Articles | Volume 19, issue 19
https://doi.org/10.5194/bg-19-4767-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-4767-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Early life stages of a Mediterranean coral are vulnerable to ocean warming and acidification
Chloe Carbonne
CORRESPONDING AUTHOR
Sorbonne Université, CNRS, Laboratoire d'Océanographie de
Villefranche, 181 chemin du Lazaret, 06230 Villefranche-sur-Mer, France
Steeve Comeau
Sorbonne Université, CNRS, Laboratoire d'Océanographie de
Villefranche, 181 chemin du Lazaret, 06230 Villefranche-sur-Mer, France
Phoebe T. W. Chan
Sorbonne Université, CNRS, Laboratoire d'Océanographie de
Villefranche, 181 chemin du Lazaret, 06230 Villefranche-sur-Mer, France
Keyla Plichon
Sorbonne Université, CNRS, Laboratoire d'Océanographie de
Villefranche, 181 chemin du Lazaret, 06230 Villefranche-sur-Mer, France
MSc MARRES, Université Côte d'Azur, Sophia Antipolis Campus, 06103 Nice, France
Jean-Pierre Gattuso
Sorbonne Université, CNRS, Laboratoire d'Océanographie de
Villefranche, 181 chemin du Lazaret, 06230 Villefranche-sur-Mer, France
Institute for Sustainable Development and International Relations,
Sciences Po, 27 rue Saint Guillaume, 75007 Paris, France
Núria Teixidó
Sorbonne Université, CNRS, Laboratoire d'Océanographie de
Villefranche, 181 chemin du Lazaret, 06230 Villefranche-sur-Mer, France
Stazione Zoologica Anton Dohrn, Ischia Marine Centre, Department of
Integrated Marine Ecology, Punta San Pietro, 80077 Ischia (Naples), Italy
Related authors
No articles found.
Li-Qing Jiang, Amanda Fay, Jens Daniel Müller, Lydia Keppler, Dustin Carroll, Siv K. Lauvset, Tim DeVries, Judith Hauck, Christian Rödenbeck, Luke Gregor, Nicolas Metzl, Andrea J. Fassbender, Jean-Pierre Gattuso, Peter Landschützer, Rik Wanninkhof, Christopher Sabine, Simone R. Alin, Mario Hoppema, Are Olsen, Matthew P. Humphreys, Kumiko Azetsu-Scott, Dorothee C. E. Bakker, Leticia Barbero, Nicholas R. Bates, Nicole Besemer, Henry C. Bittig, Albert E. Boyd, Daniel Broullón, Wei-Jun Cai, Brendan R. Carter, Thi-Tuyet-Trang Chau, Chen-Tung Arthur Chen, Frédéric Cyr, John E. Dore, Ian Enochs, Richard A. Feely, Hernan E. Garcia, Marion Gehlen, Lucas Gloege, Melchor González-Dávila, Nicolas Gruber, Yosuke Iida, Masao Ishii, Esther Kennedy, Alex Kozyr, Nico Lange, Claire Lo Monaco, Derek P. Manzello, Galen A. McKinley, Natalie M. Monacci, Xose A. Padin, Ana M. Palacio-Castro, Fiz F. Pérez, Alizée Roobaert, J. Magdalena Santana-Casiano, Jonathan Sharp, Adrienne Sutton, Jim Swift, Toste Tanhua, Maciej Telszewski, Jens Terhaar, Ruben van Hooidonk, Anton Velo, Andrew J. Watson, Angelicque E. White, Zelun Wu, Hyelim Yoo, and Jiye Zeng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-255, https://doi.org/10.5194/essd-2025-255, 2025
Preprint under review for ESSD
Short summary
Short summary
This review article provides an overview of 60 existing ocean carbonate chemistry data products, encompassing a broad range of types, including compilations of cruise datasets, gap-filled observational products, model simulations, and more. It is designed to help researchers identify and access the data products that best support their scientific objectives, thereby facilitating progress in understanding the ocean's changing carbonate chemistry.
Nicolas Metzl, Jonathan Fin, Claire Lo Monaco, Claude Mignon, Samir Alliouane, Bruno Bombled, Jacqueline Boutin, Yann Bozec, Steeve Comeau, Pascal Conan, Laurent Coppola, Pascale Cuet, Eva Ferreira, Jean-Pierre Gattuso, Frédéric Gazeau, Catherine Goyet, Emilie Grossteffan, Bruno Lansard, Dominique Lefèvre, Nathalie Lefèvre, Coraline Leseurre, Sébastien Petton, Mireille Pujo-Pay, Christophe Rabouille, Gilles Reverdin, Céline Ridame, Peggy Rimmelin-Maury, Jean-François Ternon, Franck Touratier, Aline Tribollet, Thibaut Wagener, and Cathy Wimart-Rousseau
Earth Syst. Sci. Data, 17, 1075–1100, https://doi.org/10.5194/essd-17-1075-2025, https://doi.org/10.5194/essd-17-1075-2025, 2025
Short summary
Short summary
This work presents a new synthesis of 67 000 total alkalinity and total dissolved inorganic carbon observations obtained between 1993 and 2023 in the global ocean, coastal zones, and the Mediterranean Sea. We describe the data assemblage and associated quality control and discuss some potential uses of this dataset. The dataset is provided in a single format and includes the quality flag for each sample.
Anaïs Lebrun, Cale A. Miller, Marc Meynadier, Steeve Comeau, Pierre Urrutti, Samir Alliouane, Robert Schlegel, Jean-Pierre Gattuso, and Frédéric Gazeau
Biogeosciences, 21, 4605–4620, https://doi.org/10.5194/bg-21-4605-2024, https://doi.org/10.5194/bg-21-4605-2024, 2024
Short summary
Short summary
We tested the effects of warming, low salinity, and low irradiance on Arctic kelps. We show that growth rates were similar across species and treatments. Alaria esculenta is adapted to low-light conditions. Saccharina latissima exhibited nitrogen limitation, suggesting coastal erosion and permafrost thawing could be beneficial. Laminaria digitata did not respond to the treatments. Gene expression of Hedophyllum nigripes and S. latissima indicated acclimation to the experimental treatments.
Robert W. Schlegel, Rakesh Kumar Singh, Bernard Gentili, Simon Bélanger, Laura Castro de la Guardia, Dorte Krause-Jensen, Cale A. Miller, Mikael Sejr, and Jean-Pierre Gattuso
Earth Syst. Sci. Data, 16, 2773–2788, https://doi.org/10.5194/essd-16-2773-2024, https://doi.org/10.5194/essd-16-2773-2024, 2024
Short summary
Short summary
Fjords play a vital role in the Arctic ecosystems and human communities. It is therefore important to have as clear of an understanding of the processes within these systems as possible. While temperature and salinity tend to be well measured, light is usually not. The dataset described in this paper uses remotely sensed data from 2003 to 2022 to address this problem by providing high-spatial-resolution surface, water column, and seafloor light data for several well-studied Arctic fjords.
Christopher E. Cornwall, Steeve Comeau, and Ben P. Harvey
Earth Syst. Dynam., 15, 671–687, https://doi.org/10.5194/esd-15-671-2024, https://doi.org/10.5194/esd-15-671-2024, 2024
Short summary
Short summary
Ocean acidification will cause profound shifts in many marine ecosystems by impairing the ability of calcareous taxa to grow and by influencing the photophysiology of many others. Physiological tipping points will likely be reached in the next 20 years. Small changes in organism physiology result in larger ecological tipping points being crossed. Ecosystems will shift from having higher abundances of calcifying taxa and towards increased abundances of non-calcareous species under elevated CO2.
Sébastien Petton, Fabrice Pernet, Valérian Le Roy, Matthias Huber, Sophie Martin, Éric Macé, Yann Bozec, Stéphane Loisel, Peggy Rimmelin-Maury, Émilie Grossteffan, Michel Repecaud, Loïc Quemener, Michael Retho, Soazig Manac'h, Mathias Papin, Philippe Pineau, Thomas Lacoue-Labarthe, Jonathan Deborde, Louis Costes, Pierre Polsenaere, Loïc Rigouin, Jérémy Benhamou, Laure Gouriou, Joséphine Lequeux, Nathalie Labourdette, Nicolas Savoye, Grégory Messiaen, Elodie Foucault, Vincent Ouisse, Marion Richard, Franck Lagarde, Florian Voron, Valentin Kempf, Sébastien Mas, Léa Giannecchini, Francesca Vidussi, Behzad Mostajir, Yann Leredde, Samir Alliouane, Jean-Pierre Gattuso, and Frédéric Gazeau
Earth Syst. Sci. Data, 16, 1667–1688, https://doi.org/10.5194/essd-16-1667-2024, https://doi.org/10.5194/essd-16-1667-2024, 2024
Short summary
Short summary
Our research highlights the concerning impact of rising carbon dioxide levels on coastal areas. To better understand these changes, we've established an observation network in France. By deploying pH sensors and other monitoring equipment at key coastal sites, we're gaining valuable insights into how various factors, such as freshwater inputs, tides, temperature, and biological processes, influence ocean pH.
Cale A. Miller, Pierre Urrutti, Jean-Pierre Gattuso, Steeve Comeau, Anaïs Lebrun, Samir Alliouane, Robert W. Schlegel, and Frédéric Gazeau
Biogeosciences, 21, 315–333, https://doi.org/10.5194/bg-21-315-2024, https://doi.org/10.5194/bg-21-315-2024, 2024
Short summary
Short summary
This work describes an experimental system that can replicate and manipulate environmental conditions in marine or aquatic systems. Here, we show how the temperature and salinity of seawater delivered from a fjord is manipulated to experimental tanks on land. By constantly monitoring temperature and salinity in each tank via a computer program, the system continuously adjusts automated flow valves to ensure the seawater in each tank matches the targeted experimental conditions.
Nicolas Metzl, Jonathan Fin, Claire Lo Monaco, Claude Mignon, Samir Alliouane, David Antoine, Guillaume Bourdin, Jacqueline Boutin, Yann Bozec, Pascal Conan, Laurent Coppola, Frédéric Diaz, Eric Douville, Xavier Durrieu de Madron, Jean-Pierre Gattuso, Frédéric Gazeau, Melek Golbol, Bruno Lansard, Dominique Lefèvre, Nathalie Lefèvre, Fabien Lombard, Férial Louanchi, Liliane Merlivat, Léa Olivier, Anne Petrenko, Sébastien Petton, Mireille Pujo-Pay, Christophe Rabouille, Gilles Reverdin, Céline Ridame, Aline Tribollet, Vincenzo Vellucci, Thibaut Wagener, and Cathy Wimart-Rousseau
Earth Syst. Sci. Data, 16, 89–120, https://doi.org/10.5194/essd-16-89-2024, https://doi.org/10.5194/essd-16-89-2024, 2024
Short summary
Short summary
This work presents a synthesis of 44 000 total alkalinity and dissolved inorganic carbon observations obtained between 1993 and 2022 in the Global Ocean and the Mediterranean Sea at the surface and in the water column. Seawater samples were measured using the same method and calibrated with international Certified Reference Material. We describe the data assemblage, quality control and some potential uses of this dataset.
Li-Qing Jiang, Adam V. Subhas, Daniela Basso, Katja Fennel, and Jean-Pierre Gattuso
State Planet, 2-oae2023, 13, https://doi.org/10.5194/sp-2-oae2023-13-2023, https://doi.org/10.5194/sp-2-oae2023-13-2023, 2023
Short summary
Short summary
This paper provides comprehensive guidelines for ocean alkalinity enhancement (OAE) researchers on archiving their metadata and data. It includes data standards for various OAE studies and a universal metadata template. Controlled vocabularies for terms like alkalinization methods are included. These guidelines also apply to ocean acidification data.
Andreas Oschlies, Lennart T. Bach, Rosalind E. M. Rickaby, Terre Satterfield, Romany Webb, and Jean-Pierre Gattuso
State Planet, 2-oae2023, 1, https://doi.org/10.5194/sp-2-oae2023-1-2023, https://doi.org/10.5194/sp-2-oae2023-1-2023, 2023
Short summary
Short summary
Reaching promised climate targets will require the deployment of carbon dioxide removal (CDR). Marine CDR options receive more and more interest. Based on idealized theoretical studies, ocean alkalinity enhancement (OAE) appears as a promising marine CDR method. We provide an overview on the current situation of developing OAE as a marine CDR method and describe the history that has led to the creation of the OAE research best practice guide.
Robert W. Schlegel and Jean-Pierre Gattuso
Earth Syst. Sci. Data, 15, 3733–3746, https://doi.org/10.5194/essd-15-3733-2023, https://doi.org/10.5194/essd-15-3733-2023, 2023
Short summary
Short summary
A single dataset was created for investigations of changes in the socio-ecological systems within seven Arctic fjords by amalgamating roughly 1400 datasets from a number of sources. The many variables in these data were organised into five distinct categories and classified into 14 key drivers. Data for seawater temperature and salinity are available from the late 19th century, with some other drivers having data available from the 1950s and 1960s and the others starting from the 1990s onward.
Jean-Pierre Gattuso, Samir Alliouane, and Philipp Fischer
Earth Syst. Sci. Data, 15, 2809–2825, https://doi.org/10.5194/essd-15-2809-2023, https://doi.org/10.5194/essd-15-2809-2023, 2023
Short summary
Short summary
The Arctic Ocean is subject to high rates of ocean warming and acidification, with critical implications for marine organisms, ecosystems and the services they provide. We report here on the first high-frequency (1 h), multi-year (5 years) dataset of the carbonate system at a coastal site in a high-Arctic fjord (Kongsfjorden, Svalbard). This site is a significant sink for CO2 every month of the year (9 to 17 mol m-2 yr-1). The saturation state of aragonite can be as low as 1.3.
Phillip Williamson, Hans-Otto Pörtner, Steve Widdicombe, and Jean-Pierre Gattuso
Biogeosciences, 18, 1787–1792, https://doi.org/10.5194/bg-18-1787-2021, https://doi.org/10.5194/bg-18-1787-2021, 2021
Short summary
Short summary
The reliability of ocean acidification research was challenged in early 2020 when a high-profile paper failed to corroborate previously observed impacts of high CO2 on the behaviour of coral reef fish. We now know the reason why: the
replicatedstudies differed in many ways. Open-minded and collaborative assessment of all research results, both negative and positive, remains the best way to develop process-based understanding of the impacts of ocean acidification on marine organisms.
Cited articles
Adjeroud, M., Kayal, M., and Penin, L.: Importance of recruitment processes
in the dynamics and resilience of coral reef assemblages, in: Marine Animal
Forests, Springer International Publishing, Cham, 1–21,
https://doi.org/10.1007/978-3-319-17001-5_12-1, 2016.
Albright, R.: Reviewing the effects of ocean acidification on sexual
reproduction and early life history stages of reef-building corals, J. Mar.
Biol., 2011, 1–14, https://doi.org/10.1155/2011/473615, 2011.
Albright, R. and Langdon, C.: Ocean acidification impacts multiple early
life history processes of the Caribbean coral Porites astreoides, Global Change Biol., 17, 2478–2487, https://doi.org/10.1111/j.1365-2486.2011.02404.x, 2011.
Anlauf, H., D'Croz, L., and O'Dea, A.: A corrosive concoction: The combined
effects of ocean warming and acidification on the early growth of a stony
coral are multiplicative, J. Exp. Mar. Biol. Ecol., 397, 13–20,
https://doi.org/10.1016/j.jembe.2010.11.009, 2011.
Bahr, K. D., Tran, T., Jury, C. P., and Toonen, R. J.: Abundance, size, and
survival of recruits of the reef coral Pocillopora acuta under ocean warming and acidification, PLoS One, 15, 1–13, https://doi.org/10.1371/journal.pone.0228168, 2020.
Baird, A. H., Gilmour, J. P., Kamiki, T. M., Nonaka, M., Pratchett, M. S.,
Yamamoto, H. H., and Yamasaki, H.: Temperature tolerance of symbiotic and
non-symbiotic coral larvae, in: Proceeding of 10th International coral reef
symposium, 28 June–2 July 2004, Okinawa, Japan, 38–42, 2006.
Baria, M. V. B., Kurihara, H., and Harii, S.: Tolerance to elevated
temperature and ocean acidification of the larvae of the solitary corals
Fungia fungites (Linnaues, 1758) and Lithophyllon repanda (Dana, 1846), Zoolog. Sci., 32, 447–454, https://doi.org/10.2108/zs150036, 2015.
Bates, D., Mächler, M., Bolker, B., and Walker, S.: Fitting Linear
Mixed-Effects Models Using lme4, J. Stat. Softw., 67, 1–48, https://doi.org/10.18637/jss.v067.i01, 2015.
Bay, R. A. and Palumbi, S. R.: Multilocus adaptation associated with heat
resistance in reef-building corals, Curr. Biol., 24, 2952–2956,
https://doi.org/10.1016/j.cub.2014.10.044, 2014.
Bisanti, L., Sabata, E., Visconti, G., and Chemello, R.: Towards a local
mass mortality of the Mediterranean orange coral Astroides calycularis (Pallas, 1766) in the Pelagie Islands Marine Protected Area (Italy), Aquat. Conserv. Mar. Freshw. Ecosyst., 32, 551–557, https://doi.org/10.1002/aqc.3772, 2022.
Carbonne, C., Teixidó, N., Moore, B., Mirasole, A., Guttierez, T.,
Gattuso, J., and Comeau, S.: Two temperate corals are tolerant to low pH
regardless of previous exposure to natural CO2 vents, Limnol.
Oceanogr., 66, 4046–4061, https://doi.org/10.1002/lno.11942, 2021.
Carbonne, C., Comeau, S., Chan, P. T. W., Plichon, K., Gattuso, J.-P., and Teixidó, N.: Seawater carbonate chemistry and the larval and juvenile development of the Mediterranean azooxanthellate coral Astroides calycularis, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.948263, 2022a.
Carbonne, C., Comeau, S., Chan, P., Plichon, K., Gattuso, J.-P., and Teixidó, N.: Spawning of a larva from the mouth of Astroides calycularis female polyp, TIB AV-PORTAL [video supplement], https://doi.org/10.5446/58541, 2022b.
Carbonne, C., Comeau, S., Chan, P., Plichon, K., Gattuso, J.-P., and Teixidó, N.: One-day old swimming larvae of Astroides calycularis,
TIB AV-PORTAL [video supplement], https://doi.org/10.5446/58542, 2022c.
Carbonne, C., Comeau, S., Chan, P., Plichon, K., Gattuso, J.-P., and Teixidó, N.: Sequence of early life stages development of Astroides calycularis, TIB AV-PORTAL [video supplement], https://doi.org/10.5446/58543, 2022d.
Caroselli, E., Gizzi, F., Prada, F., Marchini, C., Airi, V., Kaandorp, J.,
Falini, G., Dubinsky, Z., and Goffredo, S.: Low and variable pH decreases
recruitment efficiency in populations of a temperate coral naturally present
at a CO2 vent, Limnol. Oceanogr., 64, 1059–1069,
https://doi.org/10.1002/lno.11097, 2019.
Chua, C. M., Leggat, W., Moya, A., and Baird, A.: Temperature affects the early life history stages of corals more than near future ocean acidification, Mar. Ecol. Prog. Ser., 475, 85–92, https://doi.org/10.3354/meps10077, 2013.
Clarke, A. and Fraser, K. P. P.: Why does metabolism scale with temperature?, Funct. Ecol., 18, 243–251, 2004.
Comeau, S., Edmunds, P. J., Spindel, N. B., and Carpenter, R. C.: The
responses of eight coral reef calcifiers to increasing partial pressure of
CO2 do not exhibit a tipping point, Limnol. Oceanogr., 58, 388–398, https://doi.org/10.4319/lo.2013.58.1.0388, 2013.
Cornwall, C. E., Comeau, S., Kornder, N. A., Perry, C. T., van Hooidonk, R.,
DeCarlo, T. M., Pratchett, M. S., Anderson, K. D., Browne, N., Carpenter,
R., Diaz-Pulido, G., D'Olivo, J. P., Doo, S. S., Figueiredo, J., Fortunato,
S. A. V., Kennedy, E., Lantz, C. A., McCulloch, M. T., González-Rivero,
M., Schoepf, V., Smithers, S. G., and Lowe, R. J.: Global declines in coral
reef calcium carbonate production under ocean acidification and warming, P. Natl. Acad. Sci. USA, 118, e2015265118, https://doi.org/10.1073/pnas.2015265118, 2021.
Dickson, A. G., Sabine, C. L., and Christian, J. R.: SOP 3a Determination of
total alkalinity in sea water using an open-cell titration, in: Guide to
best practices for ocean CO2 measurements, vol. 3, North Pacific Marine Science Organization, 1–15, 2007.
Edmunds, P. . J., Gates, R. D., and Gleason, D. F.: The biology of larvae
from the reef coral Porites astreoides, and their response to temperature disturbances, Mar. Biol., 139, 981–989, https://doi.org/10.1007/s002270100634, 2001.
Figueiredo, J., Baird, A. H., Harii, S., and Connolly, S. R.: Increased local retention of reef coral larvae as a result of ocean warming, Nat. Clim. Change, 4, 498–502, https://doi.org/10.1038/nclimate2210, 2014.
Foster, T., Gilmour, J. P., Chua, C. M., Falter, J. L., and McCulloch, M. T.: Effect of ocean warming and acidification on the early life stages of subtropical Acropora spicifera, Coral Reefs, 34, 1217–1226, https://doi.org/10.1007/s00338-015-1342-7, 2015.
Foster, T., Falter, J. L., McCulloch, M. T., and Clode, P. L.: Ocean
acidification causes structural deformities in juvenile coral skeletons,
Sci. Adv., 2, e1501130, https://doi.org/10.1126/sciadv.1501130, 2016.
Gambi, M. C., Sorvino, P., Tiberti, L., and Teixidó, N.: Mortality Events of Benthic Organisms Along the Coast of Ischia in Summer 2017, Biol. Mar. Mediterr., 25, 212–213, 2018.
Garrabou, J., Gómez-Gras, D., Medrano, A., Cerrano, C., Ponti, M., Schlegel, R., Bensoussan, N., Turicchia, E., Sini, M., Gerovasileiou, V.,
Teixido, N., Mirasole, A., Tamburello, L., Cebrian, E., Rilov, G., Ledoux,
J.-B., Ben Souissi, J., Khamassi, F., Ghanem, R., Benabdi, M., Grimes, S.,
Ocaña, O., Bazairi, H., Hereu, B., Linares, C., Kersting, D. K., la Rovira, G., Ortega, J., Casals, D., Margarit, N., Pagès-Escolà, M., Capdevila, P., Verdura, J., Ramos, A., Izquierdo, A., Barbera, C.,
Rubio-Portillo, E., Anton, I., López-Sendino, P., Díaz, D., Vázquez-Luis, M., Duarte, C., Marbà, N., Aspillaga, E., Espinosa,
F., Grech, D., Guala, I., Azzurro, E., Farina, S., Gambi, M. C., Chimienti,
G., Montefalcone, M., Azzola, A., Pulido Mantas, T., Fraschetti, S., Ceccherelli, G., Kipson, S., Bakran-Petricioli, T., Petricioli, D., Jimenez,
C., Katsanevakis, S., Tuney Kizilkaya, I., Kizilkaya, Z., Sartoretto, S.,
Elodie, R., Ruitton, S., Comeau, S., Gattuso, J.-P., and Harmelin, J.-G.:
Marine heatwaves drive recurrent mass mortalities in the Mediterranean Sea,
Global Change Biol., https://doi.org/10.1111/gcb.16301, in press, 2022.
Gattuso, J.-P. and Hansson, L.: Ocean acidification: background and history,
in: Ocean Acidification, edited by: Gattuso, J. and Hansson, L., Oxford
University Press Oxford, 1–20, ISBN 978-0-19-959108-4, 2011.
Gattuso, J.-P., Epitalon, J.-M., Lavigne, H., and Orr, J.: seacarb: Seawater
carbonate chemistry, R package version 3.3.0,
https://cran.r-project.org/package=seacarb (last access: 20 September 2022), 2021.
Goffredo, S., Gasparini, G., Marconi, G., Putignano, M. T., Pazzini, C.,
Airi, V., and Zaccanti, F.: Sexual reproduction in the Mediterranean endemic
orange coral Astroides calycularis (Scleractinia: Dendrophylliidae), Bull. Mar. Sci., 87, 589–604, https://doi.org/10.5343/bms.2010.1068, 2011.
Gómez-Gras, D., Linares, C., de Caralt, S., Cebrian, E., Frleta-Valić, M., Montero-Serra, I., Pagès-Escolà, M., López-Sendino, P., and Garrabou, J.: Response diversity in Mediterranean
coralligenous assemblages facing climate change: Insights from a multispecific thermotolerance experiment, Ecol. Evol., 9, 4168–4180,
https://doi.org/10.1002/ece3.5045, 2019.
Hughes, T. P., Kerry, J. T., Baird, A. H., Connolly, S. R., Chase, T. J.,
Dietzel, A., Hill, T., Hoey, A. S., Hoogenboom, M. O., Jacobson, M., Kerswell, A., Madin, J. S., Mieog, A., Paley, A. S., Pratchett, M. S., Torda, G., and Woods, R. M.: Global warming impairs stock–recruitment dynamics of corals, Nature, 568, 387–390, https://doi.org/10.1038/s41586-019-1081-y, 2019.
Kleypas, J. A., Buddemeier, R. W., and Gattuso, J.-P.: The future of coral
reefs in an age of global change, Int. J. Earth Sci., 90, 426–437,
https://doi.org/10.1007/s005310000125, 2001.
Kornder, N. A., Riegl, B. M., and Figueiredo, J.: Thresholds and drivers of
coral calcification responses to climate change, Global Change Biol., 24,
5084–5095, https://doi.org/10.1111/gcb.14431, 2018.
Kwiatkowski, L., Torres, O., Bopp, L., Aumont, O., Chamberlain, M., Christian, J. R., Dunne, J. P., Gehlen, M., Ilyina, T., John, J. G., Lenton, A., Li, H., Lovenduski, N. S., Orr, J. C., Palmieri, J., Santana-Falcón, Y., Schwinger, J., Séférian, R., Stock, C. A., Tagliabue, A., Takano, Y., Tjiputra, J., Toyama, K., Tsujino, H., Watanabe, M., Yamamoto, A., Yool, A., and Ziehn, T.: Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections, Biogeosciences, 17, 3439–3470, https://doi.org/10.5194/bg-17-3439-2020, 2020.
McClanahan, T. R., Weil, E., Cortés, J., Baird, A. H., and Ateweberhan,
M.: Consequences of coral bleaching for sessile reef organisms, in: Coral
Bleaching, edited by: van Oppen, M. J. and Lough, J. M., Springer, Berlin,
Heidelberg, 121–138, https://doi.org/10.1007/978-3-540-69775-6_8, 2009.
Movilla, J., Calvo, E., Coma, R., Serrano, E., López-Sanz, À., and
Pelejero, C.: Annual response of two Mediterranean azooxanthellate temperate
corals to low-pH and high-temperature conditions, Mar. Biol., 163, 135, https://doi.org/10.1007/s00227-016-2908-9, 2016.
Nakamura, M., Ohki, S., Suzuki, A., and Sakai, K.: Coral larvae under ocean
acidification: survival, metabolism, and metamorphosis, PLoS One, 6, e14521,
https://doi.org/10.1371/journal.pone.0014521, 2011.
Nozawa, Y. and Harrison, P. L.: Effects of elevated temperature on larval
settlement and post-settlement survival in scleractinian corals, Acropora solitaryensis and Favites chinensis, Mar. Biol., 152, 1181–1185, https://doi.org/10.1007/s00227-007-0765-2, 2007.
O'Connor, M. I., Bruno, J. F., Gaines, S. D., Halpern, B. S., Lester, S. E.,
Kinlan, B. P., and Weiss, J. M.: Temperature control of larval dispersal and
the implications for marine ecology, evolution, and conservation, P. Natl. Acad. Sci. USA, 104, 1266–1271, https://doi.org/10.1073/pnas.0603422104, 2007.
Orr, J. C., Fabry, V. J., Aumont, O., Bopp, L., Doney, S. C., Feely, R. A.,
Gnanadesikan, A., Gruber, N., Ishida, A., Joos, F., Key, R. M., Lindsay, K.,
Maier-Reimer, E., Matear, R., Monfray, P., Mouchet, A., Najjar, R. G.,
Plattner, G.-K., Rodgers, K. B., Sabine, C. L., Sarmiento, J. L., Schlitzer, R., Slater, R. D., Totterdell, I. J., Weirig, M.-F., Yamanaka, Y., and Yool,
A.: Anthropogenic ocean acidification over the twenty-first century and its
impact on calcifying organisms, Nature, 437, 681–686, https://doi.org/10.1038/nature04095, 2005.
Randall, C. J. and Szmant, A. M.: Elevated temperature reduces survivorship
and settlement of the larvae of the Caribbean scleractinian coral, Favia fragum (Esper), Coral Reefs, 28, 537–545, https://doi.org/10.1007/s00338-009-0482-z, 2009.
Ritson-Williams, R., Arnold, S., Fogarty, N., Steneck, R. S., Vermeij, M., and Paul, V. J.: New perspectives on ecological mechanisms affecting coral
recruitment on reefs, Smithson. Contrib. Mar. Sci., 437–457,
https://doi.org/10.5479/si.01960768.38.437, 2009.
Rodolfo-Metalpa, R., Houlbrèque, F., Tambutté, É., Boisson, F.,
Baggini, C., Patti, F. P., Jeffree, R., Fine, M., Foggo, A., Gattuso, J.-P.,
and Hall-Spencer, J. M.: Coral and mollusc resistance to ocean acidification
adversely affected by warming, Nat. Clim. Change, 1, 308–312,
https://doi.org/10.1038/nclimate1200, 2011.
Sully, S., Burkepile, D. E., Donovan, M. K., Hodgson, G., and van Woesik, R.: A global analysis of coral bleaching over the past two decades, Nat. Commun., 10, 1264, https://doi.org/10.1038/s41467-019-09238-2, 2019.
Suwa, R., Nakamura, M., Morita, M., Shimada, K., Iguchi, A., Sakai, K., and
Suzuki, A.: Effects of acidified seawater on early life stages of scleractinian corals (Genus Acropora), Fish. Sci., 76, 93–99,
https://doi.org/10.1007/s12562-009-0189-7, 2010.
Teixidó, N., Caroselli, E., Alliouane, S., Ceccarelli, C., Comeau, S.,
Gattuso, J., Fici, P., Micheli, F., Mirasole, A., Monismith, S. G., Munari,
M., Palumbi, S. R., Sheets, E., Urbini, L., De Vittor, C., Goffredo, S., and
Gambi, M. C.: Ocean acidification causes variable trait-shifts in a coral
species, Global Change Biol., 26, 6813–6830, https://doi.org/10.1111/gcb.15372, 2020.
Varnerin, B., Hopkinson, B., and Gleason, D.: Recruits of the temperate
coral Oculina arbuscula mimic adults in their resilience to ocean acidification, Mar. Ecol. Prog. Ser., 636, 63–75, https://doi.org/10.3354/meps13228, 2020.
Woolsey, E., Byrne, M., and Baird, A.: The effects of temperature on
embryonic development and larval survival in two scleractinian corals, Mar.
Ecol. Prog. Ser., 493, 179–184, https://doi.org/10.3354/meps10499, 2013.
Zibrowius, H.: The “Southern” Astroides calycularis in the Pleistocene of the northern Mediterranean – An indicator of climatic changes (Cnidaria, scleractinia), Geobios, 28, 9–16, https://doi.org/10.1016/S0016-6995(95)80201-0, 1995.
Co-editor-in-chief
Carbonne et al. identified the concurrent impact of Ocean Acidification as well as ocean warming on larval survivorship of corals. The study focuses on more temperate corals and also demonstrates the impact of lowered ocean pH on larval settlement and growth afterwards. This nicely designed experiment and the conclusive results advance our understanding of human's biogeochemical footprint on important taxa in marine systems.
Carbonne et al. identified the concurrent impact of Ocean Acidification as well as ocean warming...
Short summary
For the first time, our study highlights the synergistic effects of a 9-month warming and acidification combined stress on the early life stages of a Mediterranean azooxanthellate coral, Astroides calycularis. Our results predict a decrease in dispersion, settlement, post-settlement linear extention, budding and survival under future global change and that larvae and recruits of A. calycularis are stages of interest for this Mediterranean coral resistance, resilience and conservation.
For the first time, our study highlights the synergistic effects of a 9-month warming and...
Altmetrics
Final-revised paper
Preprint