Articles | Volume 12, issue 1
https://doi.org/10.5194/bg-12-163-2015
https://doi.org/10.5194/bg-12-163-2015
Research article
 | 
09 Jan 2015
Research article |  | 09 Jan 2015

Deploying four optical UAV-based sensors over grassland: challenges and limitations

S. K. von Bueren, A. Burkart, A. Hueni, U. Rascher, M. P. Tuohy, and I. J. Yule

Related authors

Evidence of successful methane mitigation in one of Europe's most important oil production region
Gerrit Kuhlmann, Foteini Stavropoulou, Stefan Schwietzke, Daniel Zavala-Araiza, Andrew Thorpe, Andreas Hueni, Lukas Emmenegger, Andreea Calcan, Thomas Röckmann, and Dominik Brunner
EGUsphere, https://doi.org/10.5194/egusphere-2024-3494,https://doi.org/10.5194/egusphere-2024-3494, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Mapping the spatial distribution of NO2 with in situ and remote sensing instruments during the Munich NO2 imaging campaign
Gerrit Kuhlmann, Ka Lok Chan, Sebastian Donner, Ying Zhu, Marc Schwaerzel, Steffen Dörner, Jia Chen, Andreas Hueni, Duc Hai Nguyen, Alexander Damm, Annette Schütt, Florian Dietrich, Dominik Brunner, Cheng Liu, Brigitte Buchmann, Thomas Wagner, and Mark Wenig
Atmos. Meas. Tech., 15, 1609–1629, https://doi.org/10.5194/amt-15-1609-2022,https://doi.org/10.5194/amt-15-1609-2022, 2022
Short summary
CloudRoots: integration of advanced instrumental techniques and process modelling of sub-hourly and sub-kilometre land–atmosphere interactions
Jordi Vilà-Guerau de Arellano, Patrizia Ney, Oscar Hartogensis, Hugo de Boer, Kevin van Diepen, Dzhaner Emin, Geiske de Groot, Anne Klosterhalfen, Matthias Langensiepen, Maria Matveeva, Gabriela Miranda-García, Arnold F. Moene, Uwe Rascher, Thomas Röckmann, Getachew Adnew, Nicolas Brüggemann, Youri Rothfuss, and Alexander Graf
Biogeosciences, 17, 4375–4404, https://doi.org/10.5194/bg-17-4375-2020,https://doi.org/10.5194/bg-17-4375-2020, 2020
Short summary
QUANTIFYING LODGING PERCENTAGE, LODGING DEVELOPMENT AND LODGING SEVERITY USING A UAV-BASED CANOPY HEIGHT MODEL
N. Wilke, B. Siegmann, F. Frimpong, O. Muller, L. Klingbeil, and U. Rascher
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 649–655, https://doi.org/10.5194/isprs-archives-XLII-2-W13-649-2019,https://doi.org/10.5194/isprs-archives-XLII-2-W13-649-2019, 2019
ON THE DERIVATION OF CROP HEIGHTS FROM MULTITEMPORAL UAV BASED IMAGERY
D. Becirevic, L. Klingbeil, A. Honecker, H. Schumann, U. Rascher, J. Léon, and H. Kuhlmann
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2-W5, 95–102, https://doi.org/10.5194/isprs-annals-IV-2-W5-95-2019,https://doi.org/10.5194/isprs-annals-IV-2-W5-95-2019, 2019

Related subject area

Biodiversity and Ecosystem Function: Terrestrial
On the predictability of turbulent fluxes from land: PLUMBER2 MIP experimental description and preliminary results
Gab Abramowitz, Anna Ukkola, Sanaa Hobeichi, Jon Cranko Page, Mathew Lipson, Martin G. De Kauwe, Samuel Green, Claire Brenner, Jonathan Frame, Grey Nearing, Martyn Clark, Martin Best, Peter Anthoni, Gabriele Arduini, Souhail Boussetta, Silvia Caldararu, Kyeungwoo Cho, Matthias Cuntz, David Fairbairn, Craig R. Ferguson, Hyungjun Kim, Yeonjoo Kim, Jürgen Knauer, David Lawrence, Xiangzhong Luo, Sergey Malyshev, Tomoko Nitta, Jerome Ogee, Keith Oleson, Catherine Ottlé, Phillipe Peylin, Patricia de Rosnay, Heather Rumbold, Bob Su, Nicolas Vuichard, Anthony P. Walker, Xiaoni Wang-Faivre, Yunfei Wang, and Yijian Zeng
Biogeosciences, 21, 5517–5538, https://doi.org/10.5194/bg-21-5517-2024,https://doi.org/10.5194/bg-21-5517-2024, 2024
Short summary
Crowd-sourced trait data can be used to delimit global biomes
Simon Scheiter, Sophie Wolf, and Teja Kattenborn
Biogeosciences, 21, 4909–4926, https://doi.org/10.5194/bg-21-4909-2024,https://doi.org/10.5194/bg-21-4909-2024, 2024
Short summary
Biomass yield potential, feedstock quality, and nutrient removal of perennial buffer strips under continuous zero fertilizer application
Cheng-Hsien Lin, Colleen Zumpf, Chunhwa Jang, Thomas Voigt, Guanglong Tian, Olawale Oladeji, Albert Cox, Rehnuma Mehzabin, and DoKyoung Lee
Biogeosciences, 21, 4765–4784, https://doi.org/10.5194/bg-21-4765-2024,https://doi.org/10.5194/bg-21-4765-2024, 2024
Short summary
Leaf habit drives leaf nutrient resorption globally alongside nutrient availability and climate
Gabriela Sophia, Silvia Caldararu, Benjamin David Stocker, and Sönke Zaehle
Biogeosciences, 21, 4169–4193, https://doi.org/10.5194/bg-21-4169-2024,https://doi.org/10.5194/bg-21-4169-2024, 2024
Short summary
Linking geomorphological processes and wildlife microhabitat selection: nesting birds select refuges generated by permafrost degradation in the Arctic
Madeleine-Zoé Corbeil-Robitaille, Éliane Duchesne, Daniel Fortier, Christophe Kinnard, and Joël Bêty
Biogeosciences, 21, 3401–3423, https://doi.org/10.5194/bg-21-3401-2024,https://doi.org/10.5194/bg-21-3401-2024, 2024
Short summary

Cited articles

Aber, J. S., Aber, S. W., Pavri, F., Volkova, E., and Penner II, R. L.: Small-format aerial photography for assessing change in wetland vegetation, Cheyenne Bottoms, Kansas, Transactions of the Kansas Academy of Science, 109, 47–57, https://doi.org/10.1660/0022-8443(2006)109[47:sapfac]2.0.co;2, 2006.
Baret, F., Guyot, G., and Major, D. J.: TSAVI: A Vegetation Index Which Minimizes Soil Brightness Effects On LAI And APAR Estimation, Geoscience and Remote Sensing Symposium, 1989, IGARSS'89, 12th Canadian Symposium on Remote Sensing, International, 1355–1358, 1989.
Baugh, W. M. and Groeneveld, D. P.: Empirical proof of the empirical line, Int. J. Remote Sens., 29, 665–672, https://doi.org/10.1080/01431160701352162, 2008.
Bayer, B. E.: Color imaging array, 1976.
Berni, J., Zarco-Tejada, P., Surez, L., González-Dugo, V., and Fereres, E.: Remote sensing of vegetation from uav platforms using lightweight multispectral and thermal imaging sensors, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVII, 2008.
Download
Short summary
Unmanned aerial vehicles (UAVs) equipped with optical sensors facilitate non-invasive, real-time vegetation analysis. To guarantee robust scientific analysis, protocols need to be developed and sensors must be compared to state-of-the-art instruments. Here we compare four UAV sensors (RGB, NIR, six-band, spectrometer) to evaluate their applicability for vegetation monitoring. By showing the opportunities and pitfalls of UAV-based sensing, we describe ways to gather sound scientific data.
Altmetrics
Final-revised paper
Preprint