Articles | Volume 12, issue 3
https://doi.org/10.5194/bg-12-713-2015
https://doi.org/10.5194/bg-12-713-2015
Technical note
 | Highlight paper
 | 
05 Feb 2015
Technical note | Highlight paper |  | 05 Feb 2015

Technical Note: Maximising accuracy and minimising cost of a potentiometrically regulated ocean acidification simulation system

C. D. MacLeod, H. L. Doyle, and K. I. Currie

Related subject area

Biogeochemistry: Coastal Ocean
Technical note: Ocean Alkalinity Enhancement Pelagic Impact Intercomparison Project (OAEPIIP)
Lennart Thomas Bach, Aaron James Ferderer, Julie LaRoche, and Kai Georg Schulz
Biogeosciences, 21, 3665–3676, https://doi.org/10.5194/bg-21-3665-2024,https://doi.org/10.5194/bg-21-3665-2024, 2024
Short summary
Estimates of carbon sequestration potential in an expanding Arctic fjord (Hornsund, Svalbard) affected by dark plumes of glacial meltwater
Marlena Szeligowska, Déborah Benkort, Anna Przyborska, Mateusz Moskalik, Bernabé Moreno, Emilia Trudnowska, and Katarzyna Błachowiak-Samołyk
Biogeosciences, 21, 3617–3639, https://doi.org/10.5194/bg-21-3617-2024,https://doi.org/10.5194/bg-21-3617-2024, 2024
Short summary
An assessment of ocean alkalinity enhancement using aqueous hydroxides: kinetics, efficiency, and precipitation thresholds
Mallory C. Ringham, Nathan Hirtle, Cody Shaw, Xi Lu, Julian Herndon, Brendan R. Carter, and Matthew D. Eisaman
Biogeosciences, 21, 3551–3570, https://doi.org/10.5194/bg-21-3551-2024,https://doi.org/10.5194/bg-21-3551-2024, 2024
Short summary
Dissolved nitric oxide in the lower Elbe Estuary and the Port of Hamburg area
Riel Carlo O. Ingeniero, Gesa Schulz, and Hermann W. Bange
Biogeosciences, 21, 3425–3440, https://doi.org/10.5194/bg-21-3425-2024,https://doi.org/10.5194/bg-21-3425-2024, 2024
Short summary
Variable contribution of wastewater treatment plant effluents to downstream nitrous oxide concentrations and emissions
Weiyi Tang, Jeff Talbott, Timothy Jones, and Bess B. Ward
Biogeosciences, 21, 3239–3250, https://doi.org/10.5194/bg-21-3239-2024,https://doi.org/10.5194/bg-21-3239-2024, 2024
Short summary

Cited articles

Allan, B. J. M., Domenici, P., McCormick, M. I., Watson, S., and Munday, P. L.: Elevated CO2 affects predator-prey interactions through altered performance, PLOS ONE, 8, 1–7, https://doi.org/10.1371/journal.pone.0058520, 2013.
Andersson, A. J., Bates, N. R., and Mackenzie, F. T.: Dissolution of carbonate sediments under rising pCO2 and ocean acidification: observations from Devil's Hole, Bermuda, Aquat. Geochem., 13, 237–264, https://doi.org/10.1007/s10498-007-9018-8, 2007.
Bell, G. and Collins, S.: Adaptation, extinction and global change, Evol. Appl., 1, 3–16, https://doi.org/10.1111/j.1752-4571.2007.00011.x, 2008.
Bockmon, E. E., Frieder, C. A., Navarro, M. O., White-Kershek, L. A., and Dickson, A. G.: Technical Note: Controlled experimental aquarium system for multi-stressor investigation of carbonate chemistry, oxygen saturation, and temperature, Biogeosciences, 10, 5967–5975, https://doi.org/10.5194/bg-10-5967-2013, 2013.
Boyd, P. W.: Beyond ocean acidification, Nat. Geosci., 4, 273–274, https://doi.org/10.1038/ngeo1150, 2011.
Download
Short summary
This article describes a low-cost, easily set-up ocean acidification simulation system that reliably mimics the effects of elevated atmospheric carbon dioxide on seawater chemistry. The accessible design of this system, along with our suggestions for the validation of pH control and characterisation of seawater chemistry, will enable researchers on a limited budget to generate high-quality, repeatable data documenting the response of marine organisms to ocean acidification.
Altmetrics
Final-revised paper
Preprint