Articles | Volume 20, issue 15
https://doi.org/10.5194/bg-20-3203-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-3203-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Seasonal and interannual variability of the pelagic ecosystem and of the organic carbon budget in the Rhodes Gyre (eastern Mediterranean): influence of winter mixing
Laboratoire d'Etudes en Géophysique et Océanographie Spatiales (LEGOS), Université de Toulouse, CNES/CNRS/IRD/UT3, 14 avenue Edouard Belin, 31400 Toulouse, France
National Center for Marine Sciences, National Council for Scientific Research (CNRS-L), Jounieh, Lebanon
Caroline Ulses
Laboratoire d'Etudes en Géophysique et Océanographie Spatiales (LEGOS), Université de Toulouse, CNES/CNRS/IRD/UT3, 14 avenue Edouard Belin, 31400 Toulouse, France
Claude Estournel
Laboratoire d'Etudes en Géophysique et Océanographie Spatiales (LEGOS), Université de Toulouse, CNES/CNRS/IRD/UT3, 14 avenue Edouard Belin, 31400 Toulouse, France
Milad Fakhri
National Center for Marine Sciences, National Council for Scientific Research (CNRS-L), Jounieh, Lebanon
Patrick Marsaleix
Laboratoire d'Etudes en Géophysique et Océanographie Spatiales (LEGOS), Université de Toulouse, CNES/CNRS/IRD/UT3, 14 avenue Edouard Belin, 31400 Toulouse, France
Mireille Pujo-Pay
Laboratoire d'Océanographie Microbienne (LOMIC), CNRS, UMR 7621, Sorbonne Université, 1 Avenue Pierre Fabre, 66651 Banyuls-sur-mer, France
Marine Fourrier
Laboratoire d'Océanographie de Villefranche, CNRS, Sorbonne Université, 181 Chemin du
Lazaret, 06230 Villefranche-sur-Mer, France
Laurent Coppola
Laboratoire d'Océanographie de Villefranche, CNRS, Sorbonne Université, 181 Chemin du
Lazaret, 06230 Villefranche-sur-Mer, France
OSU STAMAR, UAR2017, CNRS, Sorbonne Université, 4 Place Jussieu, 75252 Paris CEDEX 05, France
Alexandre Mignot
Mercator Océan International, 8 Rue Hermès, 31520 Ramonville-Saint-Agne, Toulouse, France
Laurent Mortier
Laboratoire d'Océanographie et du Climat: Expérimentations et Approches Numériques (LOCEAN), UPMC Univ Paris 06 CNRS-IRD-MNHN, Sorbonne Université, 4 place Jussieu, 75005 Paris, France
Pascal Conan
Laboratoire d'Océanographie Microbienne (LOMIC), CNRS, UMR 7621, Sorbonne Université, 1 Avenue Pierre Fabre, 66651 Banyuls-sur-mer, France
Related authors
Yawouvi Dodji Soviadan, Miriam Beck, Joelle Habib, Alberto Baudena, Laetitia Drago, Alexandre Accardo, Remi Laxenaire, Sabrina Speich, Peter Brandt, Rainer Kiko, and Lars Stemmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-3302, https://doi.org/10.5194/egusphere-2024-3302, 2024
Short summary
Short summary
Key parameters representing the gravity flux in global models are the sinking speed and the vertical attenuation of the exported material. We calculate for the first time, these parameters in situ for 6 intermittent blooms followed by export events using high-resolution (3 days) time series of 0–1000 m depth profiles from imaging sensor mounted on an Argo float. We show that sinking speed depends not only on size but also on the morphology of the particles, density being an important property.
Joelle Habib, Lars Stemmann, Alexandre Accardo, Alberto Baudena, Franz Philip Tuchen, Peter Brandt, and Rainer Kiko
EGUsphere, https://doi.org/10.5194/egusphere-2024-3365, https://doi.org/10.5194/egusphere-2024-3365, 2024
Short summary
Short summary
This study investigates how carbon moves from the ocean surface to the depths in the equatorial Atlantic, contributing to long-term carbon storage. Using an Argo float equipped with a camera, we captured two periods with major carbon export events. By identifying particle types and their sinking behaviors, we found that smaller, compact particles are key drivers of carbon transport. Our findings underscore the value of using imaging tools on autonomous platforms in tracking carbon sequestration.
Xavier Durrieu de Madron, Paul Blin, Mireille Pujo-Pay, Vincent Taillandier, and Pascal Conan
EGUsphere, https://doi.org/10.5194/egusphere-2024-3436, https://doi.org/10.5194/egusphere-2024-3436, 2024
Short summary
Short summary
This study investigated the effects of salt fingering on particle and solute distribution in the Tyrrhenian Sea. Density interfaces associated with thermohaline staircases slow the settling of suspended particles and promote aggregation. This affects particle size distribution and creates nutrient and oxygen gradients, affecting microbial activity and nutrient cycling. The research highlights the potential role of salt fingers in deep ocean biogeochemical processes.
Yawouvi Dodji Soviadan, Miriam Beck, Joelle Habib, Alberto Baudena, Laetitia Drago, Alexandre Accardo, Remi Laxenaire, Sabrina Speich, Peter Brandt, Rainer Kiko, and Lars Stemmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-3302, https://doi.org/10.5194/egusphere-2024-3302, 2024
Short summary
Short summary
Key parameters representing the gravity flux in global models are the sinking speed and the vertical attenuation of the exported material. We calculate for the first time, these parameters in situ for 6 intermittent blooms followed by export events using high-resolution (3 days) time series of 0–1000 m depth profiles from imaging sensor mounted on an Argo float. We show that sinking speed depends not only on size but also on the morphology of the particles, density being an important property.
Joelle Habib, Lars Stemmann, Alexandre Accardo, Alberto Baudena, Franz Philip Tuchen, Peter Brandt, and Rainer Kiko
EGUsphere, https://doi.org/10.5194/egusphere-2024-3365, https://doi.org/10.5194/egusphere-2024-3365, 2024
Short summary
Short summary
This study investigates how carbon moves from the ocean surface to the depths in the equatorial Atlantic, contributing to long-term carbon storage. Using an Argo float equipped with a camera, we captured two periods with major carbon export events. By identifying particle types and their sinking behaviors, we found that smaller, compact particles are key drivers of carbon transport. Our findings underscore the value of using imaging tools on autonomous platforms in tracking carbon sequestration.
Nicolas Metzl, Jonathan Fin, Claire Lo Monaco, Claude Mignon, Samir Alliouane, Bruno Bombled, Jacqueline Boutin, Yann Bozec, Steeve Comeau, Pascal Conan, Laurent Coppola, Pascale Cuet, Eva Ferreira, Jean-Pierre Gattuso, Frédéric Gazeau, Catherine Goyet, Emilie Grossteffan, Bruno Lansard, Dominique Lefèvre, Nathalie Lefèvre, Coraline Leseurre, Sébastien Petton, Mireille Pujo-Pay, Christophe Rabouille, Gilles Reverdin, Céline Ridame, Peggy Rimmelin-Maury, Jean-François Ternon, Franck Touratier, Aline Tribollet, Thibaut Wagener, and Cathy Wimart-Rousseau
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-464, https://doi.org/10.5194/essd-2024-464, 2024
Preprint under review for ESSD
Short summary
Short summary
This work presents a new synthesis of 67 000 total alkalinity and total dissolved inorganic carbon observations obtained between 1993 and 2023 in the global ocean, coastal zones and the Mediterranean Sea. We describe the data assemblage and associated quality control and discuss some potential uses of this dataset. The dataset is provided in a single format and include the quality flag for each sample.
Adrien Garinet, Marine Herrmann, Patrick Marsaleix, and Juliette Pénicaud
Geosci. Model Dev., 17, 6967–6986, https://doi.org/10.5194/gmd-17-6967-2024, https://doi.org/10.5194/gmd-17-6967-2024, 2024
Short summary
Short summary
Mixing is a crucial aspect of the ocean, but its accurate representation in computer simulations is made challenging by errors that result in unwanted mixing, compromising simulation realism. Here we illustrate the spurious effect that tides can have on simulations of south-east Asia. Although they play an important role in determining the state of the ocean, they can increase numerical errors and make simulation outputs less realistic. We also provide insights into how to reduce these errors.
France Van Wambeke, Pascal Conan, Mireille Pujo-Pay, Vincent Taillandier, Olivier Crispi, Alexandra Pavlidou, Sandra Nunige, Morgane Didry, Christophe Salmeron, and Elvira Pulido-Villena
Biogeosciences, 21, 2621–2640, https://doi.org/10.5194/bg-21-2621-2024, https://doi.org/10.5194/bg-21-2621-2024, 2024
Short summary
Short summary
Phosphomonoesterase (PME) and phosphodiesterase (PDE) activities over the epipelagic zone are described in the eastern Mediterranean Sea in winter and autumn. The types of concentration kinetics obtained for PDE (saturation at 50 µM, high Km, high turnover times) compared to those of PME (saturation at 1 µM, low Km, low turnover times) are discussed in regard to the possible inequal distribution of PDE and PME in the size continuum of organic material and accessibility to phosphodiesters.
Georges Baaklini, Julien Brajard, Leila Issa, Gina Fifani, Laurent Mortier, and Roy El Hourany
EGUsphere, https://doi.org/10.5194/egusphere-2024-1168, https://doi.org/10.5194/egusphere-2024-1168, 2024
Short summary
Short summary
Understanding the flow of the Levantine Sea surface current is not straightforward. We propose a study based on learning techniques to follow interactions between water near the shore and further out at sea. Our results show changes in the coastal currents past 33.8° E, with frequent instances of water breaking away along the Lebanese coast. These events happen quickly and sometimes lead to long-lasting eddies. This study underscores the need for direct observations to improve our knowledge.
Nico Lange, Björn Fiedler, Marta Álvarez, Alice Benoit-Cattin, Heather Benway, Pier Luigi Buttigieg, Laurent Coppola, Kim Currie, Susana Flecha, Dana S. Gerlach, Makio Honda, I. Emma Huertas, Siv K. Lauvset, Frank Muller-Karger, Arne Körtzinger, Kevin M. O'Brien, Sólveig R. Ólafsdóttir, Fernando C. Pacheco, Digna Rueda-Roa, Ingunn Skjelvan, Masahide Wakita, Angelicque White, and Toste Tanhua
Earth Syst. Sci. Data, 16, 1901–1931, https://doi.org/10.5194/essd-16-1901-2024, https://doi.org/10.5194/essd-16-1901-2024, 2024
Short summary
Short summary
The Synthesis Product for Ocean Time Series (SPOTS) is a novel achievement expanding and complementing the biogeochemical data landscape by providing consistent and high-quality biogeochemical time-series data from 12 ship-based fixed time-series programs. SPOTS covers multiple unique marine environments and time-series ranges, including data from 1983 to 2021. All in all, it facilitates a variety of applications that benefit from the collective value of biogeochemical time-series observations.
Ngoc B. Trinh, Marine Herrmann, Caroline Ulses, Patrick Marsaleix, Thomas Duhaut, Thai To Duy, Claude Estournel, and R. Kipp Shearman
Geosci. Model Dev., 17, 1831–1867, https://doi.org/10.5194/gmd-17-1831-2024, https://doi.org/10.5194/gmd-17-1831-2024, 2024
Short summary
Short summary
A high-resolution model was built to study the South China Sea (SCS) water, heat, and salt budgets. Model performance is demonstrated by comparison with observations and simulations. Important discards are observed if calculating offline, instead of online, lateral inflows and outflows of water, heat, and salt. The SCS mainly receives water from the Luzon Strait and releases it through the Mindoro, Taiwan, and Karimata straits. SCS surface interocean water exchanges are driven by monsoon winds.
Nicolas Metzl, Jonathan Fin, Claire Lo Monaco, Claude Mignon, Samir Alliouane, David Antoine, Guillaume Bourdin, Jacqueline Boutin, Yann Bozec, Pascal Conan, Laurent Coppola, Frédéric Diaz, Eric Douville, Xavier Durrieu de Madron, Jean-Pierre Gattuso, Frédéric Gazeau, Melek Golbol, Bruno Lansard, Dominique Lefèvre, Nathalie Lefèvre, Fabien Lombard, Férial Louanchi, Liliane Merlivat, Léa Olivier, Anne Petrenko, Sébastien Petton, Mireille Pujo-Pay, Christophe Rabouille, Gilles Reverdin, Céline Ridame, Aline Tribollet, Vincenzo Vellucci, Thibaut Wagener, and Cathy Wimart-Rousseau
Earth Syst. Sci. Data, 16, 89–120, https://doi.org/10.5194/essd-16-89-2024, https://doi.org/10.5194/essd-16-89-2024, 2024
Short summary
Short summary
This work presents a synthesis of 44 000 total alkalinity and dissolved inorganic carbon observations obtained between 1993 and 2022 in the Global Ocean and the Mediterranean Sea at the surface and in the water column. Seawater samples were measured using the same method and calibrated with international Certified Reference Material. We describe the data assemblage, quality control and some potential uses of this dataset.
Riccardo Martellucci, Michele Giani, Elena Mauri, Laurent Coppola, Melf Poulsen, Marine Fourrier, Sara Pensieri, Vanessa Cardin, Carlotta Dentico, Roberto Bozzano, Carolina Cantoni, Anna Lucchetta, and Ingunn Skjelvan
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-457, https://doi.org/10.5194/essd-2023-457, 2023
Revised manuscript accepted for ESSD
Short summary
Short summary
The ATL2MED experiment was a collaborative project involving European academic institutions and Saildrone Inc. These ASVs embarked on a nine-month mission that ranged from the tropical eastern North Atlantic to the Adriatic Sea, covering a region characterised by a transition zone between temperate and tropical climate belts. Nevertheless, challenges exist, with biofouling being one of the major problems affecting the measurement such as conductivity, dissolved oxygen and chlorophyll-a.
Caroline Ulses, Claude Estournel, Patrick Marsaleix, Karline Soetaert, Marine Fourrier, Laurent Coppola, Dominique Lefèvre, Franck Touratier, Catherine Goyet, Véronique Guglielmi, Fayçal Kessouri, Pierre Testor, and Xavier Durrieu de Madron
Biogeosciences, 20, 4683–4710, https://doi.org/10.5194/bg-20-4683-2023, https://doi.org/10.5194/bg-20-4683-2023, 2023
Short summary
Short summary
Deep convection plays a key role in the circulation, thermodynamics, and biogeochemical cycles in the Mediterranean Sea, considered to be a hotspot of biodiversity and climate change. In this study, we investigate the seasonal and annual budget of dissolved inorganic carbon in the deep-convection area of the northwestern Mediterranean Sea.
Alice Carret, Florence Birol, Claude Estournel, and Bruno Zakardjian
Ocean Sci., 19, 903–921, https://doi.org/10.5194/os-19-903-2023, https://doi.org/10.5194/os-19-903-2023, 2023
Short summary
Short summary
This study presents a methodology to investigate the ability of satellite altimetry to observe a coastal current, the Northern Current, in the NW Mediterannean Sea. We use a high-resolution regional model, validated with HF radars and in situ data. The model is used as a reference and compared to three different missions (Jason 2, SARAL and Sentinel-3), studying both the surface velocity and the sea surface height signature of the current. The performance of the three missions was also compared.
Marine Herrmann, Thai To Duy, and Claude Estournel
Ocean Sci., 19, 453–467, https://doi.org/10.5194/os-19-453-2023, https://doi.org/10.5194/os-19-453-2023, 2023
Short summary
Short summary
The South Vietnam upwelling develops in summer along and off the Vietnamese coast. It brings cold and nutrient-rich waters to the surface, allowing photosynthesis essential to marine ecosystems and fishing resources. We show here that its daily variations are mainly due to the wind, thus predictable, in the southern shelf and coastal regions. However, they are more chaotic in the offshore area, and especially in the northern area, due to the influence of eddies of a highly chaotic nature.
Alexandre Mignot, Hervé Claustre, Gianpiero Cossarini, Fabrizio D'Ortenzio, Elodie Gutknecht, Julien Lamouroux, Paolo Lazzari, Coralie Perruche, Stefano Salon, Raphaëlle Sauzède, Vincent Taillandier, and Anna Teruzzi
Biogeosciences, 20, 1405–1422, https://doi.org/10.5194/bg-20-1405-2023, https://doi.org/10.5194/bg-20-1405-2023, 2023
Short summary
Short summary
Numerical models of ocean biogeochemistry are becoming a major tool to detect and predict the impact of climate change on marine resources and monitor ocean health. Here, we demonstrate the use of the global array of BGC-Argo floats for the assessment of biogeochemical models. We first detail the handling of the BGC-Argo data set for model assessment purposes. We then present 23 assessment metrics to quantify the consistency of BGC model simulations with respect to BGC-Argo data.
Georges Baaklini, Roy El Hourany, Milad Fakhri, Julien Brajard, Leila Issa, Gina Fifani, and Laurent Mortier
Ocean Sci., 18, 1491–1505, https://doi.org/10.5194/os-18-1491-2022, https://doi.org/10.5194/os-18-1491-2022, 2022
Short summary
Short summary
We use machine learning to analyze the long-term variation of the surface currents in the Levantine Sea, located in the eastern Mediterranean Sea. We decompose the circulation into groups based on their physical characteristics and analyze their spatial and temporal variability. We show that most structures of the Levantine Sea are becoming more energetic over time, despite those of the western area remaining the most dominant due to their complex bathymetry and strong currents.
Rainer Kiko, Marc Picheral, David Antoine, Marcel Babin, Léo Berline, Tristan Biard, Emmanuel Boss, Peter Brandt, Francois Carlotti, Svenja Christiansen, Laurent Coppola, Leandro de la Cruz, Emilie Diamond-Riquier, Xavier Durrieu de Madron, Amanda Elineau, Gabriel Gorsky, Lionel Guidi, Helena Hauss, Jean-Olivier Irisson, Lee Karp-Boss, Johannes Karstensen, Dong-gyun Kim, Rachel M. Lekanoff, Fabien Lombard, Rubens M. Lopes, Claudie Marec, Andrew M. P. McDonnell, Daniela Niemeyer, Margaux Noyon, Stephanie H. O'Daly, Mark D. Ohman, Jessica L. Pretty, Andreas Rogge, Sarah Searson, Masashi Shibata, Yuji Tanaka, Toste Tanhua, Jan Taucher, Emilia Trudnowska, Jessica S. Turner, Anya Waite, and Lars Stemmann
Earth Syst. Sci. Data, 14, 4315–4337, https://doi.org/10.5194/essd-14-4315-2022, https://doi.org/10.5194/essd-14-4315-2022, 2022
Short summary
Short summary
The term
marine particlescomprises detrital aggregates; fecal pellets; bacterioplankton, phytoplankton and zooplankton; and even fish. Here, we present a global dataset that contains 8805 vertical particle size distribution profiles obtained with Underwater Vision Profiler 5 (UVP5) camera systems. These data are valuable to the scientific community, as they can be used to constrain important biogeochemical processes in the ocean, such as the flux of carbon to the deep sea.
Thai To Duy, Marine Herrmann, Claude Estournel, Patrick Marsaleix, Thomas Duhaut, Long Bui Hong, and Ngoc Trinh Bich
Ocean Sci., 18, 1131–1161, https://doi.org/10.5194/os-18-1131-2022, https://doi.org/10.5194/os-18-1131-2022, 2022
Short summary
Short summary
The South Vietnam Upwelling develops in the coastal and offshore regions of the southwestern South China Sea under the influence of summer monsoon winds. Cold, nutrient-rich waters rise to the surface, where photosynthesis occurs and is essential for fishing activity. We have developed a very high-resolution model to better understand the factors that drive the variability of this upwelling at different scales: daily chronology to summer mean of wind and mesoscale to regional circulation.
Katia Mallil, Pierre Testor, Anthony Bosse, Félix Margirier, Loic Houpert, Hervé Le Goff, Laurent Mortier, and Ferial Louanchi
Ocean Sci., 18, 937–952, https://doi.org/10.5194/os-18-937-2022, https://doi.org/10.5194/os-18-937-2022, 2022
Short summary
Short summary
Our study documents the circulation in the Algerian Basin of the western Mediterranean Sea using in situ data. It shows that the Algerian Gyres have an impact on the distribution at intermediate depth of Levantine Intermediate Water. They allow a westward transport from the south of Sardinia toward the interior of the Algerian Basin. Temperature and salinity trends of this water mass are also investigated, confirming a recent acceleration of the warming and salinification during the last decade.
Marie Barbieux, Julia Uitz, Alexandre Mignot, Collin Roesler, Hervé Claustre, Bernard Gentili, Vincent Taillandier, Fabrizio D'Ortenzio, Hubert Loisel, Antoine Poteau, Edouard Leymarie, Christophe Penkerc'h, Catherine Schmechtig, and Annick Bricaud
Biogeosciences, 19, 1165–1194, https://doi.org/10.5194/bg-19-1165-2022, https://doi.org/10.5194/bg-19-1165-2022, 2022
Short summary
Short summary
This study assesses marine biological production in two Mediterranean systems representative of vast desert-like (oligotrophic) areas encountered in the global ocean. We use a novel approach based on non-intrusive high-frequency in situ measurements by two profiling robots, the BioGeoChemical-Argo (BGC-Argo) floats. Our results indicate substantial yet variable production rates and contribution to the whole water column of the subsurface layer, typically considered steady and non-productive.
Mara Freilich, Alexandre Mignot, Glenn Flierl, and Raffaele Ferrari
Biogeosciences, 18, 5595–5607, https://doi.org/10.5194/bg-18-5595-2021, https://doi.org/10.5194/bg-18-5595-2021, 2021
Short summary
Short summary
Observations reveal that in some regions phytoplankton biomass increases during the wintertime when growth conditions are sub-optimal, which has been attributed to a release from grazing during mixed layer deepening. Measurements of grazer populations to support this theory are lacking. We demonstrate that a release from grazing when the winter mixed layer is deepening holds only for certain grazing models, extending the use of phytoplankton observations to make inferences about grazer dynamics.
Gaël Many, Caroline Ulses, Claude Estournel, and Patrick Marsaleix
Biogeosciences, 18, 5513–5538, https://doi.org/10.5194/bg-18-5513-2021, https://doi.org/10.5194/bg-18-5513-2021, 2021
Short summary
Short summary
The Gulf of Lion shelf is one of the most productive areas in the Mediterranean. A model is used to study the mechanisms that drive the particulate organic carbon (POC). The model reproduces the annual cycle of primary production well. The shelf appears as an autotrophic ecosystem with a high production and as a source of POC for the adjacent basin. The increase in temperature induced by climate change could impact the trophic status of the shelf.
Philippe Massicotte, Rainer M. W. Amon, David Antoine, Philippe Archambault, Sergio Balzano, Simon Bélanger, Ronald Benner, Dominique Boeuf, Annick Bricaud, Flavienne Bruyant, Gwenaëlle Chaillou, Malik Chami, Bruno Charrière, Jing Chen, Hervé Claustre, Pierre Coupel, Nicole Delsaut, David Doxaran, Jens Ehn, Cédric Fichot, Marie-Hélène Forget, Pingqing Fu, Jonathan Gagnon, Nicole Garcia, Beat Gasser, Jean-François Ghiglione, Gaby Gorsky, Michel Gosselin, Priscillia Gourvil, Yves Gratton, Pascal Guillot, Hermann J. Heipieper, Serge Heussner, Stanford B. Hooker, Yannick Huot, Christian Jeanthon, Wade Jeffrey, Fabien Joux, Kimitaka Kawamura, Bruno Lansard, Edouard Leymarie, Heike Link, Connie Lovejoy, Claudie Marec, Dominique Marie, Johannie Martin, Jacobo Martín, Guillaume Massé, Atsushi Matsuoka, Vanessa McKague, Alexandre Mignot, William L. Miller, Juan-Carlos Miquel, Alfonso Mucci, Kaori Ono, Eva Ortega-Retuerta, Christos Panagiotopoulos, Tim Papakyriakou, Marc Picheral, Louis Prieur, Patrick Raimbault, Joséphine Ras, Rick A. Reynolds, André Rochon, Jean-François Rontani, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Yuan Shen, Guisheng Song, Dariusz Stramski, Eri Tachibana, Alexandre Thirouard, Imma Tolosa, Jean-Éric Tremblay, Mickael Vaïtilingom, Daniel Vaulot, Frédéric Vaultier, John K. Volkman, Huixiang Xie, Guangming Zheng, and Marcel Babin
Earth Syst. Sci. Data, 13, 1561–1592, https://doi.org/10.5194/essd-13-1561-2021, https://doi.org/10.5194/essd-13-1561-2021, 2021
Short summary
Short summary
The MALINA oceanographic expedition was conducted in the Mackenzie River and the Beaufort Sea systems. The sampling was performed across seven shelf–basin transects to capture the meridional gradient between the estuary and the open ocean. The main goal of this research program was to better understand how processes such as primary production are influencing the fate of organic matter originating from the surrounding terrestrial landscape during its transition toward the Arctic Ocean.
Caroline Ulses, Claude Estournel, Marine Fourrier, Laurent Coppola, Fayçal Kessouri, Dominique Lefèvre, and Patrick Marsaleix
Biogeosciences, 18, 937–960, https://doi.org/10.5194/bg-18-937-2021, https://doi.org/10.5194/bg-18-937-2021, 2021
Short summary
Short summary
We analyse the seasonal cycle of O2 and estimate an annual O2 budget in the north-western Mediterranean deep-convection region, using a numerical model. We show that this region acts as a large sink of atmospheric O2 and as a major source of O2 for the western Mediterranean Sea. The decrease in the deep convection intensity predicted in recent projections may have important consequences on the overall uptake of O2 in the Mediterranean Sea and on the O2 exchanges with the Atlantic Ocean.
Elodie Gutknecht, Guillaume Reffray, Alexandre Mignot, Tomasz Dabrowski, and Marcos G. Sotillo
Ocean Sci., 15, 1489–1516, https://doi.org/10.5194/os-15-1489-2019, https://doi.org/10.5194/os-15-1489-2019, 2019
Short summary
Short summary
As part of the Copernicus Marine Environment Monitoring Service, an operational ocean forecasting system monitors the ocean dynamics and marine ecosystems of the European waters. This paper assesses the performance of the key biogeochemical variables (oxygen, nutrients, Chl a, primary production) using a 7-year pre-operational qualification simulation (2010–2016). The simulation can be used to better understand the current state, the changes and the health of European marine ecosystems.
Elena Terzić, Paolo Lazzari, Emanuele Organelli, Cosimo Solidoro, Stefano Salon, Fabrizio D'Ortenzio, and Pascal Conan
Biogeosciences, 16, 2527–2542, https://doi.org/10.5194/bg-16-2527-2019, https://doi.org/10.5194/bg-16-2527-2019, 2019
Short summary
Short summary
Measuring ecosystem properties in the ocean is a hard business. Recent availability of data from Biogeochemical-Argo floats can help make this task easier. Numerical models can integrate these new data in a coherent picture and can be used to investigate the functioning of ecosystem processes. Our new approach merges experimental information and model capabilities to quantitatively demonstrate the importance of light and water vertical mixing for algae dynamics in the Mediterranean Sea.
Marie Barbieux, Julia Uitz, Bernard Gentili, Orens Pasqueron de Fommervault, Alexandre Mignot, Antoine Poteau, Catherine Schmechtig, Vincent Taillandier, Edouard Leymarie, Christophe Penkerc'h, Fabrizio D'Ortenzio, Hervé Claustre, and Annick Bricaud
Biogeosciences, 16, 1321–1342, https://doi.org/10.5194/bg-16-1321-2019, https://doi.org/10.5194/bg-16-1321-2019, 2019
Short summary
Short summary
As commonly observed in oligotrophic stratified waters, a subsurface (or deep) chlorophyll maximum (SCM) frequently characterizes the vertical distribution of phytoplankton chlorophyll in the Mediterranean Sea. SCMs often result from photoacclimation of the phytoplankton organisms. However they can also result from an actual increase in phytoplankton carbon biomass. Our results also suggest that a variety of intermediate types of SCMs are encountered between these two endmember situations.
Dina Spungin, Natalia Belkin, Rachel A. Foster, Marcus Stenegren, Andrea Caputo, Mireille Pujo-Pay, Nathalie Leblond, Cécile Dupouy, Sophie Bonnet, and Ilana Berman-Frank
Biogeosciences, 15, 3893–3908, https://doi.org/10.5194/bg-15-3893-2018, https://doi.org/10.5194/bg-15-3893-2018, 2018
Short summary
Short summary
The way marine organisms die can determine the fate of organic matter (OM) in the ocean. We investigated whether a form of auto-induced programmed cell death (PCD) influenced phytoplankton mortality and fate of OM. Our results from high biomass blooms of the cyanobacterium Trichodesmium show evidence for PCD and high production of sticky carbon material termed transparent exopolymeric particles (TEP) that facilitates cellular aggregation and enhances the vertical flux of OM to depth.
Pascal Conan, Mireille Pujo-Pay, Marina Agab, Laura Calva-Benítez, Sandrine Chifflet, Pascal Douillet, Claire Dussud, Renaud Fichez, Christian Grenz, Francisco Gutierrez Mendieta, Montserrat Origel-Moreno, Arturo Rodríguez-Blanco, Caroline Sauret, Tatiana Severin, Marc Tedetti, Rocío Torres Alvarado, and Jean-François Ghiglione
Biogeosciences, 14, 959–975, https://doi.org/10.5194/bg-14-959-2017, https://doi.org/10.5194/bg-14-959-2017, 2017
Short summary
Short summary
Coastal lagoons are extremely rich, diverse, and dynamic but very fragile ecosystems subject to anthropogenic pressures. A joint France–Mexico biogeochemical study was conducted in the Términos Lagoon under severe drought related to an El Niño Modoki episode. In short, the water column of the Términos Lagoon functioned as a nitrogen sink, but variation in mineral stoichiometry across the lagoon mainly accounted for the heterogeneity in microbial distribution and activity.
Related subject area
Biogeochemistry: Modelling, Aquatic
Changes in Arctic Ocean plankton community structure and trophic dynamics on seasonal to interannual timescales
Global impact of benthic denitrification on marine N2 fixation and primary production simulated by a variable-stoichiometry Earth system model
Efficiency metrics for ocean alkalinity enhancement under responsive and prescribed atmosphere conditions
Killing the predator: impacts of highest-predator mortality on the global-ocean ecosystem structure
Hydrodynamic and biochemical impacts on the development of hypoxia in the Louisiana–Texas shelf – Part 1: roles of nutrient limitation and plankton community
Validation of the coupled physical–biogeochemical ocean model NEMO–SCOBI for the North Sea–Baltic Sea system
Investigating ecosystem connections in the shelf sea environment using complex networks
How much do bacterial growth properties and biodegradable dissolved organic matter control water quality at low flow?
Methane emissions from Arctic landscapes during 2000–2015: an analysis with land and lake biogeochemistry models
Including filter-feeding gelatinous macrozooplankton in a global marine biogeochemical model: model–data comparison and impact on the ocean carbon cycle
Riverine impact on future projections of marine primary production and carbon uptake
Subsurface oxygen maximum in oligotrophic marine ecosystems: mapping the interaction between physical and biogeochemical processes
Quantifying biological carbon pump pathways with a data-constrained mechanistic model ensemble approach
Assessing the spatial and temporal variability of methylmercury biogeochemistry and bioaccumulation in the Mediterranean Sea with a coupled 3D model
Hydrodynamic and biochemical impacts on the development of hypoxia in the Louisiana–Texas shelf – Part 2: statistical modeling and hypoxia prediction
Modelling the effects of benthic fauna on carbon, nitrogen and phosphorus dynamics in the Baltic Sea
Improved prediction of dimethyl sulfide (DMS) distributions in the northeast subarctic Pacific using machine-learning algorithms
Nutrient transport and transformation in macrotidal estuaries of the French Atlantic coast: a modeling approach using the Carbon-Generic Estuarine Model
A modelling study of temporal and spatial pCO2 variability on the biologically active and temperature-dominated Scotian Shelf
Modeling the marine chromium cycle: new constraints on global-scale processes
New insights into large-scale trends of apparent organic matter reactivity in marine sediments and patterns of benthic carbon transformation
Evaluation of ocean dimethylsulfide concentration and emission in CMIP6 models
Zooplankton mortality effects on the plankton community of the northern Humboldt Current System: sensitivity of a regional biogeochemical model
Multi-compartment kinetic–allometric (MCKA) model of radionuclide bioaccumulation in marine fish
Impact of bottom trawling on sediment biogeochemistry: a modelling approach
Cyanobacteria blooms in the Baltic Sea: a review of models and facts
Arctic Ocean acidification over the 21st century co-driven by anthropogenic carbon increases and freshening in the CMIP6 model ensemble
Modeling silicate–nitrate–ammonium co-limitation of algal growth and the importance of bacterial remineralization based on an experimental Arctic coastal spring bloom culture study
Role of jellyfish in the plankton ecosystem revealed using a global ocean biogeochemical model
Extreme event waves in marine ecosystems: an application to Mediterranean Sea surface chlorophyll
Use of optical absorption indices to assess seasonal variability of dissolved organic matter in Amazon floodplain lakes
The role of sediment-induced light attenuation on primary production during Hurricane Gustav (2008)
Quantifying spatiotemporal variability in zooplankton dynamics in the Gulf of Mexico with a physical–biogeochemical model
One size fits all? Calibrating an ocean biogeochemistry model for different circulations
Assessing the temporal scale of deep-sea mining impacts on sediment biogeochemistry
Seasonal patterns of surface inorganic carbon system variables in the Gulf of Mexico inferred from a regional high-resolution ocean biogeochemical model
Oxygen dynamics and evaluation of the single-station diel oxygen model across contrasting geologies
Oceanic CO2 outgassing and biological production hotspots induced by pre-industrial river loads of nutrients and carbon in a global modeling approach
Global trends in marine nitrate N isotopes from observations and a neural network-based climatology
Merging bio-optical data from Biogeochemical-Argo floats and models in marine biogeochemistry
Model constraints on the anthropogenic carbon budget of the Arctic Ocean
Modeling oceanic nitrate and nitrite concentrations and isotopes using a 3-D inverse N cycle model
Biogeochemical response of the Mediterranean Sea to the transient SRES-A2 climate change scenario
Modelling the biogeochemical effects of heterotrophic and autotrophic N2 fixation in the Gulf of Aqaba (Israel), Red Sea
A perturbed biogeochemistry model ensemble evaluated against in situ and satellite observations
Diazotrophy as the main driver of the oligotrophy gradient in the western tropical South Pacific Ocean: results from a one-dimensional biogeochemical–physical coupled model
Causes of simulated long-term changes in phytoplankton biomass in the Baltic proper: a wavelet analysis
Modelling N2 fixation related to Trichodesmium sp.: driving processes and impacts on primary production in the tropical Pacific Ocean
Long-term response of oceanic carbon uptake to global warming via physical and biological pumps
Seasonal patterns in phytoplankton biomass across the northern and deep Gulf of Mexico: a numerical model study
Gabriela Negrete-García, Jessica Y. Luo, Colleen M. Petrik, Manfredi Manizza, and Andrew D. Barton
Biogeosciences, 21, 4951–4973, https://doi.org/10.5194/bg-21-4951-2024, https://doi.org/10.5194/bg-21-4951-2024, 2024
Short summary
Short summary
The Arctic Ocean experiences significant seasonal and year-to-year changes, impacting marine plankton populations. Using a plankton community model, we studied these effects on plankton communities and their influence on fish production. Our findings revealed earlier plankton blooms, shifts towards more carnivorous zooplankton, and increased fishery potential during summertime, especially in warmer years with less ice, highlighting the delicate balance of Arctic ecosystems.
Na Li, Christopher J. Somes, Angela Landolfi, Chia-Te Chien, Markus Pahlow, and Andreas Oschlies
Biogeosciences, 21, 4361–4380, https://doi.org/10.5194/bg-21-4361-2024, https://doi.org/10.5194/bg-21-4361-2024, 2024
Short summary
Short summary
N is a crucial nutrient that limits phytoplankton growth in large ocean areas. The amount of oceanic N is governed by the balance of N2 fixation and denitrification. Here we incorporate benthic denitrification into an Earth system model with variable particulate stoichiometry. Our model compares better to the observed surface nutrient distributions, marine N2 fixation, and primary production. Benthic denitrification plays an important role in marine N and C cycling and hence the global climate.
Michael Dominik Tyka
EGUsphere, https://doi.org/10.5194/egusphere-2024-2150, https://doi.org/10.5194/egusphere-2024-2150, 2024
Short summary
Short summary
Marine CO2 removal (mCDR) is a promising technology for removing legacy emissions from the atmosphere. Its indirect nature makes it difficult to assess experimentally; instead one relies heavily on simulation. Many past papers treated the atmosphere as non-responsive to the intervention studied. We show that even under these simplified assumptions, the increase in ocean CO2 inventory is equal to the equivalent quantity of direct CO2 removals occurring over time, in a realistic atmosphere.
David Talmy, Eric Carr, Harshana Rajakaruna, Selina Våge, and Anne Willem Omta
Biogeosciences, 21, 2493–2507, https://doi.org/10.5194/bg-21-2493-2024, https://doi.org/10.5194/bg-21-2493-2024, 2024
Short summary
Short summary
The structure of plankton communities is central to global cycles of carbon, nitrogen, and other elements. This study explored the sensitivity of different assumptions about highest-predator mortality in ecosystem models with contrasting food web structures. In the context of environmental data, we find support for models assuming a density-dependent mortality of the highest predator, irrespective of assumed food web structure.
Yanda Ou and Z. George Xue
Biogeosciences, 21, 2385–2424, https://doi.org/10.5194/bg-21-2385-2024, https://doi.org/10.5194/bg-21-2385-2024, 2024
Short summary
Short summary
Developed for the Gulf of Mexico (2006–2020), a 3D hydrodynamic–biogeochemical model validated against in situ data reveals the impact of nutrients and plankton diversity on dissolved oxygen dynamics. It highlights the role of physical processes, sediment oxygen consumption, and nutrient distribution in shaping bottom oxygen levels and hypoxia. The model underscores the importance of complex plankton interactions for understanding primary production and hypoxia evolution.
Itzel Ruvalcaba Baroni, Elin Almroth-Rosell, Lars Axell, Sam T. Fredriksson, Jenny Hieronymus, Magnus Hieronymus, Sandra-Esther Brunnabend, Matthias Gröger, Ivan Kuznetsov, Filippa Fransner, Robinson Hordoir, Saeed Falahat, and Lars Arneborg
Biogeosciences, 21, 2087–2132, https://doi.org/10.5194/bg-21-2087-2024, https://doi.org/10.5194/bg-21-2087-2024, 2024
Short summary
Short summary
The health of the Baltic and North seas is threatened due to high anthropogenic pressure; thus, different methods to assess the status of these regions are urgently needed. Here, we validated a novel model simulating the ocean dynamics and biogeochemistry of the Baltic and North seas that can be used to create future climate and nutrient scenarios, contribute to European initiatives on de-eutrophication, and provide water quality advice and support on nutrient load reductions for both seas.
Ieuan Higgs, Jozef Skákala, Ross Bannister, Alberto Carrassi, and Stefano Ciavatta
Biogeosciences, 21, 731–746, https://doi.org/10.5194/bg-21-731-2024, https://doi.org/10.5194/bg-21-731-2024, 2024
Short summary
Short summary
A complex network is a way of representing which parts of a system are connected to other parts. We have constructed a complex network based on an ecosystem–ocean model. From this, we can identify patterns in the structure and areas of similar behaviour. This can help to understand how natural, or human-made, changes will affect the shelf sea ecosystem, and it can be used in multiple future applications such as improving modelling, data assimilation, or machine learning.
Masihullah Hasanyar, Thomas Romary, Shuaitao Wang, and Nicolas Flipo
Biogeosciences, 20, 1621–1633, https://doi.org/10.5194/bg-20-1621-2023, https://doi.org/10.5194/bg-20-1621-2023, 2023
Short summary
Short summary
The results of this study indicate that biodegradable dissolved organic matter is responsible for oxygen depletion at low flow during summer seasons when heterotrophic bacterial activity is so intense. Therefore, the dissolved organic matter must be well measured in the water monitoring networks in order to have more accurate water quality models. It also advocates for high-frequency data collection for better quantification of the uncertainties related to organic matter.
Xiangyu Liu and Qianlai Zhuang
Biogeosciences, 20, 1181–1193, https://doi.org/10.5194/bg-20-1181-2023, https://doi.org/10.5194/bg-20-1181-2023, 2023
Short summary
Short summary
We are among the first to quantify methane emissions from inland water system in the pan-Arctic. The total CH4 emissions are 36.46 Tg CH4 yr−1 during 2000–2015, of which wetlands and lakes were 21.69 Tg yr−1 and 14.76 Tg yr−1, respectively. By using two non-overlap area change datasets with land and lake models, our simulation avoids small lakes being counted twice as both lake and wetland, and it narrows the gap between two different methods used to quantify regional CH4 emissions.
Corentin Clerc, Laurent Bopp, Fabio Benedetti, Meike Vogt, and Olivier Aumont
Biogeosciences, 20, 869–895, https://doi.org/10.5194/bg-20-869-2023, https://doi.org/10.5194/bg-20-869-2023, 2023
Short summary
Short summary
Gelatinous zooplankton play a key role in the ocean carbon cycle. In particular, pelagic tunicates, which feed on a wide size range of prey, produce rapidly sinking detritus. Thus, they efficiently transfer carbon from the surface to the depths. Consequently, we added these organisms to a marine biogeochemical model (PISCES-v2) and evaluated their impact on the global carbon cycle. We found that they contribute significantly to carbon export and that this contribution increases with depth.
Shuang Gao, Jörg Schwinger, Jerry Tjiputra, Ingo Bethke, Jens Hartmann, Emilio Mayorga, and Christoph Heinze
Biogeosciences, 20, 93–119, https://doi.org/10.5194/bg-20-93-2023, https://doi.org/10.5194/bg-20-93-2023, 2023
Short summary
Short summary
We assess the impact of riverine nutrients and carbon (C) on projected marine primary production (PP) and C uptake using a fully coupled Earth system model. Riverine inputs alleviate nutrient limitation and thus lessen the projected PP decline by up to 0.7 Pg C yr−1 globally. The effect of increased riverine C may be larger than the effect of nutrient inputs in the future on the projected ocean C uptake, while in the historical period increased nutrient inputs are considered the largest driver.
Valeria Di Biagio, Stefano Salon, Laura Feudale, and Gianpiero Cossarini
Biogeosciences, 19, 5553–5574, https://doi.org/10.5194/bg-19-5553-2022, https://doi.org/10.5194/bg-19-5553-2022, 2022
Short summary
Short summary
The amount of dissolved oxygen in the ocean is the result of interacting physical and biological processes. Oxygen vertical profiles show a subsurface maximum in a large part of the ocean. We used a numerical model to map this subsurface maximum in the Mediterranean Sea and to link local differences in its properties to the driving processes. This emerging feature can help the marine ecosystem functioning to be better understood, also under the impacts of climate change.
Michael R. Stukel, Moira Décima, and Michael R. Landry
Biogeosciences, 19, 3595–3624, https://doi.org/10.5194/bg-19-3595-2022, https://doi.org/10.5194/bg-19-3595-2022, 2022
Short summary
Short summary
The biological carbon pump (BCP) transports carbon into the deep ocean, leading to long-term marine carbon sequestration. It is driven by many physical, chemical, and ecological processes. We developed a model of the BCP constrained using data from 11 cruises in 4 different ocean regions. Our results show that sinking particles and vertical mixing are more important than transport mediated by vertically migrating zooplankton. They also highlight the uncertainty in current estimates of the BCP.
Ginevra Rosati, Donata Canu, Paolo Lazzari, and Cosimo Solidoro
Biogeosciences, 19, 3663–3682, https://doi.org/10.5194/bg-19-3663-2022, https://doi.org/10.5194/bg-19-3663-2022, 2022
Short summary
Short summary
Methylmercury (MeHg) is produced and bioaccumulated in marine food webs, posing concerns for human exposure through seafood consumption. We modeled and analyzed the fate of MeHg in the lower food web of the Mediterranean Sea. The modeled spatial–temporal distribution of plankton bioaccumulation differs from the distribution of MeHg in surface water. We also show that MeHg exposure concentrations in temperate waters can be lowered by winter convection, which is declining due to climate change.
Yanda Ou, Bin Li, and Z. George Xue
Biogeosciences, 19, 3575–3593, https://doi.org/10.5194/bg-19-3575-2022, https://doi.org/10.5194/bg-19-3575-2022, 2022
Short summary
Short summary
Over the past decades, the Louisiana–Texas shelf has been suffering recurring hypoxia (dissolved oxygen < 2 mg L−1). We developed a novel prediction model using state-of-the-art statistical techniques based on physical and biogeochemical data provided by a numerical model. The model can capture both the magnitude and onset of the annual hypoxia events. This study also demonstrates that it is possible to use a global model forecast to predict regional ocean water quality.
Eva Ehrnsten, Oleg Pavlovitch Savchuk, and Bo Gustav Gustafsson
Biogeosciences, 19, 3337–3367, https://doi.org/10.5194/bg-19-3337-2022, https://doi.org/10.5194/bg-19-3337-2022, 2022
Short summary
Short summary
We studied the effects of benthic fauna, animals living on or in the seafloor, on the biogeochemical cycles of carbon, nitrogen and phosphorus using a model of the Baltic Sea ecosystem. By eating and excreting, the animals transform a large part of organic matter sinking to the seafloor into inorganic forms, which fuel plankton blooms. Simultaneously, when they move around (bioturbate), phosphorus is bound in the sediments. This reduces nitrogen-fixing plankton blooms and oxygen depletion.
Brandon J. McNabb and Philippe D. Tortell
Biogeosciences, 19, 1705–1721, https://doi.org/10.5194/bg-19-1705-2022, https://doi.org/10.5194/bg-19-1705-2022, 2022
Short summary
Short summary
The trace gas dimethyl sulfide (DMS) plays an important role in the ocean sulfur cycle and can also influence Earth’s climate. Our study used two statistical methods to predict surface ocean concentrations and rates of sea–air exchange of DMS in the northeast subarctic Pacific. Our results show improved predictive power over previous approaches and suggest that nutrient availability, light-dependent processes, and physical mixing may be important controls on DMS in this region.
Xi Wei, Josette Garnier, Vincent Thieu, Paul Passy, Romain Le Gendre, Gilles Billen, Maia Akopian, and Goulven Gildas Laruelle
Biogeosciences, 19, 931–955, https://doi.org/10.5194/bg-19-931-2022, https://doi.org/10.5194/bg-19-931-2022, 2022
Short summary
Short summary
Estuaries are key reactive ecosystems along the land–ocean aquatic continuum and are often strongly impacted by anthropogenic activities. We calculated nutrient in and out fluxes by using a 1-D transient model for seven estuaries along the French Atlantic coast. Among these, large estuaries with high residence times showed higher retention rates than medium and small ones. All reveal coastal eutrophication due to the excess of diffused nitrogen from intensive agricultural river basins.
Krysten Rutherford, Katja Fennel, Dariia Atamanchuk, Douglas Wallace, and Helmuth Thomas
Biogeosciences, 18, 6271–6286, https://doi.org/10.5194/bg-18-6271-2021, https://doi.org/10.5194/bg-18-6271-2021, 2021
Short summary
Short summary
Using a regional model of the northwestern North Atlantic shelves in combination with a surface water time series and repeat transect observations, we investigate surface CO2 variability on the Scotian Shelf. The study highlights a strong seasonal cycle in shelf-wide pCO2 and spatial variability throughout the summer months driven by physical events. The simulated net flux of CO2 on the Scotian Shelf is out of the ocean, deviating from the global air–sea CO2 flux trend in continental shelves.
Frerk Pöppelmeier, David J. Janssen, Samuel L. Jaccard, and Thomas F. Stocker
Biogeosciences, 18, 5447–5463, https://doi.org/10.5194/bg-18-5447-2021, https://doi.org/10.5194/bg-18-5447-2021, 2021
Short summary
Short summary
Chromium (Cr) is a redox-sensitive element that holds promise as a tracer of ocean oxygenation and biological activity. We here implemented the oxidation states Cr(III) and Cr(VI) in the Bern3D model to investigate the processes that shape the global Cr distribution. We find a Cr ocean residence time of 5–8 kyr and that the benthic source dominates the tracer budget. Further, regional model–data mismatches suggest strong Cr removal in oxygen minimum zones and a spatially variable benthic source.
Felipe S. Freitas, Philip A. Pika, Sabine Kasten, Bo B. Jørgensen, Jens Rassmann, Christophe Rabouille, Shaun Thomas, Henrik Sass, Richard D. Pancost, and Sandra Arndt
Biogeosciences, 18, 4651–4679, https://doi.org/10.5194/bg-18-4651-2021, https://doi.org/10.5194/bg-18-4651-2021, 2021
Short summary
Short summary
It remains challenging to fully understand what controls carbon burial in marine sediments globally. Thus, we use a model–data approach to identify patterns of organic matter reactivity at the seafloor across distinct environmental conditions. Our findings support the notion that organic matter reactivity is a dynamic ecosystem property and strongly influences biogeochemical cycling and exchange. Our results are essential to improve predictions of future changes in carbon cycling and climate.
Josué Bock, Martine Michou, Pierre Nabat, Manabu Abe, Jane P. Mulcahy, Dirk J. L. Olivié, Jörg Schwinger, Parvadha Suntharalingam, Jerry Tjiputra, Marco van Hulten, Michio Watanabe, Andrew Yool, and Roland Séférian
Biogeosciences, 18, 3823–3860, https://doi.org/10.5194/bg-18-3823-2021, https://doi.org/10.5194/bg-18-3823-2021, 2021
Short summary
Short summary
In this study we analyse surface ocean dimethylsulfide (DMS) concentration and flux to the atmosphere from four CMIP6 Earth system models over the historical and ssp585 simulations.
Our analysis of contemporary (1980–2009) climatologies shows that models better reproduce observations in mid to high latitudes. The models disagree on the sign of the trend of the global DMS flux from 1980 onwards. The models agree on a positive trend of DMS over polar latitudes following sea-ice retreat dynamics.
Mariana Hill Cruz, Iris Kriest, Yonss Saranga José, Rainer Kiko, Helena Hauss, and Andreas Oschlies
Biogeosciences, 18, 2891–2916, https://doi.org/10.5194/bg-18-2891-2021, https://doi.org/10.5194/bg-18-2891-2021, 2021
Short summary
Short summary
In this study we use a regional biogeochemical model of the eastern tropical South Pacific Ocean to implicitly simulate the effect that fluctuations in populations of small pelagic fish, such as anchovy and sardine, may have on the biogeochemistry of the northern Humboldt Current System. To do so, we vary the zooplankton mortality in the model, under the assumption that these fishes eat zooplankton. We also evaluate the model for the first time against mesozooplankton observations.
Roman Bezhenar, Kyeong Ok Kim, Vladimir Maderich, Govert de With, and Kyung Tae Jung
Biogeosciences, 18, 2591–2607, https://doi.org/10.5194/bg-18-2591-2021, https://doi.org/10.5194/bg-18-2591-2021, 2021
Short summary
Short summary
A new approach to predicting the accumulation of radionuclides in fish was developed by taking into account heterogeneity of distribution of contamination in the organism and dependence of metabolic process rates on the fish mass. Predicted concentrations of radionuclides in fish agreed well with the laboratory and field measurements. The model with the defined generic parameters could be used in marine environments without local calibration, which is important for emergency decision support.
Emil De Borger, Justin Tiano, Ulrike Braeckman, Adriaan D. Rijnsdorp, and Karline Soetaert
Biogeosciences, 18, 2539–2557, https://doi.org/10.5194/bg-18-2539-2021, https://doi.org/10.5194/bg-18-2539-2021, 2021
Short summary
Short summary
Bottom trawling alters benthic mineralization: the recycling of organic material (OM) to free nutrients. To better understand how this occurs, trawling events were added to a model of seafloor OM recycling. Results show that bottom trawling reduces OM and free nutrients in sediments through direct removal thereof and of fauna which transport OM to deeper sediment layers protected from fishing. Our results support temporospatial trawl restrictions to allow key sediment functions to recover.
Britta Munkes, Ulrike Löptien, and Heiner Dietze
Biogeosciences, 18, 2347–2378, https://doi.org/10.5194/bg-18-2347-2021, https://doi.org/10.5194/bg-18-2347-2021, 2021
Short summary
Short summary
Cyanobacteria blooms can strongly aggravate eutrophication problems of water bodies. Their controls are, however, not comprehensively understood, which impedes effective management and protection plans. Here we review the current understanding of cyanobacteria blooms. Juxtaposition of respective field and laboratory studies with state-of-the-art mathematical models reveals substantial uncertainty associated with nutrient demands, grazing, and death of cyanobacteria.
Jens Terhaar, Olivier Torres, Timothée Bourgeois, and Lester Kwiatkowski
Biogeosciences, 18, 2221–2240, https://doi.org/10.5194/bg-18-2221-2021, https://doi.org/10.5194/bg-18-2221-2021, 2021
Short summary
Short summary
The uptake of carbon, emitted as a result of human activities, results in ocean acidification. We analyse 21st-century projections of acidification in the Arctic Ocean, a region of particular vulnerability, using the latest generation of Earth system models. In this new generation of models there is a large decrease in the uncertainty associated with projections of Arctic Ocean acidification, with freshening playing a greater role in driving acidification than previously simulated.
Tobias R. Vonnahme, Martial Leroy, Silke Thoms, Dick van Oevelen, H. Rodger Harvey, Svein Kristiansen, Rolf Gradinger, Ulrike Dietrich, and Christoph Völker
Biogeosciences, 18, 1719–1747, https://doi.org/10.5194/bg-18-1719-2021, https://doi.org/10.5194/bg-18-1719-2021, 2021
Short summary
Short summary
Diatoms are crucial for Arctic coastal spring blooms, and their growth is controlled by nutrients and light. At the end of the bloom, inorganic nitrogen or silicon can be limiting, but nitrogen can be regenerated by bacteria, extending the algal growth phase. Modeling these multi-nutrient dynamics and the role of bacteria is challenging yet crucial for accurate modeling. We recreated spring bloom dynamics in a cultivation experiment and developed a representative dynamic model.
Rebecca M. Wright, Corinne Le Quéré, Erik Buitenhuis, Sophie Pitois, and Mark J. Gibbons
Biogeosciences, 18, 1291–1320, https://doi.org/10.5194/bg-18-1291-2021, https://doi.org/10.5194/bg-18-1291-2021, 2021
Short summary
Short summary
Jellyfish have been included in a global ocean biogeochemical model for the first time. The global mean jellyfish biomass in the model is within the observational range. Jellyfish are found to play an important role in the plankton ecosystem, influencing community structure, spatiotemporal dynamics and biomass. The model raises questions about the sensitivity of the zooplankton community to jellyfish mortality and the interactions between macrozooplankton and jellyfish.
Valeria Di Biagio, Gianpiero Cossarini, Stefano Salon, and Cosimo Solidoro
Biogeosciences, 17, 5967–5988, https://doi.org/10.5194/bg-17-5967-2020, https://doi.org/10.5194/bg-17-5967-2020, 2020
Short summary
Short summary
Events that influence the functioning of the Earth’s ecosystems are of interest in relation to a changing climate. We propose a method to identify and characterise
wavesof extreme events affecting marine ecosystems for multi-week periods over wide areas. Our method can be applied to suitable ecosystem variables and has been used to describe different kinds of extreme event waves of phytoplankton chlorophyll in the Mediterranean Sea, by analysing the output from a high-resolution model.
Maria Paula da Silva, Lino A. Sander de Carvalho, Evlyn Novo, Daniel S. F. Jorge, and Claudio C. F. Barbosa
Biogeosciences, 17, 5355–5364, https://doi.org/10.5194/bg-17-5355-2020, https://doi.org/10.5194/bg-17-5355-2020, 2020
Short summary
Short summary
In this study, we analyze the seasonal changes in the dissolved organic matter (DOM) quality (based on its optical properties) in four Amazon floodplain lakes. DOM plays a fundamental role in surface water chemistry, controlling metal bioavailability and mobility, and nutrient cycling. The model proposed in our paper highlights the potential to study DOM quality at a wider spatial scale, which may help to better understand the persistence and fate of DOM in the ecosystem.
Zhengchen Zang, Z. George Xue, Kehui Xu, Samuel J. Bentley, Qin Chen, Eurico J. D'Sa, Le Zhang, and Yanda Ou
Biogeosciences, 17, 5043–5055, https://doi.org/10.5194/bg-17-5043-2020, https://doi.org/10.5194/bg-17-5043-2020, 2020
Taylor A. Shropshire, Steven L. Morey, Eric P. Chassignet, Alexandra Bozec, Victoria J. Coles, Michael R. Landry, Rasmus Swalethorp, Glenn Zapfe, and Michael R. Stukel
Biogeosciences, 17, 3385–3407, https://doi.org/10.5194/bg-17-3385-2020, https://doi.org/10.5194/bg-17-3385-2020, 2020
Short summary
Short summary
Zooplankton are the smallest animals in the ocean and important food for fish. Despite their importance, zooplankton have been relatively undersampled. To better understand the zooplankton community in the Gulf of Mexico (GoM), we developed a model to simulate their dynamics. We found that heterotrophic protists are important for supporting mesozooplankton, which are the primary prey of larval fish. The model developed in this study has the potential to improve fisheries management in the GoM.
Iris Kriest, Paul Kähler, Wolfgang Koeve, Karin Kvale, Volkmar Sauerland, and Andreas Oschlies
Biogeosciences, 17, 3057–3082, https://doi.org/10.5194/bg-17-3057-2020, https://doi.org/10.5194/bg-17-3057-2020, 2020
Short summary
Short summary
Constants of global biogeochemical ocean models are often tuned
by handto match observations of nutrients or oxygen. We investigate the effect of this tuning by optimising six constants of a global biogeochemical model, simulated in five different offline circulations. Optimal values for three constants adjust to distinct features of the circulation applied and can afterwards be swapped among the circulations, without losing too much of the model's fit to observed quantities.
Laura Haffert, Matthias Haeckel, Henko de Stigter, and Felix Janssen
Biogeosciences, 17, 2767–2789, https://doi.org/10.5194/bg-17-2767-2020, https://doi.org/10.5194/bg-17-2767-2020, 2020
Short summary
Short summary
Deep-sea mining for polymetallic nodules is expected to have severe environmental impacts. Through prognostic modelling, this study aims to provide a holistic assessment of the biogeochemical recovery after a disturbance event. It was found that the recovery strongly depends on the impact type; e.g. complete removal of the surface sediment reduces seafloor nutrient fluxes over centuries.
Fabian A. Gomez, Rik Wanninkhof, Leticia Barbero, Sang-Ki Lee, and Frank J. Hernandez Jr.
Biogeosciences, 17, 1685–1700, https://doi.org/10.5194/bg-17-1685-2020, https://doi.org/10.5194/bg-17-1685-2020, 2020
Short summary
Short summary
We use a numerical model to infer annual changes of surface carbon chemistry in the Gulf of Mexico (GoM). The main seasonality drivers of partial pressure of carbon dioxide and aragonite saturation state from the model are temperature and river runoff. The GoM basin is a carbon sink in winter–spring and carbon source in summer–fall, but uptake prevails near the Mississippi Delta year-round due to high biological production. Our model results show good correspondence with observational studies.
Simon J. Parker
Biogeosciences, 17, 305–315, https://doi.org/10.5194/bg-17-305-2020, https://doi.org/10.5194/bg-17-305-2020, 2020
Short summary
Short summary
Dissolved oxygen (DO) models typically assume constant ecosystem respiration over the course of a single day. Using a data-driven approach, this research examines this assumption in four streams across two (hydro-)geological types (Chalk and Greensand). Despite hydrogeological equivalence in terms of baseflow index for each hydrogeological pairing, model suitability differed within, rather than across, geology types. This corresponded with associated differences in timings of DO minima.
Fabrice Lacroix, Tatiana Ilyina, and Jens Hartmann
Biogeosciences, 17, 55–88, https://doi.org/10.5194/bg-17-55-2020, https://doi.org/10.5194/bg-17-55-2020, 2020
Short summary
Short summary
Contributions of rivers to the oceanic cycling of carbon have been poorly represented in global models until now. Here, we assess the long–term implications of preindustrial riverine loads in the ocean in a novel framework which estimates the loads through a hierarchy of weathering and land–ocean export models. We investigate their impacts for the oceanic biological production and air–sea carbon flux. Finally, we assess the potential incorporation of the framework in an Earth system model.
Patrick A. Rafter, Aaron Bagnell, Dario Marconi, and Timothy DeVries
Biogeosciences, 16, 2617–2633, https://doi.org/10.5194/bg-16-2617-2019, https://doi.org/10.5194/bg-16-2617-2019, 2019
Short summary
Short summary
The N isotopic composition of nitrate (
nitrate δ15N) is a useful tracer of ocean N cycling and many other ocean processes. Here, we use a global compilation of marine nitrate δ15N as an input, training, and validating dataset for an artificial neural network (a.k.a.,
machine learning) and examine basin-scale trends in marine nitrate δ15N from the surface to the seafloor.
Elena Terzić, Paolo Lazzari, Emanuele Organelli, Cosimo Solidoro, Stefano Salon, Fabrizio D'Ortenzio, and Pascal Conan
Biogeosciences, 16, 2527–2542, https://doi.org/10.5194/bg-16-2527-2019, https://doi.org/10.5194/bg-16-2527-2019, 2019
Short summary
Short summary
Measuring ecosystem properties in the ocean is a hard business. Recent availability of data from Biogeochemical-Argo floats can help make this task easier. Numerical models can integrate these new data in a coherent picture and can be used to investigate the functioning of ecosystem processes. Our new approach merges experimental information and model capabilities to quantitatively demonstrate the importance of light and water vertical mixing for algae dynamics in the Mediterranean Sea.
Jens Terhaar, James C. Orr, Marion Gehlen, Christian Ethé, and Laurent Bopp
Biogeosciences, 16, 2343–2367, https://doi.org/10.5194/bg-16-2343-2019, https://doi.org/10.5194/bg-16-2343-2019, 2019
Short summary
Short summary
A budget of anthropogenic carbon in the Arctic Ocean, the main driver of open-ocean acidification, was constructed for the first time using a high-resolution ocean model. The budget reveals that anthropogenic carbon enters the Arctic Ocean mainly by lateral transport; the air–sea flux plays a minor role. Coarser-resolution versions of the same model, typical of earth system models, store less anthropogenic carbon in the Arctic Ocean and thus underestimate ocean acidification in the Arctic Ocean.
Taylor S. Martin, François Primeau, and Karen L. Casciotti
Biogeosciences, 16, 347–367, https://doi.org/10.5194/bg-16-347-2019, https://doi.org/10.5194/bg-16-347-2019, 2019
Short summary
Short summary
Nitrite is a key intermediate in many nitrogen (N) cycling processes in the ocean, particularly in areas with low oxygen that are hotspots for N loss. We have created a 3-D global N cycle model with nitrite as a tracer. Stable isotopes of N are also included in the model and we are able to model the isotope fractionation associated with each N cycling process. Our model accurately represents N concentrations and isotope distributions in the ocean.
Camille Richon, Jean-Claude Dutay, Laurent Bopp, Briac Le Vu, James C. Orr, Samuel Somot, and François Dulac
Biogeosciences, 16, 135–165, https://doi.org/10.5194/bg-16-135-2019, https://doi.org/10.5194/bg-16-135-2019, 2019
Short summary
Short summary
We evaluate the effects of climate change and biogeochemical forcing evolution on the nutrient and plankton cycles of the Mediterranean Sea for the first time. We use a high-resolution coupled physical and biogeochemical model and perform 120-year transient simulations. The results indicate that changes in external nutrient fluxes and climate change may have synergistic or antagonistic effects on nutrient concentrations, depending on the region and the scenario.
Angela M. Kuhn, Katja Fennel, and Ilana Berman-Frank
Biogeosciences, 15, 7379–7401, https://doi.org/10.5194/bg-15-7379-2018, https://doi.org/10.5194/bg-15-7379-2018, 2018
Short summary
Short summary
Recent studies demonstrate that marine N2 fixation can be carried out without light. However, direct measurements of N2 fixation in dark environments are relatively scarce. This study uses a model that represents biogeochemical cycles at a deep-ocean location in the Gulf of Aqaba (Red Sea). Different model versions are used to test assumptions about N2 fixers. Relaxing light limitation for marine N2 fixers improved the similarity between model results and observations of deep nitrate and oxygen.
Prima Anugerahanti, Shovonlal Roy, and Keith Haines
Biogeosciences, 15, 6685–6711, https://doi.org/10.5194/bg-15-6685-2018, https://doi.org/10.5194/bg-15-6685-2018, 2018
Short summary
Short summary
Minor changes in the biogeochemical model equations lead to major dynamical changes. We assessed this structural sensitivity for the MEDUSA biogeochemical model on chlorophyll and nitrogen concentrations at five oceanographic stations over 10 years, using 1-D ensembles generated by combining different process equations. The ensemble performed better than the default model in most of the stations, suggesting that our approach is useful for generating a probabilistic biogeochemical ensemble model.
Audrey Gimenez, Melika Baklouti, Thibaut Wagener, and Thierry Moutin
Biogeosciences, 15, 6573–6589, https://doi.org/10.5194/bg-15-6573-2018, https://doi.org/10.5194/bg-15-6573-2018, 2018
Short summary
Short summary
During the OUTPACE cruise conducted in the oligotrophic to ultra-oligotrophic region of the western tropical South Pacific, two contrasted regions were sampled in terms of N2 fixation rates, primary production rates and nutrient availability. The aim of this work was to investigate the role of N2 fixation in the differences observed between the two contrasted areas by comparing two simulations only differing by the presence or not of N2 fixers using a 1-D biogeochemical–physical coupled model.
Jenny Hieronymus, Kari Eilola, Magnus Hieronymus, H. E. Markus Meier, Sofia Saraiva, and Bengt Karlson
Biogeosciences, 15, 5113–5129, https://doi.org/10.5194/bg-15-5113-2018, https://doi.org/10.5194/bg-15-5113-2018, 2018
Short summary
Short summary
This paper investigates how phytoplankton concentrations in the Baltic Sea co-vary with nutrient concentrations and other key variables on inter-annual timescales in a model integration over the years 1850–2008. The study area is not only affected by climate change; it has also been subjected to greatly increased nutrient loads due to extensive use of agricultural fertilizers. The results indicate the largest inter-annual coherence of phytoplankton with the limiting nutrient.
Cyril Dutheil, Olivier Aumont, Thomas Gorguès, Anne Lorrain, Sophie Bonnet, Martine Rodier, Cécile Dupouy, Takuhei Shiozaki, and Christophe Menkes
Biogeosciences, 15, 4333–4352, https://doi.org/10.5194/bg-15-4333-2018, https://doi.org/10.5194/bg-15-4333-2018, 2018
Short summary
Short summary
N2 fixation is recognized as one of the major sources of nitrogen in the ocean. Thus, N2 fixation sustains a significant part of the primary production (PP) by supplying the most common limiting nutrient for phytoplankton growth. From numerical simulations, the local maximums of Trichodesmium biomass in the Pacific are found around islands, explained by the iron fluxes from island sediments. We assessed that 15 % of the PP may be due to Trichodesmium in the low-nutrient, low-chlorophyll areas.
Akitomo Yamamoto, Ayako Abe-Ouchi, and Yasuhiro Yamanaka
Biogeosciences, 15, 4163–4180, https://doi.org/10.5194/bg-15-4163-2018, https://doi.org/10.5194/bg-15-4163-2018, 2018
Short summary
Short summary
Millennial-scale changes in oceanic CO2 uptake due to global warming are simulated by a GCM and offline biogeochemical model. Sensitivity studies show that decreases in oceanic CO2 uptake are mainly caused by a weaker biological pump and seawater warming. Enhanced CO2 uptake due to weaker equatorial upwelling cancels out reduced CO2 uptake due to weaker AMOC and AABW formation. Thus, circulation change plays only a small direct role in reduction of CO2 uptake due to global warming.
Fabian A. Gomez, Sang-Ki Lee, Yanyun Liu, Frank J. Hernandez Jr., Frank E. Muller-Karger, and John T. Lamkin
Biogeosciences, 15, 3561–3576, https://doi.org/10.5194/bg-15-3561-2018, https://doi.org/10.5194/bg-15-3561-2018, 2018
Short summary
Short summary
Seasonal patterns in nanophytoplankton and diatom biomass in the Gulf of Mexico were examined with an ocean–biogeochemical model. We found silica limitation of model diatom growth in the deep GoM and Mississippi delta. Zooplankton grazing and both transport and vertical mixing of biomass substantially influence the model phytoplankton biomass seasonality. We stress the need for integrated analyses of biologically and physically driven biomass fluxes to describe phytoplankton seasonal changes.
Cited articles
Alkalay, R., Zlatkin, O., Katz, T., Herut, B., Halicz, L., Berman-Frank, I., and Weinstein, Y.:
Carbon export and drivers in the southeastern Levantine Basin, Deep-Sea Res. Pt. II, 171, 104 713, https://doi.org/10.1016/j.dsr2.2019.104713, 2020.
Antoine, D., Morel, A., and Andre, J. M.:
Algal pigment distribution and primary production in the eastern Mediterranean as derived from coastal zone color scanner observations, J. Geophys. Res., 100, 16193–16209, https://doi.org/10.1029/95jc00466, 1995.
Argo:
Argo float data and metadata from Global Data Assembly Centre (Argo GDAC), SEANOE, https://doi.org/10.17882/42182, 2022.
Astraldi, M., Balopoulos, S., Candela, J., Font, J., Gacic, M., Gasparini, G. P., Manca, B., Theocharis, A., and Tintoré, J.:
The role of straits and channels in understanding the characteristics of Mediterranean circulation, Prog. Oceanogr., 44, 65–108, https://doi.org/10.1016/S0079-6611(99)00021-X, 1999.
Auger, P. A., Diaz, F., Ulses, C., Estournel, C., Neveux, J., Joux, F., Pujo-Pay, M., and Naudin, J. J.:
Functioning of the planktonic ecosystem on the Gulf of Lions shelf (NW Mediterranean) during spring and its impact on the carbon deposition: a field data and 3-D modelling combined approach, Biogeosciences, 8, 3231–3261, https://doi.org/10.5194/bg-8-3231-2011, 2011.
Auger, P. A., Ulses, C., Estournel, C., Stemmann, L., Somot, S., and Diaz, F.:
Interannual control of plankton communities by deep wintermixing and prey/predator interactions in the NW Mediterranean: Results from a 30-year 3D modeling study, Prog. Oceanogr.,124, 12–27, https://doi.org/10.1016/j.pocean.2014.04.004, 2014.
Avril, B.:
DOC dynamics in the northwestern Mediterranean sea (DYFAMED site), Deep-Sea Res. Pt. II, 49, 2163–2182, https://doi.org/10.1016/S0967-0645(02)00033-4, 2002.670.
Bernardello, R., Cardoso, J. G., Bahamon, N., Donis, D., Marinov, I., and Cruzado, A.:
Factors controlling interannual variability of vertical organic matter export and phytoplankton bloom dynamics – a numerical case-study for the NW Mediterranean Sea, Biogeosciences, 9, 4233–4245, https://doi.org/10.5194/bg-9-4233-2012, 2012.
Bittig, H. C. and Körtzinger, A.:
Tackling oxygen optode drift: Near-surface and in-air oxygen optode measurements on a float provide an accurate in situ reference, J. Atmos. Ocean. Tech., 32, 1536–1543, https://doi.org/10.1175/JTECH-D-14-00162.1, 2015.
Bittig, H. C., Körtzinger, A., Neill, C., van Ooijen, E., Plant, J. N., Hahn, J., Johnson, K. S., Yang, B., and Emerson, S. R.:
Oxygen optode sensors: Principle, characterization, calibration, and application in the ocean, Frontiers in Marine Science, 4, 1–25, https://doi.org/10.3389/fmars.2017.00429, 2018.
Boldrin, A., Miserocchi, S., Rabitti, S., Turchetto, M. M., Balboni, V., and Socal, G.:
Particulate matter in the southern Adriatic and Ionian Sea: Characterisation and downward fluxes, J. Marine Syst., 33–34, 389–410, https://doi.org/10.1016/S0924-7963(02)00068-4, 2002.
Bosc, E., Bricaud, A., and Antoine, D.:
Seasonal and interannual variability in algal biomass and primary production inthe Mediterranean Sea, as derived from 4 years of SeaWiFS observations, Global Biogeochem. Cy., 18, 1, https://doi.org/10.1029/2003gb002034, 2004.
Brenner, S., Rozentraub, Z., Bishop, J., and Krom, M.:
The mixed-layer/thermocline cycle of a persistent warm core eddy in the eastern Mediterranean, Dynam. Atmos. Oceans, 15, 457–476, https://doi.org/10.1016/0377-0265(91)90028-E, 1991.
Buesseler, K. O.:
The decoupling of production and particulate export in the surface ocean, Global Biogeochem. Cy., 12, 297–310, https://doi.org/10.1029/97GB03366, 1998.
Coppola, L., Prieur, L., Taupier-Letage, I., Estournel, C., Testor, P., Lefevre, D., Belamari, S., LeReste, S., and Taillandier, V.:
Observation of oxygen ventilation into deep waters through targeted deployment of multiple Argo-O2 floats in the north-western Mediterranean Sea in 2013, J. Geophys. Res.-Oceans, 122, 6325–6341, https://doi.org/10.1002/2016JC012594, 2017.
Cornec, M., Laxenaire, R., Speich, S., and Claustre, H.:
Impact of Mesoscale Eddies on Deep Chlorophyll Maxima, Geophys. Res. Lett., 48, 15, https://doi.org/10.1029/2021gl093470, 2021.
Cossarini, G., Feudale, L., Teruzzi, A., Bolzon, G., Coidessa, G., Solidoro, C., Di Biagio, V., Amadio, C., Lazzari, P., Brosich, A., and Salon, S.:
High-Resolution Reanalysis of the Mediterranean Sea Biogeochemistry (1999–2019), Frontiers in Marine Science, 8, 1–21, https://doi.org/10.3389/fmars.2021.741486, 2021.
Damien, P., Bosse, A., Testor, P., Marsaleix, P., and Estournel, C.:
Modeling Postconvective Submesoscale Coherent Vortices in the North-western Mediterranean Sea, J. Geophys. Res.-Oceans, 122, 9937–9961, https://doi.org/10.1002/2016JC012114, 2017.
Di Biagio, V., Salon, S., Feudale, L., and Cossarini, G.:
Subsurface oxygen maximum in oligotrophic marine ecosystems: mapping the interaction between physical and biogeochemical processes, Biogeosciences, 19, 5553–5574, https://doi.org/10.5194/bg-19-5553-2022, 2022.
D'Ortenzio, F. and Ribera d'Alcalà, M.:
On the trophic regimes of the Mediterranean Sea: a satellite analysis, Biogeosciences, 6, 139–148, https://doi.org/10.5194/bg-6-139-2009, 2009.
D'Ortenzio, F., Iudicone, D., de Boyer Montegut, C., Testor, P., Antoine, D., Marullo, S., Santoleri, R., and Madec, G.:
Seasonal variability of the mixed layer depth in the Mediterranean Sea as derived from in situ profiles, Geophys. Res. Lett., 32, 1–4, https://doi.org/10.1029/2005GL022463, 2005.
D'Ortenzio, F., Antoine, D., and Marullo, S.:
Satellite-driven modeling of the upper ocean mixed layer and air–sea CO2 flux in the Mediterranean Sea, Deep-Sea Res. Pt. I, 55, 405–434, https://doi.org/10.1016/j.dsr.2007.12.008, 2008.
D'Ortenzio, F., Taillandier, V., Claustre, H., Coppola, L., Conan, P., Dumas, F., Durrieu du Madron, X., Fourrier, M., Gogou, A., Karageorgis, A., Lefevre, D., Leymarie, E., Oviedo, A., Pavlidou, A., Poteau, A., Poulain, P. M., Prieur, L., Psarra, S., Puyo-Pay, M., Ribera d'Alcalà, M., Schmechtig, C., Terrats, L., Velaoras, D., Wagener, T., and Wimart-Rousseau, C.:
BGC-Argo Floats Observe Nitrate Injection and Spring Phytoplankton Increase in the Surface Layer of Levantine Sea (Eastern Mediterranean), Geophys. Res. Lett., 48, 1–11, https://doi.org/10.1029/2020GL091649, 2021.
Ducklow, H. W. and Doney, S. C.:
What Is the Metabolic State of the Oligotrophic Ocean? A Debate, Annu. Rev. Mar. Sci., 5, 525–533, https://doi.org/10.1146/annurev-marine-121211-172331, 2013.
Ediger, D. and Yilmaz, A.:
Characteristics of deep chlorophyll maximum in the Northeastern Mediterranean with respect to environmental conditions, J. Marine Syst., 9, 291–303,
https://doi.org/10.1016/S0924-7963(96)00044-9, 1996.
Ediger, D., Tuğrul, S., and Yılmaz, A.:
Vertical profiles of particulate organic matter and its relationship with chlorophyll-a in the upper layer of the NE Mediterranean Sea, J. Marine Syst., 55, 311–326, https://doi.org/10.1016/j.jmarsys.2004.09.003, 2005.
El-Geziry, T. M.:
Long-term changes in sea surface temperature (SST) within the southern Levantine Basin, Acta Oceanol. Sin., 40, 27–33. https://doi.org/10.1007/s13131-021-1709-2, 2021.
Estournel, C., Kondrachoff, V., Marsaleix, P., and Vehil, R.:
The plume of the Rhone: Numerical simulation and remote sensing, Cont. Shelf Res., 17, 899–924, https://doi.org/10.1016/S0278-4343(96)00064-7, 1997.
Estournel, C., Broche, P., Marsaleix, P., Devenon, J. L., Auclair, F., and Vehil, R.:
The rhone river plume in unsteady conditions: Numerical and experimental results, Estuar. Coast. Shelf S., 53, 25–38, https://doi.org/10.1006/ecss.2000.0685, 2001.
Estournel, C., De Madron, X. D., Marsaleix, P., Auclair, F., Julliand, C., and Vehil, R.:
Observation and modeling of the winter coastal oceanic circulation in the Gulf of Lion under wind conditions influenced by the continental orography (FETCH experiment), J. Geophys. Res.-Oceans, 108, 1–19, https://doi.org/10.1029/2001jc000825, 2003.
Estournel, C., Zervakis, V., Marsaleix, P., Papadopoulos, A., Auclair, F., Perivoliotis, L., and Tragou, E.:
Dense water formation and cascading in the Gulf of Thermaikos (North Aegean), from observations and modelling, Cont. Shelf Res., 25, 2366–2386, https://doi.org/10.1016/j.csr.2005.08.014, 2005.
Estournel, C., Testor, P., Taupier-Letage, I., Bouin, M. N., Coppola, L., Durand, P., Conan, P., Bosse, A., Brilouet, P. E., Beguery, L., Belamari, S., Béranger, K., Beuvier, J., Bourras, D., Canut, G., Doerenbecher, A., de Madron, X. D., D'Ortenzio, F., Drobinski, P., Ducrocq, V., Fourrié, N., Giordani, H., Houpert, L., Labatut, L., Brossier, C. L., Nuret, M., Prieur, L., Roussot, O., Seyfried, L., and Somot, S.:
HyMeX-SOP2: The field campaign dedicated to dense water formation in the northwestern Mediterranean, Oceanography, 29, 196–206, https://doi.org/10.5670/oceanog.2016.94, 2016.
Estournel, C., Marsaleix, P., and Ulses, C.:
A new assessment of the circulation of Atlantic and Intermediate Waters in the Eastern Mediterranean, Prog. Oceanogr., 198, 102 673, https://doi.org/10.1016/j.pocean.2021.102673, 2021.
Fach, B. A., Orek, H., Yilmaz, E., Tezcan, D., Salihoglu, I., Salihoglu, B., and Latif, M. A.:
Water Mass Variability and Levantine Intermediate Water Formation in the Eastern Mediterranean between 2015–2017, J. Geophys. Res.-Oceans, 126, 2, https://doi.org/10.1029/2020jc016472, 2021.
Fourrier, M.:
Dataset used for CANYON-MED training and validation, figshare, Marine (2020), Dataset used for CANYON-MED training and validation, figshare, Dataset, https://doi.org/10.6084/m9.figshare.12452795.v1, 2020.
Fourrier, M., Coppola, L., Claustre, H., D'Ortenzio, F., Sauzède, R., and Gattuso, J. P.:
A Regional Neural Network Approach to Estimate Water-Column Nutrient Concentrations and Carbonate System Variables in the Mediterranean Sea: CANYON-MED, Frontiers in Marine Science, 7, 620, https://doi.org/10.3389/fmars.2020.00620, 2020.
Galí, M., Falls, M., Claustre, H., Aumont, O., and Bernardello, R.:
Bridging the gaps between particulate backscattering measurements and modeled particulate organic carbon in the ocean, Biogeosciences, 19, 1245–1275, https://doi.org/10.5194/bg-19-1245-2022, 2022.
Georgopoulos, D., Theocharis, A., Zodiatis, G.:
Intermediate water formation in the Cretan Sea (South Aegean Sea), Oceanol. Acta, 12, 353–359, 1989.
Gogou, A., Sanchez-Vidal, A., Durrieu de Madron, X., Stavrakakis, S., Calafat, A. M., Stabholz, M., Psarra, S., Canals, M., Heussner, S., Stavrakaki, I., and Papathanassiou, E.:
Reprint of: Carbon flux to the deep in three open sites of the Southern European Seas (SES), J. Marine Syst., 135, 170–179, https://doi.org/10.1016/j.jmarsys.2014.04.012, 2014.
Grasshoff, K., Kremling, K., and Ehrhardt, M.:
Methods of seawater analysis, Mar. Chem., 7, 86–87, https://doi.org/10.1016/0304-4203(78)90045-2, 1999.
Grignon, L., Smeed, D. A., Bryden, H. L., and Schroeder, K.:
Importance of the variability of hydrographic preconditioning for deep convection in the Gulf of Lion, NW Mediterranean, Ocean Sci., 6, 573–586, https://doi.org/10.5194/os-6-573-2010, 2010.
Guerzoni, S., Chester, R., Dulac, F., Herut, B., Loÿe-Pilot, M. D., Measures, C., Migon, C., Molinaroli, E., Moulin, C., Rossini, P., Saydam, C., Soudine, A., and Ziveri, P.:
The role of atmospheric deposition in the biogeochemistry of the Mediterranean Sea, Prog. Oceanogr., 44, 147–190, https://doi.org/10.1016/S0079-6611(99)00024-5, 1999.
Guyennon, A., Baklouti, M., Diaz, F., Palmieri, J., Beuvier, J., Lebaupin-Brossier, C., Arsouze, T., Béranger, K., Dutay, J.-C., and Moutin, T.:
New insights into the organic carbon export in the Mediterranean Sea from 3-D modeling, Biogeosciences, 12, 7025–7046, https://doi.org/10.5194/bg-12-7025-2015, 2015.
Hassoun, A. E. R., Fakhri, M., Raad, N., Abboud-Abi Saab, M., Gemayel, E., and De Carlo, E. H.:
The carbonate system of the Eastern-most Mediterranean Sea, Levantine Sub-basin: Variations and drivers, Deep-Sea Res. Pt. II, 164, 54–73,https://doi.org/10.1016/j.dsr2.2019.03.008, 2019.
Hecht, A., Robinson, A. R., and Pinardi, N.:
Currents, water masses, eddies and jets in the
Mediterranean Levantine Basin, J. Phys. Oceanogr., 18, 1320–1353,
https://doi.org/10.1175/1520-0485(1988)018<1320:CWMEAJ>2.0.CO;2, 1988.
Herrmann, M., Somot, S., Sevault, F., Estournel, C., and Déqué, M.: Modeling the deep
convection in the northwestern Mediterranean 30 sea using an eddy-permitting and an
eddy-resolving model: Case study of winter 1986–1987, J. Geophys. Res.-Oceans, 113, 1–25,
https://doi.org/10.1029/2006JC003991, 2008.
Herrmann, M., Diaz, F., Estournel, C., Marsaleix, P., and Ulses, C.:
Impact of atmospheric and oceanic interannual variability on the North-western Mediterranean Sea pelagic planktonic ecosystem and associated carbon cycle, J. Geophys. Res.-Oceans, 118, 5792–5813, https://doi.org/10.1002/jgrc.20405, 2013.
Herut, B. and Krom, M.:
Atmospheric Input of Nutrients and Dust to the SE Mediterranean, in: The Impact of Desert Dust Across the Mediterranean, edited by: Guerzoni, S. and Chester, R., Springe, Dordrecht, https://doi.org/10.1007/978-94-017-3354-0_35, pp. 349–358, 1996.
Horton, C., Clifford, M., and Schmitz, J.:
A real-time oceanographic nowcast/forecast system for the Mediterranean Sea. J. Geophys. Res.-Oceans, 102, C11, https://doi.org/10.1029/97JC00533, 1997.
Houpert, L., Testor, P., de Madron, X. D., Somot, S., D'Ortenzio, F., Estournel, C., and Lavigne, H.:
Seasonal cycle of the mixed layer, the seasonal thermocline and the upper-ocean heat storage rate in the Mediterranean Sea derived from observations, Prog. Oceanogr., 132, 333–352, https://doi.org/10.1016/j.pocean.2014.11.004, 2015.
Kalaroni, S., Tsiaras, K., Petihakis, G., Economou-Amilli, A., and Triantafyllou, G.:
Modelling the mediterranean pelagic ecosystem using the POSEIDON ecological model. Part II: Biological dynamics, Deep-Sea Res. Pt. II, 171, 104711, https://doi.org/10.1016/j.dsr2.2019.104711, 2020.
Kanakidou, M., Duce, R. A., Prospero, J. M., Baker, A. R., Benitez-Nelson, C., Dentener, F. J., Hunter, K. A., Liss, P. S., Mahowald, N.,Okin, G. S., Sarin, M., Tsigaridis, K., Uematsu, M., Zamora, L. M., and Zhu, T.:
Atmospheric fluxes of organic N and P to the global ocean, Global Biogeochem. Cy., 26, 1–12, https://doi.org/10.1029/2011GB004277, 2012.
Kessouri, F.:
Cycles biogéochimiques de la Mer Méditerranée: Processus et bilans, PhD thesis, Paul Sabatier, 2015.
Kessouri, F., Ulses, C., Estournel, C., Marsaleix, P., Severin, T., Pujo-Pay, M., Caparros, J., Raimbault, P., Pasqueron de Fommervault, O., D'Ortenzio, F., Taillandier, V., Testor, P., and Conan, P.:
Nitrogen and Phosphorus Budgets in the Northwestern Mediterranean Deep Convection Region, J. Geophys. Res.-Oceans, 122, 9429–9454, https://doi.org/10.1002/2016JC012665, 2017.
Kessouri, F., Ulses, C., Estournel, C., Marsaleix, P., D'Ortenzio, F., Severin, T., Taillandier, V., and Conan, P.:
Vertical Mixing Effects on Phytoplankton Dynamics and Organic Carbon Export in the Western Mediterranean Sea, J. Geophys. Res.-Oceans, 123, 1647–1669, https://doi.org/10.1002/2016JC012669, 2018.
Key, R. M., Kozyr, A., Sabine, C. L., Lee, K., Wanninkhof, R., Bullister, J. L., Feely, R. A., Millero, F. J., Mordy, C., and Peng, T. H.:
A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP), Global Biogeochem. Cy., 18, 1–23, https://doi.org/10.1029/2004GB002247, 2004.
Körtzinger, A., Send, U., Lampitt, R. S., Hartman, S., Wallace, D. W., Karstensen, J., Villagarcia,
M. G., Llinás, O., and DeGrandpre, M. D.: The seasonal pCO2 cycle at 49∘ N/16.5∘ W in the
northeastern Atlantic Ocean and what it tells us about biological productivity, J.
Geophys. Res.-Ocean., 113, 1–15, https://doi.org/10.1029/2007JC004347, 2008.
Kotta, D. and Kitsiou, D.:
Chlorophyll in the eastern mediterranean sea: Correlations with environmental factors and trends, Environments, 6, 98, https://doi.org/10.3390/environments6080098, 2019.
Kress, N., Gertman, I., and Herut, B.:
Temporal evolution of physical and chemical characteristics of the water column in the Easternmost Levantine basin (Eastern Mediterranean Sea) from 2002 to 2010, J. Marine Syst., 135, 6–13, https://doi.org/10.1016/j.jmarsys.2013.11.016, 2014.
Krom, Brenner, S., Kress, N., Neori, A., and Gordon, L. I.:
Nutrient dynamics and new production in a warm core eddy from the eastern Mediterranean Sea, Deep-Sea Res. Pt. I, 39, 467–480, 1991.
Krom, M. D., Woodward, E. M., Herut, B., Kress, N., Carbo, P., Mantoura, R. F., Spyres, G., Thingsted, T. F., Wassmann, P., Wexels-Riser, C., Kitidis, V., Law, C., and Zodiatis, G.:
Nutrient cycling in the south east Levantine basin of the eastern Mediterranean: Results from a phosphorus starved system, Deep-Sea Res. Pt. II, 52, 2879–2896, https://doi.org/10.1016/j.dsr2.2005.08.009, 2005.
Kubin, E., Poulain, P. M., Mauri, E., Menna, M., and Notarstefano, G.:
Levantine intermediate and levantine deep water formation: An Argo float study from 2001 to 2017, Water (Switzerland), 11, 1781, https://doi.org/10.3390/w11091781, 2019.
Lascaratos, A., Williams, R. G., and Tragou, E.:
A mixed-layer study of the formation of Levantine Intermediate Water, J. Geophys. Res., 98, 14739–14749,
https://doi.org/10.1029/93JC00912, 1993.
Lascaratos, A., Roether, W., Nittis, K., and Klein, B.:
Recent changes in deep water formation and spreading in the Eastern Mediterranean Sea: A review, Prog. Oceanogr., 44, 5–36, https://doi.org/10.1016/S0079-6611(99)00019-1, 1999.
Lavigne, H., D'Ortenzio, F., Migon, C., Claustre, H., Testor, P., D'Alcalà, M. R., Lavezza, R., Houpert, L., and Prieur, L.:
Enhancing the comprehension of mixed layer depth control on the Mediterranean phytoplankton phenology, J. Geophys. Res.-Oceans, 118, 3416–3430, https://doi.org/10.1002/jgrc.20251, 2013.
Lazzari, P., Solidoro, C., Ibello, V., Salon, S., Teruzzi, A., Béranger, K., Colella, S., and Crise, A.:
Seasonal and inter-annual variability of plankton chlorophyll and primary production in the Mediterranean Sea: a modelling approach, Biogeosciences, 9, 217–233, https://doi.org/10.5194/bg-9-217-2012, 2012.
Ludwig, W., Bouwman, A. F., Dumont, E., and Lespinas, F.:
Water and nutrient fluxes from major Mediterranean and Black Sea rivers: Past and future trends and their implications for the basin-scale budgets, Global Biogeochem. Cy., 24, 1–14,https://doi.org/10.1029/2009GB003594, 2010.
Macías, D., Stips, A., and Garcia-Gorriz, E.:
The relevance of deep chlorophyll maximum in the open Mediterranean Sea evaluated through 3D hydrodynamic-biogeochemical coupled simulations, Ecol. Model., 281, 26–37, https://doi.org/10.1016/j.ecolmodel.2014.03.002, 2014.
Malanotte-Rizzoli, P., Manca, B. B., Marullo, S., D'Alcala, R., Roether, W., Theocharis, A., Bergamasco, A., Budillon, G., Sansone, E.,Civitarese, G., Conversano, F., Gertman, I., Herut, B., Kress, N., Kioroglou, S., Kontoyannis, H., Nittis, K., Klein, B., Lascaratos, A., Latif, M. A., Özsoy, E., Robinson, A. R., Santoleri, R., Viezzoli, D., and Kovacevic, V.:
The Levantine Intermediate Water Experiment (LIWEX) Group: Levantine basin – A laboratory for multiple water mass formation processes, J. Geophys. Res.-Oceans, 108, C9, https://doi.org/10.1029/2002jc001643, 2003.
Malanotte-Rizzoli, P., Artale, V., Borzelli-Eusebi, G. L., Brenner, S., Crise, A., Gacic, M., Kress, N., Marullo, S., Ribera d'Alcalà, M., Sofianos, S., Tanhua, T., Theocharis, A., Alvarez, M., Ashkenazy, Y., Bergamasco, A., Cardin, V., Carniel, S., Civitarese, G., D'Ortenzio, F., Font, J., Garcia-Ladona, E., Garcia-Lafuente, J. M., Gogou, A., Gregoire, M., Hainbucher, D., Kontoyannis, H., Kovacevic, V., Kraskapoulou, E., Kroskos, G., Incarbona, A., Mazzocchi, M. G., Orlic, M., Özsoy, E., Pascual, A., Poulain, P.-M., Roether, W., Rubino, A., Schroeder, K., Siokou-Frangou, J., Souvermezoglou, E., Sprovieri, M., Tintoré, J., and Triantafyllou, G.:
Physical forcing and physical/biochemical variability of the Mediterranean Sea: a review of unresolved issues and directions for future research, Ocean Sci., 10, 281–322, https://doi.org/10.5194/os-10-281-2014, 2014.
Manca, B., Burca, M., Giorgetti, A., Coatanoan, C., Garcia, M. J., and Iona, A.:
Physical and biochemical averaged vertical profiles in the Mediterranean regions: An important tool to trace the climatology of water masses and to validate incoming data from operational oceanography, J. Marine Syst., 48, 83–116, https://doi.org/10.1016/j.jmarsys.2003.11.025, 2004.
Many, G., Ulses, C., Estournel, C., and Marsaleix, P.:
Particulate organic carbon dynamics in the Gulf of Lion shelf (NW Mediterranean) using a coupled hydrodynamic–biogeochemical model, Biogeosciences, 18, 5513–5538, https://doi.org/10.5194/bg-18-5513-2021, 2021.
Margirier, F., Testor, P., Heslop, E., Mallil, K., Bosse, A., Houpert, L., Mortier, L., Bouin, M. N., Coppola, L., D'Ortenzio, F., Durrieu de Madron, X., Mourre, B., Prieur, L., Raimbault, P., Taillandier, V., de Madron, X., Mourre, B., Prieur, L., Raimbault, P., and Taillandier, V.:
Abrupt warming and salinification of intermediate waters interplays with decline of deep convection in the Northwestern Mediterranean Sea, Sci. Rep., 10, 1–11, https://doi.org/10.1038/s41598-020-77859-5, 2020.
Marsaleix, P., Estournel, C., Kondrachoff, V., and Vehil, R.:
A numerical study of the formation of the Rhone River plume, J. Marine Syst., 14, 99–115, https://doi.org/10.1016/S0924-7963(97)00011-0, 1998.
Marsaleix, P., Auclair, F., and Estournel, C.:
Considerations on open boundary conditions for regional and coastal ocean models, J. Atmos. Ocean. Tech., 23, 1604–1613, https://doi.org/10.1175/JTECH1930.1, 2006.
Marsaleix, P., Auclair, F., Floor, J. W., Herrmann, M. J., Estournel, C., Pairaud, I., and Ulses, C.:
Energy conservation issues in sigma coordinate free-surface ocean models, Ocean Model., 20, 61–89, https://doi.org/10.1016/j.ocemod.2007.07.005, 2008.
Martínez-Pérez, A. M., Osterholz, H., Nieto-Cid, M., Álvarez, M., Dittmar, T., and Álvarez-Salgado, X. A.:
Molecular composition of dissolved organic matter in the Mediterranean Sea, Limnol. Oceanogr., 62, 2699–2712, https://doi.org/10.1002/lno.10600, 2017.
Marullo, S., Napolitano, E., Santoleri, R., Manca, B., and Evans, R.:
Variability of Rhodes and Ierapetra Gyres during Levantine Intermediate Water Experiment: Observations and model results, J. Geophys. Res.-Oceans, 108, 1–18, https://doi.org/10.1029/2002jc001393, 2003.
Mayot, N., D'Ortenzio, F., Ribera d'Alcalà, M., Lavigne, H., and Claustre, H.:
Interannual variability of the Mediterranean trophic regimes from ocean color satellites, Biogeosciences, 13, 1901–1917, https://doi.org/10.5194/bg-13-1901-2016, 2016.
Mayot, N., D'Ortenzio, F., Taillandier, V., Prieur, L., de Fommervault, O. P., Claustre, H., Bosse, A., Testor, P., and Conan, P.:
Physical and Biogeochemical Controls of the Phytoplankton Blooms in North Western Mediterranean Sea: A Multiplatform Approach Over a Complete Annual Cycle (2012–2013 DEWEX Experiment), J. Geophys. Res.-Oceans, 122, 9999–10019, https://doi.org/10.1002/2016JC012052, 2017.
Menna, M. and Poulain, P. M.:
Mediterranean intermediate circulation estimated from Argo data in 2003–2010, Ocean Sci., 6, 331–343, https://doi.org/10.5194/os-6-331-2010, 2010.
Menna, M., Gerin, R., Notarstefano, G., Mauri, E., Bussani, A., Pacciaroni, M., and Poulain, P. M.:
On the Circulation and Thermohaline Properties of the Eastern Mediterranean Sea, Frontiers in Marine Science, 8, 1–19, https://doi.org/10.3389/fmars.2021.671469, 2021.
Mignot, A., Claustre, H., Uitz, J., Poteau, A., Ortenzio, F. D., and Xing, X.:
Understanding the
seasonal dynamics and the deep chlorophyll maximum in oligotrophic environments: A
Bio-Argo float investigation, Global Biogeochem. Cy., 8, 856–876, https://doi.org/10.1002/2013GB004781, 2014.
Mignot, A., Ortenzio, F. D., Taillandier, V., Cossarini, G., and Salon, S.: Quantifying observational
errors in Biogeochemical-Argo oxygen , nitrate and chlorophyll a concentrations, AGU, Global
Biogeochem. Cy., 46, 4330–4337, https://doi.org/10.1029/2018GL080541, 2019.
Mikolajczak, G., Estournel, C., Ulses, C., Marsaleix, P., Bourrin, F., Martín, J., Pairaud, I., Puig, P., Leredde, Y., Many, G., Seyfried, L., and Durrieu de Madron, X.:
Impact of storms on residence times and export of coastal waters during a mild autumn/winter period in the Gulf of Lion, Cont. Shelf Res., 207, 104192, https://doi.org/10.1016/j.csr.2020.104192, 2020.
Millot, C. and Taupier-Letage, I.:
Circulation in the Mediterranean Sea, Life in the Mediterranean Sea: A Look at Habitat Changes, The Mediterranean Sea, 5, 99–125, https://doi.org/10.1007/b107143, 2005.
Moutin, T. and Raimbault, P.:
Primary production, carbon export and nutrients availability in western and eastern Mediterranean Sea in early summer 1996 (MINOS cruise), J. Marine Syst., 33–34, 273–288, https://doi.org/10.1016/S0924-7963(02)00062-3, 2002.
Nabat, P., Somot, S., Mallet, M., Michou, M., Sevault, F., Driouech, F., Meloni, D., di Sarra, A., Di Biagio, C., Formenti, P., Sicard, M., Léon, J.-F., and Bouin, M.-N.:
Dust aerosol radiative effects during summer 2012 simulated with a coupled regional aerosol–atmosphere–ocean model over the Mediterranean, Atmos. Chem. Phys., 15, 3303–3326, https://doi.org/10.5194/acp-15-3303-2015, 2015.
Napolitano, E., Oguz, T., Malanotte-Rizzoli, P., Yilmaz, A., and Sansone, E.:
Simulations of biological production in the Rhodes and Ionian basins of the eastern Mediterranean, J. Marine Syst., 24, 277–298, https://doi.org/10.1016/S0924-7963(99)00090-1, 2000.
Nixon, S. W.:
Replacing the Nile: Are anthropogenic nutrients providing the fertility once brought to the Mediterranean by a great river?, Ambio, 32, 30–39, https://doi.org/10.1579/0044-7447-32.1.30, 2003.
Oschlies, A.:
Feedbacks of biotically induced radiative heating on upper-ocean heat budget, circulation, and biological production in a coupled ecosystem-circulation model, J. Geophys. Res.-Oceans, 109, 1–12, https://doi.org/10.1029/2004JC002430, 2004.
Ozer, T., Gertman, I., Kress, N., Silverman, J., and Herut, B.:
Interannual thermohaline (1979–2014) and nutrient (2002–2014) dynamics in the Levantine surface and intermediate water masses, SE Mediterranean Sea, Global Planet. Change, 151, 60–67, https://doi.org/10.1016/j.gloplacha.2016.04.001, 2016.
Ozer, T., Rahav, E., Gertman, I., Sisma-Ventura, G., Silverman, J., and Herut, B.:
Relationship between thermohaline and biochemical patterns in the levantine upper and intermediate water masses, Southeastern Mediterranean Sea (2013–2021), Frontiers in Marine Science, 9, 1–11, https://doi.org/10.3389/fmars.2022.958924, 2022.
Özsoy, E., Hecht, A., and Ünlüata, Ü.:
Circulation and hydrography of the Levantine Basin. Results of POEM coordinated experiments 1985–1986, Prog. Oceanogr., 22, 125–170, https://doi.org/10.1016/0079-6611(89)90004-9, 1989.
Özsoy, E., Hecht, A., Ünlüata, , Brenner, S., Oğuz, T., Bishop, J., Latif, M. A., and Rozentraub, Z.:
A review of the Levantine Basin circulation and its variability during 1985–1988, Dynam. Atmos. Oceans, 15, 421–456, https://doi.org/10.1016/0377-0265(91)90027-D, 1991.
Özsoy, E., Hecht, A., Ünlüata, , Brenner, S., Sur, H. I., Bishop, J., Latif, M. A., Rozentraub, Z., and Oğuz, T.:
A synthesis of the Levantine Basin circulation and hydrography, 1985–1990, Deep-Sea Res. Pt. II, 40, 1075–1119, https://doi.org/10.1016/0967-0645(93)90063-S, 1993.
Palevsky, H. I. and Nicholson, D. P.:
The North Atlantic Biological Pump Insights from the ocean observatoriess initiative irminger sea array, Oceanography, 31, 42–49, 2018.
Palevsky, H. I. and Quay, P. D.:
Influence of biological carbon export on ocean carbon uptake over the annual cycle across the North Pacific Ocean, Global Biogeochem. Cy., 31, 81–95, https://doi.org/10.1002/2016GB005527, 2017.
Palmiéri, J., Dutay, J.-C., D'Ortenzio, F., Houpert, L., Mayot, N., and Bopp, L.: The Mediterranean subsurface phytoplankton dynamics and their impact on Mediterranean bioregions, Biogeosciences Discuss. [preprint], https://doi.org/10.5194/bg-2018-423, 2018.
Pasqueron De Fommervault, O., D'Ortenzio, F., Mangin, A., Serra, R., Migon, C., Claustre, H., Lavigne, H., Ribera D'Alcalà, M., Prieur, L., Taillandier, V., Schmechtig, C., Poteau, A., Leymarie, E., Dufour, A., Besson, F., and Obolensky, G.:
Seasonal variability of nutrient concentrations in the Mediterranean Sea: Contribution of Bio-Argo floats, J. Geophys. Res.-Oceans, 120, 8528–8550,https://doi.org/10.1002/2015JC011103, 2015.910.
Petihakis, G., Triantafyllou, G., Tsiaras, K., Korres, G., Pollani, A., and Hoteit, I.:
Eastern Mediterranean biogeochemical flux model – Simulations of the pelagic ecosystem, Ocean Sci., 5, 29–46, https://doi.org/10.5194/os-5-29-2009, 2009.
Petrenko, A., Dufau, C., and Estournel, C.:
Barotropic eastward currents in the western Gulf of Lion, north-western Mediterranean Sea, during stratified conditions, J. Marine Syst., 74, 406–428, https://doi.org/10.1016/j.jmarsys.2008.03.004, 2008.
Poulos, S. E., Drakopoulos, P. G., and Collins, M. B.:
Seasonal variability in sea surface oceanographic conditions in the Aegean Sea (Eastern Mediterranean), J. Marine Syst., 13, 225–244, 1997.
Powley, H. R., Krom, M. D., and Van Cappellen, P.:
Understanding the unique biogeochemistry of the Mediterranean Sea: Insights from a coupled phosphorus and nitrogen model, Global Biogeochem. Cy., 31, 1010–1031, https://doi.org/10.1002/2017GB005648, 2017.
Pujo-Pay, M., Conan, P., Oriol, L., Cornet-Barthaux, V., Falco, C., Ghiglione, J.-F., Goyet, C., Moutin, T., and Prieur, L.:
Integrated survey of elemental stoichiometry (C, N, P) from the western to eastern Mediterranean Sea, Biogeosciences, 8, 883–899, https://doi.org/10.5194/bg-8-883-2011, 2011.
Reale, M., Cossarini, G., Lazzari, P., Lovato, T., Bolzon, G., Masina, S., Solidoro, C., and Salon, S.:
Acidification, deoxygenation, and nutrient and biomass declines in a warming Mediterranean Sea, Biogeosciences, 19, 4035–4065, https://doi.org/10.5194/bg-19-4035-2022, 2022.
Ribera d'Alcalà, M., Civitarese, G., Conversano, F., and Lavezza, R.:
Nutrient ratios and fluxes hint at overlooked processes in the Mediterranean Sea, J. Geophys. Res.-Oceans, 108, C9, https://doi.org/10.1029/2002jc001650, 2003.
Richon, C., Dutay, J. C., Dulac, F., Wang, R., Balkanski, Y., Nabat, P., Aumont, O., Desboeufs, K., Laurent, B., Guieu, C., Raimbault, P., and Beuvier, J.:
Modeling the impacts of atmospheric deposition of nitrogen and desert dust-derived phosphorus on nutrients and biological budgets of the Mediterranean Sea, Prog. Oceanogr., 163, 21–39, https://doi.org/10.1016/j.pocean.2017.04.009, 2017.
Richon, C., Dutay, J.-C., Dulac, F., Wang, R., and Balkanski, Y.:
Modeling the biogeochemical impact of atmospheric phosphate deposition from desert dust and combustion sources to the Mediterranean Sea, Biogeosciences, 15, 2499–2524, https://doi.org/10.5194/bg-15-2499-2018, 2018.
Ridame, C. and Guieu, C.:
Saharan input of phosphate to the oligotrophic water of the open western Mediterranean sea, Limnol. Oceanogr., 47, 856–869, https://doi.org/10.4319/lo.2002.47.3.0856, 2002.
Robinson, A., Leslie, W., Theocharis, A., and Lascaratos, A.:
Mediterranean Sea Circulation, in: Encyclopedia of Ocean Sciences, in:
Encyclopedia of Ocean Sciences, ocean currents, 1, 1689–1705, https://doi.org/10.1006/rwos.2001.0376, 2001.
Robson, B. J.:
State of the art in modelling of phosphorus in aquatic systems: Review, criticisms and commentary, Environ. Modell. Softw., 61, 339–359, https://doi.org/10.1016/j.envsoft.2014.01.012, 2014.
Roether, W., Klein, B., Beitzel, V., Manca, B.:
Property distributions and transient-tracer ages in the Levantine Intermediate Water in the Eastern Mediterranean, J. Mar. Syst., 18, 71–87, 1998.
Salgado-Hernanz, P. M., Racault, M. F., Font-Muñoz, J. S., and Basterretxea, G.:
Trends in phytoplankton phenology in the Mediterranean Sea based on ocean-colour remote sensing, Remote Sens. Environ., 221, 50–64, https://doi.org/10.1016/j.rse.2018.10.036, 2019.
Santinelli, C.: DOC in the Mediterranean Sea, in: Biogeochemistry of Marine Dissolved Organic
Matter, 2nd Edn., Academic press, 579–608,
https://doi.org/10.1016/B978-0-12-405940-5.00013-3, 2015.
Santinelli, C., Nannicini, L., and Seritti, A.:
DOC dynamics in the meso and bathypelagic layers of the Mediterranean Sea, Deep-Sea Res. Pt. II, 57, 1446–1459, https://doi.org/10.1016/j.dsr2.2010.02.014, 2010.
Santinelli, C., Hansell, D. A., and Ribera d'Alcalà, M.:
Influence of stratification on marine dissolved organic carbon (DOC) dynamics: The Mediterranean Sea case, Prog. Oceanogr., 119, 68–77, https://doi.org/10.1016/j.pocean.2013.06.001, 2013.
Siokou-Frangou, I., Gotsis-Skretas, O., Christou, E. D., and Pagou, K.:
Plankton Characteristics in the Aegean, Ionian and NW Levantine Seas, in: The Eastern Mediterranean as a Laboratory Basin for the Assessment of Contrasting Ecosystems, Dordrecht, Springer
Netherlands, 205–223, https://doi.org/10.1007/978-94-011-4796-5_15, 1999.
Siokou-Frangou, I., Christaki, U., Mazzocchi, M. G., Montresor, M., Ribera d'Alcalá, M., Vaqué, D., and Zingone, A.:
Plankton in the open Mediterranean Sea: a review, Biogeosciences, 7, 1543–1586, https://doi.org/10.5194/bg-7-1543-2010, 2010.
Soetaert, K., Middelburg, J. J., Herman, P. M., and Buis, K.:
On the coupling of benthic and pelagic biogeochemical models, Earth-Sci. Rev., 51, 173–201, https://doi.org/10.1016/S0012-8252(00)00004-0, 2000.
Solidoro, C., Cossarini, G., Lazzari, P., Galli, G., Bolzon, G., Somot, S., and Salon, S.:
Modeling Carbon Budgets and Acidification in the Mediterranean Sea Ecosystem Under Contemporary and Future Climate, Frontiers in Marine Science, 8, 1–15, https://doi.org/10.3389/fmars.2021.781522, 2022.
Somot, S., Sevault, F., and Déqué, M.:
Transient climate change scenario simulation of the Mediterranean Sea for the 21st century using a high-resolution ocean circulation model, Clim. Dynam., 27, 851–879, 2006.
Soto-Navarro, J., Jordá, G., Amores, A., Cabos, W., Somot, S., Sevault, F., Macías, D., Djurdjevic, V., Sannino, G., Li, L., and Sein, D.:
Evolution of Mediterranean Sea water properties under climate change scenarios in the Med-CORDEX ensemble, Clim. Dynam., 54, 2135–2165, https://doi.org/10.1007/s00382-019-05105-4, 2020.
Sur, H., Özsoy, E., and Unluata, U.:
Simultaneous deep and intermediate depth convection in the Northem Levantine Sea, Oceanologica, 16, 33–43, 1992.
Taillandier, V., D'Ortenzio, F., and Antoine, D.:
Carbon fluxes in the mixed layer of the Mediterranean Sea in the 1980s and the 2000s, Deep-Sea Res. Pt. I, 65, 73–84, https://doi.org/10.1016/j.dsr.2012.03.004, 2012.
Taillandier, V., D'Ortenzio, F., Prieur, L., Conan, P., Coppola, L., Cornec, M., Dumas, F., Durrieu de Madron, X., Fach, B., Fourrier, M., Gentil, M., Hayes, D., Husrevoglu, S., Legoff, H., Le Ster, L., Örek, H., Ozer, T., Poulain, P. M., Pujo-Pay, M., Ribera d'Alcalà, M., Salihoglu, B., Testor, P., Velaoras, D., Wagener, T., and Wimart-Rousseau, C.:
Sources of the Levantine Intermediate Water in Winter 2019, J. Geophys. Res.-Oceans, 127, 1–19, https://doi.org/10.1029/2021JC017506, 2022.
Tanhua, T., Hainbucher, D., Schroeder, K., Cardin, V., Álvarez, M., and Civitarese, G.:
The Mediterranean Sea system: A review and an introduction to the special issue, Ocean Science, 9, 789–803, https://doi.org/10.5194/os-9-789-2013, 2013.
The POEM group:
General circulation of the Eastern Mediterranean, Earth-Sci. Rev., 32, 285–309, https://doi.org/10.1016/0012-8252(92)90002-B, 1992.
Theocharis, A., Georgopoulos, D., Lascaratos, A., and Nittis, K.:
Water masses and circulation in the central region of the Eastern Mediterranean, Deep-Sea Res. Pt. II, 40, 1121–1142, 1993.
Touratier, F. and Goyet, C.:
Decadal evolution of anthropogenic CO2 in the northwestern Mediterranean Sea from the mid-1990s to the mid-2000s, Deep-Sea Res. Pt. I, 56, 1708–1716, https://doi.org/10.1016/j.dsr.2009.05.015, 2009.
Tugrul, S., Besiktepe, T., and Salihoglu, I.:
Nutrient exchange fluxes between the Aegean and Black Seas through the marmara sea, Mediterr. Mar. Sci., 3, 33–42, https://doi.org/10.12681/mms.256, 2002.
Uitz, J., Stramski, D., Gentili, B., D'Ortenzio, F., and Claustre, H.:
Estimates of phytoplankton class-specific and total primary production in the Mediterranean Sea from satellite ocean color observations, Global Biogeochem. Cy., 26, 1–10,https://doi.org/10.1029/2011GB004055, 2012.
Ulses, C., Estournel, C., Bonnin, J., Durrieu de Madron, X., and Marsalei, P.:
Impact of storms and dense water cascading on shelf-slope exchanges in the Gulf of Lion (NW Mediterranean), J. Geophys. Res.-Oceans, 113, C2, https://doi.org/10.1029/2006JC003795, 2008.
Ulses, C., Estournel, C., Kessouri, F., Hermann, M., and Marsaleix, P.:
Modeling, Budget of organic carbon in the North-Western Mediterranean open sea over the period 2004–2008 using 3-D coupled physical Modeling, J. Geophys. Res.-Oceans, 121, 7026–7055, https://doi.org/10.1002/2016JC011818, 2016.
Ulses, C., Estournel, C., Fourrier, M., Coppola, L., Kessouri, F., Lefèvre, D., and Marsaleix, P.:
Oxygen budget of the north-western Mediterranean deep- convection region, Biogeosciences, 18, 937–960, https://doi.org/10.5194/bg-18-937-2021, 2021.
Velaoras, D., Krokos, G., Nittis, K., & Theocharis, A.:
Dense intermediate water outflow from the Cretan Sea: A salinity driven, recurrent phenomenon, connected to thermohaline circulation changes. J. Geophys. Res.-Oceans, 119, 3868–3882, https://doi.org/10.1002/2014JC009937, 2014.
Vidussi, F., Claustre, H., Manca, B. B., Luchetta, A., and Jean-Claude, M.:
Phytoplankton pigment distribution in relation to upper thermocline circulation in the eastern Mediterranean Sea during winter, J. Geophys. Res., 106, 939–956, 2001.
Vidussi, F., Mostajir, B., Fouilland, E., Le Floc'H, E., Nouguier, J., Roques, C., Got, P., Thibault-Botha, D., Bouvier, T., and Troussellier, M.:
Effects of experimental warming and increased ultraviolet B radiation on the Mediterranean plankton food web, Limnol. Oceanogr., 56, 206–218, https://doi.org/10.4319/lo.2011.56.1.0206, 2011.
Wimart-Rousseau, C., Wagener, T., Álvarez, M., Moutin, T., Fourrier, M., Coppola, L., Niclas-Chirurgien, L., Raimbault, P., D'Ortenzio, F., Durrieu de Madron, X., Taillandier, V., Dumas, F., Conan, P., Pujo-Pay, M., and Lefèvre, D.:
Seasonal and Interannual Variability of the CO2 System in the Eastern Mediterranean Sea: A Case Study in the North Western Levantine Basin, Frontiers in Marine Science, 8, 1–18, https://doi.org/10.3389/fmars.2021.649246, 2021.
Yilmaz, A. and Tugrul, S.:
The effect of cold- and warm-core eddies on the distribution and stoichiometry of dissolved nutrients in the northeastern Mediterranean, J. Marine Syst., 16, 253–268, https://doi.org/10.1016/S0924-7963(97)00022-5, 1998.
Yilmaz, A., Ediger, D., Basturk, O., and Tugrul, S.:
Phytoplankton fluorescence and deep chlorophyll maxima in the northeastern Mediterranean, Oceanol. Acta, 17, 69–77, 1994.
Short summary
The Rhodes Gyre, eastern Mediterranean Sea, is the main Levantine Intermediate Water formation site. In this study, we use a 3D physical–biogeochemical model to investigate the seasonal and interannual variability of organic carbon dynamics in the gyre. Our results show its autotrophic nature and its high interannual variability, with enhanced primary production, downward exports, and onward exports to the surrounding regions during years marked by intense heat losses and deep mixed layers.
The Rhodes Gyre, eastern Mediterranean Sea, is the main Levantine Intermediate Water formation...
Altmetrics
Final-revised paper
Preprint