Articles | Volume 20, issue 14
https://doi.org/10.5194/bg-20-3073-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-3073-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Absence of photophysiological response to iron addition in autumn phytoplankton in the Antarctic sea-ice zone
Asmita Singh
Department of Earth Sciences, University of Stellenbosch,
Stellenbosch, South Africa
Southern Ocean Carbon–Climate Observatory, CSIR, Cape Town, South
Africa
Susanne Fietz
Department of Earth Sciences, University of Stellenbosch,
Stellenbosch, South Africa
Sandy J. Thomalla
Southern Ocean Carbon–Climate Observatory, CSIR, Cape Town, South
Africa
Marine and Antarctic Research for Innovation and Sustainability, University of Cape Town, Cape Town, South Africa
Nicolas Sanchez
Department of Chemistry, Norwegian University of Science and
Technology (NTNU), Trondheim, Norway
Murat V. Ardelan
Department of Chemistry, Norwegian University of Science and
Technology (NTNU), Trondheim, Norway
Sébastien Moreau
Norwegian Polar Institute (NPI), Tromsø, Norway
Centre for Ice, Cryosphere, Carbon and Climate, Department of
Geosciences, UiT, The Arctic University of Norway, Tromsø, Norway
Hanna M. Kauko
Norwegian Polar Institute (NPI), Tromsø, Norway
Agneta Fransson
Norwegian Polar Institute (NPI), Tromsø, Norway
Melissa Chierici
Institute of Marine Research, Fram Centre, Tromsø, Norway
Saumik Samanta
Department of Earth Sciences, University of Stellenbosch,
Stellenbosch, South Africa
Thato N. Mtshali
Oceans and Coasts, Department of Forestry, Fisheries, and the Environment,
Cape Town, South Africa
Alakendra N. Roychoudhury
Department of Earth Sciences, University of Stellenbosch,
Stellenbosch, South Africa
Thomas J. Ryan-Keogh
CORRESPONDING AUTHOR
Southern Ocean Carbon–Climate Observatory, CSIR, Cape Town, South
Africa
Related authors
Hanna M. Kauko, Philipp Assmy, Ilka Peeken, Magdalena Różańska-Pluta, Józef M. Wiktor, Gunnar Bratbak, Asmita Singh, Thomas J. Ryan-Keogh, and Sebastien Moreau
Biogeosciences, 19, 5449–5482, https://doi.org/10.5194/bg-19-5449-2022, https://doi.org/10.5194/bg-19-5449-2022, 2022
Short summary
Short summary
This article studies phytoplankton (microscopic
plantsin the ocean capable of photosynthesis) in Kong Håkon VII Hav in the Southern Ocean. Different species play different roles in the ecosystem, and it is therefore important to assess the species composition. We observed that phytoplankton blooms in this area are formed by large diatoms with strong silica armors, which can lead to high silica (and sometimes carbon) export to depth and be important prey for krill.
Guillaume Liniger, Delphine Lannuzel, Sébastien Moreau, Michael S. Dinniman, and Peter G. Strutton
EGUsphere, https://doi.org/10.5194/egusphere-2025-3149, https://doi.org/10.5194/egusphere-2025-3149, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Our study investigates the links between the phytoplankton bloom and environmental parameters in the Amundsen polynyas (areas of open water within sea ice). Between 1998 and 2017, we find that changes in melting ice shelves may have different impacts on biological productivity between the Pine Island (PIP) and Amundsen Sea (ASP) polynyas. While ice shelf melting seems to play an important role for phytoplankton growth in the ASP, light and warmer waters appear to be more important in the PIP.
Sarah-Anne Nicholson, Thomas J. Ryan-Keogh, Sandy J. Thomalla, Nicolette Chang, and Marié E. Smith
Earth Syst. Sci. Data, 17, 1959–1975, https://doi.org/10.5194/essd-17-1959-2025, https://doi.org/10.5194/essd-17-1959-2025, 2025
Short summary
Short summary
The annual widespread growth of phytoplankton blooms across the global ocean has far-reaching impacts on food security, ecosystem health, and climate. This study uses satellite-derived observations to generate long-term, sustained indices of phytoplankton phenology, capturing the timing, variability, and magnitude of blooms across the global ocean. These indices support the effective monitoring and management of marine resources and help assess the impacts of climate change on ocean ecosystems.
Letizia Tedesco, Giulia Castellani, Pedro Duarte, Meibing Jin, Sebastien Moreau, Eric Mortenson, Benjamin Tobey Saenz, Nadja Steiner, and Martin Vancoppenolle
EGUsphere, https://doi.org/10.5194/egusphere-2025-1107, https://doi.org/10.5194/egusphere-2025-1107, 2025
Short summary
Short summary
Sea ice is home to tiny algae that support polar marine life, but understanding how they grow and interact with their environment remains challenging. We compared six computer models that simulate these algae and nutrients in sea ice, testing them against real-world data from Arctic sea ice. Our results show that while models can capture algal growth, they struggle to represent nutrient changes. Improving these models will help in understanding how climate change affects polar marine ecosystems.
Julius Lauber, Tore Hattermann, Laura de Steur, Elin Darelius, and Agneta Fransson
Ocean Sci., 20, 1585–1610, https://doi.org/10.5194/os-20-1585-2024, https://doi.org/10.5194/os-20-1585-2024, 2024
Short summary
Short summary
Recent studies have highlighted the potential vulnerability of the East Antarctic Ice Sheet to atmospheric and oceanic changes. We present new insights from observations from three oceanic moorings below Fimbulisen Ice Shelf from 2009 to 2023. We find that relatively warm water masses reach below the ice shelf both close to the surface and at depth with implications for the basal melting of Fimbulisen.
Morgane M. G. Perron, Susanne Fietz, Douglas S. Hamilton, Akinori Ito, Rachel U. Shelley, and Mingjin Tang
Atmos. Meas. Tech., 17, 165–166, https://doi.org/10.5194/amt-17-165-2024, https://doi.org/10.5194/amt-17-165-2024, 2024
Short summary
Short summary
The solubility of vital and toxic trace elements delivered by the atmosphere determines their potential to fertilise or limit ocean productivity. A poor understanding of aeolian trace element solubility and the absence of a standard method to define this parameter hinder accurate model representation of the impact of atmospheric deposition on ocean productivity in a changing climate. The inter-journal special issue aims at “Reducing Uncertainty in Soluble aerosol Trace Element Deposition”.
Thomas J. Ryan-Keogh, Sandy J. Thomalla, Nicolette Chang, and Tumelo Moalusi
Earth Syst. Sci. Data, 15, 4829–4848, https://doi.org/10.5194/essd-15-4829-2023, https://doi.org/10.5194/essd-15-4829-2023, 2023
Short summary
Short summary
Oceanic productivity has been highlighted as an important environmental indicator of climate change in comparison to other existing metrics. However, the availability of these data to assess trends and trajectories is plagued with issues, such as application to only a single satellite reducing the time period for assessment. We have applied multiple algorithms to the longest ocean colour record to provide a record for assessing climate-change-driven trends.
Christoph Heinze, Thorsten Blenckner, Peter Brown, Friederike Fröb, Anne Morée, Adrian L. New, Cara Nissen, Stefanie Rynders, Isabel Seguro, Yevgeny Aksenov, Yuri Artioli, Timothée Bourgeois, Friedrich Burger, Jonathan Buzan, B. B. Cael, Veli Çağlar Yumruktepe, Melissa Chierici, Christopher Danek, Ulf Dieckmann, Agneta Fransson, Thomas Frölicher, Giovanni Galli, Marion Gehlen, Aridane G. González, Melchor Gonzalez-Davila, Nicolas Gruber, Örjan Gustafsson, Judith Hauck, Mikko Heino, Stephanie Henson, Jenny Hieronymus, I. Emma Huertas, Fatma Jebri, Aurich Jeltsch-Thömmes, Fortunat Joos, Jaideep Joshi, Stephen Kelly, Nandini Menon, Precious Mongwe, Laurent Oziel, Sólveig Ólafsdottir, Julien Palmieri, Fiz F. Pérez, Rajamohanan Pillai Ranith, Juliano Ramanantsoa, Tilla Roy, Dagmara Rusiecka, J. Magdalena Santana Casiano, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Miriam Seifert, Anna Shchiptsova, Bablu Sinha, Christopher Somes, Reiner Steinfeldt, Dandan Tao, Jerry Tjiputra, Adam Ulfsbo, Christoph Völker, Tsuyoshi Wakamatsu, and Ying Ye
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-182, https://doi.org/10.5194/bg-2023-182, 2023
Revised manuscript not accepted
Short summary
Short summary
For assessing the consequences of human-induced climate change for the marine realm, it is necessary to not only look at gradual changes but also at abrupt changes of environmental conditions. We summarise abrupt changes in ocean warming, acidification, and oxygen concentration as the key environmental factors for ecosystems. Taking these abrupt changes into account requires greenhouse gas emissions to be reduced to a larger extent than previously thought to limit respective damage.
Hanna M. Kauko, Philipp Assmy, Ilka Peeken, Magdalena Różańska-Pluta, Józef M. Wiktor, Gunnar Bratbak, Asmita Singh, Thomas J. Ryan-Keogh, and Sebastien Moreau
Biogeosciences, 19, 5449–5482, https://doi.org/10.5194/bg-19-5449-2022, https://doi.org/10.5194/bg-19-5449-2022, 2022
Short summary
Short summary
This article studies phytoplankton (microscopic
plantsin the ocean capable of photosynthesis) in Kong Håkon VII Hav in the Southern Ocean. Different species play different roles in the ecosystem, and it is therefore important to assess the species composition. We observed that phytoplankton blooms in this area are formed by large diatoms with strong silica armors, which can lead to high silica (and sometimes carbon) export to depth and be important prey for krill.
Julian Gutt, Stefanie Arndt, David Keith Alan Barnes, Horst Bornemann, Thomas Brey, Olaf Eisen, Hauke Flores, Huw Griffiths, Christian Haas, Stefan Hain, Tore Hattermann, Christoph Held, Mario Hoppema, Enrique Isla, Markus Janout, Céline Le Bohec, Heike Link, Felix Christopher Mark, Sebastien Moreau, Scarlett Trimborn, Ilse van Opzeeland, Hans-Otto Pörtner, Fokje Schaafsma, Katharina Teschke, Sandra Tippenhauer, Anton Van de Putte, Mia Wege, Daniel Zitterbart, and Dieter Piepenburg
Biogeosciences, 19, 5313–5342, https://doi.org/10.5194/bg-19-5313-2022, https://doi.org/10.5194/bg-19-5313-2022, 2022
Short summary
Short summary
Long-term ecological observations are key to assess, understand and predict impacts of environmental change on biotas. We present a multidisciplinary framework for such largely lacking investigations in the East Antarctic Southern Ocean, combined with case studies, experimental and modelling work. As climate change is still minor here but is projected to start soon, the timely implementation of this framework provides the unique opportunity to document its ecological impacts from the very onset.
Mhlangabezi Mdutyana, Tanya Marshall, Xin Sun, Jessica M. Burger, Sandy J. Thomalla, Bess B. Ward, and Sarah E. Fawcett
Biogeosciences, 19, 3425–3444, https://doi.org/10.5194/bg-19-3425-2022, https://doi.org/10.5194/bg-19-3425-2022, 2022
Short summary
Short summary
Nitrite-oxidizing bacteria in the winter Southern Ocean show a high affinity for nitrite but require a minimum (i.e., "threshold") concentration before they increase their rates of nitrite oxidation significantly. The classic Michaelis–Menten model thus cannot be used to derive the kinetic parameters, so a modified equation was employed that also yields the threshold nitrite concentration. Dissolved iron availability may play an important role in limiting nitrite oxidation.
Natasha René van Horsten, Hélène Planquette, Géraldine Sarthou, Thomas James Ryan-Keogh, Nolwenn Lemaitre, Thato Nicholas Mtshali, Alakendra Roychoudhury, and Eva Bucciarelli
Biogeosciences, 19, 3209–3224, https://doi.org/10.5194/bg-19-3209-2022, https://doi.org/10.5194/bg-19-3209-2022, 2022
Short summary
Short summary
The remineralisation proxy, barite, was measured along 30°E in the southern Indian Ocean during early austral winter. To our knowledge this is the first reported Southern Ocean winter study. Concentrations throughout the water column were comparable to observations during spring to autumn. By linking satellite primary production to this proxy a possible annual timescale is proposed. These findings also suggest possible carbon remineralisation from satellite data on a basin scale.
Filippa Fransner, Friederike Fröb, Jerry Tjiputra, Nadine Goris, Siv K. Lauvset, Ingunn Skjelvan, Emil Jeansson, Abdirahman Omar, Melissa Chierici, Elizabeth Jones, Agneta Fransson, Sólveig R. Ólafsdóttir, Truls Johannessen, and Are Olsen
Biogeosciences, 19, 979–1012, https://doi.org/10.5194/bg-19-979-2022, https://doi.org/10.5194/bg-19-979-2022, 2022
Short summary
Short summary
Ocean acidification, a direct consequence of the CO2 release by human activities, is a serious threat to marine ecosystems. In this study, we conduct a detailed investigation of the acidification of the Nordic Seas, from 1850 to 2100, by using a large set of samples taken during research cruises together with numerical model simulations. We estimate the effects of changes in different environmental factors on the rate of acidification and its potential effects on cold-water corals.
Tobias Reiner Vonnahme, Emma Persson, Ulrike Dietrich, Eva Hejdukova, Christine Dybwad, Josef Elster, Melissa Chierici, and Rolf Gradinger
The Cryosphere, 15, 2083–2107, https://doi.org/10.5194/tc-15-2083-2021, https://doi.org/10.5194/tc-15-2083-2021, 2021
Short summary
Short summary
We describe the impact of subglacial discharge in early spring on a sea-ice-covered fjord on Svalbard by comparing a site influenced by a shallow tidewater glacier with two reference sites. We found a moderate under-ice phytoplankton bloom at the glacier front, which we attribute to subglacial upwelling of nutrients; a strongly stratified surface layer; and higher light penetration. In contrast, sea ice algae biomass was limited by low salinities and brine volumes.
Cited articles
Ardyna, M., Lacour, L., Sergi, S., D'Ovidio, F., Sallée, J. B.,
Rembauville, M., Blain, S., Tagliabue, A., Schlitzer, R., Jeandel, C., and
Arrigo, K.R.: Hydrothermal vents trigger massive phytoplankton blooms in the
Southern Ocean, Nat. Commun., 10, 2451,
https://doi.org/10.1038/s41467-019-09973-6, 2019.
Assmy, P., Fernández-Méndez, M., Duarte, P., Meyer, A., Randelhoff,
A., Mundy, C. J., Olsen, L. M., Kauko, H. M., Bailey, A., Chierici, M., and
Cohen, L.: Leads in Arctic pack ice enable early phytoplankton blooms below
snow-covered sea ice, Sci. Rep., 7, 40850,
https://doi.org/10.1038/srep40850, 2017.
Bazzani, E., Lauritano, C., and Saggiomo, M.: Southern Ocean Iron Limitation
of Primary Production between Past Knowledge and Future Projections, Journal
of Marine Science and Engineering, 11, 272,
https://doi.org/10.3390/jmse11020272, 2023.
Biggs, T. E., Huisman, J., and Brussaard, C. P.: Viral lysis modifies seasonal
phytoplankton dynamics and carbon flow in the Southern Ocean, ISME
J., 15, 3615–3622, https://doi.org/10.1038/s41396-021-01033-6,
2021.
Biggs, T. E. G., Rozema, P. D., Evans, C., Timmermans, K. R., Meredith, M. P.,
Pond, D. W., and Brussaard, C. P. D.: Control of Antarctic phytoplankton
community composition and standing stock by light availability, Polar
Biol., 45, 1635–1653, https://doi.org/10.1007/s00300-022-03094-5, 2022.
Blain, S., Sarthou, G., and Laan, P.: Distribution of dissolved iron during
the natural iron-fertilization experiment KEOPS (Kerguelen Plateau, Southern
Ocean), Deep-Sea Res. Pt. II, 55, 594–605,
https://doi.org/10.1016/j.dsr2.2007.12.028, 2008.
Bowie, A. R., Lannuzel, D., Remenyi, T. A., Wagener, T., Lam, P. J., Boyd,
P. W., Guieu, C., Townsend, A. T., and Trull, T. W.: Biogeochemical iron
budgets of the Southern Ocean south of Australia: Decoupling of iron and
nutrient cycles in the subantarctic zone by the summertime supply, Global
Biogeochem. Cy., 23, GB4034, https://doi.org/10.1029/2009GB003500, 2009.
Boyd, P. W. and Abraham, E. R.: Iron-mediated changes in phytoplankton
photosynthetic competence during SOIREE, Deep-Sea Res. Pt. II, 48, 2529–2550,
https://doi.org/10.1016/S0967-0645(01)00007-8, 2001.
Boyd, P. W. and Ellwood, M. J.: The biogeochemical cycle of iron in the
ocean, Nat. Geosci., 3, 675–682, https://doi.org/10.1038/ngeo964, 2010.
Boyd, P. W., Jickells, T., Law, C. S., Blain, S., Boyle, E. A., Buesseler,
K. O., Coale, K. H., Cullen, J. J., de Baar, H. J. W., Follows, M., Harvey, M.,
Lancelot, C., Levasseur, M., Owens, N. P. J., Pollard, R., Rivkin, R. B.,
Sarmiento, J., Schoemann, V., Smetacek, V., Takeda, S., Tsuda, A., Turner,
S., and Watson, A. J.: Mesoscale Iron Enrichment Experiments 1993-2005:
Synthesis and Future Directions, Science, 315, 612–617,
https://doi.org/10.1126/science.1131669, 2007.
Boyd, P. W., Ibisanmi, E., Sander, S. G., Hunter, K. A., and Jackson, G. A.:
Remineralization of upper ocean particles: Implications for iron
biogeochemistry, Limnol. Oceanogr., 55, 1271–1288,
https://doi.org/10.4319/lo.2010.55.3.1271, 2010a.
Boyd, P. W., Strzepek, R., Fu, F., and Hutchins, D. A.: Environmental control
of open-ocean phytoplankton groups: Now and in the future, Limnol. Oceanogr.
55, 1353–1376, https://doi.org/10.4319/lo.2010.55.3.1353, 2010b.
Boyd, P. W., Arrigo, K. R., Strzepek, R., and Van Dijken, G. L.: Mapping
phytoplankton iron utilization: Insights into Southern Ocean supply
mechanisms, J. Geophys. Res.-Ocean, 117, C06009,
https://doi.org/10.1029/2011JC007726, 2012.
Bressac, M., Guieu, C., Ellwood, M. J., Tagliabue, A., Wagener, T.,
Laurenceau-Cornec, E. C., Whitby, H., Sarthou, G., and Boyd, P. W.: Resupply
of mesopelagic dissolved iron controlled by particulate iron composition,
Nat. Geosci., 12, 995–1000, https://doi.org/10.1038/s41561-019-0476-6, 2019.
Brodzik, M. J. and Stewart, J. S.: Near-Real-Time SSM/I-SSMIS EASE-Grid Daily
Global Ice Concentration and Snow Extent, Version 5, Distributed by NASA
National Snow and Ice Data Center Distributed Active Archive Center [data set],
https://doi.org/10.5067/3KB2JPLFPK3R, 2016.
Brown, M., Penta, W. B., Jones, B., and Behrenfeld, M.: The ratio of
single-turnover to multiple-turnover fluorescence varies predictably with
growth rate and cellular chlorophyll in the green alga Dunaliella
tertiolecta, Photosynth. Res., 140, 65–76,
https://doi.org/10.1007/s11120-018-00612-7, 2019.
Browning, T. J., Bouman, H. A., Moore, C. M., Schlosser, C., Tarran, G. A., Woodward, E. M. S., and Henderson, G. M.: Nutrient regimes control phytoplankton ecophysiology in the South Atlantic, Biogeosciences, 11, 463–479, https://doi.org/10.5194/bg-11-463-2014, 2014a.
Browning, T. J., Bouman, H. A., Henderson, G. M., Mather, T. A., Pyle, D. M.,
Schlosser, C., Woodward, E. M. S., and Moore, C. M.: Strong responses of
Southern Ocean phytoplankton communities to volcanic ash, Geophys.
Res. Lett., 41, 2851–2857, https://doi.org/10.1002/2014GL059364,
2014b.
Browning, T. J., Achterberg, E. P., Engel, A., and Mawji, E.: Manganese
co-limitation of phytoplankton growth and major nutrient drawdown in the
Southern Ocean, Nat. Commun., 12, 884, https://doi.org/10.1038/s41467-021-21122-6, 2021.
Chierici, M. and Fransson, A.: Nutrient data (nitrate, phosphate and
silicate) in the eastern Weddell gyre, Kong Haakon VII Hav, and the coast of
Dronning Maud Land in the Atlantic sector of the Southern Ocean in March
2019, Norwegian Marine Data Centre [data set],
https://doi.org/10.21335/NMDC-1503664923, 2020.
Christaki, U., Gueneugues, A., Liu, Y., Blain, S., Catala, P., Colombet, J.,
Debeljak, P., Jardillier, L., Irion, S., Planchon, F., and Sassenhagen, I.:
Seasonal microbial food web dynamics in contrasting Southern Ocean
productivity regimes, Limnol. Oceanogr., 66, 108–122,
https://doi.org/10.1002/lno.11591, 2021.
Coale, K. H., Worsfold, P., and de Baar, H.: Iron age in oceanography, EOS
T. Am. Geophys. Un., 80, 377–382,
https://doi.org/10.1029/EO080i034p00377-02, 1999.
Cochlan, W. P.: Nitrogen uptake in the Southern Ocean, in: Nitrogen in the Marine Environment, edited by: Capone, D. G., Bronk, D. A., Mulholland, M. R., and E. J. Carpenter, 2nd Edn., Academic Press, Elsevier, https://doi.org/10.1016/B978-0-12-372522-6.00012-8, 2008
Cullen, J. J. and Davis, R. F.: The Blank can Make a Big Difference in
Oceanographic Measurements, Limnol. Oceanogr. Bull., 12, 29–35,
https://doi.org/10.1002/lob.200413229, 2003.
Cutter, G., Casciotti, K., Croot, P., Geibert, W., Heimbürger, L.-E.,
Lohan, M., Van De Flierdt, T., and Planquette, H.: Sampling and Sample-handling Protocols for GEOTRACES Cruises, Version 3, August 2017, Toulouse, France, GEOTRACES International Project Office,
https://doi.org/10.25607/OBP-2, 2017.
de Baar, H. J., Buma, A. G., Nolting, R., Cadee, G., Jacques, G., and
Treguer, P.: On iron limitation of the Southern Ocean: experimental
observations in the Weddell and Scotia Seas, Mar. Ecol.-Prog. Ser., 65,
105–122, https://doi.org/10.3354/meps065105, 1990.
de Baar, H. J. W., Boyd, P. W., Coale, K. H., Landry, M. R., Tsuda, A., Assmy,
P., Bakker, D. C. E., Bozec, Y., Barber, R. T., Brzezinski, M. A., Buesseler,
K. O., Boyé, M., Croot, P. L., Gervais, F., Gorbunov, M. Y., Harrison,
P. J., Hiscock, W. T., Laan, P., Lancelot, C., Law, C. S., Levasseur, M.,
Marchetti, A., Millero, F. J., Nishioka, J., Nojiri, Y., van Oijen, T.,
Riebesell, U., Rijkenberg, M. J. A., Saito, H., Takeda, S., Timmermans, K. R.,
Veldhuis, M. J. W., Waite, A. M., and Wong, C. S.: Synthesis of iron
fertilization experiments: From the iron age in the age of enlightenment, J.
Geophys. Res.-Ocean, 110, 1–24, https://doi.org/10.1029/2004JC002601,
2005.
Deppeler, S. L. and Davidson, A. T.: Southern Ocean Phytoplankton in a
Changing Climate, Front. Mar. Sci. 4, 40,
https://doi.org/10.3389/fmars.2017.00040, 2017.
Diaz, J. M. and Plummer, S.: Production of extracellular reactive oxygen
species by phytoplankton: past and future directions, J Plankton Res., 40,
655–666, https://doi.org/10.1093/plankt/fby039, 2018.
Ellwood, M. J., Boyd, P. W., and Sutton, P.: Winter-time dissolved iron and
nutrient distributions in the Subantarctic Zone from 40–52S; 155–160E,
Geophys. Res. Lett., 35, L11604, https://doi.org/10.1029/2008GL033699,
2008.
Evans, C. and Brussaard, C. P. D.: Regional variation in lytic and lysogenic
viral infection in the Southern Ocean and its contribution to biogeochemical
cycling, Appl. Environ. Microb., 78, 6741–6748,
https://doi.org/10.1128/AEM.01388-12, 2012.
Fourquez, M., Obernosterer, I., Davies, D. M., Trull, T. W., and Blain, S.: Microbial iron uptake in the naturally fertilized waters in the vicinity of the Kerguelen Islands: phytoplankton–bacteria interactions, Biogeosciences, 12, 1893–1906, https://doi.org/10.5194/bg-12-1893-2015, 2015.
Geider, R. J.: Quantitative phytoplankton physiology: implications for
primary production and phytoplankton growth, ICES Mar. Sci. Symp., 197,
52–62, 1993.
Geider, R. J. and La Roche, J.: The role of iron in phytoplankton
photosynthesis, and the potential for iron-limitation of primary
productivity in the sea, Photosynth. Res., 39, 275–301,
https://doi.org/10.1007/BF00014588, 1994.
Grasshoff, K., Kremling, K., and Ehrhardt, M.: Methods of Seawater Analysis,
3rd Edn., Hoboken, NJ, Wiley-VCH, ISBN 978-3-527-61399-1, 2009.
Gundersen, K., Møgster, J. S., Lien, V. S., Ershova, E., Lunde, L. F.,
Arnesen, H., and Olsen, A. K.: Thirty Years of Nutrient Biogeochemistry in
the Barents Sea and the adjoining Arctic Ocean, 1990–2019, Sci. Data,
9, 649, https://doi.org/10.1038/s41597-022-01781-w, 2022.
Hauck, J., Völker, C., Wolf-Gladrow, D. A., Laufkötter, C., Vogt, M.,
Aumont, O., Bopp, L., Buitenhuis, E. T., Doney, S. C., Dunne, J., and Gruber,
N.: On the Southern Ocean CO2 uptake and the role of the biological carbon
pump in the 21st century, Global Biogeochem. Cy., 29, 1451–1470,
https://doi.org/10.1002/2015GB005140, 2015.
Hawco, N. J., Tagliabue, A., and Twining, B. S.: Manganese Limitation of
Phytoplankton Physiology and Productivity in the Southern Ocean, Global
Biogeochem. Cy., 36, e2022GB007382,
https://doi.org/10.1029/2022GB007382, 2022.
Hinz, D. J., Nielsdóttir, M. C., Korb, R. E., Whitehouse, M. J., Poulton,
A. J., Moore, C. M., Achterberg, E. P., and Bibby, T. S.: Responses of
microplankton community structure to iron addition in the Scotia Sea, Deep-Res. Pt. II, 59–60, 36–46,
https://doi.org/10.1016/j.dsr2.2011.08.006, 2012.
Hiscock, M. R., Lance, V. P., Apprill, A. M., Bidigare, R. R., Johnson, Z. I.,
Mitchell, B. G., Smith, W. O., and Barber, R. T.: Photosynthetic maximum
quantum yield increases are an essential component of the Southern Ocean
phytoplankton response to iron, P. Natl. Acad. Sci. USA, 105, 4775–4780,
https://doi.org/10.1073/pnas.0705006105, 2008.
Holm-Hansen, O. and Riemann, B.: Chlorophyll a Determination: Improvements in Methodology, Oikos, 30, 3, 438–447, https://doi.org/10.2307/3543338, 1978.
Hughes, D. J., Campbell, D. A., Doblin, M. A., Kromkamp, J. C., Lawrenz, E.,
Moore, C. M., Oxborough, K., Prášil, O., Ralph, P. J., Alvarez, M. F.,
and Suggett, D. J.: Roadmaps and Detours: Active Chlorophyll-a Assessments
of Primary Productivity Across Marine and Freshwater Systems, Environ. Sci.
Technol., 52, 12039–12054, https://doi.org/10.1021/acs.est.8b03488, 2018.
Kauko, H. M., Moreau, S., and Hattermann, T.: Southern Ocean Ecosystem
cruise 2019 vertical in situ chlorophyll a profiles, Norwegian Polar
Institute [data set], https://doi.org/10.21334/npolar.2021.5e510f85, 2020.
Kauko, H. M., Hattermann, T., Ryan-Keogh, T., Singh, A., de Steur, L.,
Fransson, A., Chierici, M., Falkenhaug, T., Hallfredsson, E. H., Bratbak, G.,
and Tsagaraki, T.: Phenology and environmental control of phytoplankton
blooms in the Kong Håkon VII Hav in the Southern Ocean, Front. Mar. Sci.,
8, 623856, https://doi.org/10.3389/fmars.2021.623856, 2021.
Kauko, H. M., Moreau, S., Rózañska, M., and Wiktor, J. M.: Southern
Ocean Ecosystem cruise 2019 phytoplankton taxonomy and abundance, Norwegian
Polar Institute [data set], https://doi.org/10.21334/npolar.2022.283e500c,
2022a.
Kauko, H. M., Assmy, P., Peeken, I., Różańska-Pluta, M., Wiktor, J. M., Bratbak, G., Singh, A., Ryan-Keogh, T. J., and Moreau, S.: First phytoplankton community assessment of the Kong Håkon VII Hav, Southern Ocean, during austral autumn, Biogeosciences, 19, 5449–5482, https://doi.org/10.5194/bg-19-5449-2022, 2022b.
Khatiwala, S., Primeau, F., and Hall, T.: Reconstruction of the history of
anthropogenic CO2 concentrations in the ocean, Nature, 462, 346–349,
https://doi.org/10.1038/nature08526, 2009.
Kirk, J. T. O.: Light and photosynthesis in aquatic ecosystems, Cambridge
University Press, https://doi.org/10.1017/CBO9780511623370, 1994.
Klunder, M. B., Laan, P., Middag, R., De Baar, H. J. W., and van Ooijen, J. C.:
Dissolved iron in the Southern Ocean (Atlantic sector), Deep-Sea Res. Pt. II, 58, 2678–2694,
https://doi.org/10.1016/j.dsr2.2010.10.042, 2011.
Kolber, Z., Zehr, J., and Falkowski, P.: Effects of Growth Irradiance and
Nitrogen Limitation on Photosynthetic Energy Conversion in Photosystem II.
Plant Physiol., 88, 923–929, https://doi.org/10.1104/pp.88.3.923, 1988.
Kolber, Z. S., Barber, R. T., Coale, K. H., Fitzwateri, S. E., Greene, R. M.,
Johnson, K. S., Lindley, S., and Falkowski, P. G.: Iron limitation of
phytoplankton photosynthesis in the equatorial Pacific Ocean, Nature, 371,
145–149, https://doi.org/10.1038/371145a0, 1994.
Kolber, Z. S., Prášil, O., and Falkowski, P. G.: Measurements of
variable chlorophyll fluorescence using fast repetition rate techniques:
defining methodology and experimental protocols, BBA-Bioenergetics, 1367, 88–106, https://doi.org/10.1016/S0005-2728(98)00135-2,
1998.
Lancelot, C., Mathot, S., Veth, C., and de Baar, H.: Factors controlling
phytoplankton ice-edge blooms in the marginal ice-zone of the northwestern
Weddell Sea during sea ice retreat 1988: field observations and mathematical
modelling, Polar Biol., 13, 377–387, https://doi.org/10.1007/BF01681979,
1993.
Lannuzel, D., Schoemann, V., de Jong, J., Chou, L., Delille, B., Becquevort,
S., and Tison, J. L.: Iron study during a time series in the western Weddell
pack ice, Mar. Chem., 108, 85–95,
https://doi.org/10.1016/j.marchem.2007.10.006, 2008.
Lannuzel, D., Vancoppenolle, M., van Der Merwe, P., De Jong, J., Meiners,
K. M., Grotti, M., Nishioka, J., and Schoemann, V.: Iron in sea ice: Review
and new insightsIron in sea ice: Review and new insights, Elementa, 4, 000130, https://doi.org/10.12952/journal.elementa.000130,
2016.
Lindsey, R. and Scott, M.: What are Phytoplankton?, https://earthobservatory.nasa.gov/features/Phytoplankton
(last access: 20 July 2023), 2010.
Lis, H., Shaked, Y., Kranzler, C., Keren, N., and Morel, F. M.: Iron
bioavailability to phytoplankton: an empirical approach, ISME J.,
9, 1003–1013, https://doi.org/10.1038/ismej.2014.199, 2015.
Lucas, M., Seeyave, S., Sanders, R., Moore, C. M., Williamson, R., and
Stinchcombe, M.: Nitrogen uptake responses to a naturally Fe-fertilised
phytoplankton bloom during the 2004/2005 CROZEX study, Deep-Sea Res. Pt. II,
54, 2138–2173,
https://doi.org/10.1016/j.dsr2.2007.06.017, 2007.
Lutjeharms, J. R. E., Walters, N. M., and Allanson, B. R.: Oceanic frontal
systems and biological enhancement, in: Antarctic Nutrient Cycles and Food
Webs, Springer Berlin Heidelberg, 11–21,
https://doi.org/10.1007/978-3-642-82275-9_3, 1985.
Mahowald, N. M., Baker, A. R., Bergametti, G., Brooks, N., Duce, R. A.,
Jickells, T. D., Kubilay, N., Prospero, J. M., and Tegen, I.: Atmospheric
global dust cycle and iron inputs to the ocean, Global Biogeochem. Cy.,
19, GB4025, https://doi.org/10.1029/2004GB002402, 2005.
Martin, J. H. and Fitzwater, S. E.: Iron deficiency limits phytoplankton
growth in the north-east Pacific subarctic, Nature, 331, 341–343,
https://doi.org/10.1038/331341a0, 1988.
Martin, J. H., Gordon, R. M., and Fitzwater, S. E.: Iron in Antarctic waters.
Nature, 345, 156–158, https://doi.org/10.1038/345156a0, 1990.
Martin, J. H., Gordon, M., and Fitzwater, S. E.: The case for iron, Limnol.
Oceanogr., 36, 1793–1802, https://doi.org/10.4319/lo.1991.36.8.1793, 1991.
Millard, R. C., Owens, W. B., and Fofonoff, N. P.: On the calculation of the
Brunt-Väisäla frequency, Deep-Sea Res. Pt. A,
37, 167–181, https://doi.org/10.1016/0198-0149(90)90035-T, 1990.
Milligan, A. J. and Harrison, P. J.: Effects of non-steady-state iron
limitation on nitrogen assimilatory enzymes in the marine diatom
thalassiosira weissflogii (BACILLARIOPHYCEAE), J. Phycol., 36, 78–86,
https://doi.org/10.1046/j.1529-8817.2000.99013.x, 2000.
Mitchell, B. G., Brody, E. A., Holm-Hansen, O., McClain, C., and Bishop, J.:
Light limitation of phytoplankton biomass and macronutrient utilization in
the Southern Ocean, Limnol. Oceanogr., 36, 1662–1677,
https://doi.org/10.4319/lo.1991.36.8.1662, 1991.
Moore, C. M., Hickman, A. E., Poulton, A. J., Seeyave, S., and Lucas, M. I.:
Iron–light interactions during the CROZet natural iron bloom and EXport
experiment (CROZEX): II – Taxonomic responses and elemental stoichiometry,
Deep-Sea Res. Pt. II, 54, 2066–2084,
https://doi.org/10.1016/j.dsr2.2007.06.015, 2007a.
Moore, C. M., Seeyave, S., Hickman, A. E., Allen, J. T., Lucas, M. I.,
Planquette, H., Pollard, R. T., and Poulton, A. J.: Iron-light interactions
during the CROZet natural iron bloom and EXport experiment (CROZEX) I:
Phytoplankton growth and photophysiology, Deep-Sea Res. Pt. II, 54, 2045–2065, https://doi.org/10.1016/j.dsr2.2007.06.011, 2007b.
Moore, C. M., Mills, M. M., Arrigo, K. R., Berman-Frank, I., Bopp, L., Boyd,
P. W., Galbraith, E. D., Geider, R. J., Guieu, C., Jaccard, S. L., Jickells,
T. D., La Roche, J., Lenton, T. M., Mahowald, N. M., Marañón, E.,
Marinov, I., Moore, J. K., Nakatsuka, T., Oschlies, A., Saito, M. A.,
Thingstad, T. F., Tsuda, A., and Ulloa, O.: Processes and patterns of oceanic
nutrient limitation, Nat. Geosci., 6, 701–710,
https://doi.org/10.1038/ngeo1765, 2013.
Moore, J. K. and Abbott, M. R.: Surface chlorophyll concentrations in
relation to the Antarctic Polar Front: seasonal and spatial patterns from
satellite observations, J. Marine Syst., 37, 69–86,
https://doi.org/10.1016/S0924-7963(02)00196-3, 2002.
Moore, J. K., Doney, S. C., Glover, D. M., and Fung, I. Y.: Iron cycling and
nutrient-limitation patterns in surface waters of the World Ocean, Deep-Sea
Res. Pt. II, 49, 463–507, https://doi.org/10.1016/S0967-0645(01)00109-6, 2001.
Moreau, S., Boyd, P. W., and Strutton, P. G.: Remote assessment of the fate of
phytoplankton in the Southern Ocean sea-ice zone, Nat. Commun., 11, 1–9,
https://doi.org/10.1038/s41467-020-16931-0, 2020.
Moreau, S., Hattermann, T., de Steur, L., Kauko, H. M., Ahonen, H., Ardelan,
M. V., Assmy, P., Chierici, M., Descamps, S., Dinter, T., Falkenhaug, T.,
Fransson, A., Grønningsæter, E., Hallfredsson, E. H., Huhn, O.,
Lebrun, A., Lowther, A., Lübcker, N., Monteiro, P. M. S., Peeken, I.,
Roychoudhury, A., Różańska, M., Ryan-Keogh, T. J., Sanchez, N.,
Singh, A., Simonsen, J.-H., Steiger, N., Thomalla, S. J., van Tonder, A.,
Wiktor, J. M., and Steen, H.: Wind-driven upwelling of iron sustains dense blooms
and food webs in the eastern Weddell Gyre, Nat. Commun., 14, 1303,
https://doi.org/10.1038/s41467-023-36992-1, 2023.
Mtshali, T. N., van Horsten, N. R., Thomalla, S. J., Ryan-Keogh, T. J.,
Nicholson, S. A., Roychoudhury, A. N., Bucciarelli, E., Sarthou, G.,
Tagliabue, A., and Monteiro, P. M. S.: Seasonal Depletion of the Dissolved
Iron Reservoirs in the Sub-Antarctic Zone of the Southern Atlantic Ocean,
Geophys. Res. Lett., 46, 4386–4395, https://doi.org/10.1029/2018GL081355,
2019.
National Geophysical Data Center/NESDIS/NOAA/U.S. Department of Commerce: ETOPO1, Global 1 Arc-minute Ocean Depth and Land Elevation from the US National Geophysical Data Center (NGDC), Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, https://doi.org/10.5065/D69Z92Z5, 2011.
Nicholson, S. A., Lévy, M., Jouanno, J., Capet, X., Swart, S., and
Monteiro, P. M. S.: Iron Supply Pathways Between the Surface and Subsurface
Waters of the Southern Ocean: From Winter Entrainment to Summer Storms,
Geophys. Res. Lett., 46, 14567–14575, https://doi.org/10.1029/2019GL084657,
2019.
Pollard, R., Sanders, R., Lucas, M., and Statham, P.: The Crozet Natural
Iron Bloom and Export Experiment (CROZEX), Deep-Sea Res. Pt. II, 54, 1905–1914, https://doi.org/10.1016/j.dsr2.2007.07.023, 2007.
Price, N. M., Ahner, B. A., and Morel, F. M.: The equatorial Pacific Ocean:
Grazer-controlled phytoplankton populations in an iron-limited ecosystem 1,
Limnol. Oceanogr., 39, 520–534, https://doi.org/10.4319/LO.1994.39.3.0520,
1994.
Racault, M. F., Sathyendranath, S., and Platt, T.: Impact of missing data on
the estimation of ecological indicators from satellite ocean-colour
time-series, Remote Sens. Environ., 152, 15–28,
https://doi.org/10.1016/j.rse.2014.05.016, 2014.
Raven, J. A.: Predictions of Mn and Fe use efficiencies of phototrophic
growth as a function of light availability for growth and of C assimilation
pathway, New Phytol., 116, 1–18,
https://doi.org/10.1111/j.1469-8137.1990.tb00505.x, 1990.
Raven, J. A., Evans, M. C. W., and Korb, R. E.: The role of trace metals in
photosynthetic electron transport in O-2-evolving organisms, Photosynth.
Res., 60, 111–149, https://doi.org/10.1023/a:1006282714942, 1999.
Richert, I., Yager, P. L., Dinasquet, J., Logares, R., Riemann, L.,
Wendeberg, A., Bertilsson, S., and Scofield, D. G.: Summer comes to the
Southern Ocean: how phytoplankton shape bacterioplankton communities far
into the deep dark sea, Ecosphere, 10, e02641,
https://doi.org/10.1002/ecs2.2641, 2019.
Roháček, K.: Chlorophyll fluorescence parameters: The definitions,
photosynthetic meaning, and mutual relationships, Photosynthetica, 40,
13–29, https://doi.org/10.1023/A:1020125719386, 2002.
Ryan-Keogh, T. J.: Understanding the role of chlorophyll fluorescence in
nutrient stress, Doctoral dissertation, University of Southampton,
http://eprints.soton.ac.uk/id/eprint/362003 (last access: 1 March 2022), 2014.
Ryan-Keogh, T. J. and Robinson, C.: Phytoplankton Photophysiology Utilities:
A Python Toolbox for the Standardization of Processing Active Chlorophyll-a
Fluorescence Data, Front. Mar. Sci. Aquat. Physiol., 8, 525414,
https://doi.org/10.3389/fmars.2021.525414, 2021.
Ryan-Keogh, T. J., Macey, A. I., Nielsdóttir, M. C., Lucas, M. I.,
Steigenberger, S. S., Stinchcombe, M. C., Achterberg, E. P., Bibby, T. S., and
Moore, C. M.: Spatial and temporal development of phytoplankton iron stress
in relation to bloom dynamics in the high-latitude North Atlantic Ocean,
Limnol. Oceanogr., 58, 533–545, https://doi.org/10.4319/lo.2013.58.2.0533,
2013.
Ryan-Keogh, T. J., DeLizo, L. M., Smith, W. O., Sedwick, P. N., McGillicuddy,
D. J., Moore, C. M., and Bibby, T. S.: Temporal progression of
photosynthetic-strategy in phytoplankton in the Ross Sea, Antarctica, J.
Marine Syst., 166, 87–96, https://doi.org/10.1016/j.jmarsys.2016.08.014,
2017.
Ryan-Keogh, T. J., Thomalla, S. J., Mtshali, T. N., van Horsten, N. R., and Little, H. J.: Seasonal development of iron limitation in the sub-Antarctic zone, Biogeosciences, 15, 4647–4660, https://doi.org/10.5194/bg-15-4647-2018, 2018.
Ryan-Keogh, T. J., Thomalla, S. J., Monteiro, P. M., and Tagliabue, A.:
Multidecadal trend of increasing iron stress in Southern Ocean
phytoplankton, Science, 379, 834–840,
https://doi.org/10.1126/science.abl5237, 2023.
Salgado-Hernanz, P. M., Racault, M. F., Font-Muñoz, J. S., and
Basterretxea, G.: Trends in phytoplankton phenology in the Mediterranean Sea
based on ocean-colour remote sensing, Remote Sens. Environ., 221, 50–64,
https://doi.org/10.1016/j.rse.2018.10.036, 2019.
Samanta, S., Cloete, R., Loock, J., Rossouw, R., and Roychoudhury, A. N.:
Determination of trace metal (Mn, Fe, Ni, Cu, Zn, Co, Cd and Pb)
concentrations in seawater using single quadrupole ICP-MS: A comparison
between offline and online preconcentration setups, Minerals 11, 1289,
https://doi.org/10.3390/min11111289, 2021.
Sathyendranath, S., Brewin, R. J., Brockmann, C., Brotas, V., Calton, B.,
Chuprin, A., Cipollini, P., Couto, A. B., Dingle, J., Doerffer, R., and
Donlon, C.: An ocean-colour time series for use in climate studies: the
experience of the ocean-colour climate change initiative (OC-CCI), Sensors,
19, 4285, https://doi.org/10.3390/s19194285, 2019.
Schuback, N., Flecken, M., Maldonado, M. T., and Tortell, P. D.: Diurnal variation in the coupling of photosynthetic electron transport and carbon fixation in iron-limited phytoplankton in the NE subarctic Pacific, Biogeosciences, 13, 1019–1035, https://doi.org/10.5194/bg-13-1019-2016, 2016.
Schuback, N., Tortell, P. D., Berman-Frank, I., Campbell, D. A., Ciotti, A.,
Courtecuisse, E., Erickson, Z. K., Fujiki, T., Halsey, K., Hickman, A. E., and
Huot, Y.: Single-turnover variable chlorophyll fluorescence as a tool for
assessing phytoplankton photosynthesis and primary productivity:
opportunities, caveats and recommendations, Front. Mar. Sci., 8,
690607, https://doi.org/10.3389/fmars.2021.690607, 2021.
Sedwick, P. N., DiTullio, G. R., Hutchins, D. A., Boyd, P. W., Griffiths, F. B.,
Crossley, A. C., Trull, T. W., and Quéguiner, B.: Limitation of algal
growth by iron deficiency in the Australian Subantarctic region, Geophys.
Res. Lett., 26, 2865–2868, https://doi.org/10.1029/1998GL002284,
1999.
Sedwick, P. N., Bowie, A. R., and Trull, T. W.: Dissolved iron in the
Australian sector of the Southern Ocean (CLIVAR SR3 section): meridional and
seasonal trends, Deep-Sea Res. Pt. I, 55, 911–925,
https://doi.org/10.1016/j.dsr.2008.03.011, 2008.
Singh, A., Fietz, S., Thomalla, S. J., Sanchez, N., Ardelan, M. V., Moreau, S., Kauko, H. M., Fransson, A., Chierici, M., Samanta, S., Mtshali, T. N., Roychoudhury, A. N., and Ryan‐Keogh, T. J.: Photophysiological response of autumn phytoplankton in the Antarctic Sea-Ice Zone, Zenodo [data set], https://doi.org/10.5281/zenodo.6322943, 2022.
Smith, W. O., Dinniman, M. S., Tozzi, S., DiTullio, G. R., Mangoni, O., Modigh,
M., and Saggiomo, V.: Phytoplankton photosynthetic pigments in the Ross Sea:
Patterns and relationships among functional groups, J. Marine Syst., 82,
177–185, https://doi.org/10.1016/j.jmarsys.2010.04.014, 2010.
Soppa, M. A., Völker, C., and Bracher, A.: Diatom phenology in the
Southern Ocean: mean patterns, trends and the role of climate oscillations,
Remote Sens., 8, 420, https://doi.org/10.3390/rs8050420, 2016.
Strzepek, R. F. and Harrison, P. J.: Photosynthetic architecture differs in
coastal and oceanic diatoms, Nature, 431, 689–692,
https://doi.org/10.1038/nature02954, 2004.
Strzepek, R. F., Maldonado, M. T., Hunter, K. A., Frew, R. D., and Boyd, P. W.:
Adaptive strategies by Southern Ocean phytoplankton to lessen iron
limitation: Uptake of organically complexed iron and reduced cellular iron
requirements, Limnol. Oceanogr., 56, 1983–2002,
https://doi.org/10.4319/lo.2011.56.6.1983, 2011.
Strzepek, R. F., Hunter, K. A., Frew, R. D., Harrison, P. J., and Boyd, P. W.:
Iron-light interactions differ in Southern Ocean phytoplankton, Limnol.
Oceanogr., 57, 1182–1200, https://doi.org/10.4319/lo.2012.57.4.1182, 2012.
Strzepek, R. F., Boyd, P. W., and Sunda, W. G.: Photosynthetic adaptation to
low iron, light, and temperature in Southern Ocean phytoplankton, P.
Natl. Acad. Sci. USA, 116, 4388–4393, https://doi.org/10.1073/pnas.1810886116,
2019.
Suggett, D., Kraay, G., Holligan, P., Davey, M., Aiken, J., and Geider, R.:
Assessment of photosynthesis in a spring cyanobacterial bloom by use of a
fast repetition rate fluorometer, Limnol. Oceanogr., 46, 802–810,
https://doi.org/10.4319/lo.2001.46.4.0802, 2001.
Suggett, D. J., Moore, C. M., Hickman, A. E., and Geider, R. J.: Interpretation
of fast repetition rate (FRR) fluorescence: Signatures of phytoplankton
community structure versus physiological state, Mar. Ecol.-Prog. Ser., 376,
1–19, https://doi.org/10.3354/meps07830, 2009.
Sunda, W. G.: Trace metal interactions with marine phytoplankton, Biol.
Oceanogr., 6, 411–442, 1989.
Sunda, W. G. and Huntsman, S. A.: Iron uptake and growth limitation in
oceanic and coastal phytoplankton, Mar. Chem., 50, 189–206,
https://doi.org/10.1016/0304-4203(95)00035-P, 1995.
Swart, S., Thomalla, S. J., and Monteiro, P. M. S.: The seasonal cycle of mixed
layer dynamics and phytoplankton biomass in the Sub-Antarctic Zone: A
high-resolution glider experiment, J. Marine Syst., 147, 103–115,
https://doi.org/10.1016/j.jmarsys.2014.06.002, 2015.
Tagliabue, A., Sallée, J. B., Bowie, A. R., Lévy, M., Swart, S., and
Boyd, P. W.: Surface-water iron supplies in the Southern Ocean sustained by
deep winter mixing, Nat. Geosci., 7, 314–320,
https://doi.org/10.1038/ngeo2101, 2014.
Tagliabue, A., Bowie, A. R., Boyd, P. W., Buck, K. N., Johnson, K. S., and
Saito, M. A.: The integral role of iron in ocean biogeochemistry, Nature, 543,
51–59, https://doi.org/10.1038/nature21058, 2017.
Takahashi, T., Sutherland, S. C., Sweeney, C., Poisson, A., Metzl, N.,
Tilbrook, B., Bates, N., Wanninkhof, R., Feely, R. A., Sabine, C., Olafsson,
J., and Yukihiro, N.: Global sea–air CO2 flux based on climatological
surface ocean pCO2, and seasonal biological and temperature effects, Deep-Sea Res. Pt. II, 49, 1601–1622,
https://doi.org/10.1016/S0967-0645(02)00003-6, 2002.
Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A.,
Chipman, D. W., Hales, B., Friederich, G., Chavez, F., Sabine, C., and
Watson, A.: Climatological mean and decadal change in surface ocean pCO2,
and net sea–air CO2 flux over the global oceans, Deep-Sea Res. Pt. II, 56, 554–577, https://doi.org/10.1016/j.dsr2.2008.12.009,
2009.
Taylor, M. H., Losch, M., and Bracher, A.: On the drivers of phytoplankton blooms
in the Antarctic marginal ice zone: A modeling approach, J. Geophys. Res.-Ocean, 118, 63–75, https://doi.org/10.1029/2012JC008418, 2013.
Thomalla, S. J., Fauchereau, N., Swart, S., and Monteiro, P. M. S.: Regional scale characteristics of the seasonal cycle of chlorophyll in the Southern Ocean, Biogeosciences, 8, 2849–2866, https://doi.org/10.5194/bg-8-2849-2011, 2011.
Trimborn, S., Thoms, S., Bischof, K., and Beszteri, S.: Susceptibility of
two Southern Ocean phytoplankton key species to iron limitation and high
light, Front. Mar. Sci., 6, 167, https://doi.org/10.3389/fmars.2019.00167, 2019.
Van Oijen, T., Van Leeuwe, M. A., Granum, E., Weissing, F. J., Bellerby,
R. G. J., Gieskes, W. W. C., and de Baar, H. J. W.: Light rather than iron
controls photosynthate production and allocation in Southern Ocean
phytoplankton populations during austral autumn, J. Plankton Res., 26,
885–900, https://doi.org/10.1093/plankt/fbh088, 2004.
Viljoen, J. J., Philibert, R., Van Horsten, N., Mtshali, T., Roychoudhury,
A. N., Thomalla, S., and Fietz, S.: Phytoplankton response in growth,
photophysiology and community structure to iron and light in the Polar
Frontal Zone and Antarctic waters, Deep-Sea Res. Pt. I,
141, 118–129, https://doi.org/10.2495/EEIA100071, 2018.
Vink, S. and Measures, C. I.: The role of dust deposition in determining
surface water distributions of Al and Fe in the South West Atlantic, Deep-Sea Res. Pt. II, 48, 2787–2809,
https://doi.org/10.1016/S0967-0645(01)00018-2, 2001.
Wu, M., McCain, J. S. P., Rowland, E., Middag, R., Sandgren, M., Allen, A. E.,
and Bertrand, E. M.: Manganese and iron deficiency in Southern Ocean
Phaeocystis antarctica populations revealed through taxon-specific protein
indicators, Nat. Commun., 10, 3582,
https://doi.org/10.1038/s41467-019-11426-z, 2019.
Yoon, J.-E., Yoo, K.-C., Macdonald, A. M., Yoon, H.-I., Park, K.-T., Yang, E. J., Kim, H.-C., Lee, J. I., Lee, M. K., Jung, J., Park, J., Lee, J., Kim, S., Kim, S.-S., Kim, K., and Kim, I.-N.: Reviews and syntheses: Ocean iron fertilization experiments – past, present, and future looking to a future Korean Iron Fertilization Experiment in the Southern Ocean (KIFES) project, Biogeosciences, 15, 5847–5889, https://doi.org/10.5194/bg-15-5847-2018, 2018.
Short summary
Despite the scarcity of iron in the Southern Ocean, seasonal blooms occur due to changes in nutrient and light availability. Surprisingly, during an autumn bloom in the Antarctic sea-ice zone, the results from incubation experiments showed no significant photophysiological response of phytoplankton to iron addition. This suggests that ambient iron concentrations were sufficient, challenging the notion of iron deficiency in the Southern Ocean through extended iron-replete post-bloom conditions.
Despite the scarcity of iron in the Southern Ocean, seasonal blooms occur due to changes in...
Altmetrics
Final-revised paper
Preprint