/10.1007/s10533-014-9955-4, 2014.
Kaplan, L. A. and Cory, R. M.: Dissolved Organic Matter in Stream
Ecosystems, in: Stream Ecosystems in a Changing Environment, Elsevier,
241–320, https://doi.org/10.1016/B978-0-12-405890-3.00006-3, 2016.
Knorr, K.-H.: DOC-dynamics in a small headwater catchment as driven by redox fluctuations and hydrological flow paths – are DOC exports mediated by iron reduction/oxidation cycles?, Biogeosciences, 10, 891–904, https://doi.org/10.5194/bg-10-891-2013, 2013.
Lalonde, K., Middlestead, P., and Gélinas, Y.: Automation of 13C C
ratio measurement for freshwater and seawater DOC using high temperature
combustion, Limnol. Oceanogr. Methods, 12, 816–829,
https://doi.org/10.4319/lom.2014.12.816, 2014.
Lapierre, J.-F. and del Giorgio, P. A.: Partial coupling and differential regulation of biologically and photochemically labile dissolved organic carbon across boreal aquatic networks, Biogeosciences, 11, 5969–5985, https://doi.org/10.5194/bg-11-5969-2014, 2014.
Laurion, I. and Mladenov, N.: Dissolved organic matter photolysis in
Canadian arctic thaw ponds, Environ. Res. Lett., 8, 035026,
https://doi.org/10.1088/1748-9326/8/3/035026, 2013.
Laurion, I., Massicotte, P., Mazoyer, F., Negandhi, K., and Mladenov, N.:
Weak mineralization despite strong processing of dissolved organic matter in
Eastern Arctic tundra ponds, Limnol. Oceanogr., 66, 1–17, https://doi.org/10.1002/lno.11634, 2021.
Lê, S., Josse, J., and Husson, F.: FactoMineR: An R Package for
Multivariate Analysis, J. Stat. Softw., 25, 1–18, https://doi.org/10.18637/jss.v025.i01, 2008.
Levy, Z. F., Siegel, D. I., Dasgupta, S. S., Glaser, P. H., and Welker, J.
M.: Stable isotopes of water show deep seasonal recharge in northern bogs
and fens, Hydrol. Process., 28, 4938–4952, https://doi.org/10.1002/hyp.9983, 2014.
Mann, P. J., Eglinton, T. I., McIntyre, C. P., Zimov, N., Davydova, A.,
Vonk, J. E., Holmes, R. M., and Spencer, R. G. M.: Utilization of ancient
permafrost carbon in headwaters of Arctic fluvial networks, Nat. Commun., 6,
7856, https://doi.org/10.1038/ncomms8856, 2015.
McKnight, D. M., Andrews, E. D., Spaulding, S. A., and Aiken, G. R.: Aquatic
fulvic acids in algal-rich antarctic ponds, Limnol. Oceanogr., 39,
1972–1979, https://doi.org/10.4319/lo.1994.39.8.1972, 1994.
McKnight, D. M., Boyer, E. W., Westerhoff, P. K., Doran, P. T., Kulbe, T.,
and Andersen, D. T.: Spectrofluorometric characterization of dissolved
organic matter for indication of precursor organic material and aromaticity,
Limnol. Oceanogr., 46, 38–48, https://doi.org/10.4319/lo.2001.46.1.0038,
2001.
Meteorological Service of Canada and Environment and Climate Change Canada: Historical daily weather data from the station Havre Saint Pierre A (1990–2019), Meteorological Service of Canada and Environment and Climate Change Canada [data set], https://climatedata.ca/download/#station-download (last access: 18 September 2022), 2019.
Moody, C. S. and Worrall, F.: Towards understanding organic matter fluxes
and reactivity in surface waters: Filtering impact on DOC POC degradation,
Hydrol. Process., 35, e14067, https://doi.org/10.1002/hyp.14067, 2021.
Nungesser, M. K.: Modelling microtopography in boreal peatlands: hummocks
and hollows, Ecol. Model., 165, 175–207,
https://doi.org/10.1016/S0304-3800(03)00067-X, 2003.
Parlanti, E.: Dissolved organic matter fuorescence spectroscopy as a tool to
estimate biological activity in a coastal zone submitted to anthropogenic
inputs, Org. Geochem., 31, 1765–1781, 2000.
Payandi-Rolland, D., Shirokova, L. S., Tesfa, M., Bénézeth, P., Lim,
A. G., Kuzmina, D., Karlsson, J., Giesler, R., and Pokrovsky, O. S.:
Dissolved organic matter biodegradation along a hydrological continuum in
permafrost peatlands, Sci. Total Environ., 749, 141463,
https://doi.org/10.1016/j.scitotenv.2020.141463, 2020.
Payette, S.: Le contexte physique et biogéographique., in: Écologie
des tourbières du Québec-Labrador, edited by: Payette, S. and Rochefort, L., Presses de l'Université
Laval, Québec, 9–37, ISBN: 9782763777733, 2001.
Pelletier, L., Garneau, M., and Moore, T. R.: Variation in CO2 exchange over
three summers at microform scale in a boreal bog, Eastmain region,
Québec, Canada, J. Geophys. Res., 116, G03019,
https://doi.org/10.1029/2011JG001657, 2011.
Pelletier, L., Strachan, I. B., Garneau, M., and Roulet, N. T.: Carbon
release from boreal peatland open water pools: Implication for the
contemporary C exchange: Carbon release from peatland pools, J. Geophys. Res. Biogeo., 119, 207–222, https://doi.org/10.1002/2013JG002423,
2014.
Pelletier, L., Strachan, I. B., Roulet, N. T., and Garneau, M.: Can boreal
peatlands with pools be net sinks for CO2?, Environ. Res. Lett., 10,
035002, https://doi.org/10.1088/1748-9326/10/3/035002, 2015.
Peralta-Tapia, A., Sponseller, R. A., Tetzlaff, D., Soulsby, C., and Laudon,
H.: Connecting precipitation inputs and soil flow pathways to stream water
in contrasting boreal catchments, Hydrol. Process., 29, 3546–3555,
https://doi.org/10.1002/hyp.10300, 2015.
Peura, S., Wauthy, M., Simone, D., Eiler, A., Einarsdóttir, K., Rautio,
M., and Bertilsson, S.: Ontogenic succession of thermokarst thaw ponds is
linked to dissolved organic matter quality and microbial degradation
potential, Limnol. Oceanogr., 65, S248–S263,
https://doi.org/10.1002/lno.11349, 2016.
Prijac, A., Gandois, L., Jeanneau, L., Taillardat, P., and Garneau, M.: Concentration, composition and potential degradation of dissolved organic matter derived from peat porewater and pools discrete sampling of an ombrotrophic boreal peatland (Minganie, Québec, Canada), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.945391, 2022.
Primeau, G. and Garneau, M.: Carbon accumulation in peatlands along a boreal
to subarctic transect in eastern Canada, The Holocene, 31, 858–869,
https://doi.org/10.1177/0959683620988031, 2021.
Rasilo, T., Hutchins, R. H. S., Ruiz-González, C., and del Giorgio, P.
A.: Transport and transformation of soil-derived CO2, CH4 and DOC sustain
CO2 supersaturation in small boreal streams, Sci. Total Environ., 579,
902–912, https://doi.org/10.1016/j.scitotenv.2016.10.187, 2017.
Raymond, P. A. and Spencer, R. G. M.: Riverine DOM, in: Biogeochemistry of
Marine Dissolved Organic Matter, edited by: Hansell, D. A. and Carlson, C. A., Elsevier, 509–533,
https://doi.org/10.1016/B978-0-12-405940-5.00011-X, 2015.
Repo, E., Huttunen, J. T., Naumov, A. V., Chichulin, A. V., Lapshina, E. D.,
Bleuten, W., and Martikainen, P. J.: Release of CO2 and CH4 from small
wetland lakes in western Siberia, Tellus B, 59,
788–796, https://doi.org/10.1111/j.1600-0889.2007.00301.x, 2007.
Rezanezhad, F., Price, J. S., Quinton, W. L., Lennartz, B., Milojevic, T.,
and Cappellen, P. V.: Structure of peat soils and implications for water
storage, flow and solute transport: A review update for geochemists, Chem.
Geol., 10, 75–84, https://doi.org/10.1016/j.chemgeo.2016.03.010, 2016.
Rosset, T., Gandois, L., Le Roux, G., Teisserenc, R., Durantez Jimenez, P.,
Camboulive, T., and Binet, S.: Peatland Contribution to Stream Organic
Carbon Exports From a Montane Watershed, J. Geophys. Res. Biogeo.,
124, 3448–3464, https://doi.org/10.1029/2019JG005142, 2019.
Rumpel, C. and Dignac, M.-F.: Gas chromatographic analysis of
monosaccharides in a forest soil profile: Analysis by gas chromatography
after trifluoroacetic acid hydrolysis and reduction–acetylation, Soil Biol.
Biochem., 38, 1478–1481, https://doi.org/10.1016/j.soilbio.2005.09.017,
2006.
Rydin, H., Jeglum, J. K., and Bennett, K. D.: The biology of peatlands, 2nd edn., Oxford University Press, Oxford, 382 pp., ISBN: 9780199603008, 2013.
Schindler, D. W., Curtis, P. J., Bayley, S. E., Parker, B. R., Beaty, K. G.,
and Stainton, M. P.: Climate-induced changes in the dissolved organic carbon
budgets of boreal lakes, Biogeochemistry, 36, 9–28, 1997.
Shi, X., Thornton, P. E., Ricciuto, D. M., Hanson, P. J., Mao, J., Sebestyen, S. D., Griffiths, N. A., and Bisht, G.: Representing northern peatland microtopography and hydrology within the Community Land Model, Biogeosciences, 12, 6463–6477, https://doi.org/10.5194/bg-12-6463-2015, 2015.
Spencer, R. G. M., Aiken, G. R., Wickland, K. P., Striegl, R. G., and
Hernes, P. J.: Seasonal and spatial variability in dissolved organic matter
quantity and composition from the Yukon River basin, Alaska, Global Biogeochem. Cy., 22, GB4002,
https://doi.org/10.1029/2008GB003231, 2008.
Spencer, R. G. M., Mann, P. J., Dittmar, T., Eglinton, T. I., McIntyre, C.,
Holmes, R. M., Zimov, N., and Stubbins, A.: Detecting the signature of
permafrost thaw in Arctic rivers,
Geophys. Res. Lett., 42, 2830–2835, https://doi.org/10.1002/2015GL063498,
2015.
Striegl, R. G., Dornblaser, M. M., McDonald, C. P., Rover, J. A., and Stets,
E. G.: Carbon dioxide and methane emissions from the Yukon River system,
Global Biogeochem. Cy., 26, 2012GB004306,
https://doi.org/10.1029/2012GB004306, 2012.
Taillardat, P., Bodmer, P., Deblois, C. P., Ponçot, A., Prijac, A.,
Riahi, K., Gandois, L., del Giorgio, P. A., Bourgault, M. A., Tremblay, A.,
and Garneau, M.: Carbon Dioxide and Methane Dynamics in a Peatland Headwater
Stream: Origins, Processes and Implications, J. Geophys. Res. Biogeo., 127, e2022JG006855, https://doi.org/10.1029/2022JG006855, 2022.
Tfaily, M. M., Hamdan, R., Corbett, J. E., Chanton, J. P., Glaser, P. H.,
and Cooper, W. T.: Investigating dissolved organic matter decomposition in
northern peatlands using complimentary analytical techniques, Geochim.
Cosmochim. Acta, 112, 116–129, https://doi.org/10.1016/j.gca.2013.03.002,
2013.
Tfaily, M. M., Corbett, J. E., Wilson, R., Chanton, J. P., Glaser, P. H.,
Cawley, K. M., Jaffé, R., and Cooper, W. T.: Utilization of PARAFAC
-Modeled Excitation-Emission Matrix (EEM) Fluorescence Spectroscopy to
Identify Biogeochemical Processing of Dissolved Organic Matter in a Northern
Peatland, Photochem. Photobiol., 91, 684–695,
https://doi.org/10.1111/php.12448, 2015.
Tfaily, M. M., Wilson, R. M., Cooper, W. T., Kostka, J. E., Hanson, P., and
Chanton, J. P.: Vertical Stratification of Peat Pore Water Dissolved Organic
Matter Composition in a Peat Bog in Northern Minnesota: Pore Water DOM
composition in a peat bog, J. Geophys. Res. Biogeo., 123, 479–494,
https://doi.org/10.1002/2017JG004007, 2018.
Tipping, E., Billett, M. F., Bryant, C. L., Buckingham, S., and Thacker, S.
A.: Sources and ages of dissolved organic matter in peatland streams:
evidence from chemistry mixture modelling and radiocarbon data,
Biogeochemistry, 100, 121–137, https://doi.org/10.1007/s10533-010-9409-6,
2010.
Tiwari, T., Sponseller, R. A., and Laudon, H.: Extreme Climate Effects on
Dissolved Organic Carbon Concentrations During Snowmelt, J. Geophys. Res. Biogeo., 123, 1277–1288, https://doi.org/10.1002/2017JG004272, 2018.
Tunaley, C., Tetzlaff, D., and Soulsby, C.: Scaling effects of riparian
peatlands on stable isotopes in runoff and DOC mobilisation, J. Hydrol.,
549, 220–235, https://doi.org/10.1016/j.jhydrol.2017.03.056, 2017.
Vonk, J. E., Tank, S. E., Mann, P. J., Spencer, R. G. M., Treat, C. C., Striegl, R. G., Abbott, B. W., and Wickland, K. P.: Biodegradability of dissolved organic carbon in permafrost soils and aquatic systems: a meta-analysis, Biogeosciences, 12, 6915–6930, https://doi.org/10.5194/bg-12-6915-2015, 2015.
Ward, C. P. and Cory, R. M.: Complete and Partial Photo-oxidation of
Dissolved Organic Matter Draining Permafrost Soils, Environ. Sci. Technol.,
50, 3545–3553, https://doi.org/10.1021/acs.est.5b05354, 2016.
Weishaar, J. L., Aiken, G. R., Bergamaschi, B. A., Fram, M. S., Fujii, R.,
and Mopper, K.: Evaluation of Specific Ultraviolet Absorbance as an
Indicator of the Chemical Composition and Reactivity of Dissolved Organic
Carbon, Environ. Sci. Technol., 37, 4702–4708,
https://doi.org/10.1021/es030360x, 2003.
White, M.: Modèle de développement des tourbières
minérotrophes aqualysées du Haut-Boréal québécois,
Université Laval, Québec, 78 pp., orpus ID: 135205929, 2011.
Wickham, H.: ggplot2 Elegant Graphics for Data Analysis, Springer
International Publishing, Cham, https://doi.org/10.1007/978-3-319-24277-4,
2016.
Wilson, H. F. and Xenopoulos, M. A.: Effects of agricultural land use on the
composition of fluvial dissolved organic matter, Nat. Geosci., 2, 37–41,
https://doi.org/10.1038/ngeo391, 2009.
Worrall, F., Gibson, H. S., and Burt, T. P.: Production vs. solubility in
controlling runoff of DOC from peat soils – The use of an event analysis,
J. Hydrol., 358, 84–95, https://doi.org/10.1016/j.jhydrol.2008.05.037,
2008.
Worrall, F., Moody, C. S., Clay, G. D., Burt, T. P., and Rose, R.: The flux
of organic matter through a peatland ecosystem: The role of cellulose,
lignin, and their control of the ecosystem oxidation state: Flux of Organic
Matter Through a Peat, J. Geophys. Res. Biogeo., 122, 1655–1671,
https://doi.org/10.1002/2016JG003697, 2017.
Yu, Z. C.: Northern peatland carbon stocks and dynamics: a review, Biogeosciences, 9, 4071–4085, https://doi.org/10.5194/bg-9-4071-2012, 2012.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(3434 KB) - Full-text XML
- Corrigendum
-
Supplement
(1505 KB) - BibTeX
- EndNote
Short summary
Pools are common features of peatlands. We documented dissolved organic matter (DOM) composition in pools and peat of an ombrotrophic boreal peatland to understand its origin and potential role in the peatland carbon budget. The survey reveals that DOM composition differs between pools and peat, although it is derived from the peat vegetation. We investigated which processes are involved and estimated that the contribution of carbon emissions from DOM processing in pools could be substantial.
Pools are common features of peatlands. We documented dissolved organic matter (DOM) composition...
Altmetrics
Final-revised paper
Preprint