Articles | Volume 10, issue 6
https://doi.org/10.5194/bg-10-3983-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/bg-10-3983-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
The role of microorganisms at different stages of ecosystem development for soil formation
S. Schulz
Helmholtz Zentrum München, German Research Center for Environmental Health, Research Unit Environmental Genomics, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
R. Brankatschk
ETH Zurich, Environmental Microbiology, Institute of Biogeochemistry and Pollutant Dynamics, Universitätsstr. 16, 8092 Zurich, Switzerland
A. Dümig
Technische Universität München, Lehrstuhl für Bodenkunde, 85350 Freising-Weihenstephan, Germany
I. Kögel-Knabner
Technische Universität München, Lehrstuhl für Bodenkunde, 85350 Freising-Weihenstephan, Germany
Technische Universität München, Institute for Advanced Study, Lichtenbergstrasse 2a, 85748 Garching, Germany
M. Schloter
Helmholtz Zentrum München, German Research Center for Environmental Health, Research Unit Environmental Genomics, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
J. Zeyer
ETH Zurich, Environmental Microbiology, Institute of Biogeochemistry and Pollutant Dynamics, Universitätsstr. 16, 8092 Zurich, Switzerland
Related authors
S. Schulz, M. Engel, D. Fischer, F. Buegger, M. Elmer, G. Welzl, and M. Schloter
Biogeosciences, 10, 1183–1192, https://doi.org/10.5194/bg-10-1183-2013, https://doi.org/10.5194/bg-10-1183-2013, 2013
Hans-Jörg Vogel, Stephan Bartke, Katrin Daedlow, Katharina Helming, Ingrid Kögel-Knabner, Birgit Lang, Eva Rabot, David Russell, Bastian Stößel, Ulrich Weller, Martin Wiesmeier, and Ute Wollschläger
SOIL, 4, 83–92, https://doi.org/10.5194/soil-4-83-2018, https://doi.org/10.5194/soil-4-83-2018, 2018
Short summary
Short summary
This paper deals with the importance of soil for our terrestrial environment and the need to predict the impact of soil management on the multitude of functions that soil provides. We suggest to consider soil as a self-organized complex system and provide a concept of how this could be achieved. This includes how soil research, currently fragmented into a number of more or less disjunct disciplines, may be integrated to substantially contribute to a science-based evaluation of soil functions.
L. Fuchslueger, E.-M. Kastl, F. Bauer, S. Kienzl, R. Hasibeder, T. Ladreiter-Knauss, M. Schmitt, M. Bahn, M. Schloter, A. Richter, and U. Szukics
Biogeosciences, 11, 6003–6015, https://doi.org/10.5194/bg-11-6003-2014, https://doi.org/10.5194/bg-11-6003-2014, 2014
Short summary
Short summary
In mountain grasslands drought has distinct transient effects on soil nitrogen cycling and bacterial and archaeal ammonia-oxidizers (AOB and AOA), which could have been related to a niche differentiation of these two groups at increasing NH4+ levels. However, the effective strength of drought was modulated by the level of grassland management.
J. Esperschütz, C. Zimmermann, A. Dümig, G. Welzl, F. Buegger, M. Elmer, J. C. Munch, and M. Schloter
Biogeosciences, 10, 5115–5124, https://doi.org/10.5194/bg-10-5115-2013, https://doi.org/10.5194/bg-10-5115-2013, 2013
U. Risse-Buhl, F. Hagedorn, A. Dümig, M. O. Gessner, W. Schaaf, S. Nii-Annang, L. Gerull, and M. Mutz
Biogeosciences, 10, 4751–4765, https://doi.org/10.5194/bg-10-4751-2013, https://doi.org/10.5194/bg-10-4751-2013, 2013
M. Schrumpf, K. Kaiser, G. Guggenberger, T. Persson, I. Kögel-Knabner, and E.-D. Schulze
Biogeosciences, 10, 1675–1691, https://doi.org/10.5194/bg-10-1675-2013, https://doi.org/10.5194/bg-10-1675-2013, 2013
S. Schulz, M. Engel, D. Fischer, F. Buegger, M. Elmer, G. Welzl, and M. Schloter
Biogeosciences, 10, 1183–1192, https://doi.org/10.5194/bg-10-1183-2013, https://doi.org/10.5194/bg-10-1183-2013, 2013
A. Dümig, M. Veste, F. Hagedorn, T. Fischer, P. Lange, R. Spröte, and I. Kögel-Knabner
Biogeosciences Discuss., https://doi.org/10.5194/bgd-10-851-2013, https://doi.org/10.5194/bgd-10-851-2013, 2013
Revised manuscript has not been submitted
Related subject area
Biogeochemistry: Environmental Microbiology
Abrasion of sedimentary rocks as a source of hydrogen peroxide and nutrients to subglacial ecosystems
Nitrous oxide (N2O) synthesis by the freshwater cyanobacterium Microcystis aeruginosa
Interdisciplinary strategy to assess the impact of meteorological variables on the biochemical composition of the rain and the dynamics of a small eutrophic lake under rain forcing
Depth-related patterns in microbial community responses to complex organic matter in the western North Atlantic Ocean
Assessing the influence of ocean alkalinity enhancement on a coastal phytoplankton community
Eddy-enhanced primary production sustains heterotrophic microbial activities in the Eastern Tropical North Atlantic
Composition and niche-specific characteristics of microbial consortia colonizing Marsberg copper mine in the Rhenish Massif
Responses of elemental content and macromolecule of the coccolithophore Emiliania huxleyi to reduced phosphorus availability and ocean acidification depend on light intensity
Diversity and assembly processes of microbial eukaryotic communities in Fildes Peninsula Lakes (West Antarctica)
Phosphorus regulates fungal biomass production in a Norway spruce forest
Nitrophobic ectomycorrhizal fungi are associated with enhanced hydrophobicity of soil organic matter in a Norway spruce forest
Physiological control on carbon isotope fractionation in marine phytoplankton
Implementation of mycorrhizal mechanisms into soil carbon model improves the prediction of long-term processes of plant litter decomposition
Impact of dust addition on the microbial food web under present and future conditions of pH and temperature
Fractionation of stable carbon isotopes during acetate consumption by methanogenic and sulfidogenic microbial communities in rice paddy soils and lake sediments
Hydrothermal trace metal release and microbial metabolism in the northeastern Lau Basin of the South Pacific Ocean
Sedimentation rate and organic matter dynamics shape microbiomes across a continental margin
Disturbance triggers non-linear microbe–environment feedbacks
Hydrographic fronts shape productivity, nitrogen fixation, and microbial community composition in the southern Indian Ocean and the Southern Ocean
Microbial and geo-archaeological records reveal the growth rate, origin and composition of desert rock surface communities
Metagenomic insights into the metabolism of microbial communities that mediate iron and methane cycling in Lake Kinneret iron-rich methanic sediments
Spatiotemporal patterns of N2 fixation in coastal waters derived from rate measurements and remote sensing
Biotic and abiotic transformation of amino acids in cloud water: experimental studies and atmospheric implications
Potential bioavailability of organic matter from atmospheric particles to marine heterotrophic bacteria
Microbial functional signature in the atmospheric boundary layer
New insight to niche partitioning and ecological function of ammonia oxidizing archaea in subtropical estuarine ecosystem
Impact of reactive surfaces on the abiotic reaction between nitrite and ferrous iron and associated nitrogen and oxygen isotope dynamics
Reviews and syntheses: Bacterial bioluminescence – ecology and impact in the biological carbon pump
Salinity-dependent algae uptake and subsequent carbon and nitrogen metabolisms of two intertidal foraminifera (Ammonia tepida and Haynesina germanica)
On giant shoulders: how a seamount affects the microbial community composition of seawater and sponges
Spatial variations in sedimentary N-transformation rates in the North Sea (German Bight)
Patterns of (trace) metals and microorganisms in the Rainbow hydrothermal vent plume at the Mid-Atlantic Ridge
Co-occurrence of Fe and P stress in natural populations of the marine diazotroph Trichodesmium
Senescence as the main driver of iodide release from a diverse range of marine phytoplankton
Reviews and syntheses: Biological weathering and its consequences at different spatial levels – from nanoscale to global scale
Deep-sea sponge grounds as nutrient sinks: denitrification is common in boreo-Arctic sponges
Inducing the attachment of cable bacteria on oxidizing electrodes
Bacterial degradation activity in the eastern tropical South Pacific oxygen minimum zone
Macromolecular fungal ice nuclei in Fusarium: effects of physical and chemical processing
Effects of sea animal colonization on the coupling between dynamics and activity of soil ammonia-oxidizing bacteria and archaea in maritime Antarctica
Comprehensive characterization of an aspen (Populus tremuloides) leaf litter sample that maintained ice nucleation activity for 48 years
The origin and role of biological rock crusts in rocky desert weathering
Pyrite oxidization accelerates bacterial carbon sequestration in copper mine tailings
Biogeochemical evidence of anaerobic methane oxidation on active submarine mud volcanoes on the continental slope of the Canadian Beaufort Sea
Filtration artefacts in bacterial community composition can affect the outcome of dissolved organic matter biolability assays
Predominance of methanogens over methanotrophs in rewetted fens characterized by high methane emissions
Trichodesmium physiological ecology and phosphate reduction in the western tropical South Pacific
Potential for phenol biodegradation in cloud waters
Colony formation in Phaeocystis antarctica: connecting molecular mechanisms with iron biogeochemistry
In-depth characterization of diazotroph activity across the western tropical South Pacific hotspot of N2 fixation (OUTPACE cruise)
Beatriz Gill-Olivas, Jon Telling, Mark Skidmore, and Martyn Tranter
Biogeosciences, 20, 929–943, https://doi.org/10.5194/bg-20-929-2023, https://doi.org/10.5194/bg-20-929-2023, 2023
Short summary
Short summary
Microbial ecosystems have been found in all subglacial environments sampled to date. Yet, little is known of the sources of energy and nutrients that sustain these microbial populations. This study shows that crushing of sedimentary rocks, which contain organic carbon, carbonate and sulfide minerals, along with previously weathered silicate minerals, produces a range of compounds and nutrients which can be utilised by the diverse suite of microbes that inhabit glacier beds.
Federico Fabisik, Benoit Guieysse, Jonathan Procter, and Maxence Plouviez
Biogeosciences, 20, 687–693, https://doi.org/10.5194/bg-20-687-2023, https://doi.org/10.5194/bg-20-687-2023, 2023
Short summary
Short summary
We show, for the first time, that pure cultures of the cyanobacterium Microcystis aeruginosa can synthesize the potent greenhouse gas N2O using nitrite as substrate. Our findings have broad environmental implications because M. aeruginosa is globally found in freshwater ecosystems and is often the dominant species found in algae blooms. Further research is now needed to determine the occurrence and significance of N2O emissions from ecosystems rich with M. aeruginosa.
Fanny Noirmain, Jean-Luc Baray, Frédéric Tridon, Philippe Cacault, Hermine Billard, Guillaume Voyard, Joël Van Baelen, and Delphine Latour
Biogeosciences, 19, 5729–5749, https://doi.org/10.5194/bg-19-5729-2022, https://doi.org/10.5194/bg-19-5729-2022, 2022
Short summary
Short summary
We present a study linking rain, meteorology, and mountain lake phytoplankton dynamics on the basis of a case study at Aydat (France) in September 2020. The air mass origin mainly influences the rain chemical composition, which depends on the type of rain, convective or stratiform. Our results also highlighted a non-negligible presence of photosynthetic cells in rainwater. The impact of the atmospheric forcing on the lake could play a key role in phytoplankton dynamics in the temperate zone.
Sarah A. Brown, John Paul Balmonte, Adrienne Hoarfrost, Sherif Ghobrial, and Carol Arnosti
Biogeosciences, 19, 5617–5631, https://doi.org/10.5194/bg-19-5617-2022, https://doi.org/10.5194/bg-19-5617-2022, 2022
Short summary
Short summary
Bacteria use extracellular enzymes to cut large organic matter to sizes small enough for uptake. We compared the enzymatic response of surface, mid-water, and deep-ocean bacteria to complex natural substrates. Bacteria in surface and mid-depth waters produced a much wider range of enzymes than those in the deep ocean and may therefore consume a broader range of organic matter. The extent to which organic matter is recycled by bacteria depends in part on its residence time at different depths.
Aaron Ferderer, Zanna Chase, Fraser Kennedy, Kai G. Schulz, and Lennart T. Bach
Biogeosciences, 19, 5375–5399, https://doi.org/10.5194/bg-19-5375-2022, https://doi.org/10.5194/bg-19-5375-2022, 2022
Short summary
Short summary
Ocean alkalinity enhancement has the capacity to remove vast quantities of carbon from the atmosphere, but its effect on marine ecosystems is largely unknown. We assessed the effect of increased alkalinity on a coastal phytoplankton community when seawater was equilibrated and not equilibrated with atmospheric CO2. We found that the phytoplankton community was moderately affected by increased alkalinity and equilibration with atmospheric CO2 had little influence on this effect.
Quentin Devresse, Kevin W. Becker, Arne Bendinger, Johannes Hahn, and Anja Engel
Biogeosciences, 19, 5199–5219, https://doi.org/10.5194/bg-19-5199-2022, https://doi.org/10.5194/bg-19-5199-2022, 2022
Short summary
Short summary
Eddies are ubiquitous in the ocean and alter physical, chemical, and biological processes. However, how they affect organic carbon production and consumption is largely unknown. Here we show how an eddy triggers a cascade effect on biomass production and metabolic activities of phyto- and bacterioplankton. Our results may contribute to the improvement of biogeochemical models used to estimate carbon fluxes in the ocean.
Sania Arif, Heiko Nacke, Elias Schliekmann, Andreas Reimer, Gernot Arp, and Michael Hoppert
Biogeosciences, 19, 4883–4902, https://doi.org/10.5194/bg-19-4883-2022, https://doi.org/10.5194/bg-19-4883-2022, 2022
Short summary
Short summary
The natural enrichment of Chloroflexi (Ktedonobacteria) at the Kilianstollen Marsberg copper mine rocks being exposed to the acidic sulfate-rich leachate led to an investigation of eight metagenomically assembled genomes (MAGs) involved in copper and other transition heavy metal resistance in addition to low pH resistance and aromatic compounds degradation. The present study offers functional insights about a novel cold-adapted Ktedonobacteria MAG extremophily along with other phyla MAGs.
Yong Zhang, Yong Zhang, Shuai Ma, Hanbing Chen, Jiabing Li, Zhengke Li, Kui Xu, Ruiping Huang, Hong Zhang, Yonghe Han, and Jun Sun
EGUsphere, https://doi.org/10.5194/egusphere-2022-947, https://doi.org/10.5194/egusphere-2022-947, 2022
Short summary
Short summary
We found that increasing light intensity compensates for the negative effects of low phosphorus availability on cellular protein and nitrogen contents. Reduced phosphorus availability, increasing light intensity and ocean acidification act synergistically to increase cellular contents of carbohydrate and POC, and the allocation of POC to carbohydrate. These regulation mechanisms in coccolithophores provide vital information for evaluating carbon cycle in marine ecosystems under global change.
Chunmei Zhang, Huirong Li, Yinxin Zeng, Haitao Ding, Bin Wang, Yangjie Li, Zhongqiang Ji, Yonghong Bi, and Wei Luo
Biogeosciences, 19, 4639–4654, https://doi.org/10.5194/bg-19-4639-2022, https://doi.org/10.5194/bg-19-4639-2022, 2022
Short summary
Short summary
The unique microbial eukaryotic community structure and lower diversity have been demonstrated in five freshwater lakes of the Fildes Peninsula, Antarctica. Stochastic processes and biotic co-occurrence patterns were shown to be important in shaping microbial eukaryotic communities in the area. Our study provides a better understanding of the dynamic patterns and ecological assembly processes of microbial eukaryotic communities in Antarctic oligotrophic lakes (Fildes Peninsula).
Juan Pablo Almeida, Lorenzo Menichetti, Alf Ekblad, Nicholas Rosenstock, and Håkan Wallander
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-165, https://doi.org/10.5194/bg-2022-165, 2022
Revised manuscript accepted for BG
Short summary
Short summary
In forests, trees allocate belowground a significant amount of carbon to support mycorrhizal symbiosis. In northern forests nitrogen normally regulates this allocation and consequently mycorrhizal fungi growth. In this study we demonstrate that in a conifer forest from Sweden, fungal growth is regulated by phosphorus instead of nitrogen. This is probably due to an increase in nitrogen depositions to soils caused by decades of human pollution that has alter the ecosystem nutrient regime.
Juan Pablo Almeida, Nicholas P. Rosenstock, Susanne K. Woche, Georg Guggenberger, and Håkan Wallander
Biogeosciences, 19, 3713–3726, https://doi.org/10.5194/bg-19-3713-2022, https://doi.org/10.5194/bg-19-3713-2022, 2022
Short summary
Short summary
Fungi living in symbiosis with tree roots can accumulate belowground, forming special tissues than can repel water. We measured the water repellency of organic material incubated belowground and correlated it with fungal growth. We found a positive association between water repellency and root symbiotic fungi. These results are important because an increase in soil water repellency can reduce the release of CO2 from soils into the atmosphere and mitigate the effects of greenhouse gasses.
Karen M. Brandenburg, Björn Rost, Dedmer B. Van de Waal, Mirja Hoins, and Appy Sluijs
Biogeosciences, 19, 3305–3315, https://doi.org/10.5194/bg-19-3305-2022, https://doi.org/10.5194/bg-19-3305-2022, 2022
Short summary
Short summary
Reconstructions of past CO2 concentrations rely on proxy estimates, with one line of proxies relying on the CO2-dependence of stable carbon isotope fractionation in marine phytoplankton. Culturing experiments provide insights into which processes may impact this. We found, however, that the methods with which these culturing experiments are performed also influence 13C fractionation. Caution should therefore be taken when extrapolating results from these experiments to proxy applications.
Weilin Huang, Peter M. van Bodegom, Toni Viskari, Jari Liski, and Nadejda A. Soudzilovskaia
Biogeosciences, 19, 1469–1490, https://doi.org/10.5194/bg-19-1469-2022, https://doi.org/10.5194/bg-19-1469-2022, 2022
Short summary
Short summary
This work focuses on one of the essential pathways of mycorrhizal impact on C cycles: the mediation of plant litter decomposition. We present a model based on litter chemical quality which precludes a conclusive examination of mycorrhizal impacts on soil C. It improves long-term decomposition predictions and advances our understanding of litter decomposition dynamics. It creates a benchmark in quantitatively examining the impacts of plant–microbe interactions on soil C dynamics.
Julie Dinasquet, Estelle Bigeard, Frédéric Gazeau, Farooq Azam, Cécile Guieu, Emilio Marañón, Céline Ridame, France Van Wambeke, Ingrid Obernosterer, and Anne-Claire Baudoux
Biogeosciences, 19, 1303–1319, https://doi.org/10.5194/bg-19-1303-2022, https://doi.org/10.5194/bg-19-1303-2022, 2022
Short summary
Short summary
Saharan dust deposition of nutrients and trace metals is crucial to microbes in the Mediterranean Sea. Here, we tested the response of microbial and viral communities to simulated dust deposition under present and future conditions of temperature and pH. Overall, the effect of the deposition was dependent on the initial microbial assemblage, and future conditions will intensify microbial responses. We observed effects on trophic interactions, cascading all the way down to viral processes.
Ralf Conrad, Pengfei Liu, and Peter Claus
Biogeosciences, 18, 6533–6546, https://doi.org/10.5194/bg-18-6533-2021, https://doi.org/10.5194/bg-18-6533-2021, 2021
Short summary
Short summary
Acetate is an important intermediate during the anaerobic degradation of organic matter. It is consumed by methanogenic and sulfidogenic microorganisms accompanied by stable carbon isotope fractionation. We determined isotope fractionation under different conditions in two paddy soils and two lake sediments and also determined the composition of the microbial communities. Despite a relatively wide range of experimental conditions, the range of fractionation factors was quite moderate.
Natalie R. Cohen, Abigail E. Noble, Dawn M. Moran, Matthew R. McIlvin, Tyler J. Goepfert, Nicholas J. Hawco, Christopher R. German, Tristan J. Horner, Carl H. Lamborg, John P. McCrow, Andrew E. Allen, and Mak A. Saito
Biogeosciences, 18, 5397–5422, https://doi.org/10.5194/bg-18-5397-2021, https://doi.org/10.5194/bg-18-5397-2021, 2021
Short summary
Short summary
A previous study documented an intense hydrothermal plume in the South Pacific Ocean; however, the iron release associated with this plume and the impact on microbiology were unclear. We describe metal concentrations associated with multiple hydrothermal plumes in this region and protein signatures of plume-influenced microbes. Our findings demonstrate that resources released from these systems can be transported away from their source and may alter the physiology of surrounding microbes.
Sabyasachi Bhattacharya, Tarunendu Mapder, Svetlana Fernandes, Chayan Roy, Jagannath Sarkar, Moidu Jameela Rameez, Subhrangshu Mandal, Abhijit Sar, Amit Kumar Chakraborty, Nibendu Mondal, Sumit Chatterjee, Bomba Dam, Aditya Peketi, Ranadhir Chakraborty, Aninda Mazumdar, and Wriddhiman Ghosh
Biogeosciences, 18, 5203–5222, https://doi.org/10.5194/bg-18-5203-2021, https://doi.org/10.5194/bg-18-5203-2021, 2021
Short summary
Short summary
Physicochemical determinants of microbiome architecture across continental shelves–slopes are unknown, so we explored the geomicrobiology along 3 m sediment horizons of seasonal (shallow coastal) and perennial (deep sea) hypoxic zones of the Arabian Sea. Nature, concentration, and fate of the organic matter delivered to the sea floor were found to shape the microbiome across the western Indian margin, under direct–indirect influence of sedimentation rate and water column O2 level.
Aditi Sengupta, Sarah J. Fansler, Rosalie K. Chu, Robert E. Danczak, Vanessa A. Garayburu-Caruso, Lupita Renteria, Hyun-Seob Song, Jason Toyoda, Jacqueline Wells, and James C. Stegen
Biogeosciences, 18, 4773–4789, https://doi.org/10.5194/bg-18-4773-2021, https://doi.org/10.5194/bg-18-4773-2021, 2021
Short summary
Short summary
Conceptual models link microbes with the environment but are untested. We test a recent model using riverbed sediments. We exposed sediments to disturbances, going dry and becoming wet again. As the length of dry conditions got longer, there was a sudden shift in the ecology of microbes, chemistry of organic matter, and rates of microbial metabolism. We propose a new model based on feedbacks initiated by disturbance that cascade across biological, chemical, and functional aspects of the system.
Cora Hörstmann, Eric J. Raes, Pier Luigi Buttigieg, Claire Lo Monaco, Uwe John, and Anya M. Waite
Biogeosciences, 18, 3733–3749, https://doi.org/10.5194/bg-18-3733-2021, https://doi.org/10.5194/bg-18-3733-2021, 2021
Short summary
Short summary
Microbes are the main drivers of productivity and nutrient cycling in the ocean. We present a combined approach assessing C and N uptake and microbial community diversity across ecological provinces in the Southern Ocean and southern Indian Ocean. Provinces showed distinct genetic fingerprints, but microbial activity varied gradually across regions, correlating with nutrient concentrations. Our study advances the biogeographic understanding of microbial diversity across C and N uptake regimes.
Nimrod Wieler, Tali Erickson Gini, Osnat Gillor, and Roey Angel
Biogeosciences, 18, 3331–3342, https://doi.org/10.5194/bg-18-3331-2021, https://doi.org/10.5194/bg-18-3331-2021, 2021
Short summary
Short summary
Biological rock crusts (BRCs) are common microbial-based assemblages covering rocks in drylands. BRCs play a crucial role in arid environments because of the limited activity of plants and soil. Nevertheless, BRC development rates have never been dated. Here we integrated archaeological, microbiological and geological methods to provide a first estimation of the growth rate of BRCs under natural conditions. This can serve as an affordable dating tool in archaeological sites in arid regions.
Michal Elul, Maxim Rubin-Blum, Zeev Ronen, Itay Bar-Or, Werner Eckert, and Orit Sivan
Biogeosciences, 18, 2091–2106, https://doi.org/10.5194/bg-18-2091-2021, https://doi.org/10.5194/bg-18-2091-2021, 2021
Mindaugas Zilius, Irma Vybernaite-Lubiene, Diana Vaiciute, Donata Overlingė, Evelina Grinienė, Anastasija Zaiko, Stefano Bonaglia, Iris Liskow, Maren Voss, Agneta Andersson, Sonia Brugel, Tobia Politi, and Paul A. Bukaveckas
Biogeosciences, 18, 1857–1871, https://doi.org/10.5194/bg-18-1857-2021, https://doi.org/10.5194/bg-18-1857-2021, 2021
Short summary
Short summary
In fresh and brackish waters, algal blooms are often dominated by cyanobacteria, which have the ability to utilize atmospheric nitrogen. Cyanobacteria are also unusual in that they float to the surface and are dispersed by wind-driven currents. Their patchy and dynamic distribution makes it difficult to track their abundance and quantify their effects on nutrient cycling. We used remote sensing to map the distribution of cyanobacteria in a large Baltic lagoon and quantify their contributions.
Saly Jaber, Muriel Joly, Maxence Brissy, Martin Leremboure, Amina Khaled, Barbara Ervens, and Anne-Marie Delort
Biogeosciences, 18, 1067–1080, https://doi.org/10.5194/bg-18-1067-2021, https://doi.org/10.5194/bg-18-1067-2021, 2021
Short summary
Short summary
Our study is of interest to atmospheric scientists and environmental microbiologists, as we show that clouds can be considered a medium where bacteria efficiently degrade and transform amino acids, in competition with chemical processes. As current atmospheric multiphase models are restricted to chemical degradation of organic compounds, our conclusions motivate further model development.
Kahina Djaoudi, France Van Wambeke, Aude Barani, Nagib Bhairy, Servanne Chevaillier, Karine Desboeufs, Sandra Nunige, Mohamed Labiadh, Thierry Henry des Tureaux, Dominique Lefèvre, Amel Nouara, Christos Panagiotopoulos, Marc Tedetti, and Elvira Pulido-Villena
Biogeosciences, 17, 6271–6285, https://doi.org/10.5194/bg-17-6271-2020, https://doi.org/10.5194/bg-17-6271-2020, 2020
Romie Tignat-Perrier, Aurélien Dommergue, Alban Thollot, Olivier Magand, Timothy M. Vogel, and Catherine Larose
Biogeosciences, 17, 6081–6095, https://doi.org/10.5194/bg-17-6081-2020, https://doi.org/10.5194/bg-17-6081-2020, 2020
Short summary
Short summary
The adverse atmospheric environmental conditions do not appear suited for microbial life. We conducted the first global comparative metagenomic analysis to find out if airborne microbial communities might be selected by their ability to resist these adverse conditions. The relatively higher concentration of fungi led to the observation of higher proportions of stress-related functions in air. Fungi might likely resist and survive atmospheric physical stress better than bacteria.
Yanhong Lu, Shunyan Cheung, Ling Chen, Shuh-Ji Kao, Xiaomin Xia, Jianping Gan, Minhan Dai, and Hongbin Liu
Biogeosciences, 17, 6017–6032, https://doi.org/10.5194/bg-17-6017-2020, https://doi.org/10.5194/bg-17-6017-2020, 2020
Short summary
Short summary
Through a comprehensive investigation, we observed differential niche partitioning among diverse ammonia-oxidizing archaea (AOA) sublineages in a typical subtropical estuary. Distinct AOA communities observed at DNA and RNA levels suggested that a strong divergence in ammonia-oxidizing activity among different AOA groups occurs. Our result highlights the importance of identifying major ammonia oxidizers at RNA level in future studies.
Anna-Neva Visser, Scott D. Wankel, Pascal A. Niklaus, James M. Byrne, Andreas A. Kappler, and Moritz F. Lehmann
Biogeosciences, 17, 4355–4374, https://doi.org/10.5194/bg-17-4355-2020, https://doi.org/10.5194/bg-17-4355-2020, 2020
Short summary
Short summary
This study focuses on the chemical reaction between Fe(II) and nitrite, which has been reported to produce high levels of the greenhouse gas N2O. We investigated the extent to which dead biomass and Fe(II) minerals might enhance this reaction. Here, nitrite reduction was highest when both additives were present but less pronounced if only Fe(II) minerals were added. Both reaction systems show distinct differences, rather low N2O levels, and indicated the abiotic production of N2.
Lisa Tanet, Séverine Martini, Laurie Casalot, and Christian Tamburini
Biogeosciences, 17, 3757–3778, https://doi.org/10.5194/bg-17-3757-2020, https://doi.org/10.5194/bg-17-3757-2020, 2020
Short summary
Short summary
Bioluminescent bacteria, the most abundant light-emitting organisms in the ocean, can be free-living, be symbiotic or colonize organic particles. This review suggests that they act as a visual target and may indirectly influence the sequestration of biogenic carbon in oceans by increasing the attraction rate for consumers. We summarize the instrumentation available to quantify this impact in future studies and propose synthetic figures integrating these ecological and biogeochemical concepts.
Michael Lintner, Bianca Biedrawa, Julia Wukovits, Wolfgang Wanek, and Petra Heinz
Biogeosciences, 17, 3723–3732, https://doi.org/10.5194/bg-17-3723-2020, https://doi.org/10.5194/bg-17-3723-2020, 2020
Short summary
Short summary
Foraminifera are unicellular marine organisms that play an important role in the marine element cycle. Changes of environmental parameters such as salinity or temperature have a significant impact on the faunal assemblages. Our experiments show that changing salinity in the German Wadden Sea immediately influences the foraminiferal community. It seems that A. tepida is better adapted to salinity fluctuations than H. germanica.
Kathrin Busch, Ulrike Hanz, Furu Mienis, Benjamin Mueller, Andre Franke, Emyr Martyn Roberts, Hans Tore Rapp, and Ute Hentschel
Biogeosciences, 17, 3471–3486, https://doi.org/10.5194/bg-17-3471-2020, https://doi.org/10.5194/bg-17-3471-2020, 2020
Short summary
Short summary
Seamounts are globally abundant submarine structures that offer great potential to study the impacts and interactions of environmental gradients at a single geographic location. In an exemplary way, we describe potential mechanisms by which a seamount can affect the structure of pelagic and benthic (sponge-)associated microbial communities. We conclude that the geology, physical oceanography, biogeochemistry, and microbiology of seamounts are even more closely linked than currently appreciated.
Alexander Bratek, Justus E. E. van
Beusekom, Andreas Neumann, Tina Sanders, Jana Friedrich, Kay-Christian Emeis, and Kirstin Dähnke
Biogeosciences, 17, 2839–2851, https://doi.org/10.5194/bg-17-2839-2020, https://doi.org/10.5194/bg-17-2839-2020, 2020
Short summary
Short summary
The following paper highlights the importance of benthic N-transformation rates in different sediment types in the southern North Sea as a source of fixed nitrogen for primary producers and also as a sink of fixed nitrogen. Sedimentary fluxes of dissolved inorganic nitrogen support ∼7 to 59 % of the average annual primary production. Semi-permeable and permeable sediments contribute ∼68 % of the total benthic N2 production rates, counteracting eutrophication in the southern North Sea.
Sabine Haalboom, David M. Price, Furu Mienis, Judith D. L. van Bleijswijk, Henko C. de Stigter, Harry J. Witte, Gert-Jan Reichart, and Gerard C. A. Duineveld
Biogeosciences, 17, 2499–2519, https://doi.org/10.5194/bg-17-2499-2020, https://doi.org/10.5194/bg-17-2499-2020, 2020
Short summary
Short summary
Mineral mining in deep-sea hydrothermal settings will lead to the formation of plumes of fine-grained, chemically reactive, suspended matter. Understanding how natural hydrothermal plumes evolve as they disperse from their source, and how they affect their surrounding environment, may help in characterising the behaviour of the diluted part of mining plumes. The natural plume provided a heterogeneous, geochemically enriched habitat conducive to the development of a distinct microbial ecology.
Noelle A. Held, Eric A. Webb, Matthew M. McIlvin, David A. Hutchins, Natalie R. Cohen, Dawn M. Moran, Korinna Kunde, Maeve C. Lohan, Claire Mahaffey, E. Malcolm S. Woodward, and Mak A. Saito
Biogeosciences, 17, 2537–2551, https://doi.org/10.5194/bg-17-2537-2020, https://doi.org/10.5194/bg-17-2537-2020, 2020
Short summary
Short summary
Trichodesmium is a globally important marine nitrogen fixer that stimulates primary production in the surface ocean. We surveyed metaproteomes of Trichodesmium populations across the North Atlantic and other oceans, and we found that they experience simultaneous phosphate and iron stress because of the biophysical limits of nutrient uptake. Importantly, nitrogenase was most abundant during co-stress, indicating the potential importance of this phenotype to global nitrogen and carbon cycling.
Helmke Hepach, Claire Hughes, Karen Hogg, Susannah Collings, and Rosie Chance
Biogeosciences, 17, 2453–2471, https://doi.org/10.5194/bg-17-2453-2020, https://doi.org/10.5194/bg-17-2453-2020, 2020
Short summary
Short summary
Tropospheric iodine takes part in numerous atmospheric chemical cycles, including tropospheric ozone destruction and aerosol formation. Due to its significance for atmospheric processes, it is crucial to constrain its sources and sinks. This paper aims at investigating and understanding features of biogenic iodate-to-iodide reduction in microalgal monocultures. We find that phytoplankton senescence may play a crucial role in the release of iodide to the marine environment.
Roger D. Finlay, Shahid Mahmood, Nicholas Rosenstock, Emile B. Bolou-Bi, Stephan J. Köhler, Zaenab Fahad, Anna Rosling, Håkan Wallander, Salim Belyazid, Kevin Bishop, and Bin Lian
Biogeosciences, 17, 1507–1533, https://doi.org/10.5194/bg-17-1507-2020, https://doi.org/10.5194/bg-17-1507-2020, 2020
Short summary
Short summary
Effects of biological activity on mineral weathering operate at scales ranging from short-term, microscopic interactions to global, evolutionary timescale processes. Microorganisms have had well-documented effects at large spatio-temporal scales, but to establish the quantitative significance of microscopic measurements for field-scale processes, higher-resolution studies of liquid chemistry at local weathering sites and improved upscaling to soil-scale dissolution rates are still required.
Christine Rooks, James Kar-Hei Fang, Pål Tore Mørkved, Rui Zhao, Hans Tore Rapp, Joana R. Xavier, and Friederike Hoffmann
Biogeosciences, 17, 1231–1245, https://doi.org/10.5194/bg-17-1231-2020, https://doi.org/10.5194/bg-17-1231-2020, 2020
Short summary
Short summary
Sponge grounds are known as nutrient sources, providing nitrate and ammonium to the ocean. We found that they also can do the opposite: in six species from Arctic and North Atlantic sponge grounds, we measured high rates of denitrification, which remove these nutrients from the sea. Rates were highest when the sponge tissue got low in oxygen, which happens when sponges stop pumping because of stress. Sponge grounds may become nutrient sinks when exposed to stress.
Cheng Li, Clare E. Reimers, and Yvan Alleau
Biogeosciences, 17, 597–607, https://doi.org/10.5194/bg-17-597-2020, https://doi.org/10.5194/bg-17-597-2020, 2020
Short summary
Short summary
Novel filamentous cable bacteria that grow in the top layer of intertidal mudflat sediment were attracted to electrodes poised at a positive electrical potential. Several diverse morphologies of Desulfobulbaceae filaments, cells, and colonies were observed on the electrode surface. These observations provide information to suggest conditions that will induce cable bacteria to perform electron donation to an electrode, informing future experiments that culture cable bacteria outside of sediment.
Marie Maßmig, Jan Lüdke, Gerd Krahmann, and Anja Engel
Biogeosciences, 17, 215–230, https://doi.org/10.5194/bg-17-215-2020, https://doi.org/10.5194/bg-17-215-2020, 2020
Short summary
Short summary
Little is known about the rates of bacterial element cycling in oxygen minimum zones (OMZs). We measured bacterial production and rates of extracellular hydrolytic enzymes at various in situ oxygen concentrations in the OMZ off Peru. Our field data show unhampered bacterial activity at low oxygen concentrations. Meanwhile bacterial degradation of organic matter substantially contributed to the formation of the OMZ.
Anna T. Kunert, Mira L. Pöhlker, Kai Tang, Carola S. Krevert, Carsten Wieder, Kai R. Speth, Linda E. Hanson, Cindy E. Morris, David G. Schmale III, Ulrich Pöschl, and Janine Fröhlich-Nowoisky
Biogeosciences, 16, 4647–4659, https://doi.org/10.5194/bg-16-4647-2019, https://doi.org/10.5194/bg-16-4647-2019, 2019
Short summary
Short summary
A screening of more than 100 strains from 65 different species revealed that the ice nucleation activity within the fungal genus Fusarium is more widespread than previously assumed. Filtration experiments suggest that the single cell-free Fusarium IN is smaller than 100 kDa (~ 6 nm) and that aggregates can be formed in solution. Exposure experiments, freeze–thaw cycles, and long-term storage tests demonstrate a high stability of Fusarium IN under atmospherically relevant conditions.
Qing Wang, Renbin Zhu, Yanling Zheng, Tao Bao, and Lijun Hou
Biogeosciences, 16, 4113–4128, https://doi.org/10.5194/bg-16-4113-2019, https://doi.org/10.5194/bg-16-4113-2019, 2019
Short summary
Short summary
We investigated abundance, potential activity, and diversity of soil ammonia-oxidizing archaea (AOA) and bacteria (AOB) in five Antarctic tundra patches, including penguin colony, seal colony, and tundra marsh. We have found (1) sea animal colonization increased AOB population size.; (2) AOB contributed to ammonia oxidation rates more than AOA in sea animal colonies; (3) community structures of AOB and AOA were closely related to soil biogeochemical processes associated with animal activities.
Yalda Vasebi, Marco E. Mechan Llontop, Regina Hanlon, David G. Schmale III, Russell Schnell, and Boris A. Vinatzer
Biogeosciences, 16, 1675–1683, https://doi.org/10.5194/bg-16-1675-2019, https://doi.org/10.5194/bg-16-1675-2019, 2019
Short summary
Short summary
Ice nucleation particles (INPs) help ice form at temperatures as high as −4 °C and contribute to the formation of precipitation. Leaf litter contains a high concentration of INPs, but the organisms that produce them are unknown. Here, we cultured two bacteria and one fungus from leaf litter that produce INPs similar to those found in leaf litter. This suggests that leaf litter may be an important habitat of these organisms and supports a role of these organisms as producers of atmospheric INPs.
Nimrod Wieler, Hanan Ginat, Osnat Gillor, and Roey Angel
Biogeosciences, 16, 1133–1145, https://doi.org/10.5194/bg-16-1133-2019, https://doi.org/10.5194/bg-16-1133-2019, 2019
Short summary
Short summary
In stony deserts, when rocks are exposed to atmospheric conditions, they undergo weathering. The cavernous (honeycomb) weathering pattern is one of the most common, but it is still unclear exactly how it is formed. We show that microorganisms, which differ from the surrounding soil and dust, form biological crusts on exposed rock surfaces. These microbes secrete polymeric substances that mitigate weathering by reducing evaporation rates and, consequently, salt transport rates through the rock.
Yang Li, Zhaojun Wu, Xingchen Dong, Zifu Xu, Qixin Zhang, Haiyan Su, Zhongjun Jia, and Qingye Sun
Biogeosciences, 16, 573–583, https://doi.org/10.5194/bg-16-573-2019, https://doi.org/10.5194/bg-16-573-2019, 2019
Short summary
Short summary
This paper contributes to the study of bacterial carbon sequestration in mine tailings. Previous studies focused on carbonate mineral precipitation, while the role of autotrophs in carbon sequestration has been neglected. Carbon sequestration in two mine tailings treated with FeS2 was analyzed using 13C isotope labeling, pyrosequencing, and DNA SIP to identify carbon fixers. This paper is the first to investigate carbon sequestration by autotrophic groups in mine tailings.
Dong-Hun Lee, Jung-Hyun Kim, Yung Mi Lee, Alina Stadnitskaia, Young Keun Jin, Helge Niemann, Young-Gyun Kim, and Kyung-Hoon Shin
Biogeosciences, 15, 7419–7433, https://doi.org/10.5194/bg-15-7419-2018, https://doi.org/10.5194/bg-15-7419-2018, 2018
Short summary
Short summary
In this study, we provide first evidence of lipid biomarker patterns and phylogenetic identities of key microbes mediating anaerobic oxidation of methane (AOM) communities in active mud volcanoes (MVs) on the continental slope of the Canadian Beaufort Sea. Our lipid and 16S rRNA results indicate that archaea of the ANME-2c and ANME-3 clades are involved in AOM in the MVs investigated.
Joshua F. Dean, Jurgen R. van Hal, A. Johannes Dolman, Rien Aerts, and James T. Weedon
Biogeosciences, 15, 7141–7154, https://doi.org/10.5194/bg-15-7141-2018, https://doi.org/10.5194/bg-15-7141-2018, 2018
Short summary
Short summary
Lakes, rivers, ponds and streams are significant contributors of the greenhouse gas carbon dioxide to the atmosphere. This is partly due to the decomposition of plant and soil organic matter transported through these aquatic systems by microbial communities. In determining how vulnerable this organic material is to decomposition during aquatic transport, we show that standardized treatments in experiments can affect the way microbial communities behave and potentially the experimental outcome.
Xi Wen, Viktoria Unger, Gerald Jurasinski, Franziska Koebsch, Fabian Horn, Gregor Rehder, Torsten Sachs, Dominik Zak, Gunnar Lischeid, Klaus-Holger Knorr, Michael E. Böttcher, Matthias Winkel, Paul L. E. Bodelier, and Susanne Liebner
Biogeosciences, 15, 6519–6536, https://doi.org/10.5194/bg-15-6519-2018, https://doi.org/10.5194/bg-15-6519-2018, 2018
Short summary
Short summary
Rewetting drained peatlands may lead to prolonged emission of the greenhouse gas methane, but the underlying factors are not well described. In this study, we found two rewetted fens with known high methane fluxes had a high ratio of microbial methane producers to methane consumers and a low abundance of methane consumers compared to pristine wetlands. We therefore suggest abundances of methane-cycling microbes as potential indicators for prolonged high methane emissions in rewetted peatlands.
Kyle R. Frischkorn, Andreas Krupke, Cécile Guieu, Justine Louis, Mónica Rouco, Andrés E. Salazar Estrada, Benjamin A. S. Van Mooy, and Sonya T. Dyhrman
Biogeosciences, 15, 5761–5778, https://doi.org/10.5194/bg-15-5761-2018, https://doi.org/10.5194/bg-15-5761-2018, 2018
Short summary
Short summary
Trichodesmium is a keystone genus of marine cyanobacteria that is estimated to supply nearly half of the ocean’s fixed nitrogen, fuelling primary productivity and the cycling of carbon and nitrogen in the ocean. In our study we characterize Trichodesmium ecology across the western tropical South Pacific using gene and genome sequencing and geochemistry. We detected genes for phosphorus reduction, providing a mechanism for the noted importance of this organism in the ocean's phosphorus cycle.
Audrey Lallement, Ludovic Besaury, Elise Tixier, Martine Sancelme, Pierre Amato, Virginie Vinatier, Isabelle Canet, Olga V. Polyakova, Viatcheslay B. Artaev, Albert T. Lebedev, Laurent Deguillaume, Gilles Mailhot, and Anne-Marie Delort
Biogeosciences, 15, 5733–5744, https://doi.org/10.5194/bg-15-5733-2018, https://doi.org/10.5194/bg-15-5733-2018, 2018
Short summary
Short summary
The main objective of this work was to evaluate the potential degradation of phenol, a highly toxic pollutant, by cloud microorganisms. Phenol concentrations measured on five cloud samples collected at the PUY station in France were from 0.15 to 0.74 µg L−1. Metatranscriptomic analysis suggested that phenol could be biodegraded directly in clouds, likely by Gammaproteobacteria. A large screening showed that 93 % of 145 bacterial strains isolated from clouds were able to degrade phenol.
Sara J. Bender, Dawn M. Moran, Matthew R. McIlvin, Hong Zheng, John P. McCrow, Jonathan Badger, Giacomo R. DiTullio, Andrew E. Allen, and Mak A. Saito
Biogeosciences, 15, 4923–4942, https://doi.org/10.5194/bg-15-4923-2018, https://doi.org/10.5194/bg-15-4923-2018, 2018
Short summary
Short summary
Phaeocystis antarctica is an important phytoplankter of the Antarctic coastal environment where it dominates the early season bloom after sea ice retreat. Iron nutrition was found to be an important factor that results in Phaeocystis colony formation and a large restructuring of the proteome, including changes associated with the flagellate to colonial transition and adaptive responses to iron scarcity. Analysis of Phaeocystis proteins from the Ross Sea revealed the presence of both cell types.
Sophie Bonnet, Mathieu Caffin, Hugo Berthelot, Olivier Grosso, Mar Benavides, Sandra Helias-Nunige, Cécile Guieu, Marcus Stenegren, and Rachel Ann Foster
Biogeosciences, 15, 4215–4232, https://doi.org/10.5194/bg-15-4215-2018, https://doi.org/10.5194/bg-15-4215-2018, 2018
Cited articles
Aneja, M., Sharma, S., Schloter, M., and Munch, J. C.: Microbial degradation of beech litter – Influence of soil type and litter quality on the structure and function of microbial populations involved in the turnover process, Microb. Ecol., 52, 127–135, 2006.
Bardgett, R. D. and Walker, L. R.: Impact of coloniser plant species on the development of decomposer microbial communities following deglaciation, Soil Biol. Biochem., 36, 555–559, 2004.
Belnap, J., Büdel, B., and Lange, O. L.: Biological Soil Crusts: Characteristics and Distribution, in: Biological Soil Crusts: Structure, Function, and Management, edited by: Belnap, J. and Lange, O. L., Springer, Berlin, Heidelberg, 2001a.
Belnap, J., Prasse, R., and Harper, K. T.: Influence of biological soil crusts on soil environments and vascular plants, in: Biological Soil Crusts: Structure, Function, and Management, edited by: Belnap, J. and Lange, O. L., Springer, Berlin, Heidelberg, 281–300, 2001b.
Bernasconi, S. M.: Weathering, soil formation and initial ecosystem evolution on a glacier forefield: a case study from the Damma Glacier, Switzerland, Mineral Mag, 72, 19–22, 2008.
Bernasconi, S. M., Bauder, A., Bourdon, B., Brunner, I., Bünemann, E., Chris, I., Derungs, N., Edwards, P., Farinotti, D., Frey, B., Frossard, E., Furrer, G., Gierga, M., Göransson, H., Gülland, K., Hagedorn, F., Hajdas, I., Hindshaw, R., Ivy-Ochs, S., Jansa, J., Jonas, T., Kiczka, M., Kretzschmar, R., Lemarchand, E., Luster, J., Magnusson, J., Mitchell, E. A. D., Venterink, H. O., Plötze, M., Reynolds, B., Smittenberg, R. H., Stähli, M., Tamburini, F., Tipper, E. T., Wacker, L., Welc, M., Wiederhold, J. G., Zeyer, J., Zimmermann, S., and Zumsteg, A.: Chemical And Biological Gradients Along The Damma Glacier Soil Chronosequence, Switzerland, Vadzone, 10, 867–883, 2011.
Billings, W. D.: Constraints to Plant Growth, Reproduction, and Establishment in Arctic Environments, Arctic Alpine Res., 19, 357–365, 1987.
Binder, C. R., de Baan, L., and Wittmer, D.: Phosphorflüsse der Schweiz, Bundesamt für Umwelt (BAFU), 28, 1–163, 2009.
Blumenthaler, M., Ambach, W., and Ellinger, R.: Increase in solar UV radiation with altitude, J. Photochem. Photobiol., 39, 130–134, 1997.
Borin, S., Ventura, S., Tambone, F., Mapelli, F., Schubotz, F., Brusetti, L., Scaglia, B., Acqui, L., Solheim, B., Turicchia, S., Marasco, R., Hinrichs, U., Baldi, F., Adani, F., and Daffonchio, D.: Rock weathering creates oases of life in a High Arctic desert, Environ. Microbiol., 12, 293–303, 2010.
Brankatschk, R., Töwe, S., Kleineidam, K., Schloter, M., and Zeyer, J.: Abundances and potential activities of nitrogen cycling microbial communities along a chronosequence of a glacier forefield, ISME J., 5, 1025–1037, 2011.
Bratteler, M., Lexer, C., and Widmer, A.: Genetic architecture of traits associated with serpentine adaptation of Silene vulgaris, J Evol. Biol., 19, 1149–1156, 2006.
Breen, K. and Lévesque, E.: The Influence of Biological Soil Crusts on Soil Characteristics along a High Arctic Glacier Foreland, Nunavut, Canada, Arct. Antarct. Alp. Res., 40, 287–297, 2008.
Briones, A. M., Okabe, S., Umemiya, Y., Ramsing, N.-B., Reichardt, W., and Okuyama, H.: Ammonia-oxidizing bacteria on root biofilms and their possible contribution to N use efficiency of different rice cultivars, Plant Soil, 250, 335–348, 2003.
Büdel, B., Weber, B., Kühl, M., Pfanz, H., Sültemeyer, D., and Wessels, D.: Reshaping of sandstone surfaces by cryptoendolithic cyanobacteria: bioalkalization causes chemical weathering in arid landscapes, Geobiology, 2, 261–268, 2004.
Butler, J. L., Williams, M. A., Bottomley, P. J., and Myrold, D. D.: Microbial community dynamics associated with rhizosphere carbon flow, Appl. Environ. Microbiol., 69, 6793–6800, 2003.
Chapin, F. S., Walker, L. R., Fastie, C. L., and Sharman, L. C.: Mechanisms of primary succession following deglaciation at Glacier Bay, Alaska, Ecol. Monogr., 64, 149–175, https://doi.org/10.2307/2937039, 1994.
Cocking, E. C.: Endophytic colonization of plant roots by nitrogen-fixing bacteria, Plant Soil, 252, 169–175, 2003.
Deiglmayr, K., Philippot, L., Tscherko, D., and Kandeler, E.: Microbial succession of nitrate-reducing bacteria in the rhizosphere of Poa alpina across a glacier foreland in the Central Alps, Environ. Microbiol., 8, 1600–1612, 2006.
Dickson, L. G.: Constraints to nitrogen fixation by cryptogamic crusts in a polar desert ecosystem, Devon Island, NWT, Canada, Arct. Antarct. Alp. Res., 32, 40–45, 2000.
Dijkstra, P., Ishizu, A., Doucett, R., Hart, S. C., Schwartz, E., Menyailo, O. V., and Hungate, B. A.: C-13 and N-15 natural abundance of the soil microbial biomass, Soil Biol. Biochem., 38, 3257–3266, 2006.
Doran, J.: Soil health and global sustainability: translating science into practice, Agricult. Ecosyst. Environ., 24, 119–127, 2002.
Duc, L., Noll, M., Meier, B., Bürgmann, H., and Zeyer, J.: High diversity of diazotrophs in the forefield of a receding alpine glacier, Microb. Ecol., 57, 179–190, 2009.
Dümig, A., Smittenberg, R., and Kögel-Knabner, I.: Concurrent evolution of organic and mineral components during initial soil development after retreat of the Damma glacier, Switzerland, Geoderma, 163, 83–94, 2011.
Dümig, A., Häusler, W., Steffens, M., and Kögel-Knabner, I.: Clay fractions from a soil chronosequence after glacier retreat reveal the initial evolution of organo-mineral associations, Geochim. Cosmochim. Ac., 85, 1–18, 2012.
Edwards, I. P., Burgmann, H., Miniaci, C., and Zeyer, J.: Variation in microbial community composition and culturability in the rhizosphere of Leucanthemopsis alpina (L.) heywood and adjacent bare soil along an alpine chronosequence, Microb. Ecol., 52, 679–692, 2006.
Egli, M., Wernli, M., Burga, C., Kneisel, C., Mavris, C., Valboa, G., Mirabella, A., Ploetze, M., and Haeberli, W.: Fast but spatially scattered smectite-formation in the proglacial area Morteratsch: An evaluation using GIS, Geoderma, 164, 11–21, 2011.
Escudero, A., Martínez, I., de la Cruz, A., Otálora, M. A. G., and Maestre, F. T.: Soil lichens have species-specific effects on the seedling emergence of three gypsophile plant species, J. Arid Environ., 70, 18–28, 2007.
Esperschütz, J., Pérez-de-Mora, A., Schreiner, K., Welzl, G., Buegger, F., Zeyer, J., Hagedorn, F., Munch, J. C., and Schloter, M.: Microbial food web dynamics along a soil chronosequence of a glacier forefield, Biogeosciences, 8, 3283–3294, https://doi.org/10.5194/bg-8-3283-2011, 2011.
Fahnestock, J. T., Jones, M. H., Brooks, P. D., Walker, D. A., and Welker, J. M.: Winter and early spring CO2 flux from tundra communities of northern Alaska, J. Geophys. Res., 102, 925–929, 1998.
Frey, B., Rieder, S. R., Brunner, I., Plotze, M., Koetzsch, S., Lapanje, A., Brandl, H., and Furrer, G.: Weathering-associated bacteria from the Damma glacier forefield: physiological capabilities and impact on granite dissolution, Appl. Environ. Microbiol., 76, 4788–4796, 2010.
Frey-Klett, P., Garbaye, J., and Tarkka, M.: The mycorrhiza helper bacteria revisited, New Phytol., 176, 22–36, 2007.
Gold, W. G.: The influence of cryptogamic crusts on the thermal environment and temperature relations of plants in a high Arctic polar desert, Devon Island, NWT, Canada, Arctic Alpine Res., 30, 108–120, 1998.
Göransson, H., Olde Venterink, H., and Bååth, E.: Soil bacterial growth and nutrient limitation along a chronosequence from a glacier forefield, Soil Biol. Biochem., 43, 1333–1340, 2011.
Gubry-Rangin, C., Hai, B., Quince, C., Engel, M., Thomson, B. C., James, P., Schloter, M., Griffiths, R. I., Prosser, J. I., and Nicol, G. W.: Niche specialization of terrestrial archaeal ammonia oxidizers, P. Natl. Acad. Sci., 108, 21206–21211, 2011.
Gülland, K., Esperschütz, J., Bornhauser, D., Bernasconi, S. M., Kretzschmar, R., and Hagedorn, F.: Mineralisation and leaching of C from 13C labelled plant litter along an initial soil chronosequence of a glacier forefield, Soil Biol. Biochem., 57, 237–247, 2013a.
Gülland, K., Hagedorn, F., Smittenberg, R. H., Göransson, H., Bernasconi, S. M., Hajdas, I., and Kretzschmar, R.: Evolution of carbon fluxes during initial soil formation along the forefield of Damma glacier, Switzerland, Biogeochemistry, 113, 545–561, 2013b.
Hämmerli, A., Waldhuber, S., Miniaci, C., Zeyer, J., and Bunge, M.: Local expansion and selection of soil bacteria in a glacier forefield, Eur. J. Soil Sci., 58, 1437–1445, 2007.
Harper, K. T. and Belnap, J.: The influence of biological soil crusts on mineral uptake by associated vascular plants, J. Arid Environ., 47, 347–357, 2001.
Harris, C., Arenson, L. U., Christiansen, H. H., Etzelmüller, B., Frauenfelder, R., Gruber, S., Haeberli, W., Hauck, C., Hölzle, M., Humlum, O., Isaksen, K., Kääb, A., Kern-Lütschg, M. A., Lehning, M., Matsuoka, N., Murton, J. B., Nötzli, J., Phillips, M., Ross, N., Seppälä, M., Springman, S. M., and Vonder Mühll, D.: Permafrost and climate in Europe: Monitoring and modelling thermal, geomorphological and geotechnical responses, Earth-Sci. Rev., 92, 117–171, 2009.
Harrison, R. B. and Strahm, B.: Soil Formation, Encyclopedia of Ecology 3291–3295, 2008
Hartmann, A., Rothballer, M., and Schmid, M.: Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research, Plant Soil, 312, 7–14, 2008.
Hodge, A., Robinson, D., and Fitter, A.: Are microorganisms more effective than plants at competing for nitrogen?, Trends Plant Sci., 5, 304–308, 2000.
Hodkinson I. D., Coulson S. J., and Webb, N. R.: Community assembly along proglacial chronosequences in the High Arctic: vegetation and soil development in north-west Svalbard, J Ecol., 91, 651–663, 2003.
Joerin, U., Stocker, T., and Schlüchter, Ch.: Multicentury glacier fluctuations in the Swiss Alps during the Holocene, The Holocene, 16, 697–704, 2006.
Johnson, S. L., Neuer, S., and Garcia-Pichel, F.: Export of nitrogenous compounds due to incomplete cycling within biological soil crusts of arid lands, Environ. Microbiol., 9, 680–689, 2007.
Kaštovská, K., Stibal, M., Šabacká, M., Černá, B., Šantrůčková, H., and Elster, J.: Microbial community structure and ecology of subglacial sediments in two polythermal Svalbard glaciers characterized by epifluorescence microscopy and PLFA, Polar Biol., 30, 277–287, 2007.
Knelman, J. E., Legg, T. M., O'Neill, S. P., Washenberger, C. L., González, A., Cleveland, C. C., and Nemergut, D. R.: Bacterial community structure and function change in association with colonizer plants during early primary succession in a glacier forefield, Soil Biol. Biochem., 46, 172–180, 2012.
Kobierska, F., Jonas,T., Magnusson, J., Zappa, M., Bavay, M., Bosshard, T., Paul, F., and Bernasconi, S.: Climate change effects on snow melt and discharge of a partly glacierized watershed in Central Switzerland (SoilTrec Critical Zone Observatory), App. Geochem., 26, S60–S62, 2011.
Körner, C.: Alpine plant life, Springer, Heidelberg, 1999.
Körner, C.: Mountain biodiversity, its causes and function, Ambio, 13, 11–17, 2004.
Kowalchuk, G. A. and Stephen, J. R.: Ammonia-oxidizing bacteria: A model for molecular microbial ecology, Annu. Rev. Microbiol., 55, 485–529, 2001.
Landolt, E.: Unsere Alpenflora, Gustav Fischer Verlag, Stuttgart, 1992.
Lapanje, A., Wimmersberger, C., Furrer, G., Brunner, I., and Frey, B.: Pattern of elemental release during the granite dissolution can be changed by aerobic heterotrophic bacterial strains isolated from Damma Glacier (central Alps) deglaciated granite sand, Microb. Ecol., 63, 865–882, 2012.
Lazzaro, A., Abegg, C., and Zeyer, J.: Bacterial community structure of glacier forefields on siliceous and calcareous bedrock, Europ. J. Soil Sc., 15, 291–301, 2009.
Leininger, S., Urich, T., Schloter, M., Schwark, L., Qi, J., Nicol, G. W., Prosser, J. I., Schuster, S. C., and Schleper, C.: Archaea predominate among ammonia-oxidizing prokaryotes in soils, Nature, 442, 806–809, 2006.
Lipson, D. A. and Monson, R. K.: Plant-microbe competition for soil amino acids in the alpine tundra: effects of freeze-thaw and dry-rewet events, Oecologia, 113, 406–414, 1998.
Lombard, N., Prestat, E., van Elsas, J. D., and Simonet, P.: Soil-specific limitations for access and analysis of soil microbial communities by metagenomics, FEMS Microbiol. Ecol., 78, 31–49, 2011.
Mavris, C., Egli, M., Ploetze, M., Blum, J. D., Mirabella, A., Giaccai, D., and Haeberli, W.: Initial stages of weathering and soil formation in the Morteratsch proglacial area (Upper Engadine, Switzerland), Geoderma, 155, 359–371, 2010.
Mavris, C., Ploetze, M., Mirabella, A., Giaccai, D., Valboa, G., and Egli, M.: Clay mineral evolution along a soil chronosequence in an Alpine proglacial area, Geoderma, 165, 106–117, 2011.
Merbach, W., Mirus, E., Knof, G., Remus, R., Ruppel, S., Russow, R., Gransee, A., and Schulze, J.: Release of carbon and nitrogen compounds by plant roots and their possible ecological importance, J. Plant Nutr. Soil Sci., 162, 373–383, 1999.
Miniaci, C., Bunge, M., Duc, L., Edwards, I., Burgmann, H., and Zeyer, J.: Effects of pioneering plants on microbial structures and functions in a glacier forefield, Biol. Fert. Soils, 44, 289–297, 2007.
Monier, J. M., Demanèche, S., Delmont, T. O., Mathieu, A., Vogel, T. M., and Simonet, P.: Metagenomic exploration of antibiotic resistance in soil, Curr. Opin. Microbiol., 14, 229–235, 2011.
Näsholm, T., Kielland, K., and Ganeteg, U.: Uptake of organic nitrogen by plants, New Phytol., 182, 31–48, 2009.
Nordin, A., Schmidt, I. K., and Shaver, G. R.: Nitrogen uptake by arctic soil microbes and plants in relation to soil nitrogen supply, Ecology, 85, 955–962, 2004.
Noll, M. and Wellinger, M.: Changes of the soil ecosystem along a receding glacier: Testing the correlation between environmental factors and bacterial community structure, Soil Biol. Biochem., 40, 2611–2619, 2008.
Nyiri, A., Gauss, M., and Klein, H.: Transboundary data by main pollutants (S, N, O3) and PM, Country reports 2010 MSC-W Data Note 1/2010, ISSN 1890-0003, 2009.
Ollivier, J., Töwe, S., Bannert, A., Hai, B., Kastl, E. M., Meyer, A., Su, M.X., Kleineidam, K., and Schloter, M.: Nitrogen turnover in soil and global change, FEMS Microbiol. Ecol., 78, 3–16, 2011.
Paterson, E. and Sim, A.: Effect of nitrogen supply and defoliation on loss of organic compounds from roots of Festuca rubra, J. Exp. Bot., 51, 1449–1457, 2000.
Paul, E. A. and Clark, F.: Soil Microbiology and Biochemistry, 2nd Edition, Academic Press, New York, 1996.
Paul, F., Kääb, A., Maisch, M., Kellenberger, T., and Haeberli, W.: Rapid disintegration of Alpine glaciers observed with satellite data, Geophys. Res. Lett., 31, 1–4, 2004.
Paul, F., Kääb, A. and Haeberli, W.: Recent glacier changes in the Alps observed from satellite: Consequences for future monitoring strategies, Global Planet. Change, 56, 111–122, 2007.
Pluess, A., Schütz, W., and Stöcklin, J.: Seed weight increases with altitude in the Swiss Alps (2007) between related species but not among populations of individual species, Oecologia, 144, 55–61, 2005.
Pointing, S. B. and Belnap, J.: Microbial colonization and controls in dryland systems, Nat. Rev. Microbiol., 10, 551–562, 2012.
Ragot, S., Zeyer, J., Zehnder, L., Reusser, E., Brandl, H., and Lazzaro, A.: Bacterial community structures of an alpine apatite deposit, Geoderma, 202–203, 30–37, 2013.
Rajendhran, J. and Gunasekaran, P.: Strategies for accessing soil metagenome for desired applications, Biotechnol. Adv., 26, 576–590, 2008.
Reynolds, R., Belnap, J., Reheis, M., Lamothe, P., and Luiszer, F.: Aeolian dust in Colorado Plateau soils: Nutrient inputs and recent change in source, P. Natl. Acad. Sci., 98, 7123–7127, 2001.
Rogers, S. L. and Burns, R. G.: Changes in aggregate stability, nutrient status, indigenous microbial populations, and seedling emergence, following inoculation of soil, Biol. Fert. Soils, 18, 209–215, 1994.
Sawstrom, C., Mumford, P., Marshall, W., Hodson, A., and Laybourn-Parry, J.: The microbial communities and primary productivity of cryoconite holes in an arctic glacier (Svalbard 79{\degree} N), Polar Biol., 25, 591–596, 2002.
Schaaf, W., Bens, O., Fischer, A., Gerke, H. H., Gerwin, W., Grünewald, U., Holländer, H. M., Kögel-Knabner, I., Mutz, M., Schloter, M., Schulin, R., Veste, M., Winter, S., and Hüttl, R. F.: Patterns and processes of initial terrestrial-ecosystem development, J. Plant Nutr. Soil Sci., 174, 229–239, 2011.
Schauss, K., Focks, A., Leininger, S., Kotzerke, A., Heuer, H., Thiele-Bruhn, S., Sharma, S., Wilke, B.-M., Matthies, M., Smalla, K., Munch, J. C., Amelung, W., Kaupenjohann, M., Schloter, M., and Schleper, C.: Dynamics and functional relevance of ammonia-oxidizing archaea in two agricultural soils, Environ. Microbiol., 11, 446–456, 2009.
Schimel, J. P. and Bennett, J.: Nitrogen mineralization: Challenges of a changing paradigm, Ecol, 85, 591–602, 2004.
Schmalenberger, A. and Noll, M.: Shifts in desulfonating bacterial communities along a soil chronosequence in the forefield of a receding glacier, FEMS Microb. Ecol., 71, 208–217, 2010.
Sharma, S., Mehta, R., Gupta, R., and Schloter, M.: Improved protocol for the extraction of bacterial mRNA from soils, J. Microbiol. Methods, 91, 62–64, 2012.
Sigler, W. V. and Zeyer, J.: Microbial diversity and activity along the forefields of two receding glaciers, Microb. Ecol., 43, 397–407, 2002.
Simon, C. and Daniel, R.: Metagenomic analyses: past and future trends, Appl. Environ. Microbiol., 77, 1153–1161, 2011.
Singh, B. K., Millard, P., Whiteley, A. S., and Murrell, J. C.: Unravelling rhizosphere-microbial interactions: opportunities and limitations, Trends Microbiol., 12, 386–393, 2004.
Smittenberg, R., Gierga, M., Göransson, H., Christl, I., Farinotti, D., and Bernasconi, S.: Climate-sensitive ecosystem carbon dynamics along the soil chronosequence of the Damma glacier forefield, Switzerland, Glob. Change Biol., 18, 1941–1955, 2012.
Stibal, M., Tranter, M., Benning, L. G., and \v{R}ehák, J.: Microbial primary production on an Arctic glacier is insignificant in comparison with allochthonous organic carbon input, Environ. Microbiol., 10, 2172–2178, 2008.
Styriakova, I., Styriak, I., and Oberhänsli, H.: Rock weathering by indigenous heterotrophic bacteria of Bacillus spp. at different temperature: a laboratory experiment, Mineral. Petrol., 105, 135–144, 2012.
Tackenberg, O. and Stöcklin, J.: Wind dispersal of alpine plant species: A comparison with lowland species, J. Veg. Sci., 19 109–118, 2008.
Tamburini, F., Bernasconi, S. M., Angert, A., Weiner, T., and Frossard, E.: A method for the analysis of the d18O of inorganic phosphate in soils extracted with HCl, Eur. J. Soil Sc., 61, 1025–1032, 2010.
Torsvik, V. and Øvreås, L.: Microbial diversity and function in soil: from genes to ecosystems, Curr. Opin. Microbiol., 5, 240–245, 2002.
Totsche, K. U., Rennert, T., Gerzabek, M. H., Kögel-Knabner, I., Smalla, K., Spiteller, M., and Vogel, H.-J. : Biogeochemical interfaces in soil: The interdisciplinary challenge for soil science, J. Plant Nutr. Soil. Sci., 173, 88–99, 2010.
Töwe, S., Albert, A., Kleineidam, K., Brankatschk, R., Dümig, A., Welzl, G., Munch, J., Zeyer, J., and Schloter, M.: Abundance of microbes involved in nitrogen transformation in the rhizosphere of Leucanthemopsis alpina (L.) Heywood grown in soils from different sites of the Damma glacier forefield, Microb. Ecol., 60, 762–770, 2010.
Tscherko, D., Rustemeier, J., Richter, A., Wanek, W., and Kandeler, E.: Functional diversity of the soil microflora in primary succession across two glacier forelands in the Central Alps, Eur. J. Soil. Sci., 54, 685–696, 2003.
Tscherko, D., Hammesfahr, U., Marx, M. C., and Kandeler, E.: Shifts in rhizosphere microbial communities and enzyme activity of Poa alpina across an alpine chronosequence, Soil Biol. Biochem., 36, 1685–1698, 2004.
van Elsas, J. D., Costa, R., Jansson, J., Sjöling, S., Bailey, M., Nalin, R., Vogel, T. M., and van Overbeek. L.: The metagenomics of disease-suppressive soils – experiences from the METACONTROL project, Trends Biotechnol., 26, 591–601, 2008.
Vitousek, P. M. and Farrington, H.: Nutrient limitation and soil development: Experimental test of a biogeochemical theory, Biogeochemistry, 37, 63–75, 1997.
Ward, B. B., Courtney, K. J., and Langenheim, J. H.: Inhibition of Nitrosomonas europaea by monoterpenes from coastal redwood (Sequoia sempervirens) in whole-cell studies, J. Chem. Ecol., 23, 2583–2598, 1997.
Yeager, C. M., Kornosky, J. L., Housman, D. C., Grote, E. E., Belnap, J., and Kuske, C. R.: Diazotrophic community structure and function in two successional stages of biological soil crusts from the Colorado Plateau and Chihuahuan Desert, Appl. Environ. Microbiol., 70, 973–983, 2004.
Yoshitake, S., Uchida, M., Koizumi, H., Kanda, H., and Nakatsubo, T.: Production of biological soil crusts in the early stage of primary succession on a High Arctic glacier foreland, New Phytol., 186, 451–460, 2009.
Zaady, E., Kuhn, U., Wilske, B., Sandoval-Soto, L., and Kesselmeier, J.: Patterns of CO2 exchange in biological soil crusts of successional age, Soil Biol. Biochem., 32, 959–966, 2000.
Zumsteg, A., Luster, J., Göransson, H., Smittenberg, R., Brunner, I., Bernasconi, S., Zeyer, J., and Frey, B.: Bacterial, Archaeal and Fungal Succession in the Forefield of a Receding Glacier, Microb. Ecol., 63, 552–564, 2012.
Altmetrics
Final-revised paper
Preprint