Best, E. P. H. and Jacobs, F. H. H.: The influence of raised water table
levels on carbon dioxide and methane production in ditch-dissected peat
grasslands in the Netherlands, Ecol. Eng., 8, 129–144,
https://doi.org/10.1016/S0925-8574(97)00260-7, 1997.
Couwenberg, J., Thiele, A., Tanneberger, F., Augustin, J., Bärisch, S.,
Dubovik, D., Liashchynskaya, N., Michaelis, D., Minke, M., Skuratovich, A.,
and Joosten, H.: Assessing greenhouse gas emissions from peatlands using
vegetation as a proxy, Hydrobiologia, 674, 67–89,
https://doi.org/10.1007/s10750-011-0729-x, 2011.
Dissanayaka, S. H., Hamamoto, S., Komatsu, T., and Kawamoto, K.: Thermal
Properties for Peaty Soil Under Variable Saturation and Their Correlation to
Mass Transport Parameters in Gaseous and Aqueous Phases, Res. Rep. Dep. Civ.
Environ. Eng. Saitama Univ., 39, 21–32, 2013.
Elsgaard, L., Görres, C. M., Hoffmann, C. C., Blicher-Mathiesen, G.,
Schelde, K., and Petersen, S. O.: Net ecosystem exchange of CO2 and carbon
balance for eight temperate organic soils under agricultural management,
Agric. Ecosyst. Environ., 162, 52–67,
https://doi.org/10.1016/j.agee.2012.09.001, 2012.
Erkens, G., Van Der Meulen, M. J., and Middelkoop, H.: Double trouble:
Subsidence and CO2 respiration due to 1,000 years of Dutch coastal peatlands
cultivation, Hydrogeol. J., 24, 551–568,
https://doi.org/10.1007/s10040-016-1380-4, 2016.
Fritz, C., Geurts, J., Weideveld, S., Temmink, R., Bosma, N., Wichern, F.,
and Lamers, L.: Meten is weten bij bodemdaling-mitigatie. Effect van
peilbeheer en teeltkeuze op CO
2-emissies en veenoxidatie, Bodem, 20–22, 2017.
Geurts, J., van Duinen, G.-J. A., van Belle, J., Wichmann, S., Wichtmann,
W., and Fritz, C.: Recognize the high potential of paludiculture on rewetted
peat soils to mitigate climate change, J. Sustain. Org. Agric Syst, 69, 5–8, https://doi.org/10.3220/LBF1576769203000, 2019.
Görres, C. M., Kutzbach, L., and Elsgaard, L.: Comparative modeling of
annual CO
2 flux of temperate peat soils under permanent grassland
management, Agr. Ecosyst. Environ., 186, 64–76,
https://doi.org/10.1016/j.agee.2014.01.014, 2014.
He, H., Jansson, P.-E., and Gärdenäs, A. I.: CoupModel (v6.0): an ecosystem model for coupled phosphorus, nitrogen, and carbon dynamics – evaluated against empirical data from a climatic and fertility gradient in Sweden, Geosci. Model Dev., 14, 735–761, https://doi.org/10.5194/gmd-14-735-2021, 2021.
Heinemeyer, A., Gornall, J., Baxter, R., Huntley, B., and Ineson, P.:
Evaluating the carbon balance estimate from an automated ground-level flux
chamber system in artificial grass mesocosms, Ecol. Evol., 3, 4998–5010,
https://doi.org/10.1002/ece3.879, 2013.
Hooghoudt, S. B.: Bijdragen tot de kennis van eenige natuurkundige grootheden van den grond, Bodemkundig Instituut te Groningen Report, 1936.
Huth, V., Vaidya, S., Hoffmann, M., Jurisch, N., Günther, A., Gundlach,
L., Hagemann, U., Elsgaard, L., and Augustin, J.: Divergent NEE balances
from manual-chamber CO
2 fluxes linked to different measurement and
gap-filling strategies: A source for uncertainty of estimated terrestrial C
sources and sinks?, Zeitschrift fur Pflanzenernahrung und Bodenkd., 180,
302–315, https://doi.org/10.1002/jpln.201600493, 2017.
IPCC: Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas
Inventories: Wetlands, 1–55, 2014.
Kechavarzi, C., Dawson, Q., Leeds-Harrison, P. B., Szatyłowicz, J., and
Gnatowski, T.: Water-table management in lowland UK peat soils and its
potential impact on CO
2 emission, Soil Use Manag., 23, 359–367,
https://doi.org/10.1111/j.1475-2743.2007.00125.x, 2007.
Kechavarzi, C., Dawson, Q., Bartlett, M., and Leeds-Harrison, P. B.: The
role of soil moisture, temperature and nutrient amendment on CO
2 efflux from
agricultural peat soil microcosms, Geoderma, 154, 203–210,
https://doi.org/10.1016/j.geoderma.2009.02.018, 2010.
Leifeld, J. and Menichetti, L.: The underappreciated potential of peatlands in global climate change mitigation strategies /704/47/4113 /704/106/47 article, Nat. Commun., 9, 1071, https://doi.org/10.1038/s41467-018-03406-6, 2018.
Liu, H., Janssen, M., and Lennartz, B.: Changes in flow and transport
patterns in fen peat following soil degradation, Eur. J. Soil Sci., 67,
763–772, https://doi.org/10.1111/ejss.12380, 2016.
Mäkiranta, P., Laiho, R., Fritze, H., Hytönen, J., Laine, J., and
Minkkinen, K.: Indirect regulation of heterotrophic peat soil respiration by
water level via microbial community structure and temperature sensitivity,
Soil Biol. Biochem., 41, 695–703,
https://doi.org/10.1016/j.soilbio.2009.01.004, 2009.
Malik, A. A., Puissant, J., Buckeridge, K. M., Goodall, T., Jehmlich, N.,
Chowdhury, S., Gweon, H. S., Peyton, J. M., Mason, K. E., van Agtmaal, M.,
Blaud, A., Clark, I. M., Whitaker, J., Pywell, R. F., Ostle, N., Gleixner,
G., and Griffiths, R. I.: Land use driven change in soil pH affects
microbial carbon cycling processes, Nat. Commun., 9, 1–10,
https://doi.org/10.1038/s41467-018-05980-1, 2018.
Moyano, F. E., Manzoni, S., and Chenu, C.: Responses of soil heterotrophic
respiration to moisture availability: An exploration of processes and
models, Soil Biol. Biochem., 59, 72–85,
https://doi.org/10.1016/j.soilbio.2013.01.002, 2013.
Nugent, K. A., Strachan, I. B., Roulet, N. T., Strack, M., Frolking, S., and
Helbig, M.: Prompt active restoration of peatlands substantially reduces
climate impact, Environ. Res. Lett., 14, 124030,
https://doi.org/10.1088/1748-9326/ab56e6, 2019.
Parmentier, F. J. W., van der Molen, M. K., de Jeu, R. A. M., Hendriks, D.
M. D., and Dolman, A. J.: CO
2 fluxes and evaporation on a peatland in the
Netherlands appear not affected by water table fluctuations, Agric. For.
Meteorol., 149, 1201–1208, https://doi.org/10.1016/j.agrformet.2008.11.007,
2009.
Pagenkemper, S., Jansen-Minßen, F., Höper, H., Sieber, A. C., Minke, M., Heller, S., Lange, G., Schröder, U., Gatersleben, P., Giani, L., Landscheidt, S., Buchwald, R., and Kupke, L.: SWAMPS. Zwischenergebnisse der bisherigen Projektlaufzeit (Kernaussagen), Thünen-Institut-Institut für Agrarklimaschutz Report, 2021.
Philip, S. Y., Kew, S. F., Van Der Wiel, K., Wanders, N., Jan Van Oldenborgh, G., and Philip, S. Y.: Regional differentiation in climate change induced drought trends in the Netherlands, Environ. Res. Lett., 15, 094081, https://doi.org/10.1088/1748-9326/ab97ca, 2020.
Querner, E. P., Jansen, P. C., van den Akker, J. J. H., and Kwakernaak, C.:
Analysing water level strategies to reduce soil subsidence in Dutch peat
meadows, J. Hydrol., 446, 59–69,
https://doi.org/10.1016/j.jhydrol.2012.04.029, 2012.
Ratkowsky, D. A., Lowry, R. K., McMeekin, T. A., Stokes, A. N., and
Chandler, R. E.: Model for bacterial culture growth rate throughout the
entire biokinetic temperature range, J. Bacteriol., 154, 1222–1226,
https://doi.org/10.1128/jb.154.3.1222-1226.1983, 1983.
Säurich, A., Tiemeyer, B., Dettmann, U., and Don, A.: How do sand
addition, soil moisture and nutrient status influence greenhouse gas fluxes
from drained organic soils?, Soil Biol. Biochem., 135, 71–84,
https://doi.org/10.1016/j.soilbio.2019.04.013, 2019.
Šimunek, J., Šejna, M., and Van Genuchten, M. T.: The HYDRUS Software Package for Simulating One-, Two-, and Three-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Porous Media, PC Progress Hydrus 2D/3D Technical Manual II, 2022.
Šimůnek, J., M. Th. van Genuchten, and M. Šejna, The HYDRUS Software Package for Simulating One-, Two-, and Three-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Porous Media, PC Progress Hydrus 2D/3D Technical Manual II, 2022.
No DOI or ISBN available.
Tiemeyer, B., Albiac Borraz, E., Augustin, J., Bechtold, M., Beetz, S.,
Beyer, C., Drösler, M., Ebli, M., Eickenscheidt, T., Fiedler, S.,
Förster, C., Freibauer, A., Giebels, M., Glatzel, S., Heinichen, J.,
Hoffmann, M., Höper, H., Jurasinski, G., Leiber-Sauheitl, K.,
Peichl-Brak, M., Roßkopf, N., Sommer, M., and Zeitz, J.: High emissions
of greenhouse gases from grasslands on peat and other organic soils, Glob.
Chang. Biol., 22, 4134–4149, https://doi.org/10.1111/gcb.13303, 2016.
Tiemeyer, B., Freibauer, A., Borraz, E. A., Augustin, J., Bechtold, M.,
Beetz, S., Beyer, C., Ebli, M., Eickenscheidt, T., Fiedler, S., Förster,
C., Gensior, A., Giebels, M., Glatzel, S., Heinichen, J., Hoffmann, M.,
Höper, H., Jurasinski, G., Laggner, A., Leiber-Sauheitl, K.,
Peichl-Brak, M., and Drösler, M.: A new methodology for organic soils in
national greenhouse gas inventories: Data synthesis, derivation and
application, Ecol. Indic., 109, 105838,
https://doi.org/10.1016/j.ecolind.2019.105838, 2020.
van den Akker, J. J. H., Kuikman, P. J., de Vries, F., Hoving, I., Pleijter,
M., Hendriks, R. F. A., Wolleswinkel, R. J., Simões, R. T. L., and
Kwakernaak, C.: Emission of CO
2 from agricultural peat soils in the
netherlands and ways to limit this emission, Proc. 13th Int. Peat Congr.
After Wise Use – Futur. Peatlands, 1, 2–5, 2008.
van Genuchten, M. T.: A Closed-form Equation for Predicting the Hydraulic
Conductivity of Unsaturated Soils, Soil Sci. Soc. Am. J., 44, 892–898,
https://doi.org/10.2136/sssaj1980.03615995004400050002x, 1980.
van Huissteden, J., van den Bos, R., and Marticorena Alvarez, I.: Modelling
the effect of water-table management on CO
2 and CH
4 fluxes from peat soils,
Geol. en Mijnbouw/Netherlands J. Geosci., 85, 3–18,
https://doi.org/10.1017/S0016774600021399, 2006.
Veenendaal, E. M., Kolle, O., Leffelaar, P. A., Schrier-Uijl, A. P., Van Huissteden, J., Van Walsem, J., Möller, F., and Berendse, F.: CO
2 exchange and carbon balance in two grassland sites on eutrophic drained peat soils, Biogeosciences, 4, 1027–1040, https://doi.org/10.5194/bg-4-1027-2007, 2007.
Weideveld, S. T. J., Liu, W., Van Den Berg, M., Lamers, L. P. M., and Fritz,
C.: Conventional subsoil irrigation techniques do not lower carbon emissions
from drained peat meadows, 18, 3881–3902,
https://doi.org/10.5194/bg-18-3881-2021, 2021.
Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W., and Hunt, S. J.: Global
peatland dynamics since the Last Glacial Maximum, Geophys. Res. Lett., 37,
3–8, https://doi.org/10.1029/2010GL043584, 2010.