Articles | Volume 19, issue 24
https://doi.org/10.5194/bg-19-5927-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-5927-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Lagrangian and Eulerian time and length scales of mesoscale ocean chlorophyll from Bio-Argo floats and satellites
Department of Environmental Sciences, University of Virginia,
Charlottesville, VA, USA
Scott C. Doney
Department of Environmental Sciences, University of Virginia,
Charlottesville, VA, USA
Alice Della Penna
Institute of Marine Science, University of Auckland, Auckland, New
Zealand
School of Biological Sciences, University of Auckland, Auckland, New
Zealand
Emmanuel S. Boss
School of Marine Sciences, University of Maine, Orono, ME, USA
Peter Gaube
Applied Physics Laboratory, University of Washington, Seattle, WA, USA
Michael J. Behrenfeld
Department of Botany and Plant Pathology, Oregon State University,
Corvallis, OR, USA
David M. Glover
Department of Marine Chemistry and Geochemistry, Woods Hole
Oceanographic Institution, Woods Hole, MA, USA
Related authors
No articles found.
Guillaume Bourdin, Lee Karp-Boss, Fabien Lombard, Gabriel Gorsky, and Emmanuel Boss
Biogeosciences, 22, 3207–3233, https://doi.org/10.5194/bg-22-3207-2025, https://doi.org/10.5194/bg-22-3207-2025, 2025
Short summary
Short summary
Remote islands and atolls create unique oceanic processes that affect the surrounding waters, known as the island mass effect (IME). These processes input nutrients to the ocean surface, leading to an increasing phytoplankton concentration near islands. We combine data from various satellites and modeled currents to better track these changes. This reveals a larger IME impact than previously estimated, suggesting that islands play a more significant role in ocean food chains in subtropical regions.
Maxime Duranson, Léo Berline, Loïc Guilloux, Alice Della Penna, Mark D. Ohman, Sven Gastauer, Cédric Cotte, Daniela Bănaru, Théo Garcia, Maristella Berta, Andrea Doglioli, Gérald Gregori, Francesco D'Ovidio, and François Carlotti
EGUsphere, https://doi.org/10.5194/egusphere-2025-1125, https://doi.org/10.5194/egusphere-2025-1125, 2025
Short summary
Short summary
The zooplankton community was investigated using net sampling across the North Balearic Front at fine resolution. The front mostly acts as a zonal boundary between communities with a copepod dominated community to the north and a more diversified community to the south. The front itself showed lower biovolume and abundances. The main community difference occurred in the 0–100 m layer, while deeper layers were more homogeneous.
Elizabeth Westbrook, Peter Gaube, Emmett Culhane, Frederick Bingham, Astrid Pacini, Carlyn Schmidgall, Julian Schanze, and Kyla Drushka
EGUsphere, https://doi.org/10.5194/egusphere-2025-643, https://doi.org/10.5194/egusphere-2025-643, 2025
Short summary
Short summary
We develop a machine learning methods to detect and classify how much sea ice was present around our research vessel. We used a navigation radar common on many merchant vessels attached to a screen capture device. The captured images were classified using a convolutional neural network and the resulting classification were found to be in good agreement with direct observations and satellite-based products.
Kyla Drushka, Elizabeth Westbrook, Frederick M. Bingham, Peter Gaube, Suzanne Dickinson, Severine Fournier, Viviane Menezes, Sidharth Misra, Jaynice Pérez Valentín, Edwin J. Rainville, Julian J. Schanze, Carlyn Schmidgall, Andrey Shcherbina, Michael Steele, Jim Thomson, and Seth Zippel
Earth Syst. Sci. Data, 16, 4209–4242, https://doi.org/10.5194/essd-16-4209-2024, https://doi.org/10.5194/essd-16-4209-2024, 2024
Short summary
Short summary
The NASA SASSIE mission aims to understand the role of salinity in modifying sea ice formation in early autumn. The 2022 SASSIE campaign collected measurements of upper-ocean properties, including stratification (layering of the ocean) and air–sea fluxes in the Beaufort Sea. These data are presented here and made publicly available on the NASA Physical Oceanography Distributed Active Archive Center (PO.DAAC), along with code to manipulate the data and generate the figures presented herein.
Zhibo Shao, Yangchun Xu, Hua Wang, Weicheng Luo, Lice Wang, Yuhong Huang, Nona Sheila R. Agawin, Ayaz Ahmed, Mar Benavides, Mikkel Bentzon-Tilia, Ilana Berman-Frank, Hugo Berthelot, Isabelle C. Biegala, Mariana B. Bif, Antonio Bode, Sophie Bonnet, Deborah A. Bronk, Mark V. Brown, Lisa Campbell, Douglas G. Capone, Edward J. Carpenter, Nicolas Cassar, Bonnie X. Chang, Dreux Chappell, Yuh-ling Lee Chen, Matthew J. Church, Francisco M. Cornejo-Castillo, Amália Maria Sacilotto Detoni, Scott C. Doney, Cecile Dupouy, Marta Estrada, Camila Fernandez, Bieito Fernández-Castro, Debany Fonseca-Batista, Rachel A. Foster, Ken Furuya, Nicole Garcia, Kanji Goto, Jesús Gago, Mary R. Gradoville, M. Robert Hamersley, Britt A. Henke, Cora Hörstmann, Amal Jayakumar, Zhibing Jiang, Shuh-Ji Kao, David M. Karl, Leila R. Kittu, Angela N. Knapp, Sanjeev Kumar, Julie LaRoche, Hongbin Liu, Jiaxing Liu, Caroline Lory, Carolin R. Löscher, Emilio Marañón, Lauren F. Messer, Matthew M. Mills, Wiebke Mohr, Pia H. Moisander, Claire Mahaffey, Robert Moore, Beatriz Mouriño-Carballido, Margaret R. Mulholland, Shin-ichiro Nakaoka, Joseph A. Needoba, Eric J. Raes, Eyal Rahav, Teodoro Ramírez-Cárdenas, Christian Furbo Reeder, Lasse Riemann, Virginie Riou, Julie C. Robidart, Vedula V. S. S. Sarma, Takuya Sato, Himanshu Saxena, Corday Selden, Justin R. Seymour, Dalin Shi, Takuhei Shiozaki, Arvind Singh, Rachel E. Sipler, Jun Sun, Koji Suzuki, Kazutaka Takahashi, Yehui Tan, Weiyi Tang, Jean-Éric Tremblay, Kendra Turk-Kubo, Zuozhu Wen, Angelicque E. White, Samuel T. Wilson, Takashi Yoshida, Jonathan P. Zehr, Run Zhang, Yao Zhang, and Ya-Wei Luo
Earth Syst. Sci. Data, 15, 3673–3709, https://doi.org/10.5194/essd-15-3673-2023, https://doi.org/10.5194/essd-15-3673-2023, 2023
Short summary
Short summary
N2 fixation by marine diazotrophs is an important bioavailable N source to the global ocean. This updated global oceanic diazotroph database increases the number of in situ measurements of N2 fixation rates, diazotrophic cell abundances, and nifH gene copy abundances by 184 %, 86 %, and 809 %, respectively. Using the updated database, the global marine N2 fixation rate is estimated at 223 ± 30 Tg N yr−1, which triplicates that using the original database.
Yifan Guan, Gretchen Keppel-Aleks, Scott C. Doney, Christof Petri, Dave Pollard, Debra Wunch, Frank Hase, Hirofumi Ohyama, Isamu Morino, Justus Notholt, Kei Shiomi, Kim Strong, Rigel Kivi, Matthias Buschmann, Nicholas Deutscher, Paul Wennberg, Ralf Sussmann, Voltaire A. Velazco, and Yao Té
Atmos. Chem. Phys., 23, 5355–5372, https://doi.org/10.5194/acp-23-5355-2023, https://doi.org/10.5194/acp-23-5355-2023, 2023
Short summary
Short summary
We characterize spatial–temporal patterns of interannual variability (IAV) in atmospheric CO2 based on NASA’s Orbiting Carbon Observatory-2 (OCO-2). CO2 variation is strongly impacted by climate events, with higher anomalies during El Nino years. We show high correlation in IAV between space-based and ground-based CO2 from long-term sites. Because OCO-2 has near-global coverage, our paper provides a roadmap to study IAV where in situ observation is sparse, such as open oceans and remote lands.
Veronica Z. Berta, Lynn M. Russell, Derek J. Price, Chia-Li Chen, Alex K. Y. Lee, Patricia K. Quinn, Timothy S. Bates, Thomas G. Bell, and Michael J. Behrenfeld
Atmos. Chem. Phys., 23, 2765–2787, https://doi.org/10.5194/acp-23-2765-2023, https://doi.org/10.5194/acp-23-2765-2023, 2023
Short summary
Short summary
Amines are compounds emitted from a variety of marine and continental sources and were measured by aerosol mass spectrometry and Fourier transform infrared spectroscopy during the North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) cruises. Secondary continental and primary marine sources of amines were identified by comparisons to tracers. The results show that the two methods are complementary for investigating amines in the marine environment.
Rainer Kiko, Marc Picheral, David Antoine, Marcel Babin, Léo Berline, Tristan Biard, Emmanuel Boss, Peter Brandt, Francois Carlotti, Svenja Christiansen, Laurent Coppola, Leandro de la Cruz, Emilie Diamond-Riquier, Xavier Durrieu de Madron, Amanda Elineau, Gabriel Gorsky, Lionel Guidi, Helena Hauss, Jean-Olivier Irisson, Lee Karp-Boss, Johannes Karstensen, Dong-gyun Kim, Rachel M. Lekanoff, Fabien Lombard, Rubens M. Lopes, Claudie Marec, Andrew M. P. McDonnell, Daniela Niemeyer, Margaux Noyon, Stephanie H. O'Daly, Mark D. Ohman, Jessica L. Pretty, Andreas Rogge, Sarah Searson, Masashi Shibata, Yuji Tanaka, Toste Tanhua, Jan Taucher, Emilia Trudnowska, Jessica S. Turner, Anya Waite, and Lars Stemmann
Earth Syst. Sci. Data, 14, 4315–4337, https://doi.org/10.5194/essd-14-4315-2022, https://doi.org/10.5194/essd-14-4315-2022, 2022
Short summary
Short summary
The term
marine particlescomprises detrital aggregates; fecal pellets; bacterioplankton, phytoplankton and zooplankton; and even fish. Here, we present a global dataset that contains 8805 vertical particle size distribution profiles obtained with Underwater Vision Profiler 5 (UVP5) camera systems. These data are valuable to the scientific community, as they can be used to constrain important biogeochemical processes in the ocean, such as the flux of carbon to the deep sea.
Kevin J. Sanchez, Bo Zhang, Hongyu Liu, Matthew D. Brown, Ewan C. Crosbie, Francesca Gallo, Johnathan W. Hair, Chris A. Hostetler, Carolyn E. Jordan, Claire E. Robinson, Amy Jo Scarino, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Elizabeth B. Wiggins, Edward L. Winstead, Luke D. Ziemba, Georges Saliba, Savannah L. Lewis, Lynn M. Russell, Patricia K. Quinn, Timothy S. Bates, Jack Porter, Thomas G. Bell, Peter Gaube, Eric S. Saltzman, Michael J. Behrenfeld, and Richard H. Moore
Atmos. Chem. Phys., 22, 2795–2815, https://doi.org/10.5194/acp-22-2795-2022, https://doi.org/10.5194/acp-22-2795-2022, 2022
Short summary
Short summary
Atmospheric particle concentrations impact clouds, which strongly impact the amount of sunlight reflected back into space and the overall climate. Measurements of particles over the ocean are rare and expensive to collect, so models are necessary to fill in the gaps by simulating both particle and clouds. However, some measurements are needed to test the accuracy of the models. Here, we measure changes in particles in different weather conditions, which are ideal for comparison with models.
Hyewon Heather Kim, Jeff S. Bowman, Ya-Wei Luo, Hugh W. Ducklow, Oscar M. Schofield, Deborah K. Steinberg, and Scott C. Doney
Biogeosciences, 19, 117–136, https://doi.org/10.5194/bg-19-117-2022, https://doi.org/10.5194/bg-19-117-2022, 2022
Short summary
Short summary
Heterotrophic marine bacteria are tiny organisms responsible for taking up organic matter in the ocean. Using a modeling approach, this study shows that characteristics (taxonomy and physiology) of bacteria are associated with a subset of ecological processes in the coastal West Antarctic Peninsula region, a system susceptible to global climate change. This study also suggests that bacteria will become more active, in particular large-sized cells, in response to changing climates in the region.
Hyewon Heather Kim, Ya-Wei Luo, Hugh W. Ducklow, Oscar M. Schofield, Deborah K. Steinberg, and Scott C. Doney
Geosci. Model Dev., 14, 4939–4975, https://doi.org/10.5194/gmd-14-4939-2021, https://doi.org/10.5194/gmd-14-4939-2021, 2021
Short summary
Short summary
The West Antarctic Peninsula (WAP) is a rapidly warming region, revealed by multi-decadal observations. Despite the region being data rich, there is a lack of focus on ecosystem model development. Here, we introduce a data assimilation ecosystem model for the WAP region. Experiments by assimilating data from an example growth season capture key WAP features. This study enables us to glue the snapshots from available data sets together to explain the observations in the WAP.
Emilio Marañón, France Van Wambeke, Julia Uitz, Emmanuel S. Boss, Céline Dimier, Julie Dinasquet, Anja Engel, Nils Haëntjens, María Pérez-Lorenzo, Vincent Taillandier, and Birthe Zäncker
Biogeosciences, 18, 1749–1767, https://doi.org/10.5194/bg-18-1749-2021, https://doi.org/10.5194/bg-18-1749-2021, 2021
Short summary
Short summary
The concentration of chlorophyll is commonly used as an indicator of the abundance of photosynthetic plankton (phytoplankton) in lakes and oceans. Our study investigates why a deep chlorophyll maximum, located near the bottom of the upper, illuminated layer develops in the Mediterranean Sea. We find that the acclimation of cells to low light is the main mechanism involved and that this deep maximum represents also a maximum in the biomass and carbon fixation activity of phytoplankton.
Fei Chai, Yuntao Wang, Xiaogang Xing, Yunwei Yan, Huijie Xue, Mark Wells, and Emmanuel Boss
Biogeosciences, 18, 849–859, https://doi.org/10.5194/bg-18-849-2021, https://doi.org/10.5194/bg-18-849-2021, 2021
Short summary
Short summary
The unique observations by a Biogeochemical Argo float in the NW Pacific Ocean captured the impact of a super typhoon on upper-ocean physical and biological processes. Our result reveals typhoons can increase the surface chlorophyll through strong vertical mixing without bringing nutrients upward from the depth. The vertical redistribution of chlorophyll contributes little to enhance the primary production, which is contradictory to many former satellite-based studies related to this topic.
Kevin J. Sanchez, Bo Zhang, Hongyu Liu, Georges Saliba, Chia-Li Chen, Savannah L. Lewis, Lynn M. Russell, Michael A. Shook, Ewan C. Crosbie, Luke D. Ziemba, Matthew D. Brown, Taylor J. Shingler, Claire E. Robinson, Elizabeth B. Wiggins, Kenneth L. Thornhill, Edward L. Winstead, Carolyn Jordan, Patricia K. Quinn, Timothy S. Bates, Jack Porter, Thomas G. Bell, Eric S. Saltzman, Michael J. Behrenfeld, and Richard H. Moore
Atmos. Chem. Phys., 21, 831–851, https://doi.org/10.5194/acp-21-831-2021, https://doi.org/10.5194/acp-21-831-2021, 2021
Short summary
Short summary
Models describing atmospheric airflow were combined with satellite measurements representative of marine phytoplankton and other meteorological variables. These combined variables were compared to measured aerosol to identify upwind influences on aerosol concentrations. Results indicate that phytoplankton production rates upwind impact the aerosol mass. Also, results suggest that the condensation of mass onto short-lived large sea spray particles may be a significant sink of aerosol mass.
Cited articles
Abbott, M. R. and Letelier, R. M.: Decorrelation scales of chlorophyll as
observed from bio-optical drifters in the California Current, Deep-Sea Res.
Pt. II, 45, 1639–1667,
https://doi.org/10.1016/S0967-0645(98)80011-8, 1998.
ACRI GlobColour Team: GlobColour version R2019,
ACRI-ST [data set],
https://hermes.acri.fr (last access: 28 January 2022),
2020.
Argo Data Management Team: Argo user's manual, Ifremer,
https://doi.org/10.13155/29825, 2019.
Argo: Argo float data and metadata from Global Data Assembly Centre (Argo GDAC), SEANOE [data set], https://doi.org/10.17882/42182,
2021.
Ascani, F., Richards, K. J., Firing, E., Grant, S., Johnson, K. S., Jia, Y.,
Lukas, R., and Karl, D. M.: Physical and biological controls of nitrate
concentrations in the upper subtropical North Pacific Ocean, Deep-Sea Res.
Pt. II, 93, 119–134,
https://doi.org/10.1016/j.dsr2.2013.01.034, 2013.
Behrenfeld, M. J. and Boss, E. S.: Student's tutorial on bloom hypotheses in
the context of phytoplankton annual cycles, Glob. Change Biol., 24, 1–23,
https://doi.org/10.1111/gcb.13858, 2018.
Behrenfeld, M. J., Boss, E. S., Siegel, D. A., and Shea, D. M.: Carbon-based
ocean productivity and phytoplankton physiology from space, Global
Biogeochem. Cy., 19, GB1006, https://doi.org/10.1029/2004GB002299, 2005.
Behrenfeld, M. J., Moore, R. H., Hostetler, C. A., Graff, J., Gaube, P.,
Russell, L. M., Chen, G., Doney, S. C., Giovannoni, S., Liu, H., Proctor,
C., Bolaños, L. M., Baetge, N., Davie-Martin, C., Westberry, T. K.,
Bates, T. S., Bell, T. G., Bidle, K. D., Boss, E. S., Brooks, S. D., Cairns,
B., Carlson, C., Halsey, K., Harvey, E. L., Hu, C., Karp-Boss, L., Kleb, M.,
Menden-Deuer, S., Morison, F., Quinn, P. K., Scarino, A. J., Anderson, B.,
Chowdhary, J., Crosbie, E., Ferrare, R., Hair, J. W., Hu, Y., Janz, S.,
Redemann, J., Saltzman, E., Shook, M., Siegel, D. A., Wisthaler, A., Martin,
M. Y., and Ziemba, L.: The North Atlantic Aerosol and Marine Ecosystem Study
(NAAMES): Science Motive and Mission Overview, Front. Mar. Sci., 6, 122,
https://doi.org/10.3389/fmars.2019.00122, 2019.
Boss, E. S., Swift, D., Taylor, L., Brickley, P., Zaneveld, R., Riser, S.,
Perry, M. J., and Strutton, P. G.: Observations of pigment and particle
distributions in the western North Atlantic from an autonomous float and
ocean color satellite, Limnol. Oceanogr., 53, 2112–2122, 2008.
Briggs, N., Gudmundsson, K., Cetiníc, I., D'Asaro, E., Rehm, E., Lee,
C., and Perry, M. J.: A multi-method autonomous assessment of primary
productivity and export efficiency in the springtime North Atlantic,
Biogeosciences, 15, 4515–4532, https://doi.org/10.5194/bg-15-4515-2018,
2018.
Chai, F., Johnson, K. S., Claustre, H., Xing, X., Wang, Y., Boss, E. S.,
Riser, S., Fennel, K., Schofield, O., and Sutton, A.: Monitoring ocean
biogeochemistry with autonomous platforms, Nat. Rev. Earth Environ., 1, 315–326,
https://doi.org/10.1038/s43017-020-0053-y, 2020.
Chelton, D. B., Schlax, M. G., and Samelson, R. M.: Global observations of
nonlinear mesoscale eddies, Prog. Oceanogr., 91, 167–216,
https://doi.org/10.1016/j.pocean.2011.01.002, 2011.
Chenillat, F., Blanke, B., Grima, N., Franks, P. J. S., Capet, X., and
Rivière, P.: Quantifying tracer dynamics in moving fluids: a combined
Eulerian-Lagrangian approach, Front. Environ. Sci., 3, 43,
https://doi.org/10.3389/fenvs.2015.00043, 2015.
Claustre, H., Bishop, J., Boss, E. S., Stewart, B., Berthon, J.-F.,
Coatanoan, C., Johnson, K., Lotiker, A., Ulloa, O., Perry, M. J.,
D'Ortenzio, F., Hembise Fanton D'Andon, O., and Uitz, J.: Bio-optical
profiling floats as new observational tools for biogeochemical and ecosystem
studies, in: Proceedings of the “OceanObs'09: Sustained Ocean Observations
and Information for Society” Conference, Venice, Italy, 21–25 September
2009, edited by: Hall, J., Harrison, D. E., and Stammer, D., ESA, WPP-306, 1–7,
https://doi.org/10.5270/OceanObs09.cwp.17,
2010.
Copernicus Marine Environment Monitoring Service: Global ocean gridded L4 sea surface heights and derived variables reprocessed (1993–ongoing), Copernicus Marine Environment Monitoring Service [data set], https://doi.org/10.48670/moi-00148, 2021.
Della Penna, A. and Gaube, P.: Overview of (sub)mesoscale ocean dynamics for
the NAAMES field program, Front. Mar. Sci., 6, 384,
https://doi.org/10.3389/fmars.2019.00384, 2019.
Della Penna, A., De Monte, S., Kestenare, E., Guinet, C., and d'Ovidio, F.:
Quasi-planktonic behavior of foraging top marine predators, Sci. Rep., 5,
18063, https://doi.org/10.1038/srep18063, 2015.
Denman, K. L. and Abbott, M. R.: Time evolution of surface chlorophyll
patterns from cross-spectrum analysis of satellite color images, J. Geophys.
Res., 93, 6789–6798, https://doi.org/10.1029/JC093iC06p06789, 1988.
Denman, K. L. and Abbott, M. R.: Time scales of pattern evolution from
cross-spectrum analysis of advanced very high resolution radiometer and
coastal zone color scanner imagery, J. Geophys. Res., 99, 7433–7442, 1994.
Doney, S. C., Glover, D. M., McCue, S. J., and Fuentes, M.: Mesoscale
variability of sea-viewing wide field-of-view sensor (SeaWIFS) satellite
ocean color: Global patterns and spatial scales, J. Geophys. Res., 108,
3024, https://doi.org/10.1029/2001JC000843, 2003.
d'Ovidio, F., Monte, S. D., Penna, A. D., Cotté, C., and Guinet, C.:
Ecological implications of eddy retention in the open ocean: a Lagrangian
approach, J. Phys. Math. Theor., 46, 254023,
https://doi.org/10.1088/1751-8113/46/25/254023, 2013.
Eveleth, R., Glover, D. M., Long, M. C., Lima, I. D., Chase, A. P., and
Doney, S. C.: Assessing the Skill of a High-Resolution Marine Biophysical
Model Using Geostatistical Analysis of Mesoscale Ocean Chlorophyll
Variability From Field Observations and Remote Sensing, Front. Mar. Sci., 8,
1–10, https://doi.org/10.3389/fmars.2021.612764, 2021.
Gaube, P., McGillicuddy, D. J., Chelton, D. B., Behrenfeld, M. J., and
Strutton, P. G.: Regional variations in the influence of mesoscale eddies on
near-surface chlorophyll, J. Geophys. Res.-Ocean., 119, 8195–8220,
https://doi.org/10.1002/2014JC010111, 2014.
Glover, D. M., Jenkins, W. J., and Doney, S. C.: Modeling Methods for Marine
Science, Cambridge University Press, Cambridge, UK, 592 pp., ISBN: 978-0-521-86783-2, 2011.
Glover, D. M., Doney, S. C., Oestreich, W. K., and Tullo, A. W.:
Geostatistical analysis of mesoscale spatial variability and error in
SeaWiFS and MODIS/Aqua global ocean color data, J. Geophys. Res.-Ocean.,
123, 22–39, https://doi.org/10.1002/2017JC013023, 2018.
Gordon, H. and McCluney, W.: Estimation of the depth of sunlight penetration
in the sea for remote sensing, Appl. Opt., 14, 413–416,
https://doi.org/10.1364/AO.14.000413, 1975.
Graff, J. R. and Behrenfeld, M. J.: Photoacclimation responses in Subarctic
Atlantic Phytoplankton following a natural mixing-restratification event,
Front. Mar. Sci., 5, 1–11, https://doi.org/10.3389/fmars.2018.00209, 2018.
Graff, J. R., Westberry, T. K., Milligan, A. J., Brown, M. B., Dall'Olmo,
G., van Dongen-Vogels, V., Reifel, K. M., and Behrenfeld, M. J.: Analytical
phytoplankton carbon measurements spanning diverse ecosystems, Deep-Sea Res.
Pt. I, 102, 16–25,
https://doi.org/10.1016/j.dsr.2015.04.006, 2015.
Gruber, N., Doney, S. C., Emerson, S., Gilbert, D., Kobayashi, T.,
Körtzinger, A., Johnson, G. C., Johnson, K. S., Riser, S., and Ulloa,
O.: Adding oxygen to Argo: Developing a global in-situ observatory for ocean
deoxygenation and biogeochemistry, in: Proceedings of the “OceanObs'09:
Sustained Ocean Observations and Information for Society” Conference,
Venice, Italy, 21–25 September 2009., edited by: Hall, J., Harrison, D. E.,
and Stammer, D., ESA, WPP-306, 1–10,
https://doi.org/10.5270/OceanObs09.cwp.39, 2010.
Haentjens, N. and Boss, E.: Bio-Argo floats in the study area of NAAMES [data set],
http://misclab.umeoce.maine.edu/floats/, last access: 30 April 2020
Jönsson, B. F. and Salisbury, J. E.: Episodicity in phytoplankton
dynamics in a coastal region, Geophys. Res. Lett., 43, 5821–5828,
https://doi.org/10.1002/2016GL068683, 2016.
Jönsson, B. F., Salisbury, J. E., and Mahadevan, A.: Extending the use
and interpretation of ocean satellite data using Lagrangian modelling, Int.
J. Remote Sens., 30, 3331–3341, https://doi.org/10.1080/01431160802558758,
2009.
Jönsson, B. F., Salisbury, J. E., and Mahadevan, A.: Large variability
in continental shelf production of phytoplankton carbon revealed by
satellite, Biogeosciences, 8, 1213–1223,
https://doi.org/10.5194/bg-8-1213-2011, 2011.
Klein, P., Isern-Fontanet, J., Lapeyre, G., Roullet, G., Danioux, E.,
Chapron, B., Le Gentil, S., and Sasaki, H.: Diagnosis of vertical velocities
in the upper ocean from high resolution sea surface height, Geophys. Res.
Lett., 36, L12603, https://doi.org/10.1029/2009GL038359, 2009.
Kuhn, A. M., Dutkiewicz, S., Jahn, O., Clayton, S., Rynearson, T. A.,
Mazloff, M. R., and Barton, A. D.: Temporal and spatial scales of
correlation in marine phytoplankton communities, J. Geophys. Res.-Oceans,
124, 9417–9438, https://doi.org/10.1029/2019JC015331, 2019.
LaCasce, J. H.: Statistics from Lagrangian observations, Prog. Oceanogr.,
77, 1–29, https://doi.org/10.1016/j.pocean.2008.02.002, 2008.
Lacour, L., Ardyna, M., Stec, K. F., Claustre, H., Prieur, L., Poteau, A.,
Ribera D'Alcala, M., and Iudicone, D.: Unexpected winter phytoplankton
blooms in the North Atlantic subpolar gyre, Nat. Geosci., 10, 836–839,
https://doi.org/10.1038/NGEO3035, 2017.
Lapeyre, G. and Klein, P.: Dynamics of the upper oceanic layers in terms of
surface quasigeostrophy theory, J. Phys. Oceanogr., 36, 165–176,
https://doi.org/10.1175/JPO2840.1, 2006.
Lehahn, Y., d'Ovidio, F., Lévy, M., and Heifetz, E.: Stirring of the
northeast Atlantic spring bloom: A Lagrangian analysis based on
multisatellite data., J. Geophys. Res., 112, 1–15,
https://doi.org/10.1029/2006JC003927, 2007.
Lehahn, Y., Koren, I., Sharoni, S., d'Ovidio, F., Vardi, A., and Boss, E.
S.: Dispersion/dilution enhances phytoplankton blooms in low-nutrient
waters, Nat. Commun., 8, 1–8, https://doi.org/10.1038/ncomms14868, 2017.
Lévy, M., Jahn, O., Dutkiewicz, S., and Follows, M. J.: Phytoplankton
diversity and community structure affected by oceanic dispersal and
mesoscale turbulence, Limnol. Oceanogr. Fluid. Environ., 4, 67–84,
https://doi.org/10.1215/21573689-2768549, 2014.
Lévy, M., Franks, P. J. S., and Smith, K. S.: The role of submesoscale
currents in structuring marine ecosystems, Nat. Commun., 9, 4758,
https://doi.org/10.1038/s41467-018-07059-3, 2018.
Llort, J., Langlais, C., Matear, R., Moreau, S., Lenton, A., and Strutton,
P. G.: Evaluating southern ocean carbon eddy-pump from biogeochemical-Argo
floats, J. Geophys. Res.-Ocean., 123, 971–984,
https://doi.org/10.1002/2017JC012861, 2018.
Lumpkin, R. and Centurioni, L.: Global Drifter Program quality-controlled 6-hour interpolated data from ocean surface drifting buoys,
NOAA National Centers for Environmental Information [data set],
https://doi.org/10.25921/7ntx-z961, 2019.
Lumpkin, R., Treguier, A.-M., and Speer, K.: Lagrangian eddy scales in the
Northern Atlantic Ocean, J. Phys. Oceanogr., 32, 2425–2440, 2002.
Mahadevan, A.: The Impact of Submesoscale Physics on Primary Productivity of
Plankton, Annu. Rev. Mar. Sci., 8, 161–184,
https://doi.org/10.1146/annurev-marine-010814-015912, 2016.
Middleton, J. F.: Drifter spectra and diffusivities, J. Mar. Res., 43,
37–55, 1985.
Morel, A., Hout, Y., Gentili, B., Werdell, P. J., Hooker, S. B., and Franz,
B. A.: Examining the consistency of products derived from various ocean
color sensors in open ocean (Case 1) waters in the perspective of a
multi-sensor approach, Remote Sens. Environ., 111, 69–88,
https://doi.org/10.1016/j.rse.2007.03.012, 2007.
Philip, J. R.: Relation between Eulerian and Lagrangian Statistics, Phys.
Fluids Suppl., 10, 69–71, https://doi.org/10.1063/1.1762507, 1967.
Schmechtig, C., Claustre, H., Poteau, A., and D'Ortenzio, F.: Bio-Argo quality control manual for Chlorophyll-A concentration Version 1.1, Argo Data Management, 1–16, https://doi.org/10.13155/35385, 2018.
Smith, K. S.: The geography of linear baroclinic instability in Earth's
oceans, J. Mar. Res., 65, 655–683,
https://doi.org/10.1357/002224007783649484, 2007.
Smith, K. S. and Ferrari, R.: The Production and Dissipation of Compensated
Thermohaline Variance by Mesoscale Stirring, J. Phys. Oceanogr., 39,
2477–2501, https://doi.org/10.1175/2009JPO4103.1, 2009.
Sudre, J. and Morrow, R. A.: Global surface currents: a high-resolution
product for investigating ocean dynamics, Ocean Dynam., 58, 101–118,
https://doi.org/10.1007/s10236-008-0134-9, 2008.
Taburet, G., Sanchez-Roman, A., Ballarotta, M., Pujol, M.-I., Legeais, J.-F., Fournier, F., Faugere, Y., and Dibarboure, G.: DUACS DT2018: 25 years of reprocessed sea level altimetry products, Ocean Sci., 15, 1207–1224, https://doi.org/10.5194/os-15-1207-2019, 2019.
Taylor, G. I.: Diffusion by continuous movements, Proc. Math. Soc. Lond.,
20, 196–212, 1922.
Taylor, G. I.: The spectrum of turbulence, Proc. R. Soc. Math. Phys. Eng.
Sci., 164, 476–490, https://doi.org/10.1098/rspa.1938.0032, 1938.
van Sebille, E., Griffies, S. M., Abernathey, R., Adams, T. P., Berloff, P.,
Biastoch, A., Blanke, B., Chassignet, E. P., Cheng, Y., Cotter, C. J.,
Deleersnijder, E., Döös, K., Drake, H. F., Drijfhout, S., Gary, S.
F., Heemink, A. W., Kjellsson, J., Koszalka, I. M., Lange, M., Lique, C.,
MacGilchrist, G. A., Marsh, R., Mayorga Adame, C. G., McAdam, R., Nencioli,
F., Paris, C. B., Piggott, M. D., Polton, J. A., Rühs, S., Shah, S. H.
A. M., Thomas, M. D., Wang, J., Wolfram, P. J., Zanna, L., and Zika, J. D.:
Lagrangian ocean analysis: Fundamentals and practices, Ocean Model., 121,
49–75, https://doi.org/10.1016/j.ocemod.2017.11.008, 2018.
Xing, X., Claustre, H., Blain, S., D'Ortenzio, F., Antoine, D., Ras, J., and
Guinet, C.: Quenching correction for in vivo chlorophyll fluorescence
acquired by autonomous platforms: A case study with instrumented elephant
seals in the Kerguelen region (Southern Ocean), Limnol. Oceanogr. Methods,
10, 483–495, 2012.
Yang, B.: Seasonal relationship between net primary and net community
production in the subtropical gyres: Insights from satellite and Argo
profiling float measurements, Geophys. Res. Lett., 48, e2021GL093837,
https://doi.org/10.1029/2021GL093837, 2021.
Yang, B., Boss, E. S., Haëntjens, N., Long, M. C., Behrenfeld, M. J.,
Eveleth, R., and Doney, S. C.: Controls on the North Atlantic Phytoplankton
Bloom: Insights from Profiling Float Measurements, Front. Mar. Sci., 7, 139,
https://doi.org/10.3389/fmars.2020.00139, 2020.
Zaiss, J., Boyd, P. W., Doney, S. C., Havenhand, J. N., and Levine, N. M.:
Impact of Lagrangian Sea Surface Temperature Variability on Southern Ocean
Phytoplankton Community Growth Rates, Global Biogeochem. Cy., 35,
e2020GB006880, https://doi.org/10.1029/2020GB006880, 2021.
Zhang, Z., Qiu, B., Klein, P., and Travis, S.: The influence of geostrophic
strain on oceanic ageostrophic motion and surface chlorophyll, Nat. Commun.,
10, 1–11, https://doi.org/10.1038/s41467-019-10883-w, 2019.
Short summary
As phytoplankton (small, drifting photosynthetic organisms) drift with ocean currents, biomass accumulation rates should be evaluated in a Lagrangian (observer moves with a fluid parcel) as opposed to an Eulerian (observer is stationary) framework. Here, we use profiling floats and surface drifters combined with satellite data to analyse time and length scales of chlorophyll concentrations (a proxy for biomass) and of velocity to quantify how phytoplankton variability is related to water motion.
As phytoplankton (small, drifting photosynthetic organisms) drift with ocean currents, biomass...
Altmetrics
Final-revised paper
Preprint