Articles | Volume 21, issue 6
https://doi.org/10.5194/bg-21-1563-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-21-1563-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Regional assessment and uncertainty analysis of carbon and nitrogen balances at cropland scale using the ecosystem model LandscapeDNDC
Odysseas Sifounakis
Laboratory of Physical Geography and Environmental Impacts, School of Rural, Surveying and Geoinformatics Engineering, National Technical University of Athens, Athens, 15780, Greece
Institute of Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology, Kreuzeckbahnstr. 19, 82467 Garmisch-Partenkirchen, Germany
Klaus Butterbach-Bahl
Institute of Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology, Kreuzeckbahnstr. 19, 82467 Garmisch-Partenkirchen, Germany
Department of Agroecology – Center for Landscape Research in Sustainable Agricultural Futures – Land-CRAFT, Aarhus University, Aarhus, 8000, Denmark
Maria P. Papadopoulou
Laboratory of Physical Geography and Environmental Impacts, School of Rural, Surveying and Geoinformatics Engineering, National Technical University of Athens, Athens, 15780, Greece
Related authors
Odysseas Sifounakis, Edwin Haas, Klaus Butterbach-Bahl, Eleni Katragkou, Maria Chara Karypidou, and Maria P. Papadopoulou
EGUsphere, https://doi.org/10.5194/egusphere-2025-5311, https://doi.org/10.5194/egusphere-2025-5311, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Using bio-geochemical models and future climate scenarios, we mapped all nitrogen and carbon fluxes from croplands. Climate change will strain food production – especially under climate change – yet soil carbon losses stay moderate where farming sustains. Nitrous oxide (a major greenhouse gas) tends to fall, while ammonia losses rise. Reporting the full balance improves transparency and guides smarter fertilizer use and soil management.
Odysseas Sifounakis, Edwin Haas, Klaus Butterbach-Bahl, Eleni Katragkou, Maria Chara Karypidou, and Maria P. Papadopoulou
EGUsphere, https://doi.org/10.5194/egusphere-2025-5311, https://doi.org/10.5194/egusphere-2025-5311, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Using bio-geochemical models and future climate scenarios, we mapped all nitrogen and carbon fluxes from croplands. Climate change will strain food production – especially under climate change – yet soil carbon losses stay moderate where farming sustains. Nitrous oxide (a major greenhouse gas) tends to fall, while ammonia losses rise. Reporting the full balance improves transparency and guides smarter fertilizer use and soil management.
Xiao Bai, Tom Cripps, João Serra, Klaus Butterbach-Bahl, and Zhisheng Yao
EGUsphere, https://doi.org/10.5194/egusphere-2025-5091, https://doi.org/10.5194/egusphere-2025-5091, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
This study examines the spatiotemporal variability of soil CH4, N2O and CO2 fluxes based on measurements across 56 spatial sites in an urban park. Our results show that soils in urban greenspaces function as sources of N2O and weak sinks of CH4. We developed random forest models to predict the probability of hot and cold spots of gas fluxes. Our study offers valuable insights into scaling gas fluxes in urban greenspaces, enabling a better assessment of how urbanization affects landscape fluxes.
Roxanne Daelman, Marijn Bauters, Matti Barthel, Emmanuel Bulonza, Lodewijk Lefevre, José Mbifo, Johan Six, Klaus Butterbach-Bahl, Benjamin Wolf, Ralf Kiese, and Pascal Boeckx
Biogeosciences, 22, 1529–1542, https://doi.org/10.5194/bg-22-1529-2025, https://doi.org/10.5194/bg-22-1529-2025, 2025
Short summary
Short summary
The increase in atmospheric concentrations of several greenhouse gases (GHGs) since 1750 is attributed to human activity. However, natural ecosystems, such as tropical forests, also contribute to GHG budgets. The Congo Basin hosts the second largest tropical forest and is understudied. In this study, measurements of soil GHG exchange were carried out during 16 months in a tropical forest in the Congo Basin. Overall, the soil acted as a major source of CO2 and N2O and a minor sink of CH4.
Patrick Olschewski, Mame Diarra Bousso Dieng, Hassane Moutahir, Brian Böker, Edwin Haas, Harald Kunstmann, and Patrick Laux
Nat. Hazards Earth Syst. Sci., 24, 1099–1134, https://doi.org/10.5194/nhess-24-1099-2024, https://doi.org/10.5194/nhess-24-1099-2024, 2024
Short summary
Short summary
We applied a multivariate and dependency-preserving bias correction method to climate model output for the Greater Mediterranean Region and investigated potential changes in false-spring events (FSEs) and heat–drought compound events (HDCEs). Results project an increase in the frequency of FSEs in middle and late spring as well as increases in frequency, intensity, and duration for HDCEs. This will potentially aggravate the risk of crop loss and failure and negatively impact food security.
Elizabeth Gachibu Wangari, Ricky Mwangada Mwanake, Tobias Houska, David Kraus, Gretchen Maria Gettel, Ralf Kiese, Lutz Breuer, and Klaus Butterbach-Bahl
Biogeosciences, 20, 5029–5067, https://doi.org/10.5194/bg-20-5029-2023, https://doi.org/10.5194/bg-20-5029-2023, 2023
Short summary
Short summary
Agricultural landscapes act as sinks or sources of the greenhouse gases (GHGs) CO2, CH4, or N2O. Various physicochemical and biological processes control the fluxes of these GHGs between ecosystems and the atmosphere. Therefore, fluxes depend on environmental conditions such as soil moisture, soil temperature, or soil parameters, which result in large spatial and temporal variations of GHG fluxes. Here, we describe an example of how this variation may be studied and analyzed.
Ricky Mwangada Mwanake, Gretchen Maria Gettel, Elizabeth Gachibu Wangari, Clarissa Glaser, Tobias Houska, Lutz Breuer, Klaus Butterbach-Bahl, and Ralf Kiese
Biogeosciences, 20, 3395–3422, https://doi.org/10.5194/bg-20-3395-2023, https://doi.org/10.5194/bg-20-3395-2023, 2023
Short summary
Short summary
Despite occupying <1 %; of the globe, streams are significant sources of greenhouse gas (GHG) emissions. In this study, we determined anthropogenic effects on GHG emissions from streams. We found that anthropogenic-influenced streams had up to 20 times more annual GHG emissions than natural ones and were also responsible for seasonal peaks. Anthropogenic influences also altered declining GHG flux trends with stream size, with potential impacts on stream-size-based spatial upscaling techniques.
Joseph Okello, Marijn Bauters, Hans Verbeeck, Samuel Bodé, John Kasenene, Astrid Françoys, Till Engelhardt, Klaus Butterbach-Bahl, Ralf Kiese, and Pascal Boeckx
Biogeosciences, 20, 719–735, https://doi.org/10.5194/bg-20-719-2023, https://doi.org/10.5194/bg-20-719-2023, 2023
Short summary
Short summary
The increase in global and regional temperatures has the potential to drive accelerated soil organic carbon losses in tropical forests. We simulated climate warming by translocating intact soil cores from higher to lower elevations. The results revealed increasing temperature sensitivity and decreasing losses of soil organic carbon with increasing elevation. Our results suggest that climate warming may trigger enhanced losses of soil organic carbon from tropical montane forests.
Jaber Rahimi, Expedit Evariste Ago, Augustine Ayantunde, Sina Berger, Jan Bogaert, Klaus Butterbach-Bahl, Bernard Cappelaere, Jean-Martial Cohard, Jérôme Demarty, Abdoul Aziz Diouf, Ulrike Falk, Edwin Haas, Pierre Hiernaux, David Kraus, Olivier Roupsard, Clemens Scheer, Amit Kumar Srivastava, Torbern Tagesson, and Rüdiger Grote
Geosci. Model Dev., 14, 3789–3812, https://doi.org/10.5194/gmd-14-3789-2021, https://doi.org/10.5194/gmd-14-3789-2021, 2021
Short summary
Short summary
West African Sahelian and Sudanian ecosystems are important regions for global carbon exchange, and they provide valuable food and fodder resources. Therefore, we simulated net ecosystem exchange and aboveground biomass of typical ecosystems in this region with an improved process-based biogeochemical model, LandscapeDNDC. Carbon stocks and exchange rates were particularly correlated with the abundance of trees. Grass and crop yields increased under humid climatic conditions.
Cited articles
Barneze, A. S., Whitaker, J., McNamara, N. P., and Ostle, N. J.: Legumes increase grassland productivity with no effect on nitrous oxide emissions, Plant Soil, 446, 163–177, https://doi.org/10.1007/s11104-019-04338-w, 2020.
Butterbach-Bahl, K., Kahl, M., Mykhayliv, L., Werner, C., Kiese, R., and Li, C.: A European-wide inventory of soil NO emissions using the biogeochemical models DNDC/Forest-DNDC, Atmos. Environ., 43, 1392–1402, https://doi.org/10.1016/J.ATMOSENV.2008.02.008, 2009.
Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R., and Zechmeister-Boltenstern, S.: Nitrous oxide emissions from soils: How well do we understand the processes and their controls?, Philos. T. R. Soc. B, 368, 20130122, https://doi.org/10.1098/rstb.2013.0122, 2013.
Butterbach-Bahl, K., Grote, R., Haas, E., Kiese, R., Klatt, S., and Kraus, D.: LandscapeDNDC (v1.30.4), Karlsruhe Institute of Technology (KIT) [data set], https://doi.org/10.35097/438 (last access: 25 May 2021), 2021.
Butterbach-Bahl, K., Kraus, D., Kiese, R., Mai, V. T., Nguyen, T., Sander, B. O., Wassmann, R., and Werner, C.: Activity data on crop management define uncertainty of CH4 and N2O emission estimates from rice: A case study of Vietnam, J. Plant Nutr. Soil Sci., 185, 793–806, https://doi.org/10.1002/jpln.202200382, 2022.
Camargo, J. A. and Alonso, Á.: Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment, Environ. Int., 32, 831–849, https://doi.org/10.1016/j.envint.2006.05.002, 2006.
Cameron, D. R., van Oijen, M., Werner, C., Butterbach-Bahl, K., Grote, R., Haas, E., Heuvelink, G. B. M., Kiese, R., Kros, J., Kuhnert, M., Leip, A., Reinds, G. J., Reuter, H. I., Schelhaas, M. J., de Vries, W., and Yeluripati, J.: Environmental change impacts on the C- and N-cycle of European forests: A model comparison study, Biogeosciences, 10, 1751–1773, https://doi.org/10.5194/bg-10-1751-2013, 2013.
Cayuela, M. L., Aguilera, E., Sanz-Cobena, A., Adams, D. C., Abalos, D., Barton, L., Ryals, R., Silver, W. L., Alfaro, M. A., Pappa, V. A., Smith, P., Garnier, J., Billen, G., Bouwman, L., Bondeau, A., and Lassaletta, L.: Direct nitrous oxide emissions in Mediterranean climate cropping systems: Emission factors based on a meta-analysis of available measurement data, Agr. Ecosyst. Environ., 238, 25–35, https://doi.org/10.1016/j.agee.2016.10.006, 2017.
Chirinda, N., Kracher, D., Lægdsmand, M., Porter, J. R., Olesen, J. E., Petersen, B. M., Doltra, J., Kiese, R., and Butterbach-Bahl, K.: Simulating soil N2O emissions and heterotrophic CO2 respiration in arable systems using FASSET and MoBiLE-DNDC, Plant Soil, 343, 139–160, https://doi.org/10.1007/s11104-010-0596-7, 2011.
Ciais, P., Wattenbach, M., Vuichard, N., Smith, P., Piao, S. L., Don, A., Luyssaert, S., Janssens, I. A., Bondeau, A., Dechow, R., Leip, A., Smith, P. C., Beer, C., van der werf, G. R., Gervois, S., van oost, K., Tomelleri, E., Freibauer, A., and Schulze, E. D.: The European carbon balance, Part 2: Croplands, Glob. Change Biol., 16, 1409–1428, https://doi.org/10.1111/j.1365-2486.2009.02055.x, 2010.
Dambreville, C., Morvan, T., and Germon, J. C.: N2O emission in maize-crops fertilized with pig slurry, matured pig manure or ammonium nitrate in Brittany, Agr. Ecosyst. Environ., 123, 201–210, https://doi.org/10.1016/j.agee.2007.06.001, 2008.
Davidson, E. A. and Kanter, D.: Inventories and scenarios of nitrous oxide emissions, Environ. Res. Lett., 9, 105012, https://doi.org/10.1088/1748-9326/9/10/105012, 2014.
del Grosso, S. J., Mosier, A. R., Parton, W. J., and Ojima, D. S.: DAYCENT model analysis of past and contemporary soil N2O and net greenhouse gas flux for major crops in the USA, Soil Till. Res., 83, 9–24, https://doi.org/10.1016/J.STILL.2005.02.007, 2005.
del Grosso, S. J., Ojima, D. S., Parton, W. J., Stehfest, E., Heistemann, M., DeAngelo, B., and Rose, S.: Global scale DAYCENT model analysis of greenhouse gas emissions and mitigation strategies for cropped soils, Glob. Planet Change, 67, 44–50, https://doi.org/10.1016/J.GLOPLACHA.2008.12.006, 2009.
de Vries, W., Leip, A., Reinds, G. J., Kros, J., Lesschen, J. P., and Bouwman, A. F.: Comparison of land nitrogen budgets for European agriculture by various modeling approaches, Environ. Pollut., 159, 3254–3268, https://doi.org/10.1016/j.envpol.2011.03.038, 2011.
European Fertilizer Manufacturers Association (EFMA): Forecast of Food, Farming and Fertilizer Use in the European Union 2008–2018, 15 pp., Eur. Fert. Manuf. Assoc., Brussels, 2009.
Erisman, J. W., Galloway, J., Seitzinger, S., Bleeker, A., and Butterbach-Bahl, K.: Reactive nitrogen in the environment and its effect on climate change, Curr. Opin. Environ. Sustain., 3, 281–290, https://doi.org/10.1016/J.COSUST.2011.08.012, 2011.
ESDB: European Soil Database (ESDB) v2.0 – raster version: https://esdac.jrc.ec.europa.eu/ESDB_Archive/ESDB/ESDB_Data/ESDB_v2_data_smu_1k.html (last access: 13 January 2019), 2004.
EU-Commission: Tracking progress towards Kyoto and 2020 targets in Europe – European Environment Agency: https://www.eea.europa.eu/publications/progress-towards-kyoto, last access: 13 January 2014.
EU-Commission: European Commission-Press release: Nitrates: Commission decides to refer Greece to the Court of Justice and asks for financial sanctions, ISBN: 0080067891, IP/19/1482, https://ec.europa.eu/commission/presscorner/detail/ro/IP_19_14 (last access: 15 February 2020), 2019.
Franke, J. A., Müller, C., Elliott, J., Ruane, A. C., Jägermeyr, J., Balkovic, J., Ciais, P., Dury, M., Falloon, P. D., Folberth, C., François, L., Hank, T., Hoffmann, M., Izaurralde, R. C., Jacquemin, I., Jones, C., Khabarov, N., Koch, M., Li, M., Liu, W., Olin, S., Phillips, M., Pugh, T. A. M., Reddy, A., Wang, X., Williams, K., Zabel, F., and Moyer, E. J.: The GGCMI Phase 2 experiment: global gridded crop model simulations under uniform changes in CO2, temperature, water, and nitrogen levels (protocol version 1.0), Geosci. Model Dev., 13, 2315–2336, https://doi.org/10.5194/gmd-13-2315-2020, 2020.
Fuchs, K., Merbold, L., Buchmann, N., Bretscher, D., Brilli, L., Fitton, N., Topp, C. F. E., Klumpp, K., Lieffering, M., Martin, R., Newton, P. C. D., Rees, R. M., Rolinski, S., Smith, P., and Snow, V.: Multimodel Evaluation of Nitrous Oxide Emissions From an Intensively Managed Grassland, J. Geophys. Res.-Biogeo., 125, e2019JG005261, https://doi.org/10.1029/2019JG005261, 2020.
Gabrielle, B., Laville, P., Hénault, C., Nicoullaud, B., and Germon, J. C.: Simulation of nitrous oxide emissions from wheat-cropped soils using CERES, Nutr. Cycl. Agroecosyst., 74, 133–146, https://doi.org/10.1007/s10705-005-5771-5, 2006.
Galloway, J. N., Leach, A. M., Bleeker, A., and Erisman, J. W.: A chronology of human understanding of the nitrogen cycle, Philos. T. R. Soc. B, 368, 0130120, https://doi.org/10.1098/rstb.2013.0120, 2013.
Garnett, T., Appleby, M. C., Balmford, A., Bateman, I. J., Benton, T. G., Bloomer, P., Burlingame, B., Dawkins, M., Dolan, L., Fraser, D., Herrero, M., Hoffmann, I., Smith, P., Thornton, P. K., Toulmin, C., Vermeulen, S. J., and Godfray, H. C. J.: Sustainable intensification in agriculture: Premises and policies, Science, 341, 33–34, https://doi.org/10.1126/science.1234485, 2013.
Geels, C., Andersen, H. v., Ambelas Skjøth, C., Christensen, J. H., Ellermann, T., Løfstrøm, P., Gyldenkærne, S., Brandt, J., Hansen, K. M., Frohn, L. M., and Hertel, O.: Improved modelling of atmospheric ammonia over Denmark using the coupled modelling system DAMOS, Biogeosciences, 9, 2625–2647, https://doi.org/10.5194/bg-9-2625-2012, 2012.
Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., Pretty, J., Robinson, S., Thomas, S. M., and Toulmin, C.: Food security: The challenge of feeding 9 billion people, Science, 327, 812–818, https://doi.org/10.1126/science.1185383, 2010.
Grosz, B., Matson, A., Butterbach-Bah, K., Clough, T., Davidson, E. A., Dechow, R., Diamantopoulos, E., Dörsch, P., Haas, E., He, H., Henri, C. V, Hui, D., Well, R., Yeluripati, J., Zhang, J., and Scheer, C.: Modeling denitrification: can we report what we don't know?, ESS Open Archive, 4, e2023AV000990, 1–11, https://doi.org/10.22541/essoar.168500283.32887682/v1, 2023.
Grote, R., Lehmann, E., Brümmer, C., Brüggemann, N., Szarzynski, J., and Kunstmann, H.: Modelling and observation of biosphere–atmosphere interactions in natural savannah in Burkina Faso, West Africa, Phys. Chem. Earth Pt. A/B/C, 34, 251–260, https://doi.org/10.1016/J.PCE.2008.05.003, 2009.
Gurung, R. B., Ogle, S. M., Breidt, F. J., Williams, S. A., and Parton, W. J.: Bayesian calibration of the DayCent ecosystem model to simulate soil organic carbon dynamics and reduce model uncertainty, Geoderma, 376, 114529, https://doi.org/10.1016/j.geoderma.2020.114529, 2020.
Haas, E., Klatt, S., Fröhlich, A., Kraft, P., Werner, C., Kiese, R., Grote, R., Breuer, L., and Butterbach-Bahl, K.: LandscapeDNDC: A process model for simulation of biosphere-atmosphere-hydrosphere exchange processes at site and regional scale, Landsc. Ecol., 28, 615–636, https://doi.org/10.1007/s10980-012-9772-x, 2013.
Haas, E., Carozzi, M., Massad, R. S., Butterbach-Bahl, K., and Scheer, C.: Long term impact of residue management on soil organic carbon stocks and nitrous oxide emissions from European croplands, Sci. Total Environ., 836, 154932, https://doi.org/10.1016/J.SCITOTENV.2022.154932, 2022.
He, W., Jiang, R., He, P., Yang, J., Zhou, W., Ma, J., and Liu, Y.: Estimating soil nitrogen balance at regional scale in China's croplands from 1984 to 2014, Agr. Syst., 167, 125–135, https://doi.org/10.1016/J.AGSY.2018.09.002, 2018.
Heinen, M.: Application of a widely used denitrification model to Dutch data sets, Geoderma, 133, 464–473, https://doi.org/10.1016/J.GEODERMA.2005.08.011, 2006.
Hénault, C., Bizouard, F., Laville, P., Gabrielle, B., Nicoullaud, B., Germon, J. C., and Cellier, P.: Predicting in situ soil N2O emission using NOE algorithm and soil database, Glob. Change Biol., 11, 115–127, https://doi.org/10.1111/j.1365-2486.2004.00879.x, 2005.
Holst, J., Grote, R., Offermann, C., Ferrio, J. P., Gessler, A., Mayer, H., and Rennenberg, H.: Water fluxes within beech stands in complex terrain, Int. J. Biometeorol., 54, 23–36, https://doi.org/10.1007/s00484-009-0248-x, 2010.
Houska, T., Kraft, P., Liebermann, R., Klatt, S., Kraus, D., Haas, E., Santabarbara, I., Kiese, R., Butterbach-Bahl, K., Müller, C., and Breuer, L.: Rejecting hydro-biogeochemical model structures by multi-criteria evaluation, Environ. Modell. Softw., 93, 1–12, https://doi.org/10.1016/j.envsoft.2017.03.005, 2017.
IFADATA: International Fertilizer Association database, http://ifadata.fertilizer.org/ucSearch.aspx (last access: 13 January 2019), 2015.
IPCC: Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories – IPCC, https://www.ipcc-nggip.iges.or.jp/public/2019rf/vol4.html (last access: 12 January 2019), 2019.
Jägermeyr, J., Müller, C., Ruane, A. C., Elliott, J., Balkovic, J., Castillo, O., Faye, B., Foster, I., Folberth, C., Franke, J. A., Fuchs, K., Guarin, J. R., Heinke, J., Hoogenboom, G., Iizumi, T., Jain, A. K., Kelly, D., Khabarov, N., Lange, S., Lin, T. S., Liu, W., Mialyk, O., Minoli, S., Moyer, E. J., Okada, M., Phillips, M., Porter, C., Rabin, S. S., Scheer, C., Schneider, J. M., Schyns, J. F., Skalsky, R., Smerald, A., Stella, T., Stephens, H., Webber, H., Zabel, F., and Rosenzweig, C.: Climate impacts on global agriculture emerge earlier in new generation of climate and crop models, Nat. Food, 2, 873–885, https://doi.org/10.1038/s43016-021-00400-y, 2021.
Janz, B., Havermann, F., Lashermes, G., Zuazo, P., Engelsberger, F., Torabi, S. M., and Butterbach-Bahl, K.: Effects of crop residue incorporation and properties on combined soil gaseous N2O, NO, and NH3 emissions – A laboratory-based measurement approach, Sci. Total Environ., 807, 151051, https://doi.org/10.1016/J.SCITOTENV.2021.151051, 2022.
Jones, C. M., Spor, A., Brennan, F. P., Breuil, M. C., Bru, D., Lemanceau, P., Griffiths, B., Hallin, S., and Philippot, L.: Recently identified microbial guild mediates soil N2O sink capacity, Nat. Clim. Change, 4, 801–805, https://doi.org/10.1038/nclimate2301, 2014.
Kalivas, D., Kollias, V., Kalivas, D. P., and Kollias, V. J.: Effects of soil, climate and cultivation techniques on cotton yield in Central Greece, using different statistical methods, Agronomie, 21, 73–89, https://doi.org/10.1051/agro:2001110, 2001.
Kasper, M., Foldal, C., Kitzler, B., Haas, E., Strauss, P., Eder, A., Zechmeister-Boltenstern, S., and Amon, B.: N2O emissions and NO leaching from two contrasting regions in Austria and influence of soil, crops and climate: a modelling approach, Nutr. Cycl. Agroecosyst., 113, 95–111, https://doi.org/10.1007/s10705-018-9965-z, 2019.
Kim, Y., Seo, Y., Kraus, D., Klatt, S., Haas, E., Tenhunen, J., and Kiese, R.: Estimation and mitigation of N2O emission and nitrate leaching from intensive crop cultivation in the Haean catchment, South Korea, Sci. Total Environ., 529, 40–53, https://doi.org/10.1016/J.SCITOTENV.2015.04.098, 2015.
Klatt, S., Kraus, D., Rahn, K.-H., Werner, C., Kiese, R., Butterbach-Bahl, K., and Haas, E.: Parameter-Induced Uncertainty Quantification of Regional N2O Emissions and NO3 Leaching using the Biogeochemical Model LandscapeDNDC, Adv. Agr. Syst. Model., 6, 149–171, https://doi.org/10.2134/advagricsystmodel6.2013.0001, 2015.
Kraus, D., Weller, S., Klatt, S., Haas, E., Wassmann, R., Kiese, R., and Butterbach-Bahl, K.: A new LandscapeDNDC biogeochemical module to predict CH4 and N2O emissions from lowland rice and upland cropping systems, Plant Soil, 386, 125–149, https://doi.org/10.1007/s11104-014-2255-x, 2014.
Larocque, G. R., Bhatti, J. S., Boutin, R., and Chertov, O.: Uncertainty analysis in carbon cycle models of forest ecosystems: Research needs and development of a theoretical framework to estimate error propagation, Ecol. Modell., 219, 400–412, https://doi.org/10.1016/J.ECOLMODEL.2008.07.024, 2008.
Lee, K. M., Lee, M. H., Lee, J. S., and Lee, J. Y.: Uncertainty analysis of greenhouse gas (GHG) emissions simulated by the parametric Monte Carlo simulation and nonparametric bootstrap method, Energies, 13, 4965, https://doi.org/10.3390/en13184965, 2020.
Lehuger, S., Gabrielle, B., Oijen, M. van, Makowski, D., Germon, J. C., Morvan, T., and Hénault, C.: Bayesian calibration of the nitrous oxide emission module of an agro-ecosystem model, Agr. Ecosyst. Environ., 133, 208–222, https://doi.org/10.1016/j.agee.2009.04.022, 2009a.
Lehuger, S., Gabrielle, B., Oijen, M. van, Makowski, D., Germon, J. C., Morvan, T., and Hénault, C.: Bayesian calibration of the nitrous oxide emission module of an agro-ecosystem model, Agr. Ecosyst. Environ., 133, 208–222, https://doi.org/10.1016/J.AGEE.2009.04.022, 2009b.
Leip, A., Busto, M., Corazza, M., Bergamaschi, P., Koeble, R., Dechow, R., Monni, S., and de Vries, W.: Estimation of N2O fluxes at the regional scale: Data, models, challenges, Curr. Opin. Environ. Sustain., 3, 328–338, https://doi.org/10.1016/j.cosust.2011.07.002, 2011.
Li, C. S.: Modeling trace gas emissions from agricultural ecosystems, Nutr. Cycl. Agroecosyst., 58, 259–276, 2000.
Li, X., Yeluripati, J., Jones, E. O., Uchida, Y., and Hatano, R.: Hierarchical Bayesian calibration of nitrous oxide (N2O) and nitrogen monoxide (NO) flux module of an agro-ecosystem model: ECOSSE, Ecol Modell, 316, 14–27, https://doi.org/10.1016/J.ECOLMODEL.2015.07.020, 2015.
Lu, X.: A meta-analysis of the effects of crop residue return on crop yields and water use efficiency, PLoS One, 15, e0231740, https://doi.org/10.1371/journal.pone.0231740, 2020.
Lugato, E., Bampa, F., Panagos, P., Montanarella, L., and Jones, A.: Potential carbon sequestration of European arable soils estimated by modelling a comprehensive set of management practices, Glob. Change Biol., 20, 3557–3567, https://doi.org/10.1111/gcb.12551, 2014.
Lugato, E., Leip, A., and Jones, A.: Mitigation potential of soil carbon management overestimated by neglecting N2O emissions, Nat. Clim. Change, 8, 219–223, https://doi.org/10.1038/s41558-018-0087-z, 2018.
Lyra, A. and Loukas, A.: Impacts of irrigation and nitrate fertilization scenarios on groundwater resources quantity and quality of the Almyros Basin, Greece, Water Supp., 21, 2748–2759, https://doi.org/10.2166/ws.2021.097, 2021.
Mavromatis, T.: Spatial resolution effects on crop yield forecasts: An application to rainfed wheat yield in north Greece with CERES-Wheat, Agr. Syst., 143, 38–48, https://doi.org/10.1016/j.agsy.2015.12.002, 2016.
Molina-Herrera, S., Grote, R., Santabárbara-Ruiz, I., Kraus, D., Klatt, S., Haas, E., Kiese, R., and Butterbach-Bahl, K.: Simulation of CO2 fluxes in European forest ecosystems with the coupled soil-vegetation process model “LandscapeDNDC”, Forests, 6, 1779–1809, https://doi.org/10.3390/f6061779, 2015.
Molina-Herrera, S., Haas, E., Klatt, S., Kraus, D., Augustin, J., Magliulo, V., Tallec, T., Ceschia, E., Ammann, C., Loubet, B., Skiba, U., Jones, S., Brümmer, C., Butterbach-Bahl, K., and Kiese, R.: A modeling study on mitigation of N2O emissions and NO3 leaching at different agricultural sites across Europe using LandscapeDNDC, Sci. Total Environ., 553, 128–140, https://doi.org/10.1016/j.scitotenv.2015.12.099, 2016.
Molina-Herrera, S., Haas, E., Grote, R., Kiese, R., Klatt, S., Kraus, D., Butterbach-Bahl, K., Kampffmeyer, T., Friedrich, R., Andreae, H., Loubet, B., Ammann, C., Horváth, L., Larsen, K., Gruening, C., Frumau, A., and Butterbach-Bahl, K.: Importance of soil NO emissions for the total atmospheric NOx budget of Saxony, Germany, Atmos. Environ., 152, 61–76, https://doi.org/10.1016/J.ATMOSENV.2016.12.022, 2017.
Morris, M. D.: Factorial Sampling Plans for Preliminary Computational Experiments, Technometrics, 33, 161–174, 1991.
Musacchio, A., Re, V., Mas-Pla, J., and Sacchi, E.: EU Nitrates Directive, from theory to practice: Environmental effectiveness and influence of regional governance on its performance, Ambio, 49, 504–516, https://doi.org/10.1007/s13280-019-01197-8, 2020.
Myrgiotis, V., Rees, R. M., Topp, C. F. E., and Williams, M.: A systematic approach to identifying key parameters and processes in agroecosystem models, Ecol. Modell., 368, 344–356, https://doi.org/10.1016/j.ecolmodel.2017.12.009, 2018a.
Myrgiotis, V., Williams, M., Topp, C. F. E., and Rees, R. M.: Improving model prediction of soil N2O emissions through Bayesian calibration, Sci. Total Environ., 624, 1467–1477, https://doi.org/10.1016/j.scitotenv.2017.12.202, 2018b.
Myrgiotis, V., Williams, M., Rees, R. M., and Topp, C. F. E.: Estimating the soil N2O emission intensity of croplands in northwest Europe, Biogeosciences, 16, 1641–1655, https://doi.org/10.5194/bg-16-1641-2019, 2019.
OECD: Nutrient balance (indicator), https://data.oecd.org/agrland/nutrient-balance.htm (last access: 16 February 2020), 2020
Petersen, K., Kraus, D., Calanca, P., Semenov, M. A., Butterbach-Bahl, K., and Kiese, R.: Dynamic simulation of management events for assessing impacts of climate change on pre-alpine grassland productivity, Europ. J. Agron., 128, 126306, https://doi.org/10.1016/J.EJA.2021.126306, 2021.
Petersen, R. J., Blicher-Mathiesen, G., Rolighed, J., Andersen, H. E., and Kronvang, B.: Three decades of regulation of agricultural nitrogen losses: Experiences from the Danish Agricultural Monitoring Program, Sci. Total Environ., 787, 147619, https://doi.org/10.1016/J.SCITOTENV.2021.147619, 2021.
Portmann, F. T., Siebert, S., and Döll, P.: MIRCA2000-Global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling, Global Biogeochem. Cy., 24, GB1011, https://doi.org/10.1029/2008gb003435, 2010.
Rahn, K. H., Werner, C., Kiese, R., Haas, E., and Butterbach-Bahl, K.: Parameter-induced uncertainty quantification of soil N2O, NO and CO2 emission from Höglwald spruce forest (Germany) using the LandscapeDNDC model, Biogeosciences, 9, 3983–3998, https://doi.org/10.5194/bg-9-3983-2012, 2012.
Ranucci, S., Bertolini, T., Vitale, L., di Tommasi, P., Ottaiano, L., Oliva, M., Amato, U., Fierro, A., and Magliulo, V.: The influence of management and environmental variables on soil N2O emissions in a crop system in Southern Italy, Plant Soil, 343, 83–96, https://doi.org/10.1007/s11104-010-0674-x, 2011.
Ravishankara, A. R., Daniel, J. S., and Portmann, R. W.: Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century, Science, 326, 123–125, https://doi.org/10.1126/science.1176985, 2009.
Refsgaard, J. C., van der Sluijs, J. P., Højberg, A. L., and Vanrolleghem, P. A.: Uncertainty in the environmental modelling process – A framework and guidance, Environ. Modell. Softw., 22, 1543–1556, https://doi.org/10.1016/J.ENVSOFT.2007.02.004, 2007.
Robert, C. and Casella, G.: A short history of Markov Chain Monte Carlo: Subjective recollections from incomplete data, Stat. Sci., 26, 102–115, https://doi.org/10.1214/10-STS351, 2011.
Saltelli, A., Tarantola, S., and Campolongo, F.: Sensitivity Analysis as an Ingredient of Modeling, Stat. Sci., 15, 377–395, 2000.
Santabárbara, I.: Analysis and quantification of parametric and structural uncertainty of the LandscapeDNDC model for simulating biosphere-atmosphere-hydrosphere exchange processes, Ph.D. thesis, Institute of Meteorology and Climate Research – Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Freiburg im Breisgau, Germany, 172 pp., 2019.
Schroeck, A. M., Gaube, V., Haas, E., and Winiwarter, W.: Estimating nitrogen flows of agricultural soils at a landscape level – A modelling study of the Upper Enns Valley, a long-term socio-ecological research region in Austria, Sci. Total Environ., 665, 275–289, https://doi.org/10.1016/j.scitotenv.2019.02.071, 2019.
Sidiropoulos, C. and Tsilingiridis, G.: Trends of livestock-related NH3, CH4, N2O and PM emissions in Greece, Water Air Soil Pollut., 199, 277–289, https://doi.org/10.1007/s11270-008-9877-7, 2009.
Smerald, A., Fuchs, K., Kraus, D., Butterbach-Bahl, K., and Scheer, C.: Significant Global Yield-Gap Closing Is Possible Without Increasing the Intensity of Environmentally Harmful Nitrogen Losses, Front Sustain Food Syst, 6, 736394, https://doi.org/10.3389/fsufs.2022.736394, 2022.
Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., McCarl, B., Ogle, S., O'Mara, F., Rice, C., Scholes, B., Sirotenko, O., Howden, M., McAllister, T., Pan, G., Romanenkov, V., Schneider, U., Towprayoon, S., Wattenbach, M., and Smith, J.: Greenhouse gas mitigation in agriculture, Philos. T. R. Soc. B, 363, 789–813, https://doi.org/10.1098/rstb.2007.2184, 2008.
Stehfest, E. and Bouwman, L.: N2O and NO emission from agricultural fields and soils under natural vegetation: Summarizing available measurement data and modeling of global annual emissions, Nutr. Cycl. Agroecosyst., 74, 207–228, https://doi.org/10.1007/s10705-006-9000-7, 2006.
Sutton, M. A., Reis, S., Riddick, S. N., Dragosits, U., Nemitz, E., Theobald, M. R., Tang, Y. S., Braban, C. F., Vieno, M., Dore, A. J., Mitchell, R. F., Wanless, S., Daunt, F., Fowler, D., Blackall, T. D., Milford, C., Flechard, C. R., Loubet, B., Massad, R., Cellier, P., Personne, E., Coheur, P. F., Clarisse, L., van Damme, M., Ngadi, Y., Clerbaux, C., Skjøth, C. A., Geels, C., Hertel, O., Kruit, R. J. W., Pinder, R. W., Bash, J. O., Walker, J. T., Simpson, D., Horváth, L., Misselbrook, T. H., Bleeker, A., Dentener, F., and de Vries, W.: Towards a climate-dependent paradigm of ammonia emission and deposition, Philos. T. R. Soc. B, 368, 20130166, https://doi.org/10.1098/rstb.2013.0166, 2013.
Thomas, D., Johannes, K., David, K., Rüdiger, G., and Ralf, K.: Impacts of management and climate change on nitrate leaching in a forested karst area, J. Environ. Manag., 165, 243–252, https://doi.org/10.1016/J.JENVMAN.2015.09.039, 2016.
Thompson, R. L., Lassaletta, L., Patra, P. K., Wilson, C., Wells, K. C., Gressent, A., Koffi, E. N., Chipperfield, M. P., Winiwarter, W., Davidson, E. A., Tian, H., and Canadell, J. G.: Acceleration of global N2O emissions seen from two decades of atmospheric inversion, Nat. Clim. Change, 9, 993–998, https://doi.org/10.1038/s41558-019-0613-7, 2019.
Tsakmakis, I. D., Kokkos, N. P., Gikas, G. D., Pisinaras, V., Hatzigiannakis, E., Arampatzis, G., and Sylaios, G. K.: Evaluation of AquaCrop model simulations of cotton growth under deficit irrigation with an emphasis on root growth and water extraction patterns, Agr. Water Manag., 213, 419–432, https://doi.org/10.1016/j.agwat.2018.10.029, 2019.
Velthof, G. L., Oudendag, D., Witzke, H. P., Asman, W. A. H., Klimont, Z., and Oenema, O.: Integrated Assessment of Nitrogen Losses from Agriculture in EU-27 using MITERRA-EUROPE, J. Environ. Qual., 38, 402–417, https://doi.org/10.2134/jeq2008.0108, 2009.
Vogeler, I., Giltrap, D., and Cichota, R.: Comparison of APSIM and DNDC simulations of nitrogen transformations and N2O emissions, Sci. Total Environ., 465, 147–155, https://doi.org/10.1016/j.scitotenv.2012.09.021, 2013.
Voloudakis, D., Karamanos, A., Economou, G., Kalivas, D., Vahamidis, P., Kotoulas, V., Kapsomenakis, J., and Zerefos, C.: Prediction of climate change impacts on cotton yields in Greece under eight climatic models using the AquaCrop crop simulation model and discriminant function analysis, Agr. Water Manag., 147, 116–128, https://doi.org/10.1016/j.agwat.2014.07.028, 2015.
Wang, G. and Chen, S.: A review on parameterization and uncertainty in modeling greenhouse gas emissions from soil, Geoderma, 170, 206–216, https://doi.org/10.1016/J.GEODERMA.2011.11.009, 2012.
Werner, C., Haas, E., Grote, R., Gauder, M., Graeff-Hönninger, S., Claupein, W., and Butterbach-Bahl, K.: Biomass production potential from Populus short rotation systems in Romania, GCB Bioenergy, 4, 642–653, https://doi.org/10.1111/j.1757-1707.2012.01180.x, 2012.
Zhang, W., Liu, C., Zheng, X., Zhou, Z., Cui, F., Zhu, B., Haas, E., Klatt, S., Butterbach-Bahl, K., and Kiese, R.: Comparison of the DNDC, LandscapeDNDC and IAP-N-GAS models for simulating nitrous oxide and nitric oxide emissions from the winter wheat–summer maize rotation system, Agr. Syst., 140, 1–10, https://doi.org/10.1016/J.AGSY.2015.08.003, 2015.
Zistl-Schlingmann, M., Kwatcho Kengdo, S., Kiese, R., and Dannenmann, M.: Management Intensity Controls Nitrogen-Use-Efficiency and Flows in Grasslands – A 15N Tracing Experiment, Agronomy, 10, 1–15, https://doi.org/10.3390/agronomy10040606, 2020.
Short summary
We performed a full assessment of the carbon and nitrogen cycles of a cropland ecosystem. An uncertainty analysis and quantification of all carbon and nitrogen fluxes were deployed. The inventory simulations include greenhouse gas emissions of N2O, NH3 volatilization and NO3 leaching from arable land cultivation in Greece. The inventory also reports changes in soil organic carbon and nitrogen stocks in arable soils.
We performed a full assessment of the carbon and nitrogen cycles of a cropland ecosystem. An...
Altmetrics
Final-revised paper
Preprint